JPH08261927A - Intra-crystal flaw detecting device - Google Patents

Intra-crystal flaw detecting device

Info

Publication number
JPH08261927A
JPH08261927A JP9162995A JP9162995A JPH08261927A JP H08261927 A JPH08261927 A JP H08261927A JP 9162995 A JP9162995 A JP 9162995A JP 9162995 A JP9162995 A JP 9162995A JP H08261927 A JPH08261927 A JP H08261927A
Authority
JP
Japan
Prior art keywords
crystal
measured
pulse laser
detecting
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9162995A
Other languages
Japanese (ja)
Inventor
Kenji Ueda
健司 植田
Masahiro Daimon
正博 大門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9162995A priority Critical patent/JPH08261927A/en
Publication of JPH08261927A publication Critical patent/JPH08261927A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To provide an intra-crystal flaw detecting device capable of detecting a fine flaw in a measured object without enlarging a device structure. CONSTITUTION: This intra-crystal flaw detecting device is provided with a pulse laser device 1 emitting a pose laser beam 2 having the wavelength twice or above of the absorption end wavelength of a measured crystal 3, a light converting optical system 6 collecting the pulse laser beam on the measured crystal, a scanning system 10 for scanning the pulse laser beam in the measured crystal, a filter 7 transmitting only the second harmonic wave from the measured crystal, and a detecting system for detecting the transmitted light from the filter 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、結晶成長分野、半導体
ウエハ製造分野に使用する、結晶内部の欠陥を検出する
装置に関し、特に、大容量メモリー用シリコンウエハ製
造分野での使用に適した結晶内部欠陥検出装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for detecting defects inside a crystal used in the field of crystal growth and semiconductor wafer manufacturing, and more particularly to a crystal suitable for use in the field of silicon wafer manufacturing for large capacity memories. The present invention relates to an internal defect detection device.

【0002】[0002]

【従来の技術】従来、シリコンなどの半導体結晶内部の
欠陥を検出する方法として、赤外線トモグラフが知られ
ている。これは、「半導体材料の欠陥評価技術(サイエ
ンスフォーラム発行)」の第102頁に記載されている
ように、結晶の吸収端波長よりも波長の長い光を被測定
結晶に照射し、結晶内部にある欠陥により散乱した光を
テレビカメラでモニタし、欠陥の位置およびサイズを測
定するという方法である。この方法の特徴は、レーザ装
置を光源に用いる必要がなく、検出する信号も散乱光を
検出するだけであるため、簡単な装置で結晶内部の欠陥
・異物を検出することが可能である。
2. Description of the Related Art Conventionally, an infrared tomograph has been known as a method for detecting a defect inside a semiconductor crystal such as silicon. As described on page 102 of "Semiconductor Material Defect Evaluation Technology (published by Science Forum)", the crystal under measurement is irradiated with light having a wavelength longer than the absorption edge wavelength of the crystal, and the inside of the crystal is irradiated. The method is to monitor the light scattered by a defect with a television camera and measure the position and size of the defect. The feature of this method is that it is not necessary to use a laser device as a light source, and only the scattered light is detected as a signal to be detected. Therefore, it is possible to detect defects and foreign matters inside the crystal with a simple device.

【0003】しかしながらこの方法では、欠陥がなくて
も、バックグランドノイズとしてレイリー散乱光が必ず
発生するため、欠陥の検出感度を上げるのに限界があ
り、さらに検出できる欠陥サイズは、ミー散乱を利用し
ているため、波長の1/10以下にはできない。
However, in this method, even if there is no defect, Rayleigh scattered light is always generated as background noise, so that there is a limit to increase the detection sensitivity of the defect, and the defect size that can be detected uses Mie scattering. Therefore, it cannot be 1/10 or less of the wavelength.

【0004】他方、結晶の内部ではなく、結晶表面から
の第2高調波(以下SHGと略称する)を検出し、その
強度変化の角度・偏光依存性を調べることにより、表面
に付着した異物や結晶方位を決定する方法が知られてい
る(J. Vac. Sci. Technol.B3(5), p1467 Sep/Oct (198
5))。この方法は、結晶の吸収端波長よりも長い波長の
パルスレーザ光を光源に使用し、本来SHGが発生しな
い等方性結晶を対象にしたときに最も威力を発揮し、等
方性結晶の表面での対称性の破れにより発生するSHG
を検出するので、表面から1〜2原子層分の情報のみを
得ることができる。つまり、波長よりも遙かに小さい領
域(数オングストローム)から、SHGが発生可能であ
ることが分かる。
On the other hand, by detecting the second harmonic (hereinafter abbreviated as SHG) from the surface of the crystal, not inside the crystal, and examining the angle / polarization dependence of the intensity change, foreign matter adhering to the surface and A method for determining the crystal orientation is known (J. Vac. Sci. Technol. B3 (5), p1467 Sep / Oct (198
Five)). This method uses pulsed laser light having a wavelength longer than the absorption edge wavelength of the crystal as a light source, and is most effective when an isotropic crystal that does not originally generate SHG is targeted. Generated by breaking the symmetry at
Is detected, it is possible to obtain only information for one to two atomic layers from the surface. That is, it can be seen that SHG can be generated from a region (several angstroms) much smaller than the wavelength.

【0005】しかしながらこの方法は、結晶表面を測定
対象としているため、高真空中での測定が必須であり、
装置が大がかりになってしまう。
However, this method requires the measurement in a high vacuum because the crystal surface is to be measured.
The device becomes large-scale.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
従来技術の不都合を解消するべく案出されたものであ
り、その主な目的は、装置構成を大がかりにすることな
く被測定物内部の微小欠陥を検出することのできる結晶
内部欠陥検出装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been devised in order to eliminate such disadvantages of the prior art, and its main purpose is to make the inside of the object to be measured without making the device structure large. It is an object of the present invention to provide a crystal internal defect detection device capable of detecting the microscopic defects.

【0007】[0007]

【課題を解決するための手段】このような目的は、本発
明によれば、被測定結晶の吸収端波長の2倍以上の波長
を有するパルスレーザ光を発するパルスレーザ装置と、
パルスレーザ光を被測定結晶に集光する集光光学系と、
パルスレーザ光を被測定結晶内で走査させるための走査
系と、被測定結晶からの第2高調波のみを透過させるフ
ィルタと、該フィルタからの透過光を検出するための検
出系とを備えたことを特徴とする結晶内部欠陥検出装置
を提供することによって達成される。特に、被測定結晶
がシリコン結晶である場合に適している。
According to the present invention, there is provided a pulse laser device which emits a pulse laser beam having a wavelength which is at least twice the absorption edge wavelength of the crystal to be measured.
A focusing optical system for focusing the pulsed laser light on the crystal to be measured,
A scanning system for scanning the pulsed laser light in the crystal to be measured, a filter for transmitting only the second harmonic from the crystal to be measured, and a detection system for detecting the transmitted light from the filter were provided. This is achieved by providing a crystal internal defect detection device characterized by the above. In particular, it is suitable when the crystal to be measured is a silicon crystal.

【0008】[0008]

【作用】中心対称性を持たない(異方性)結晶にパルス
レーザ光を照射すると、レーザ周波数の2倍の周波数で
振動する非線形な電子分極が起こり、その電子分極の分
極波としてSHGが発生する。シリコンのような等方性
の物質では、SHGが発生しないとされているが、シリ
コンの表面やシリコンと別の物質の界面では中心対称性
が破れているため、SHGが発生する。このSHGは、
異方性結晶の場合のSHGとは異なり、1〜2原子層し
かSHGに寄与しないため、非常に微弱であり、普通は
観測にかからない。しかし、SHGの強度はパルスレー
ザ光の電場強度の2乗に比例して増大するため、尖頭値
出力の大きなパルスレーザ光(10GW程度)を用いれ
ば観測が可能となる。結晶内部の欠陥は、結晶母材との
間に界面を形成していると考えられるため、欠陥の周囲
1〜2原子層の領域からSHGが発生する。その結果、
数オングストロームの欠陥検出が可能となる。
When a pulsed laser beam is irradiated to a crystal having no central symmetry (anisotropic), nonlinear electronic polarization vibrating at a frequency twice the laser frequency occurs, and SHG is generated as a polarization wave of the electronic polarization. To do. It is said that SHG does not occur in an isotropic substance such as silicon, but SHG occurs because the central symmetry is broken at the surface of silicon or the interface between silicon and another substance. This SHG is
Unlike SHG in the case of an anisotropic crystal, only 1 to 2 atomic layers contribute to SHG, so it is very weak and usually unobservable. However, since the intensity of SHG increases in proportion to the square of the electric field intensity of the pulsed laser light, it can be observed by using the pulsed laser light (about 10 GW) having a large peak value output. Since the defect inside the crystal is considered to form an interface with the crystal base material, SHG is generated from the region of 1 to 2 atomic layers around the defect. as a result,
Defects of several Angstroms can be detected.

【0009】[0009]

【実施例】以下に本発明の一実施例について添付の図面
を参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

【0010】図1は、本発明の一実施例である結晶の内
部欠陥検出装置の構成図である。本実施例の内部欠陥検
出装置は、パルスレーザ装置1から出力されたパルスレ
ーザ光2を被測定結晶3に照射し、結晶内部から発生し
たSHG4をCCDカメラ5により観測するものであ
る。以下、被測定結晶にシリコンインゴッドを用いた場
合の実施例について説明する。
FIG. 1 is a block diagram of a crystal internal defect detection apparatus according to an embodiment of the present invention. The internal defect detection apparatus of the present embodiment irradiates the measured crystal 3 with the pulsed laser light 2 output from the pulsed laser apparatus 1 and observes the SHG 4 generated inside the crystal with the CCD camera 5. An example in which a silicon ingot is used as the crystal to be measured will be described below.

【0011】シリコンのバンドギャップは、およそ1e
Vであるため、波長1.24μm以上の光に対しては透
明になる。このため、パルスレーザ装置1には、Q−s
w.YAGレーザー励起のパラメトリック発振器を用
い、波長2.5μmのパルスレーザ光2を発生させた。
パルスレーザ光2は、集光光学系6を通って被測定結晶
3の内部で集光する。ここでは、集光光学系6は、f=
200mmの凸レンズで構成した。初期配置では、被測
定結晶3の中心とパルスレーザ光2のスポットとの位置
を一致させてある。
The band gap of silicon is about 1e.
Since it is V, it becomes transparent to light having a wavelength of 1.24 μm or more. Therefore, the pulse laser device 1 has a Q-s
w. A YAG laser-excited parametric oscillator was used to generate pulsed laser light 2 having a wavelength of 2.5 μm.
The pulsed laser light 2 passes through the focusing optical system 6 and is focused inside the crystal to be measured 3. Here, the condensing optical system 6 is f =
It was composed of a 200 mm convex lens. In the initial arrangement, the positions of the center of the measured crystal 3 and the spot of the pulsed laser light 2 are aligned.

【0012】CCDカメラ5は、被測定結晶3の上方か
ら、パルスレーザ光2の焦点位置にピントを合わせて設
置してある。CCDカメラ5と被測定結晶3との間に
は、波長1.25μm用のバンドパスフィルタ7が配置
してあり、パルスレーザ光2のレイリー散乱光8が除去
されて、SHG4のみが透過してモニタ9に表示され
る。
The CCD camera 5 is installed from above the crystal 3 to be measured, focusing on the focal position of the pulse laser beam 2. A bandpass filter 7 for a wavelength of 1.25 μm is arranged between the CCD camera 5 and the crystal 3 to be measured, the Rayleigh scattered light 8 of the pulse laser light 2 is removed, and only the SHG 4 is transmitted. It is displayed on the monitor 9.

【0013】被測定結晶3は、パルスレーザ光2が被測
定結晶3中を隈無く走査するために、XYZステージと
回転ステージとで構成された走査系10上に設置してあ
る。この走査系10を移動回転させることにより、36
0゜回転するごとに、100μmだけ、集光光学系6か
ら遠ざかる方向に被測定結晶3が移動する。そして、一
つの面の測定完了後、上下方向に100μm移動させて
次に面の測定を行う。このとき、CCDカメラ5も走査
系10に取り付けておくことにより、面内の欠陥分布測
定が容易になる。
The crystal 3 to be measured is installed on a scanning system 10 composed of an XYZ stage and a rotary stage so that the pulsed laser light 2 scans the crystal 3 to be measured thoroughly. By moving and rotating the scanning system 10,
Each time it is rotated by 0 °, the crystal 3 to be measured moves by 100 μm in the direction away from the condensing optical system 6. Then, after the measurement of one surface is completed, the surface is measured by moving it by 100 μm in the vertical direction. At this time, if the CCD camera 5 is also attached to the scanning system 10, in-plane defect distribution measurement becomes easy.

【0014】図2は、欠陥からSHG4が発生する様子
を示した模式図である。欠陥11と結晶母材との間に界
面12が形成されているため、対称性が破れておりSH
G4が発生している。SHG4は、欠陥の周辺1〜2原
子層の間で発生しているため、欠陥サイズが原子レベル
であっても検出可能である。このため、従来では数十n
mの欠陥を検出することが限界であったものが、表面・
界面SHG4を利用することで、数オングストロームの
欠陥検出ができるようになった。
FIG. 2 is a schematic diagram showing how SHG4 is generated from a defect. Since the interface 12 is formed between the defect 11 and the crystal base material, the symmetry is broken and SH
G4 has occurred. Since SHG4 is generated between 1 and 2 atomic layers around the defect, the defect size can be detected even at the atomic level. For this reason, in the past, several tens of n
Although it was the limit to detect the defect of m,
By using the interface SHG4, it became possible to detect defects of several angstroms.

【0015】なお、本発明は、測定時間の短縮のため
に、シリコンインゴッドの上下方向の測定点数を減らし
ても、欠陥の分布に規則性があるため、何等問題はな
い。
In the present invention, even if the number of measurement points in the vertical direction of the silicon ingot is reduced in order to shorten the measurement time, there is no problem because the defect distribution is regular.

【0016】[0016]

【発明の効果】上述したように、本発明の装置によれ
ば、被測定物に対してSHGが透明なパルスレーザ光を
用い、被測定物内部の欠陥周辺の対称性の破れによるS
HGを検出することにより、数オングストロームの欠陥
検出が可能となる結晶内部欠陥検出装置を提供すること
ができる。
As described above, according to the apparatus of the present invention, the pulse laser light whose SHG is transparent to the object to be measured is used, and S due to the symmetry breaking around the defect inside the object to be measured.
By detecting HG, it is possible to provide a crystal internal defect detection device capable of detecting defects of several angstroms.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である結晶内部欠陥検出装置
の概略構成図。
FIG. 1 is a schematic configuration diagram of a crystal internal defect detection device that is an embodiment of the present invention.

【図2】欠陥からSHGが発生する様子を示した模式
図。
FIG. 2 is a schematic diagram showing how SHG is generated from a defect.

【符号の説明】[Explanation of symbols]

1 パルスレーザー装置 2 パルスレーザー光 3 被測定結晶(シリコンインゴッド) 4 SHG 5 CCDカメラ 6 集光光学系 7 バンドパスフィルタ 8 レイリー散乱光 9 モニタ 10 走査系 11 欠陥 12 界面(SHGの発生する領域) 1 pulse laser device 2 pulse laser light 3 crystal to be measured (silicon ingot) 4 SHG 5 CCD camera 6 condensing optical system 7 bandpass filter 8 Rayleigh scattered light 9 monitor 10 scanning system 11 defect 12 interface (area where SHG occurs)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被測定結晶の吸収端波長の2倍以上の波
長を有するパルスレーザ光を発するパルスレーザ装置
と、前記パルスレーザ光を前記被測定結晶に集光する集
光光学系と、前記パルスレーザ光を前記被測定結晶内で
走査させるための走査系と、前記被測定結晶からの第2
高調波のみを透過させるフィルタと、該フィルタからの
透過光を検出するための検出系とを備えたことを特徴と
する結晶内部欠陥検出装置。
1. A pulse laser device that emits a pulse laser beam having a wavelength that is at least twice the absorption edge wavelength of the crystal to be measured, a condensing optical system that condenses the pulse laser light onto the crystal to be measured, and A scanning system for scanning the pulsed laser light in the measured crystal, and a second system from the measured crystal.
A crystal internal defect detection device comprising: a filter that transmits only harmonics; and a detection system that detects light transmitted from the filter.
【請求項2】 前記被測定結晶がシリコン結晶であるこ
とを特徴とする請求項1に記載の結晶内部欠陥検出装
置。
2. The crystal internal defect detection device according to claim 1, wherein the measured crystal is a silicon crystal.
JP9162995A 1995-03-24 1995-03-24 Intra-crystal flaw detecting device Withdrawn JPH08261927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9162995A JPH08261927A (en) 1995-03-24 1995-03-24 Intra-crystal flaw detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9162995A JPH08261927A (en) 1995-03-24 1995-03-24 Intra-crystal flaw detecting device

Publications (1)

Publication Number Publication Date
JPH08261927A true JPH08261927A (en) 1996-10-11

Family

ID=14031850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9162995A Withdrawn JPH08261927A (en) 1995-03-24 1995-03-24 Intra-crystal flaw detecting device

Country Status (1)

Country Link
JP (1) JPH08261927A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004529327A (en) * 2001-02-14 2004-09-24 アプライド マテリアルズ インコーポレイテッド Laser scanning wafer inspection using nonlinear optical phenomena
KR101288528B1 (en) * 2011-07-25 2013-07-26 디케이아즈텍 주식회사 Inspect Analyzer for detecting defect in cylinder shape crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004529327A (en) * 2001-02-14 2004-09-24 アプライド マテリアルズ インコーポレイテッド Laser scanning wafer inspection using nonlinear optical phenomena
KR101288528B1 (en) * 2011-07-25 2013-07-26 디케이아즈텍 주식회사 Inspect Analyzer for detecting defect in cylinder shape crystal

Similar Documents

Publication Publication Date Title
JP3874421B2 (en) Scanning system for inspecting surface anomalies
JP4001862B2 (en) System and method for a wafer inspection system using multiple angle and multiple wavelength illumination
US3790287A (en) Surface inspection with scanned focused light beams
US8670116B2 (en) Method and device for inspecting for defects
US20050110986A1 (en) Scanning system for inspecting anamolies on surfaces
JP4004098B2 (en) Measuring method and apparatus using scanning laser microscope
JPH05264468A (en) Method and apparatus for detecting internal
JPH0228803B2 (en)
JPS6365904B2 (en)
JPH08261927A (en) Intra-crystal flaw detecting device
JPH09243569A (en) Apparatus and method for evaluating semiconductor substrate
JPH08500432A (en) Acousto-optically harmonious filter-based surface scanning device and method
JPH0739994B2 (en) Fine particle measuring device
JPH07167793A (en) Phase difference semiconductor inspection device and its production method
JP4808861B2 (en) Surface evaluation method
JPH0291504A (en) Method for inspecting cross-sectional profile of fine pattern
JP2000214099A (en) Method and apparatus for measurement of crystal defect
JP2004163240A (en) Surface evaluation device
JP3142991B2 (en) Laser scanning device and image forming method
JP3338118B2 (en) Method for manufacturing semiconductor device
JPH09210918A (en) Foreign matter sensing optical system for surface of silicon wafer
JP2000193434A (en) Foreign substance inspecting device
JPH0926397A (en) Detecting method for foreign matter particle
JPH09270447A (en) Crystal defect detecting device
JP2715999B2 (en) Evaluation method for polycrystalline materials

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020604