JP2005095942A - Laser welding quality inspection method and device - Google Patents

Laser welding quality inspection method and device Download PDF

Info

Publication number
JP2005095942A
JP2005095942A JP2003333688A JP2003333688A JP2005095942A JP 2005095942 A JP2005095942 A JP 2005095942A JP 2003333688 A JP2003333688 A JP 2003333688A JP 2003333688 A JP2003333688 A JP 2003333688A JP 2005095942 A JP2005095942 A JP 2005095942A
Authority
JP
Japan
Prior art keywords
welding
laser
welded
light
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003333688A
Other languages
Japanese (ja)
Inventor
Seiichi Matsumoto
清市 松本
Kazuhisa Sanpei
和久 三瓶
Yoshiro Awano
芳朗 粟野
Hiroyuki Kawaki
博行 河木
Koji Kitayama
綱次 北山
Munehisa Matsui
宗久 松井
Goro Watanabe
吾朗 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003333688A priority Critical patent/JP2005095942A/en
Publication of JP2005095942A publication Critical patent/JP2005095942A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser welding quality inspection method and a device therefor capable of performing the quality inspection of laser welding at high precision with a simple constitution. <P>SOLUTION: In laser lap welding, a light receiving apparatus 4 receives laser reflected light 1b from a boundary wall face between a keyhole 6 formed at the laser irradiation position 5 of the metal 2 to be welded and a molten pool formed on the backside in the welding progression direction of the keyhole 6, i.e., the tip wall face 7 of the molten pool. The change in the intensity of the laser reflected light 1b from the tip wall face 7 of the molten pool by the back and forth movement thereof expresses whether the welding quality is good or bad at high precision. The light receiving apparatus 4 detects the change in the intensity of the laser reflected light 1b, and a processor 11 analyzes the same and determines whether the welding quality is good or bad. The light receiving apparatus 4 has a constitution where light is received from the front slanting upper part of the welding progression direction, and a spectral structure is made needless. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、被溶接物にレーザ光を照射して行うレーザ溶接において、溶接部周辺からの光を検出して溶接の品質を検査するレーザ溶接品質検査方法及び装置に関するものである。   The present invention relates to a laser welding quality inspection method and apparatus for detecting the quality of welding by detecting light from the vicinity of a welded part in laser welding performed by irradiating a workpiece with laser light.

この種の溶接品質検査方法には、従来、溶融池後方の凝固開始から凝固終了部分までの一部分又は複数位置に、加工用レーザ光を分光したプローブ光を照射し、これと同一波長の反射光を検出し、この反射光の強度変動に基づいて溶接欠陥を検出するというものがある(例えば、特許文献1参照)。
特開2002−137073号公報
In this type of welding quality inspection method, conventionally, a part or a plurality of positions from the start of solidification to the end of solidification behind the molten pool are irradiated with probe light obtained by dispersing the processing laser light, and reflected light having the same wavelength as this. Is detected, and a welding defect is detected based on the intensity fluctuation of the reflected light (see, for example, Patent Document 1).
JP 2002-137073 A

しかしながら上記従来技術は、ポロシティ発生による溶融池のビード幅方向の振れを検知する方法であるため、比較的広範囲から反射光を検出しなければならず、反射光の強度変動検出の際のSN比が低下する。このため、実際には溶接品質による顕著な差の生じ難い部位からの検出となり、高い検査精度を得ることが難しかった。また、プローブ光を、加工用レーザ光を分光させて取り出す構成であるため装置が複雑になった。
本発明の目的は、上記のような実情に鑑みなされたもので、レーザ光を用いた重ね合わせ溶接において、より精度の高い溶接品質の検査が可能で、かつその構成も簡単なレーザ溶接品質検査方法及び装置を提供することにある。
However, since the above prior art is a method for detecting the fluctuation in the bead width direction of the molten pool due to the occurrence of porosity, the reflected light must be detected from a relatively wide range, and the SN ratio when detecting the intensity fluctuation of the reflected light. Decreases. For this reason, the detection is actually performed from a site where a significant difference due to the welding quality hardly occurs, and it is difficult to obtain high inspection accuracy. In addition, since the probe light is configured to be extracted by separating the processing laser light, the apparatus becomes complicated.
The object of the present invention has been made in view of the above circumstances, and laser welding quality inspection is possible in which welding quality with higher accuracy can be inspected in lap welding using laser light, and the configuration thereof is simple. It is to provide a method and apparatus.

上記目的を達成するために、特許請求の範囲の請求項1に記載の発明は、複数の被溶接金属部材が重ね合わされた被溶接金属物にレーザ光を照射しつつその被溶接金属物及び/又はレーザ光を所望の方向に移動させ、前記被溶接金属物の重ね合わせ溶接を行うレーザ溶接における品質検査方法において、前記被溶接金属物のレーザ光照射位置に生成されるキーホールと、該キーホールの溶接進行方向後側に生成される溶融池との境界壁面からの前記レーザ光の反射光を、溶接進行方向の前方斜め上方から受光し、該反射光の強度に基づいて溶接の品質検査をすることを特徴とする。   In order to achieve the above object, the invention according to claim 1 of the present invention is directed to a metal object to be welded and / or a laser beam irradiated to a metal object to be welded on which a plurality of metal members to be welded are superimposed. Alternatively, in a quality inspection method in laser welding in which laser light is moved in a desired direction to perform overlap welding of the metal objects to be welded, a keyhole generated at a laser light irradiation position of the metal objects to be welded and the key The reflected light of the laser beam from the boundary wall surface with the weld pool generated on the rear side of the welding progress direction of the hole is received from the diagonally upper front of the welding progress direction, and the welding quality inspection is performed based on the intensity of the reflected light It is characterized by doing.

また、特許請求の範囲の請求項2に記載の発明は、複数の被溶接金属部材が重ね合わされた被溶接金属物にレーザ光を照射しつつその被溶接金属物及び/又はレーザ光を所望の方向に移動させ、前記被溶接金属物の重ね合わせ溶接を行うレーザ溶接における品質検査装置において、前記被溶接金属物のレーザ光照射位置に生成されるキーホールと、該キーホールの溶接進行方向後側に生成される溶融池との境界壁面からの前記レーザ光の反射光を、溶接進行方向の前方斜め上方から受光し、該反射光の強度に応じた電気信号を出力する受光手段と、この受光手段からの電気信号の強度に基づいて所定の演算を行い、溶接の品質の良、不良を判定する処理手段とを具備することを特徴とする。   Further, in the invention according to claim 2 of the claims, the metal object to be welded and / or the laser light is desired while irradiating the laser beam to the metal object to be welded on which a plurality of metal members to be welded are superimposed. In a quality inspection apparatus for laser welding in which the welded metal object is superimposed and welded, the keyhole generated at the laser beam irradiation position of the welded metal object, and the welding progress direction of the keyhole A light receiving means for receiving the reflected light of the laser beam from the boundary wall surface with the molten pool generated on the side from an obliquely upper front in the welding direction, and outputting an electric signal corresponding to the intensity of the reflected light; and And processing means for performing a predetermined calculation based on the intensity of the electric signal from the light receiving means to determine whether the welding quality is good or bad.

更に、特許請求の範囲の請求項3に記載の発明は、上記請求項2に記載の発明において、受光手段の受光部が、溶接進行方向の前方斜め上方から、キーホールと、該キーホールの溶接進行方向後側に生成される溶融池との境界部分を含む一定領域からの前記レーザ光の反射光を受光可能に溶接用トーチに一体に取り付けられ、処理手段は、前記受光手段からの電気信号に対して正規化処理及び閾値処理を行って溶接の品質の良、不良を判定するように構成されたことを特徴とする。   Furthermore, the invention according to claim 3 of the claim is the invention according to claim 2, wherein the light receiving portion of the light receiving means has a keyhole and a The laser beam reflected from a certain area including the boundary with the weld pool generated on the rear side in the welding direction is integrally attached to the welding torch so that the reflected light can be received. It is characterized in that normalization processing and threshold processing are performed on the signal to determine whether the quality of welding is good or bad.

本発明(請求項1及び2)では、レーザ溶接における品質検査において、被溶接金属物のレーザ光照射位置に生成されるキーホールと、このキーホールの溶接進行方向後側に生成される溶融池との境界壁面からのレーザ光の反射光を、溶接進行方向の前方斜め上方から受光し、該反射光の強度に基づいて溶接の品質検査をするようにした。
上記境界壁面からのレーザ光の反射光の強度が溶接品質の良否を高い確度で表すことは本発明者らによって見出されており、したがって本発明によれば、レーザ光を用いた重ね合わせ溶接において、精度の高い溶接品質の検査が可能となる。特に、鋼板のレーザ重ね溶接において、鋼板間の隙間の変動によって生じる溶接欠陥を精度よく検知できる。
また、加工用レーザ光を分光したプローブ光を照射するための構成や、画像を取り込む受像装置を必要とせず、レーザ光の反射光の受光手段を備えればよいので、構成も簡単である。
請求項3の発明によれば、溶接条件、例えばレーザ光出力条件が異なる溶接においても、溶接品質の良否判定時における閾値を変化させることがなく、安定した、また精度の高い溶接品質の良否判定が可能となる。
In the present invention (Claims 1 and 2), in quality inspection in laser welding, a keyhole generated at a laser beam irradiation position of a metal object to be welded, and a molten pool generated on the rear side in the welding progress direction of the keyhole The reflected light of the laser beam from the boundary wall surface with the laser beam is received from the obliquely upper front in the welding direction, and the welding quality inspection is performed based on the intensity of the reflected light.
It has been found by the present inventors that the intensity of the reflected light of the laser beam from the boundary wall surface represents the quality of the welding quality with high accuracy. Therefore, according to the present invention, the overlap welding using the laser beam is performed. Therefore, it is possible to inspect the welding quality with high accuracy. In particular, in laser lap welding of steel plates, it is possible to accurately detect welding defects caused by fluctuations in gaps between the steel plates.
In addition, a configuration for irradiating the probe light obtained by splitting the processing laser light and an image receiving device for capturing an image are not required, and a light receiving means for reflected light of the laser light may be provided, so that the configuration is simple.
According to the invention of claim 3, even in welding with different welding conditions, for example, laser light output conditions, the threshold value at the time of determining the quality of the welding quality is not changed, and the quality determination of the quality of the welding is stable and highly accurate. Is possible.

以下、本発明の実施の形態を説明する。
本発明者らは、レーザ溶接における品質検査において、上記のような目的を達成するため鋭意、実験・検討を重ねた結果、次のような知見を得、本発明を完成するに至った。
すなわち本発明者らは、溶接品質の変化によって溶融池が溶接進行方向の前後方向に脈動する、具体的には、溶接品質が低下する程、溶融池がレーザ光照射位置を基準として溶接進行方向後方にずれ移動(後退)し、正常に戻ると元の前方位置に戻る、との知見を得た。
上記溶融池の後退は、溶融池先端位置の後退により検知でき、溶融池先端位置の後退は、被溶接金属物のレーザ光照射位置に生成されるキーホールと、このキーホールの溶接進行方向後側に生成される溶融池との境界壁面(溶融池先端壁面)からのレーザ光の反射光(レーザ反射光)の強度低下から検知できる。つまり、溶接品質の良、不良(良否)は、上記溶融池先端壁面からのレーザ反射光の強度の高低から検知できる。しかも、この溶融池先端壁面からのレーザ反射光の強度は、溶接品質の良否を高い確度で表わすことを見出し、本発明を完成するに至った。
上記のように、溶融池先端位置は、溶接品質の変化によって前後動するので、溶融池先端位置からのレーザ反射光を常に直接に受光するためには、受光手段のレーザ反射光受光軸を溶融池先端位置の前後動に伴って移動させなければならない。しかし、これは現実的ではないので、実際には、溶融池先端位置の前後動範囲を含む、溶接進行方向の前後方向の一定領域(固定領域)からのレーザ反射光を受光し、その強度の高低から溶接品質の良否を判定する。
溶融池先端位置の検知のために受光するレーザ反射光は、溶融池先端壁面からのものが強力で、SN比を大きくとることができる。また、溶融池先端壁面からのレーザ反射光を受光するためには、溶接進行方向の前方斜め上方から溶融池先端部分に、受光手段の受光面を向けることが出力信号のSN比を大きくとれる。そこで、本発明においては、上記溶融池先端壁面(境界壁面)からのレーザ反射光を、溶接進行方向の前方斜め上方から受光し、そのレーザ反射光の強度に基づいて溶接品質の良否を判定することとした。この場合においても、実際には、溶融池先端位置の前後動範囲を含む、溶接進行方向前後方向の一定領域からのレーザ反射光を受光して溶接品質の良否を判定する。
Embodiments of the present invention will be described below.
In the quality inspection in laser welding, the present inventors diligently experimented and studied in order to achieve the above object, and as a result, obtained the following knowledge and completed the present invention.
That is, the inventors pulsate the weld pool in the front-rear direction of the welding progress direction due to a change in the weld quality. Specifically, the weld pool direction of the weld pool with respect to the laser beam irradiation position as the weld quality decreases. It was found that it moved backward (backward) and returned to its original position when it returned to normal.
The retreat of the molten pool can be detected by the retreat of the molten pool front end position. The retreat of the molten pool front end position is a keyhole generated at the laser beam irradiation position of the metal object to be welded, and after the welding progress direction of the keyhole. It can be detected from the intensity drop of the reflected light (laser reflected light) of the laser beam from the boundary wall surface (melt pool front wall surface) with the molten pool generated on the side. That is, whether the welding quality is good or bad (good or bad) can be detected from the intensity of the laser reflected light from the molten pool tip wall surface. Moreover, it has been found that the intensity of the laser reflected light from the front wall surface of the molten pool represents the quality of the welding quality with high accuracy, and the present invention has been completed.
As described above, the molten pool tip position moves back and forth due to changes in welding quality. Therefore, in order to always directly receive the laser reflected light from the molten pool tip position, the laser reflected light receiving axis of the light receiving means is melted. It must be moved as the pond tip moves back and forth. However, since this is not realistic, in practice, laser reflected light from a certain region (fixed region) in the front-rear direction of the welding progress direction including the front-rear movement range of the weld pool tip position is received and Judge the quality of welding quality from high and low.
The laser reflected light received for detecting the position of the molten pool tip is strong from the wall surface of the molten pool tip and can have a large SN ratio. Further, in order to receive the laser reflected light from the molten pool front end wall, the S / N ratio of the output signal can be increased by directing the light receiving surface of the light receiving means toward the molten pool front end portion from the obliquely upper front in the welding progress direction. Therefore, in the present invention, the laser reflected light from the weld pool tip wall surface (boundary wall surface) is received from the front obliquely upward in the welding progress direction, and the quality of the welding quality is determined based on the intensity of the laser reflected light. It was decided. Even in this case, the quality of the welding quality is actually judged by receiving laser reflected light from a certain region in the front-rear direction of the welding progress direction including the front-rear movement range of the weld pool tip position.

図1は、本発明によるレーザ溶接品質検査方法が適用された装置(本発明装置)の一実施形態の説明図で、装置側方から示す。
図1において、1はレーザ溶接用トーチで、このトーチ1からのビーム状のレーザ光1aを矢印イに示すように被溶接金属物2に照射して溶接を行う。
被溶接金属物2は、複数の被溶接部材、ここでは2枚の薄鋼板2a,2bが上下に重ね合わされたものであり、重ね合わせ溶接は、このような被溶接金属物2(薄鋼板2a,2b)にレーザ光1aを照射して行う。
レーザ光1aを出力するレーザ装置3には炭酸ガスレーザ装置やYAGレーザ装置があり、ここではレーザ波長=1064nmのYAGレーザ装置が用いられている。溶接は、トーチ1若しくは被溶接金属物2のいずれか一方、又はそれら双方を移動させ、ここではトーチ1を矢印ロ方向に移動させて行う。
FIG. 1 is an explanatory view of an embodiment of a device (device of the present invention) to which a laser welding quality inspection method according to the present invention is applied, and is shown from the side of the device.
In FIG. 1, reference numeral 1 denotes a laser welding torch, which performs welding by irradiating a metal object 2 to be welded with a beam-like laser beam 1a from the torch 1 as shown by an arrow A.
The welded metal object 2 is composed of a plurality of members to be welded, in this case, two thin steel plates 2a and 2b, which are stacked one above the other. , 2b) is irradiated with the laser beam 1a.
The laser device 3 that outputs the laser light 1a includes a carbon dioxide gas laser device and a YAG laser device. Here, a YAG laser device having a laser wavelength of 1064 nm is used. Welding is performed by moving either the torch 1 or the metal object 2 to be welded, or both of them, and moving the torch 1 in the direction indicated by the arrow B in this case.

受光装置4は、被溶接金属物2のレーザ光照射位置(溶接部)5に生成されるキーホール6と、このキーホール6の溶接進行方向ロの後側に生成される溶融池との境界壁面(以下、溶融池先端壁面と称する。)7からのレーザ光1aの反射光(レーザ反射光)1bを受光し、このレーザ反射光1bの強度に応じた電気信号を出力する受光手段を構成する。
なお上記キーホール6は、図示例では被溶接金属物2の左右方向におけるほぼロート状の領域を指すが、このロート状の領域の図中右側を仕切る円弧で示す位置8は被溶接金属物2の断面左右方向における溶融池先端位置を示す。この溶融池先端位置8より、図中右側(溶接進行方向ロに対して後側)に溶融池が広がる。
溶融池先端位置8(溶融池先端壁面7の位置)は、上述したように溶接品質の変化によって前後動する。したがって、溶融池先端壁面7からのレーザ反射光1bを常に直接に受光するためには、受光装置4のレーザ反射光受光軸を溶融池先端壁面7の位置の前後動に伴って移動させなければならない。しかし、これでは構成が複雑でコストが上昇するため現実的ではない。そこで受光装置4は、実際には溶融池先端壁面7位置の前後動範囲を含む、溶接進行方向の前後方向の予め定められた反射光計測領域(一定領域)9からのレーザ反射光1bを受光するように構成されている。
図示例では、正常な溶接時(溶接品質が良の時)の溶融池先端壁面7位置を反射光計測領域9の前後方向中心に位置するように位置決め構成されている。反射光計測領域9の前後方向の範囲は、ここからのレーザ反射光1bの受光による溶接品質の良否の判定に足りる最小限の範囲とすることが、受光装置4の出力信号のSN比を高める点から好ましい。
The light receiving device 4 has a boundary between a keyhole 6 generated at the laser beam irradiation position (welded portion) 5 of the metal object 2 to be welded and a molten pool generated behind the keyhole 6 in the welding traveling direction b. A light receiving means for receiving the reflected light (laser reflected light) 1b of the laser beam 1a from the wall surface (hereinafter referred to as the molten pool front end wall surface) 7 and outputting an electric signal corresponding to the intensity of the laser reflected light 1b is configured. To do.
In the illustrated example, the keyhole 6 indicates a substantially funnel-shaped region in the left-right direction of the metal workpiece 2 to be welded, and a position 8 indicated by an arc that divides the right side of the funnel-shaped region in the figure is a metal workpiece 2 to be welded 2. The position of the molten pool front-end | tip in the cross-sectional left-right direction is shown. From this molten pool front end position 8, the molten pool spreads on the right side in the figure (the rear side with respect to the welding progress direction B).
The weld pool tip position 8 (position of the weld pool tip wall surface 7) moves back and forth due to the change in welding quality as described above. Therefore, in order to always directly receive the laser reflected light 1b from the molten pool tip wall surface 7, the laser reflected light receiving axis of the light receiving device 4 must be moved along with the back and forth movement of the position of the molten pool tip wall surface 7. Don't be. However, this is not realistic because the configuration is complicated and the cost increases. Therefore, the light receiving device 4 actually receives the laser reflected light 1b from a predetermined reflected light measurement region (constant region) 9 in the front-rear direction of the welding progress direction including the front-rear movement range of the position of the weld pool tip wall surface 7. Is configured to do.
In the illustrated example, the position of the molten pool front end wall surface 7 during normal welding (when the welding quality is good) is positioned so as to be positioned at the center in the front-rear direction of the reflected light measurement region 9. The range in the front-rear direction of the reflected light measurement region 9 is set to a minimum range sufficient for determining whether the welding quality is good or not by receiving the laser reflected light 1b from here, and the SN ratio of the output signal of the light receiving device 4 is increased. It is preferable from the point.

この受光装置4は、図示例では受光用光学系4a、光ファイバ4b、光学フィルタ4c及び光電変換手段4dにより構成されている。
このうち受光用光学系4aは、上記反射光計測領域9からの光(レーザ反射光1b、溶接により発生するプラズマ光、溶融金属の熱輻射光、その他の光を含む。以下、溶接光と称する。)を光ファイバ4bを介して光学フィルタ4cに入射させる光学部を構成する。受光用光学系4aは、上記溶接光を光ファイバ4bの光入射面に集光する集光レンズ等を備えてなる。
この受光用光学系4aは、溶接進行方向の前方の斜め上方から、上記溶融池先端壁面7部分を含む反射光計測領域9からのレーザ反射光1bを受光可能に、トーチ1に一体に取り付けられており、溶接時、レーザ光照射位置5の移動に追従して移動し、反射光計測領域9(溶融池先端壁面7)からのレーザ反射光1bを受光する。図中10は、受光用光学系4aをトーチ1に一体に取り付ける支持板である。
レーザ光照射面5に対する受光用光学系4aの受光軸の傾斜角(仰角)θは、図示例では45°となっているが、正常な溶接時において溶融池先端壁面7からのレーザ反射光強度が大きく採れる角度が受光装置4の出力信号のSN比を高める上で好ましく、45°以外の角度、例えば60°であってもよい。
溶融池先端壁面7からのレーザ反射光1bを受光することにより溶融池先端位置8を検知するのは、この溶融池先端壁面7からのレーザ反射光1bが強力で、受光装置4の出力信号のSN比を大きくとることができるからである。
In the illustrated example, the light receiving device 4 includes a light receiving optical system 4a, an optical fiber 4b, an optical filter 4c, and a photoelectric conversion means 4d.
Among these, the light receiving optical system 4a includes light from the reflected light measurement region 9 (laser reflected light 1b, plasma light generated by welding, heat radiation light of molten metal, and other light. Hereinafter, referred to as welding light. .) Is made incident on the optical filter 4c through the optical fiber 4b. The light receiving optical system 4a includes a condensing lens for condensing the welding light on the light incident surface of the optical fiber 4b.
The light receiving optical system 4a is integrally attached to the torch 1 so as to be able to receive the laser reflected light 1b from the reflected light measurement region 9 including the molten pool front end wall surface 7 portion from an obliquely upper front in the welding progress direction. At the time of welding, it moves following the movement of the laser light irradiation position 5, and receives the laser reflected light 1b from the reflected light measurement region 9 (the molten pool front end wall surface 7). In the figure, reference numeral 10 denotes a support plate for integrally attaching the light receiving optical system 4 a to the torch 1.
The inclination angle (elevation angle) θ of the light receiving axis of the light receiving optical system 4a with respect to the laser light irradiation surface 5 is 45 ° in the illustrated example, but the intensity of laser reflected light from the molten pool tip wall surface 7 during normal welding is shown. An angle at which the angle is large is preferable for increasing the SN ratio of the output signal of the light receiving device 4, and may be an angle other than 45 °, for example, 60 °.
The reason for detecting the molten pool tip position 8 by receiving the laser reflected light 1b from the molten pool tip wall surface 7 is that the laser reflected light 1b from the molten pool tip wall surface 7 is strong and the output signal of the light receiving device 4 This is because the SN ratio can be increased.

上記光学フィルタ4cは、受光用光学系4aからの光(入射溶接光)の中からレーザ反射光1bのみを透過させるフィルタ、具体的にはレーザ光1aの周波数成分域を透過帯域とする干渉フィルタからなる。ここでは、波長=1064nmのレーザ光1aの反射光(レーザ反射光)1bのみを透過させる干渉フィルタを用いてなる。
この光学フィルタ4cは、溶接光中のレーザ反射光1bのみを光電変換手段4dに入射させるために設けられるフィルタであるので、その位置は光ファイバ4bと光電変換手段4dとの間のみに限定されることはない。例えば、受光用光学系4aと光ファイバ4bとの間、あるいは受光用光学系4aの受光面側に配置してもよい。
光電変換手段4dは、光学フィルタ4cからのレーザ反射光1bを、その強度に応じた電気信号に変換する手段であり、1個又は複数個の光センサ、ここでは波長=1064nmを中心とした感度域のあるシリコンフォトダイオードを用いてなる。
このような受光装置4によって受光される溶融池先端壁面7からのレーザ反射光1bの強度は、溶接品質の良否を高い確度で表わす。
なお、受光装置4から出力される電気信号(出力信号)は、詳しくは反射光計測領域9からのレーザ反射光1bの強度に応じた信号であるが、この出力信号の強度変化に係わるレーザ反射光1bは殆どが上記溶融池先端壁面7からのレーザ反射光1bである。したがって以下においては、受光装置4の出力信号は溶融池先端壁面7からのレーザ反射光1bの強度に応じてその強度が変化する信号であるものとして説明する。
The optical filter 4c is a filter that transmits only the laser reflected light 1b from the light (incident welding light) from the light receiving optical system 4a. Specifically, the interference filter has a transmission band in the frequency component region of the laser light 1a. Consists of. Here, an interference filter that transmits only the reflected light (laser reflected light) 1b of the laser light 1a having a wavelength = 1064 nm is used.
Since the optical filter 4c is a filter provided to allow only the laser reflected light 1b in the welding light to enter the photoelectric conversion means 4d, the position thereof is limited only between the optical fiber 4b and the photoelectric conversion means 4d. Never happen. For example, it may be arranged between the light receiving optical system 4a and the optical fiber 4b or on the light receiving surface side of the light receiving optical system 4a.
The photoelectric conversion means 4d is means for converting the laser reflected light 1b from the optical filter 4c into an electric signal corresponding to the intensity thereof, and is a sensitivity with one or more optical sensors, here wavelength = 1064 nm as the center. A silicon photodiode with a region is used.
The intensity of the laser reflected light 1b from the molten pool tip wall surface 7 received by the light receiving device 4 represents the quality of the welding quality with high accuracy.
The electric signal (output signal) output from the light receiving device 4 is a signal according to the intensity of the laser reflected light 1b from the reflected light measurement region 9 in detail, but the laser reflection related to the intensity change of the output signal. The light 1b is mostly laser reflected light 1b from the molten pool front end wall surface 7. Therefore, in the following description, it is assumed that the output signal of the light receiving device 4 is a signal whose intensity changes according to the intensity of the laser reflected light 1b from the molten pool tip wall surface 7.

処理装置11は、受光装置4の出力信号の強度、すなわち溶融池先端壁面7からのレーザ反射光1bの強度に基づいて後述する解析等の処理を行い、溶接品質の良否を判定する処理手段を構成する。
判定結果表示装置12は、処理装置11による判定結果をリアルタイムで表示する装置で、例えば横方向に時間軸を採り、溶接の進行中、溶接不良が生じた場合に、その位置を他の位置(正常位置)と区別して表示するように構成される。具体的には、時間の経過に伴い、溶接が正常ならば右方向に直線状に線が描かれ、溶接不良が生じた時点でその箇所を不良の程度に応じた振幅をもつ振動波形を描くように表示する。
なお、処理装置11への入力信号である受光装置4の出力信号(レーザ反射光信号)の強度変化や、処理装置11で行われる上記レーザ反射光信号の周波数解析結果を判定結果表示装置12にリアルタイム表示可能にしてもよい。
The processing device 11 performs processing such as analysis, which will be described later, based on the intensity of the output signal of the light receiving device 4, that is, the intensity of the laser reflected light 1b from the molten pool tip wall surface 7, and processing means for determining the quality of the welding quality. Constitute.
The determination result display device 12 is a device that displays the determination result of the processing device 11 in real time. For example, when a welding failure occurs during welding in the horizontal direction, the position is changed to another position ( It is configured to be displayed separately from the normal position. Specifically, as time passes, if welding is normal, a straight line is drawn in the right direction, and when a welding failure occurs, a vibration waveform having an amplitude corresponding to the degree of the failure is drawn at that point. To display.
It should be noted that the determination result display device 12 shows the intensity change of the output signal (laser reflected light signal) of the light receiving device 4 that is an input signal to the processing device 11 and the frequency analysis result of the laser reflected light signal performed by the processing device 11. Real-time display may be possible.

次に動作について説明するが、それに先立ち、溶接品質の変化に伴う溶融池の挙動とレーザ反射光1bの強度変化について、図1及び図2を参照して述べる。
図2(a)〜(c)は、図1に示す構成において受光装置4の受光用光学系4aと同じ位置に、この受光用光学系4aに代えて高速度カメラを設置し、波長=1064nmのレーザ反射光1bのみによる画像を取り込み、解析した画像である。各図において、同一符号は同一又は相当部分を示す。また、格子状の領域は高輝度部分、斜線で示す領域は中輝度部分、点を付して示す領域は低輝度部分を示す。
まず、正常な溶接時には、図2(a)に示すように、キーホール(図1中のキーホール6参照)の内壁等からのレーザ光多重反射によるほぼ円形の高輝度部21を中心に含む発光部22が観察される。
この正常溶接時においては、前側発光部(キーホール6の前端部分及び溶融していない被溶接金属物2の表面における散乱光発生部分)23と、後側発光部(キーホール6の後端部分、つまり溶融池先端壁面7からの反射光部分)24とは発光部22中に一体となっている。
しかし、例えば、重ね合わされた板間(薄鋼板2a,2b間)に隙間が残存している溶接箇所に、正常時と同様の入熱(レーザ光照射)が行われると、レーザ光1aは、上側の薄鋼板2aを貫通して下側の薄鋼板2bを溶融蒸発させ、板間には上下の薄鋼板2a,2bから高温の金属蒸気発光エネルギが与えられる。このように、板間に正常時よりも過剰なエネルギ(入熱)が与えられることになり、特に上側の薄鋼板2aの溶融金属の温度を上昇させ、その表面張力を低下させる。一般にレーザ溶接では、形成されたキーホール6の内部圧力と溶融金属の表面張力とがバランスし、キーホール6が安定に維持される。しかし、上記のような過剰な入熱状態になると、溶融池(溶融金属)の表面張力が低下するために上記バランスが崩れ、圧力が低い溶融池が後方に後退し、穴が観察されるようになる。更に表面張力が低下すると、溶融池はより後方に後退する。
図2(b),(c)は、このような溶融池の後退現象発生中における上記高速度カメラの取込み画像を解析して示す画像である。
Next, the operation will be described. Prior to that, the behavior of the molten pool and the intensity change of the laser reflected light 1b accompanying the change in welding quality will be described with reference to FIGS.
2A to 2C, in the configuration shown in FIG. 1, a high-speed camera is installed at the same position as the light receiving optical system 4a of the light receiving device 4 in place of the light receiving optical system 4a, and the wavelength = 1064 nm. It is the image which took in and analyzed the image only by laser reflected light 1b. In each figure, the same code | symbol shows the same or an equivalent part. In addition, a lattice-shaped region indicates a high luminance portion, a region indicated by hatching indicates a medium luminance portion, and a region indicated by a dot indicates a low luminance portion.
First, at the time of normal welding, as shown in FIG. 2 (a), a substantially circular high-intensity portion 21 due to multiple reflections of laser light from the inner wall of the keyhole (see keyhole 6 in FIG. 1) is included. The light emitting unit 22 is observed.
At the time of this normal welding, the front side light emitting part (the front end part of the keyhole 6 and the scattered light generating part on the surface of the unmelted metal object 2) 23 and the rear side light emitting part (the rear end part of the keyhole 6). That is, the portion 24 reflected from the molten pool front end wall 7 is integrated in the light emitting portion 22.
However, for example, when the same heat input (laser beam irradiation) as normal is performed on a welded portion where a gap remains between the stacked plates (between the thin steel plates 2a and 2b), the laser beam 1a is The lower thin steel plate 2b is melted and evaporated through the upper thin steel plate 2a, and high temperature metal vapor luminescence energy is given between the upper and lower thin steel plates 2a and 2b. In this way, excess energy (heat input) is given between the plates as compared with the normal time, and in particular, the temperature of the molten metal of the upper thin steel plate 2a is raised and the surface tension is lowered. In general, in laser welding, the internal pressure of the formed keyhole 6 and the surface tension of the molten metal are balanced, and the keyhole 6 is maintained stably. However, when the heat input state is excessive as described above, the surface tension of the molten pool (molten metal) is lowered, so that the balance is lost, and the molten pool having a low pressure is moved backward, and a hole is observed. become. When the surface tension further decreases, the molten pool moves backward further.
FIGS. 2B and 2C are images obtained by analyzing the captured image of the high-speed camera during the occurrence of the retreat phenomenon of the molten pool.

上記溶融池の後退現象は、表面張力が低下した溶融金属が板間に垂れ下がることが主要因であり、こうした現象によりいわゆる「溶け落ち」や「穴あき」等の品質不良が発生する。このような「溶け落ち」や「穴あき」等が発生した後も溶接を継続すると、正常な溶接状態に復帰した後、上記現象を繰り返すことがある。このような場合、溶接品質が変化する際の溶融池(先端位置8)は、溶接進行方向の前後方向に脈動することになる。
これを上記解析画像で示せば、図2(a)→図2(b)→図2(c)とサイクリックに推移することになり、キーホール6を表す前側発光部23に対して溶融池先端壁面7を表す後側発光部24が溶接進行方向ロの前後方向に行き来(脈動)する。
ここで、前側発光部23と後側発光部24の2つの領域に対して輝度値の変化を見ると、前側発光部23においては、図2(b)から図2(c)に移行しても明るさ(輝度積算値)の変化は殆どない。つまり、キーホール6前端部分は安定な状態にあり、そこからのレーザ反射光1bも安定している。一方、後側発光部24においては、図2(b)から図2(c)に移行するに従ってその明るさが全体として低下している。これに、前側発光部23と後側発光部24とが発光部22中に一体となっている図2(a)の画像を含めても、ほぼ同様のことがいえる。
このことは、図2(a)〜図2(c)に示す現象の推移を、前側発光部23の明るさは殆ど考慮に入れず、後側発光部24の明るさ、つまり溶融池先端壁面7からのレーザ反射光1bの強度(変化)によることのみで、検知できることを意味し、更に、レーザ反射光1bの強度に基づいて溶接の品質検査が可能になることを意味する。
本発明では、高価で大型の高速度カメラ(撮像装置)を用いることなく、簡易な構成で精度の高い溶接品質の検査を可能とするもので、図2(a)〜図2(c)に示すような現象の変化を受光装置4で捉え、解析する。
The main reason for the retraction phenomenon of the molten pool is that the molten metal having a reduced surface tension hangs down between the plates, and this phenomenon causes quality defects such as so-called “melting-down” and “hole formation”. If the welding is continued even after such “melting off” or “hole formation” occurs, the above phenomenon may be repeated after returning to a normal welding state. In such a case, the molten pool (tip position 8) when the welding quality changes pulsates in the front-rear direction of the welding progress direction.
If this is shown in the above analysis image, it will cyclically shift from FIG. 2 (a) → FIG. 2 (b) → FIG. 2 (c). The rear light emitting portion 24 representing the tip wall surface 7 moves back and forth (pulsates) in the welding progress direction B.
Here, when the change of the luminance value is seen with respect to the two regions of the front light emitting unit 23 and the rear light emitting unit 24, the front light emitting unit 23 shifts from FIG. 2B to FIG. 2C. However, there is almost no change in brightness (luminance integrated value). That is, the front end portion of the keyhole 6 is in a stable state, and the laser reflected light 1b therefrom is also stable. On the other hand, the brightness of the rear light-emitting unit 24 as a whole decreases as it shifts from FIG. 2 (b) to FIG. 2 (c). Even if the image of FIG. 2A in which the front light emitting unit 23 and the rear light emitting unit 24 are integrated in the light emitting unit 22 is included in this, the same can be said.
This means that the transition of the phenomenon shown in FIGS. 2 (a) to 2 (c) does not take into account the brightness of the front light-emitting portion 23, but the brightness of the rear light-emitting portion 24, that is, the front wall surface of the molten pool. 7 means that detection is possible only by the intensity (change) of the laser reflected light 1b from 7, and further means that a quality inspection of welding can be performed based on the intensity of the laser reflected light 1b.
In the present invention, it is possible to inspect the welding quality with high accuracy with a simple configuration without using an expensive and large high-speed camera (imaging device). FIGS. 2 (a) to 2 (c). The light receiving device 4 captures and analyzes changes in the phenomenon as shown.

ここでレーザ溶接は、通常、様々な溶接条件で、例えばレーザ光出力、溶接速度、溶接される上下の被溶接金属板(薄鋼板2a,2b等)の板厚、溶接姿勢等を変えた様々な溶接条件で行われる。
また、同じ出力条件でレーザ光1aを照射しても、レーザ光1aの出力は、出射端では数%のオーダでばらつくことがある。このため、レーザ反射光1bの強度(受光装置4の出力信号強度)を基準に溶接品質の良否判定をしようとすると、溶接条件、特にレーザ光出力の相違によってレーザ反射光1bの強度が変動することになり、溶接品質の良否判定のための安定な閾値を設定することができない。
Here, the laser welding is usually performed under various welding conditions, for example, by changing the laser light output, the welding speed, the thickness of the upper and lower metal plates to be welded (thin steel plates 2a, 2b, etc.), the welding posture, and the like. Under different welding conditions.
Even if the laser beam 1a is irradiated under the same output conditions, the output of the laser beam 1a may vary on the order of several percent at the emission end. For this reason, when trying to determine the quality of the welding quality based on the intensity of the laser reflected light 1b (output signal intensity of the light receiving device 4), the intensity of the laser reflected light 1b varies depending on the welding conditions, particularly the difference in laser light output. In other words, it is not possible to set a stable threshold value for determining the quality of welding quality.

そこで本実施形態においては、レーザ反射光信号(受光装置4の出力信号)の周波数成分に着目して解析を行い、溶接品質の良否を判定する。
図3は、正常溶接(良品質)時、及び溶接不良の一例である「溶け落ち」発生時におけるレーザ反射光信号強度(受光装置出力信号強度)の経時変化の一例を示すグラフである。図3中、実線ハは正常溶接時、破線ニは溶け落ち発生時のグラフを示す。図示するように、溶け落ち発生時には信号が大きく変動していることがわかる。ここで、溶け落ちを例にその信号の変動を考えると、表面張力が低下した溶融金属が徐々に垂れ下がることによって溶融池の先端位置8(図1参照)が後退するようになる。この後退速度は、溶接速度、溶融池の長さや重量が大きく関係し、溶融池の表面張力が重力に劣って落下するまではほぼ定速で進行する。この場合、溶融池の重力中心に垂れ下がりが生じると考えられ、こうした動きは、簡易には溶接速度と溶融池長さを基本とする低周波の挙動と捉えられる。
このことから、低周波数成分の変動に着眼し信号を解析することが溶接品質の良否判定に好適であることが分かる。しかしながら、低周波数成分の解析だけによる判定では、溶接条件の変更によって閾値を変化させる必要がある。また、特に溶接速度によっては着眼すべき周波数が異なる。
本実施形態では、溶接条件の変更によって閾値を変化させる必要が生じないように、また、着眼すべき周波数が異なっても何らの手間を要さず、更に、反射光強度の強弱によって判定結果が異ならないように、受光装置4からの信号(レーザ反射光信号)に対して以下に述べるように正規化処理を行う。
Therefore, in this embodiment, the analysis is performed by paying attention to the frequency component of the laser reflected light signal (the output signal of the light receiving device 4), and the quality of the welding quality is determined.
FIG. 3 is a graph showing an example of a temporal change in laser reflected light signal intensity (light receiving device output signal intensity) at the time of normal welding (good quality) and at the occurrence of “burn-out” as an example of welding failure. In FIG. 3, a solid line C shows a graph at the time of normal welding, and a broken line D shows a graph at the time of occurrence of melting. As shown in the figure, it can be seen that the signal fluctuates greatly when the burn-out occurs. Here, when considering the fluctuation of the signal taking the case of burn-off as an example, the molten metal having a lowered surface tension gradually hangs down, so that the tip position 8 (see FIG. 1) of the molten pool is retracted. The retraction speed is largely related to the welding speed and the length and weight of the molten pool, and proceeds at a substantially constant speed until the surface tension of the molten pool falls inferior to gravity. In this case, it is considered that drooping occurs in the center of gravity of the molten pool, and such a movement can be simply regarded as a low-frequency behavior based on the welding speed and the molten pool length.
From this, it can be seen that it is preferable to determine the quality of the welding quality by focusing on the variation of the low frequency component and analyzing the signal. However, in the determination based only on the analysis of the low frequency component, it is necessary to change the threshold value by changing the welding conditions. In particular, the frequency to be noticed varies depending on the welding speed.
In the present embodiment, it is not necessary to change the threshold value by changing the welding conditions, and no trouble is required even if the frequency to be noticed is different. Furthermore, the determination result is based on the strength of the reflected light intensity. In order not to be different, normalization processing is performed on the signal (laser reflected light signal) from the light receiving device 4 as described below.

図4は、上掲図3に示した信号のFFT解析(高速フーリエ変換による周波数解析)結果を示すグラフである。図4中、実線ホは正常溶接時、破線ヘは溶け落ち発生時のグラフを示す。図示するように、溶け落ち発生時は50Hz以下の低周波数成分が極めて大きいことがわかる。
このような結果に基づき、本実施形態では、低周波数成分として5〜50Hz、高周波数成分として51〜250Hzの各周波数帯の強度を積算し、低周波数成分に対する高周波数成分の比として正規化処理を行い、信号強度自体が異なることによる影響をなくしている。
FIG. 4 is a graph showing the result of FFT analysis (frequency analysis by fast Fourier transform) of the signal shown in FIG. In FIG. 4, the solid line E shows a graph at the time of normal welding, and the broken line F shows a graph at the time of melting. As shown in the figure, it can be seen that the low frequency component of 50 Hz or less is extremely large when the burn-out occurs.
Based on such a result, in this embodiment, the intensity of each frequency band of 5 to 50 Hz as the low frequency component and 51 to 250 Hz as the high frequency component is integrated, and the normalization processing is performed as the ratio of the high frequency component to the low frequency component. To eliminate the influence of different signal intensities.

この結果の一例を図5に示す。図5中、グラフG1〜G7は正常溶接時、グラフG8は溶け落ち発生時を示す。この図に示すように、レーザ光出力が1.75KW〜3.25KWと大きく異なる条件範囲においても正常溶接時はほぼ一定の正規化強度となり(グラフG1〜G7参照)、溶け落ち発生時には極めて大きい信号が得られる(グラフG8参照)。この正規化された信号(正規化強度)に対し、溶接品質の良否判定の閾値、例えば「0.6」を設定することで、安定かつ容易に溶接品質の良否判定が可能となる。   An example of the result is shown in FIG. In FIG. 5, graphs G <b> 1 to G <b> 7 show normal welding, and graph G <b> 8 shows when burnout occurs. As shown in this figure, even in a condition range where the laser light output is significantly different from 1.75 kW to 3.25 kW, the normalized strength is almost constant during normal welding (see graphs G1 to G7), and extremely large when burnout occurs. A signal is obtained (see graph G8). By setting a welding quality pass / fail judgment threshold value, for example, “0.6”, for this normalized signal (normalized strength), it becomes possible to make a weld quality pass / fail judgment stably and easily.

図1中の処理装置11は、受光装置4からの信号(レーザ反射光信号)によって上述した解析を行い、溶接品質の良否の判定を溶接中にリアルタイムで行って、その結果を判定結果表示装置12に表示させる。
上述実施形態において、処理装置11にパーソナルコンピュータ(以下、パソコンという。)を用い、これにより上記FFT解析をするようにしてもよい。このパソコンとは別個に設けられたFFT演算回路により、FFT解析をするようにしてもよい。また、受光装置4からの信号に対してフィルタ回路により低周波数成分と高周波数成分に分離し、分離された各信号を積分回路によりエネルギ信号に変換し、その後、除算回路で各エネルギ信号を除算して強度比を算出し、得られた強度比と閾値によって溶接品質の良否判定をするようにしてもよい。
The processing device 11 in FIG. 1 performs the above-described analysis based on a signal (laser reflected light signal) from the light receiving device 4, determines whether the welding quality is good or bad in real time during welding, and displays the result as a determination result display device. 12 is displayed.
In the above-described embodiment, a personal computer (hereinafter referred to as a personal computer) may be used as the processing apparatus 11, and the FFT analysis may be performed thereby. You may make it perform FFT analysis by the FFT calculating circuit provided separately from this personal computer. Further, the signal from the light receiving device 4 is separated into a low frequency component and a high frequency component by a filter circuit, each separated signal is converted into an energy signal by an integrating circuit, and then each energy signal is divided by a dividing circuit. Then, the strength ratio may be calculated, and the quality of the welding quality may be determined based on the obtained strength ratio and the threshold value.

本発明方法が適用された装置(本発明装置)の一実施形態の説明図である。It is explanatory drawing of one Embodiment of the apparatus (invention apparatus) with which the method of this invention was applied. 図1中の受光用光学系に代えて高速度カメラを設置して取り込んだ画像の模式図である。FIG. 2 is a schematic diagram of an image captured by installing a high-speed camera instead of the light receiving optical system in FIG. 1. 正常溶接時及び溶け落ち発生時における受光装置の出力信号(レーザ反射光信号)の強度変化の一例を示すグラフである。It is a graph which shows an example of an intensity | strength change of the output signal (laser reflected light signal) of the light-receiving device at the time of normal welding and at the time of a burnout occurrence. 図3に示したレーザ反射光信号のFFT解析結果を示すグラフである。It is a graph which shows the FFT analysis result of the laser reflected light signal shown in FIG. レーザ反射光信号のFFT解析結果に対して正規化を行い、その値から溶接品質の良否判定の閾値を設定する例の説明図である。It is explanatory drawing of the example which normalizes with respect to the FFT analysis result of a laser reflected light signal, and sets the threshold value of quality determination of welding quality from the value.

符号の説明Explanation of symbols

1a:レーザ光、1b:レーザ反射光(レーザ光の反射光)、2:被溶接物、2a,2b:薄鋼板(被溶接部材)、4:受光装置(受光手段)、4a:受光用光学系(受光部)、5:レーザ光照射位置(溶接部)、6:キーホール、7:溶融池先端壁面(境界壁面)、8:溶融池先端位置、9:反射光計測領域、11:処理装置(処理手段)。
DESCRIPTION OF SYMBOLS 1a: Laser light, 1b: Laser reflected light (reflected light of laser light), 2: To-be-welded object, 2a, 2b: Thin steel plate (to-be-welded member), 4: Light-receiving device (light-receiving means), 4a: Optical for light reception System (light receiving part), 5: Laser beam irradiation position (welded part), 6: Keyhole, 7: Molten pool tip wall surface (boundary wall surface), 8: Molten pool tip position, 9: Reflected light measurement region, 11: Processing Device (processing means).

Claims (3)

複数の被溶接金属部材が重ね合わされた被溶接金属物にレーザ光を照射しつつその被溶接金属物及び/又はレーザ光を所望の方向に移動させ、前記被溶接金属物の重ね合わせ溶接を行うレーザ溶接における品質検査方法において、
前記被溶接金属物のレーザ光照射位置に生成されるキーホールと、該キーホールの溶接進行方向後側に生成される溶融池との境界壁面からの前記レーザ光の反射光を、溶接進行方向の前方斜め上方から受光し、該反射光の強度に基づいて溶接の品質検査をすることを特徴とするレーザ溶接品質検査方法。
While irradiating a laser beam to a metal object to be welded on which a plurality of metal members to be welded are superimposed, the metal object to be welded and / or the laser beam is moved in a desired direction, and the metal objects to be welded are overlap-welded. In the quality inspection method in laser welding,
The reflected light of the laser beam from the boundary wall surface between the keyhole generated at the laser beam irradiation position of the metal object to be welded and the molten pool generated on the rear side in the welding progress direction of the keyhole, A laser welding quality inspection method, wherein light is received from obliquely above and forward and a welding quality inspection is performed based on the intensity of the reflected light.
複数の被溶接金属部材が重ね合わされた被溶接金属物にレーザ光を照射しつつその被溶接金属物及び/又はレーザ光を所望の方向に移動させ、前記被溶接金属物の重ね合わせ溶接を行うレーザ溶接における品質検査装置において、
前記被溶接金属物のレーザ光照射位置に生成されるキーホールと、該キーホールの溶接進行方向後側に生成される溶融池との境界壁面からの前記レーザ光の反射光を、溶接進行方向の前方斜め上方から受光し、該反射光の強度に応じた電気信号を出力する受光手段と、
この受光手段からの電気信号の強度に基づいて所定の演算を行い、溶接の品質の良、不良を判定する処理手段とを具備することを特徴とするレーザ溶接品質検査装置。
While irradiating a laser beam to a metal object to be welded on which a plurality of metal members to be welded are superimposed, the metal object to be welded and / or the laser beam is moved in a desired direction, and the metal objects to be welded are overlap-welded. In quality inspection equipment in laser welding,
The reflected light of the laser beam from the boundary wall surface between the keyhole generated at the laser beam irradiation position of the metal object to be welded and the molten pool generated on the rear side in the welding progress direction of the keyhole, Light receiving means that receives light from diagonally above and forward and outputs an electrical signal according to the intensity of the reflected light;
A laser welding quality inspection apparatus comprising: processing means for performing a predetermined calculation based on the intensity of an electric signal from the light receiving means to determine whether the quality of welding is good or bad.
請求項2に記載のレーザ溶接品質検査装置において、
受光手段の受光部が、溶接進行方向の前方斜め上方から、キーホールと、該キーホールの溶接進行方向後側に生成される溶融池との境界部分を含む一定領域からの前記レーザ光の反射光を受光可能に溶接用トーチに一体に取り付けられ、
処理手段は、前記受光手段からの電気信号に対して正規化処理及び閾値処理を行って溶接の品質の良、不良を判定するように構成されたことを特徴とするレーザ溶接品質検査装置。
In the laser welding quality inspection apparatus according to claim 2,
Reflection of the laser beam from a fixed region including a boundary portion between a keyhole and a molten pool generated on the rear side in the welding progress direction of the keyhole from a diagonally upper front side in the welding progress direction. It is attached to the welding torch so that it can receive light,
The laser welding quality inspection apparatus, wherein the processing means is configured to perform normalization processing and threshold processing on the electrical signal from the light receiving means to determine whether the welding quality is good or bad.
JP2003333688A 2003-09-25 2003-09-25 Laser welding quality inspection method and device Pending JP2005095942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003333688A JP2005095942A (en) 2003-09-25 2003-09-25 Laser welding quality inspection method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003333688A JP2005095942A (en) 2003-09-25 2003-09-25 Laser welding quality inspection method and device

Publications (1)

Publication Number Publication Date
JP2005095942A true JP2005095942A (en) 2005-04-14

Family

ID=34461631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003333688A Pending JP2005095942A (en) 2003-09-25 2003-09-25 Laser welding quality inspection method and device

Country Status (1)

Country Link
JP (1) JP2005095942A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007028080A1 (en) * 2007-06-15 2008-12-18 Laserinstitut Mittelsachsen E.V. Device for determination and analysis of transition zone of work pieces welds, has laser, which is arranged in device coupled with laser beams such that bore is placed in welded joint with laser beams
JP2009148795A (en) * 2007-12-20 2009-07-09 Nissan Motor Co Ltd Welding state detecting apparatus and its method
JP2009241118A (en) * 2008-03-31 2009-10-22 Tokyu Car Corp Laser welding method
JP2012213806A (en) * 2012-06-14 2012-11-08 Nissan Motor Co Ltd Device and method for detecting welding state
JP2014195814A (en) * 2013-03-29 2014-10-16 トヨタ自動車株式会社 Welded portion inspection device and inspection method
CN108226168A (en) * 2018-01-14 2018-06-29 湘潭大学 The multi-functional main passive vision sensing device of monocular and its method for sensing
US10717153B2 (en) 2016-08-02 2020-07-21 Toyota Jidosha Kabushiki Kaisha Laser welding method for flat wires
WO2021235041A1 (en) * 2020-05-20 2021-11-25 オムロン株式会社 Screw tightening defect determination device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007028080A1 (en) * 2007-06-15 2008-12-18 Laserinstitut Mittelsachsen E.V. Device for determination and analysis of transition zone of work pieces welds, has laser, which is arranged in device coupled with laser beams such that bore is placed in welded joint with laser beams
DE102007028080B4 (en) * 2007-06-15 2009-06-18 Laserinstitut Mittelsachsen E.V. Device for the determination and analysis of the melting zone of welds of workpieces
JP2009148795A (en) * 2007-12-20 2009-07-09 Nissan Motor Co Ltd Welding state detecting apparatus and its method
JP2009241118A (en) * 2008-03-31 2009-10-22 Tokyu Car Corp Laser welding method
JP2012213806A (en) * 2012-06-14 2012-11-08 Nissan Motor Co Ltd Device and method for detecting welding state
JP2014195814A (en) * 2013-03-29 2014-10-16 トヨタ自動車株式会社 Welded portion inspection device and inspection method
CN105073330A (en) * 2013-03-29 2015-11-18 丰田自动车株式会社 Welding portion inspection device and inspection method therefor
US10717153B2 (en) 2016-08-02 2020-07-21 Toyota Jidosha Kabushiki Kaisha Laser welding method for flat wires
CN108226168A (en) * 2018-01-14 2018-06-29 湘潭大学 The multi-functional main passive vision sensing device of monocular and its method for sensing
WO2021235041A1 (en) * 2020-05-20 2021-11-25 オムロン株式会社 Screw tightening defect determination device

Similar Documents

Publication Publication Date Title
US10646961B2 (en) Laser-machining device
US5674415A (en) Method and apparatus for real time weld monitoring
KR101007724B1 (en) Laser weld monitor
JP3227650B2 (en) Laser welding machine and laser welding condition monitoring method
JP5947740B2 (en) Welded part inspection device and inspection method
US9527166B2 (en) Welding portion inspection device and inspection method therefore, with extracting portion for extracting evaporation luminescence and thermal radiation
JP2005095942A (en) Laser welding quality inspection method and device
JP2007054881A (en) Laser machining monitoring device
JP2006082129A (en) Method and device for evaluating quality of laser beam welding
JP4324052B2 (en) Laser welding quality evaluation method
JP5414645B2 (en) Laser processing equipment
JP2008087056A (en) System and method for determining laser welding quality
JP4240220B2 (en) Laser welding quality inspection method and apparatus
JP2009233753A (en) Apparatus for detecting laser irradiation point and apparatus for detecting seam position in laser beam welding machine
KR101439758B1 (en) Apparatus and method of inspecting defect of laser welding
JP4045424B2 (en) Laser welding quality inspection method and apparatus
JP2009039773A (en) Laser welding inspection device
JP4873854B2 (en) Laser welded part quality judging apparatus and method, and medium having recorded laser welded part quality judging program
JP2007007698A (en) Laser beam machining head
JP4441129B2 (en) Method and apparatus for determining welding state in laser spot lap welding
JPH08267241A (en) Judging method of back bead forming condition at welding
JP2003320467A (en) Method for monitoring quality of laser beam welding part and its device
JP7296769B2 (en) Spatter detection device, laser processing device, and method for detecting spatter
JP2001219287A (en) Monitoring method of laser beam welding
JP2008068325A (en) Method for determining output modulation waveform of laser welding