JP2832272B2 - Crystal defect observation device - Google Patents

Crystal defect observation device

Info

Publication number
JP2832272B2
JP2832272B2 JP5326049A JP32604993A JP2832272B2 JP 2832272 B2 JP2832272 B2 JP 2832272B2 JP 5326049 A JP5326049 A JP 5326049A JP 32604993 A JP32604993 A JP 32604993A JP 2832272 B2 JP2832272 B2 JP 2832272B2
Authority
JP
Japan
Prior art keywords
wavelength
crystal
defect
laser
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5326049A
Other languages
Japanese (ja)
Other versions
JPH07151697A (en
Inventor
一男 守矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP5326049A priority Critical patent/JP2832272B2/en
Publication of JPH07151697A publication Critical patent/JPH07151697A/en
Application granted granted Critical
Publication of JP2832272B2 publication Critical patent/JP2832272B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体デバイスに用いら
れる半導体結晶の内部欠陥を観察する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for observing internal defects in a semiconductor crystal used for a semiconductor device.

【0002】[0002]

【従来の技術】従来、半導体ウエハ等の内部欠陥を観察
する方法として、レーザ光束をウエハ表面から照射し、
ウエハ内の欠陥から生じる散乱光のみをその照射面側あ
るいはウエハ表面に垂直な劈開面側から受光して欠陥像
を観察する方法が知られている。そして、欠陥の検出感
度等の調整は、もっぱら照射レーザ光の強度を変化させ
ることにより行なっている。
2. Description of the Related Art Conventionally, as a method for observing internal defects of a semiconductor wafer or the like, a laser beam is irradiated from the wafer surface,
There is known a method of observing a defect image by receiving only scattered light generated from a defect in a wafer from an irradiation surface side or a cleavage surface side perpendicular to the wafer surface. Adjustment of the defect detection sensitivity and the like is performed exclusively by changing the intensity of the irradiation laser light.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな従来技術によれば、より微小な欠陥を観察すべく照
射レーザ光の強度を上げると、半導体結晶を破壊してし
まうという問題がある。また、このように照射レーザ光
の強度のみに頼ることは、装置構成や消費電力の面でも
好ましくない。
However, according to such a conventional technique, there is a problem that when the intensity of the irradiation laser beam is increased to observe a finer defect, the semiconductor crystal is destroyed. Further, relying only on the intensity of the irradiation laser light is not preferable in terms of the device configuration and power consumption.

【0004】本発明の目的は、このような従来技術の問
題点に鑑み、比較的小さなレーザ光強度でも、効率的に
半導体結晶の欠陥を観察できるような装置を提供するこ
とにある。
An object of the present invention is to provide an apparatus capable of efficiently observing a defect in a semiconductor crystal even with a relatively small laser beam intensity in view of the problems of the prior art.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
本発明では、半導体結晶の平らな表面へ向けてレーザ光
束を照射し、このレーザ光束により前記半導体結晶内の
欠陥から生じる散乱光を受光して前記欠陥の情報を得る
に際し、前記レーザ光の波長は、レーザ光の波長の変化
に対する前記欠陥による散乱強度の変化および前記半導
体結晶におけるレーザ光の吸収係数の変化に基づいて設
定するようにしている。
In order to achieve the above object, the present invention irradiates a laser beam onto a flat surface of a semiconductor crystal, and receives scattered light generated from a defect in the semiconductor crystal by the laser beam. When obtaining the information on the defect, the wavelength of the laser light is set based on the change in the scattering intensity due to the defect with respect to the change in the wavelength of the laser light and the change in the absorption coefficient of the laser light in the semiconductor crystal. ing.

【0006】[0006]

【作用】この構成において、照射レーザ光の波長に対
し、欠陥からの散乱強度および吸収係数は、シリコン結
晶の場合を例にとれば、図1のグラフに示すように変化
する。散乱強度Iが図1のように変化するのは、欠陥の
まわりのシリコン結晶の屈折率εに対する欠陥の屈折率
をε+△ε、欠陥の体積をV、照射レーザ光の波長をλ
とすれば、その欠陥による散乱強度Iは、I∝λ-4(△
ε*V)2 のように、波長の4乗に反比例するととも
に、△εおよびVの影響を受けるからである。したがっ
て、半導体ウエハの表面へ向けてレーザ光束を照射し、
劈開面側から90°散乱を観察するような場合は、散乱
強度が高くかつ吸収係数が小さい方がより微小な欠陥の
観察に適しているため、シリコンウエハの場合は図1か
ら照射レーザ光の波長を970〜1035nmの範囲内
の波長に設定するのが好ましい。また、シリコンウエハ
の表面からレーザ光束を照射し、その表面から散乱光を
観察するような場合は、シリコンウエハの裏面からの反
射や散乱の影響を抑えるため、吸収係数が比較的大きく
かつ散乱強度が比較的小さい960〜1010nmの範
囲の波長のレーザ光束を照射するのが好ましい。
In this configuration, the scattering intensity from the defect and the absorption coefficient change with respect to the wavelength of the irradiation laser light as shown in the graph of FIG. The scattering intensity I changes as shown in FIG. 1 because the refractive index of the defect relative to the refractive index ε of the silicon crystal around the defect is ε + レ ー ザ ε, the volume of the defect is V, and the wavelength of the irradiation laser light is λ.
Then, the scattering intensity I due to the defect becomes I∝λ -4 (△
ε * V) 2 , which is inversely proportional to the fourth power of the wavelength and is affected by Δε and V. Therefore, the laser beam is irradiated toward the surface of the semiconductor wafer,
In the case of observing 90 ° scattering from the cleavage plane side, a high scattering intensity and a small absorption coefficient are more suitable for observing finer defects. Preferably, the wavelength is set in the range of 970 to 1035 nm. Also, when irradiating a laser beam from the front surface of the silicon wafer and observing scattered light from the front surface, the absorption coefficient is relatively large and the scattering intensity is relatively small in order to suppress the effects of reflection and scattering from the back surface of the silicon wafer. It is preferable to irradiate a laser beam having a wavelength of 960 to 1010 nm, which is relatively small.

【0007】[0007]

【実施例】以下、図面を用いて本発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0008】図2は本発明の一実施例に係る結晶欠陥観
察装置を示す模式図である。同図に示すように、この装
置は、シリコンウエハ1の表面3へ向けて収束レーザ光
5を照射するレーザ照射手段7、レーザ光5によりシリ
コンウエハ1ないの欠陥9から生じる散乱光11を受光
して欠陥9の情報を得る観察手段13を備える。レーザ
照射手段7は不図示のレーザ装置とそれが発するレーザ
光を集光して表面3へ向け照射させる集光レンズ15を
有する。観察手段13は、散乱光11を受光する顕微鏡
17とそれによって結像される欠陥像を光電変換して画
像データを得るテレビカメラ19とを有する。レーザ装
置としては波長が970〜1035nmの範囲の波長の
レーザ光を発するものを設定し、あるいはそのような波
長のレーザ光を発するように調整し設定されている。
FIG. 2 is a schematic diagram showing a crystal defect observation apparatus according to one embodiment of the present invention. As shown in FIG. 1, the apparatus includes a laser irradiation means 7 for irradiating a convergent laser beam 5 toward a surface 3 of a silicon wafer 1, and a scattered light 11 generated from a defect 9 in the silicon wafer 1 by the laser beam 5. And observation means 13 for obtaining information on the defect 9. The laser irradiating means 7 has a laser device (not shown) and a condensing lens 15 for condensing laser light emitted from the laser device and irradiating the laser light to the surface 3. The observation unit 13 includes a microscope 17 that receives the scattered light 11 and a television camera 19 that photoelectrically converts a defect image formed by the microscope 17 to obtain image data. As the laser device, a device that emits laser light having a wavelength in the range of 970 to 1035 nm is set, or is adjusted so as to emit laser light of such a wavelength.

【0009】この構成において、集束レーザ光5が表面
3へ向けて照射されると、欠陥9から散乱光が生じ、そ
れが顕微鏡17を介して観察されるが、レーザ光の波長
が上述のように設定されているため、照射されたレーザ
光はシリコンウエハ内でほど良く減衰するとともに、散
乱強度がそれほど強くないため、裏面21における反射
や散乱の影響をそれほど受けずに、欠陥9からの散乱光
が明瞭に観察される。図3は本発明の他の実施例に係る
結晶欠陥観察装置を示す模式図である。図2と同一の符
号は同様の構成要素を示す。図3中、23はシリコンウ
エハ1の劈開面である。この場合、レーザ装置は、96
0〜1010nmの範囲の波長のレーザ光を発するよう
に設定されている。
In this configuration, when the focused laser beam 5 is irradiated toward the surface 3, scattered light is generated from the defect 9, which is observed through the microscope 17. , The radiated laser beam is moderately attenuated in the silicon wafer, and the scattering intensity is not so strong. Light is clearly observed. FIG. 3 is a schematic view showing a crystal defect observation apparatus according to another embodiment of the present invention. 2 denote the same components. In FIG. 3, reference numeral 23 denotes a cleavage plane of the silicon wafer 1. In this case, the laser device is 96
It is set so as to emit laser light having a wavelength in the range of 0 to 1010 nm.

【0010】この構成において、集束レーザ光5が表面
3へ向けて照射されると、欠陥9で生じる散乱光のうち
90°方向への散乱光が劈開面23を介して観察される
が、照射レーザビーム5の波長が上述のように設定され
ているため、シリコンウエハ1内で入射レーザ光束や散
乱光11がそれほど減衰することなく、かつ欠陥9によ
る散乱強度も大きいため、効率良く、欠陥9の像が観察
され、欠陥9が微小であってもその画像データを得るこ
とができる。
In this configuration, when the focused laser beam 5 is irradiated toward the surface 3, scattered light in the 90 ° direction among the scattered light generated by the defect 9 is observed through the cleavage plane 23. Since the wavelength of the laser beam 5 is set as described above, the incident laser beam and the scattered light 11 are not so much attenuated in the silicon wafer 1 and the scattering intensity due to the defect 9 is large. Is observed, and even if the defect 9 is minute, the image data can be obtained.

【0011】なお、他の観察形態、例えばウエハの表面
からレーザ光を照射し、裏面から散乱光を観察するよう
な場合においても、図1のようなデータに基づき照射レ
ーザ光の波長を最適化することにより効率的な観察を行
うことができる。
In other observation modes, for example, when irradiating laser light from the front surface of the wafer and observing scattered light from the back surface, the wavelength of the irradiating laser light is optimized based on data as shown in FIG. By doing so, efficient observation can be performed.

【0012】また、上述の観察手段は、テレビカメラ等
を用いたものの他、感光材料を用いたもの等であっても
よい。また、照射レーザ光で走査することにより断面画
像を得るようにしても良い。
Further, the above-mentioned observation means may be one using a photosensitive material other than one using a television camera or the like. Alternatively, a cross-sectional image may be obtained by scanning with irradiation laser light.

【0013】[0013]

【発明の効果】以上説明したように本発明によれば、レ
ーザ光の波長に対する吸収係数および散乱強度の変化に
基づき照射レーザ光の波長を設定するようにしたため、
極めて効率的に欠陥の散乱光による情報を得ることがで
きる。したがって、半導体結晶を照射レーザ光束により
破壊する危険性なく、より微小な欠陥をも観察すること
ができる。
As described above, according to the present invention, the wavelength of the irradiation laser light is set based on the change in the absorption coefficient and the scattering intensity with respect to the wavelength of the laser light.
Information based on scattered light of defects can be obtained very efficiently. Therefore, even smaller defects can be observed without the risk of destroying the semiconductor crystal by the irradiation laser beam.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 シリコン結晶における照射レーザ光の波長に
対する吸収係数および散乱強度の変化を示すグラフであ
る。
FIG. 1 is a graph showing changes in an absorption coefficient and a scattering intensity with respect to a wavelength of an irradiation laser beam in a silicon crystal.

【図2】 本発明の一実施例に係る結晶欠陥観察装置を
示す模式図である。
FIG. 2 is a schematic diagram showing a crystal defect observation device according to one embodiment of the present invention.

【図3】 本発明の他の実施例に係る結晶欠陥観察装置
を示す模式図である。
FIG. 3 is a schematic view showing a crystal defect observation apparatus according to another embodiment of the present invention.

【符号の説明】 1:シリコンウエハ、3:表面、5:収束レーザ光、
7:レーザ照射手段、9:欠陥、11:散乱光、13:
観察手段、15:集光レンズ、17:顕微鏡、19:テ
レビカメラ、21:裏面、23:劈開面。
[Description of Signs] 1: Silicon wafer, 3: Surface, 5: Convergent laser beam,
7: laser irradiation means, 9: defect, 11: scattered light, 13:
Observation means, 15: condenser lens, 17: microscope, 19: television camera, 21: back surface, 23: cleavage plane.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体結晶へ向けてレーザ光束を照射す
るレーザ照射手段と、該レーザ光によって結晶内部の欠
陥から生じた内部散乱光を受光する受光手段を備えた結
晶欠陥観察装置において、前記レーザ照射手段は、前記
結晶表面に向けて照射したレーザ光による内部散乱光を
前記表面に対してほぼ垂直な他の表面を介して受光する
場合には第1の波長のレーザ光を発生し、該内部散乱光
を前記表面と同一表面を介して受光する場合には前記第
1の波長とは異なる第2の波長のレーザ光を発生するこ
とを特徴とする結晶欠陥観察装置。
1. A crystal defect observing apparatus comprising: a laser irradiating means for irradiating a laser beam onto a semiconductor crystal; and a light receiving means for receiving internal scattered light generated from a defect inside the crystal by the laser light. The irradiating means generates laser light of a first wavelength when receiving internal scattered light by the laser light radiated toward the crystal surface through another surface substantially perpendicular to the surface, A crystal defect observation apparatus, wherein when internal scattered light is received via the same surface as the surface, a laser beam having a second wavelength different from the first wavelength is generated.
【請求項2】 前記半導体結晶はシリコン結晶であり、
前記第1の波長は970乃至1035nmの範囲内のも
のであり、前記第2の波長は960乃至1010nmの
範囲内のものであることを特徴とする請求項1に記載の
結晶欠陥観察装置。
2. The semiconductor crystal is a silicon crystal,
2. The crystal defect observation device according to claim 1, wherein the first wavelength is in a range of 970 to 1035 nm, and the second wavelength is in a range of 960 to 1010 nm. 3.
JP5326049A 1993-11-30 1993-11-30 Crystal defect observation device Expired - Lifetime JP2832272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5326049A JP2832272B2 (en) 1993-11-30 1993-11-30 Crystal defect observation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5326049A JP2832272B2 (en) 1993-11-30 1993-11-30 Crystal defect observation device

Publications (2)

Publication Number Publication Date
JPH07151697A JPH07151697A (en) 1995-06-16
JP2832272B2 true JP2832272B2 (en) 1998-12-09

Family

ID=18183542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5326049A Expired - Lifetime JP2832272B2 (en) 1993-11-30 1993-11-30 Crystal defect observation device

Country Status (1)

Country Link
JP (1) JP2832272B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0424541A (en) * 1990-05-21 1992-01-28 Mitsui Mining & Smelting Co Ltd Method and apparatus for measuring internal defect
JP2916321B2 (en) * 1992-03-19 1999-07-05 三井金属鉱業株式会社 Method for detecting internal defects in multilayer semiconductor substrate, etc.

Also Published As

Publication number Publication date
JPH07151697A (en) 1995-06-16

Similar Documents

Publication Publication Date Title
US5861952A (en) Optical inspection method and apparatus including intensity modulation of a light beam and detection of light scattered at an inspection position
DE3579518D1 (en) WAFER INSPECTION DEVICE.
JP2001500613A (en) Apparatus and method for detecting microdefects in semiconductor
JPH07294422A (en) Detecting method for surface vicinity crystal defect and device therefor
US7212288B2 (en) Position modulated optical reflectance measurement system for semiconductor metrology
US5689327A (en) Laser processing device
JP2916321B2 (en) Method for detecting internal defects in multilayer semiconductor substrate, etc.
JP4021596B2 (en) Front illuminated phosphor screen for UV imaging
JP3217750B2 (en) Semiconductor device imaging method
JP2832272B2 (en) Crystal defect observation device
KR102298103B1 (en) Apparatus for inspecting surface
JP3267551B2 (en) Method for detecting defects in multilayer semiconductors etc.
JP3190157B2 (en) Crystal defect inspection method
JPH09243569A (en) Apparatus and method for evaluating semiconductor substrate
JP2004531734A (en) Inspection system and method for transparent mask substrate
JP5255763B2 (en) Optical inspection method and apparatus
JP2004163240A (en) Surface evaluation device
JPH1183465A (en) Surface inspecting method and device therefor
JPH05288536A (en) Foreign matter inspection device
JP2847463B2 (en) Semiconductor device analysis method
JP3049790B2 (en) Imaging soft X-ray microscope
JP2004163239A (en) Surface evaluation device
JPH10282009A (en) Fine grain evaluation method and apparatus
JP2798042B2 (en) Optical processing equipment
JPH06221917A (en) Beam pattern measuring method for laser flux

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071002

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081002

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081002

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091002

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101002

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111002

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111002

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term