JPH06221917A - Beam pattern measuring method for laser flux - Google Patents

Beam pattern measuring method for laser flux

Info

Publication number
JPH06221917A
JPH06221917A JP4166993A JP4166993A JPH06221917A JP H06221917 A JPH06221917 A JP H06221917A JP 4166993 A JP4166993 A JP 4166993A JP 4166993 A JP4166993 A JP 4166993A JP H06221917 A JPH06221917 A JP H06221917A
Authority
JP
Japan
Prior art keywords
laser
fluorescence
intensity distribution
fluorescent
fluorescent plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4166993A
Other languages
Japanese (ja)
Inventor
Jiyozou Sei
序三 成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
REONIKUSU KK
Original Assignee
REONIKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by REONIKUSU KK filed Critical REONIKUSU KK
Priority to JP4166993A priority Critical patent/JPH06221917A/en
Publication of JPH06221917A publication Critical patent/JPH06221917A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To provide a method for measuring the spatial beam intensity distribution (beam pattern) precisely in which problems of detecting element, e.g. deterioration of sensitivity, damage, shortening of service life, are solved over a wavelength region from X-ray to ultraviolet ray. CONSTITUTION:The intensity distribution of original laser beam is measured indirectly from a surface fluorescence intensity distribution detected through a fluorescence detecting element D by focusing a fluorescent surface light source emitted from a laser through a lens L' using a fluorescent plate F having a thin fluorescent layer generating sufficient fluorescence in visible wavelength region which is linear with respect to the intensity of objective short wavelength laser beam, e.g. X-ray or UV ray. The inventive method allows the precise measurement of laser distribution on the surface of an actual sample placed in a sample moving system, a sample holder, or a vacuum chamber C. The invention also provides an absorber method for preventing measurement error due to the reflection of laser light and a damper method for enhancing measurement accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、X線、UVレーザー
光束等のビーム強度分布の精密な測定の方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for precisely measuring the beam intensity distribution of X-rays, UV laser beams, etc.

【0002】[0002]

【従来の技術】従来のレーザービームプロファイルを測
定する方法は、レーザービームを直接的に検出する方
式、バーンパターン、あるいは蛍光、燐光を利用して可
視化など間接的に検出する方式の2種類がある。
2. Description of the Related Art There are two conventional methods for measuring a laser beam profile: a method of directly detecting a laser beam, and a method of indirectly detecting such as burn pattern or visualization using fluorescence or phosphorescence. .

【0003】[0003]

【発明が解決しようとする課題】先ず、エキシマレーザ
ー等UV光束ビームパターンの測定の例の図1から見る
と、紫外の短波長レーザーに対して、検出素子(CCD
カメラなど)の検出感度の低下、レーザー照射による検
出素子のダメージ、劣化及び使用寿命の短縮などが原因
で、通常のカメラ方式のX線、UV光等の直接検出(図
1の(a))ができなくなってしまう。
First, as seen from FIG. 1 showing an example of measurement of a UV light beam beam pattern such as an excimer laser, a detection element (CCD
Direct detection of normal camera X-rays, UV light, etc. due to a decrease in detection sensitivity (such as a camera), damage to a detection element due to laser irradiation, deterioration, and shortened service life ((a) in FIG. 1) Will not be possible.

【0004】レーザー表面改質(アニール、不純物注
入)等応用において、試料面を照射するレーザービーム
の光強度分布が極めて高度な均一性を要求される。その
試料面における照射レーザー光束の強度分布の精密測定
として、以下の問題は解決しなければならない。
In applications such as laser surface modification (annealing, impurity implantation), the light intensity distribution of the laser beam irradiating the sample surface is required to have extremely high uniformity. The following problems must be solved as a precise measurement of the intensity distribution of the irradiation laser beam on the sample surface.

【0005】レーザーの加工対象物の試料は、通常、試
料ホルダー、X−Yステージなど加工テーブルの上、あ
るいは、真空チャンバーの中に置かれている。分束板を
用いて共役面を作って加工面のビームパターンを計る方
法としては、従来の測定方法である。
A sample of a laser processing object is usually placed on a processing table such as a sample holder or an XY stage or in a vacuum chamber. A conventional measuring method is used as a method for measuring a beam pattern on a processed surface by forming a conjugate surface using a bunch plate.

【0006】分束板の加工精度などに制約があるため、
高度な光強度分布の均一性(例えばビーム強度分布誤差
RMS<0.5%の均一性)を有するホモジェナイザー
からの出力ビームを分束板がビーム均一性に影響を与え
ないようにホモジェナイザーのコンデンサーレンズと均
一加工面の間の光路の中に導入することが難しくなって
いると共に、分束した共役面の光強度分布と試料面の光
強度分布の高精度な同一性を保ちにくくなっている。高
精度、高信頼度の測定は、試料面での光束強度分布を計
らなければ難しい。尚、加工光学系(投影レンズ、ホモ
ジェナイザーのコンデンサーレンズ等)のワーキングデ
イスタンス、真空チャンバーの窓などの制限による分束
板の導入は不可能になる場合もある。
Since there are restrictions on the processing accuracy of the baffle plate,
The output beam from the homogenizer having a high degree of uniformity of light intensity distribution (for example, uniformity of beam intensity distribution error RMS <0.5%) is homogenized so that the diverging plate does not affect the beam uniformity. It is difficult to introduce it into the optical path between the condenser lens of the Nizer and the uniformly machined surface, and it is difficult to maintain the high-precision identity of the light intensity distribution of the bundled conjugate surface and the light intensity distribution of the sample surface. Has become. It is difficult to measure with high accuracy and reliability without measuring the luminous flux intensity distribution on the sample surface. In some cases, it may not be possible to introduce the baffle plate due to restrictions on the working distance of the processing optical system (projection lens, condenser lens of homogenizer, etc.) and the window of the vacuum chamber.

【0007】[0007]

【課題を解決する為の手段】上述のように測定の精度と
信頼性を向上させるため光束ビームの測定は試料面で行
なう必要がある。レーザー加工装置の中にその試料面に
おける光強度分布の直接測定光学システムを組み込むた
め、本発明は、図1のような方式で蛍光板を用いて、入
射レーザー光の反射方向に蛍光の測定を行なう。尚、蛍
光板を通したレーザー光束の反射光により再発生した二
次蛍光は測定の結果に影響があるので、測定精度を向上
させる為レーザー光束の反射光の防止の方法も本発明図
3で提案している。
As described above, in order to improve the accuracy and reliability of measurement, it is necessary to measure the luminous flux beam on the sample surface. In order to incorporate the optical system for directly measuring the light intensity distribution on the sample surface into the laser processing apparatus, the present invention uses a fluorescent plate in the method as shown in FIG. 1 to measure the fluorescence in the reflection direction of the incident laser light. . Since the secondary fluorescence regenerated by the reflected light of the laser light flux passing through the fluorescent plate affects the measurement result, a method of preventing the reflected light of the laser light flux is also proposed in FIG. 3 of the present invention in order to improve the measurement accuracy. is doing.

【0008】[0008]

【作用】本発明の測定の基本原理は、図1に示されてい
る。その測定の前提として、蛍光板は、測定対象のレ
ーザー光束の照射によって、蛍光が十分発生する蛍光薄
膜層を有し、その蛍光が元の照射レーザー光に線形的
な強度関係を有することである。
The basic principle of the measurement of the present invention is shown in FIG. The premise of the measurement is that the fluorescent plate has a fluorescent thin film layer in which fluorescence is sufficiently generated by irradiation with the laser light flux to be measured, and the fluorescence has a linear intensity relationship with the original irradiation laser beam.

【0009】測定の目的位置、すなわち加工対象物の試
料面に蛍光板を置くと蛍光物質の薄膜層はレーザーの照
射による蛍光を発生する。蛍光板の特性によって、蛍
光層の薄膜が十分薄くなれば、レーザーの照射による蛍
光面光源になる。図1のような検出系を使用すれば、歪
みなくその蛍光面光源の蛍光強度分布を精密に測定する
ことが容易になる。蛍光板の特性によって、蛍光光強
度がレーザー光との強度の線形性関係があれば、その蛍
光面の光強度分布とレーザー光束の加工面に於ける光強
度分布が一致する。
When a fluorescent plate is placed on the target position of measurement, that is, on the sample surface of the object to be processed, the thin film layer of the fluorescent substance emits fluorescence due to laser irradiation. If the thin film of the fluorescent layer becomes sufficiently thin due to the characteristics of the fluorescent plate, it becomes a fluorescent surface light source by laser irradiation. If the detection system as shown in FIG. 1 is used, it becomes easy to accurately measure the fluorescence intensity distribution of the fluorescent surface light source without distortion. Depending on the characteristics of the fluorescent plate, if the fluorescent light intensity has a linear relationship with the intensity of the laser light, the light intensity distribution on the fluorescent surface and the light intensity distribution on the processed surface of the laser light flux match.

【0010】図3の蛍光板に対して、入射レーザー光の
反射方向で測定を行なう。蛍光板からぬけ出したレーザ
ー光線は(通常蛍光板の吸収は10%以内程度しかな
い)蛍光板の裏面と蛍光板の裏側の試料ホルダー面から
反射して再び蛍光板に戻って蛍光を再発生する可能性が
高い。それにより測定に影響を与える。本発明は、測定
精度を向上するため、図3のように幾つかの反射光防止
の方法を提案する。
The phosphor plate shown in FIG. 3 is measured in the reflection direction of the incident laser light. It is highly possible that the laser beam emitted from the fluorescent plate (usually the absorption of the fluorescent plate is within about 10%) is reflected from the back surface of the fluorescent plate and the sample holder surface on the back side of the fluorescent plate and returns to the fluorescent plate again to regenerate fluorescence. This affects the measurement. The present invention proposes several methods for preventing reflected light as shown in FIG. 3 in order to improve the measurement accuracy.

【0011】図3(a)は、吸収による反射を防止する
方法である。蛍光板の裏側に入射光波長に対する吸収が
あり、かつ蛍光もない物質(吸収液体、あるいは吸収ガ
ラス等)を置けば良い。図3(b)のような蛍光板の裏
側にレーザー入射光のビームダンパーを使って反射光を
防止することもできる。
FIG. 3A shows a method of preventing reflection due to absorption. A substance (absorption liquid, absorption glass, or the like) that absorbs the incident light wavelength and does not fluoresce may be placed on the back side of the fluorescent plate. It is also possible to prevent the reflected light by using a beam damper of the laser incident light on the back side of the fluorescent plate as shown in FIG.

【0012】[0012]

【実施例】図4は、真空チャンバーの中に蛍光板を試料
加工面と同じ位置に置いて、レーザービームの光強度分
布の精密的な測定を行なった例である。入射レーザー
は、ビームホモジェナイザーを用い光束ビームが均一さ
れてから試料面に照射する。光束の空間強度分布の均一
性は、 ΔI=(Imax−Imin)/Imax<±5% 均一領域に光強度平均特性は RMS≒1%と予想され
ている。その高度なビーム光強度分布を得るために、ホ
モジェナイザーの調整をしなから、試料面のレーザービ
ームの光強度分布をチェックする必要がある。試料面が
真空チャンバーの中にあるので、別の測定方式は殆ど不
可能となり、本発明によって図4のように結像レンズを
使用し、蛍光の面光源の像をCCDカメラに当てて、レ
ーザービームの試料面における光強度分布の高精度な測
定を行なった。本発明の実施例(図4)に使われている
蛍光板は、X−線から350nm紫外光までの波長領域
に上述の蛍光強度及び蛍光と照射光の線形性が共に認め
られる。測定を行なったレーザーの種類は、エキシマレ
ーザー、Nd;YAGレーザー3倍波等殆どの紫外光
で、レーザーのビームサイズは、120mm×120m
mまでの例もある。
EXAMPLE FIG. 4 shows an example in which a fluorescent plate was placed in the vacuum chamber at the same position as the sample processing surface and the light intensity distribution of the laser beam was measured precisely. The incident laser irradiates the sample surface after the light beam is homogenized by using a beam homogenizer. The uniformity of the spatial intensity distribution of the light flux is ΔI = (Imax-Imin) / Imax <± 5%. The light intensity average characteristic is expected to be RMS≈1% in the uniform region. Since the homogenizer is not adjusted in order to obtain the high-intensity beam light intensity distribution, it is necessary to check the light intensity distribution of the laser beam on the sample surface. Since the sample surface is in the vacuum chamber, another measurement method is almost impossible. According to the present invention, an image forming lens is used as shown in FIG. The light intensity distribution on the sample surface of the beam was measured with high accuracy. In the fluorescent plate used in the embodiment of the present invention (FIG. 4), both the above-mentioned fluorescence intensity and fluorescence and linearity of irradiation light are recognized in the wavelength region from X-ray to 350 nm ultraviolet light. The types of lasers used for measurement are excimer lasers, Nd; YAG lasers, and most of the ultraviolet light, and the laser beam size is 120 mm x 120 m.
There are also examples up to m.

【0013】CCDカメラからのビーム光強度分布のデ
ータをビームプロファイラーに送って、データを解析し
た結果は、測定されたビームの光強度分布の均一性が±
5%以内、均一化された領域内の光強度分布の平均特性
がRMS≦1.5%という均一光強度分布の結果も得ら
れた。
The light beam intensity distribution data from the CCD camera is sent to the beam profiler and the data is analyzed. As a result, the uniformity of the measured light beam intensity distribution is ±.
The result of the uniform light intensity distribution was also obtained in which the average characteristic of the light intensity distribution within the uniformed region was RMS ≦ 1.5% within 5%.

【0014】図3のような反射光防止の対策を取らない
と、10%以上のノイズが出て、測定に大きく悪影響を
与える。
If the measure for preventing the reflected light as shown in FIG. 3 is not taken, noise of 10% or more is generated, which has a great adverse effect on the measurement.

【0015】[0015]

【発明の効果】上述した説明からも明らかなように、こ
の発明は、真空チャンバー、X−Yテーブル、試料ホル
ダーなどの制限で普通の測定方法にとって難しくなって
いる加工試料面における照射レーザービームの光強度分
布の高精度な測定が容易に実現できる。
As is apparent from the above description, the present invention is directed to the irradiation laser beam on the processed sample surface, which is difficult for the ordinary measuring method due to the limitation of the vacuum chamber, the XY table, the sample holder, and the like. Highly accurate measurement of the light intensity distribution can be easily realized.

【0016】また、反射光からの蛍光(ノイズ)防止の
対策を本発明が提案して、測定の精度が向上する。
Further, the present invention proposes a measure for preventing fluorescence (noise) from reflected light, thereby improving measurement accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】 蛍光板法の測定原理と測定方法の概要図。FIG. 1 is a schematic diagram of a measurement principle and a measurement method of a fluorescent plate method.

【図2】 蛍光板の透過方向と反射方向における蛍光面
光源の光強度分布の投影結像式の測定。(a)は、蛍光
板の裏側(透過方向)における観察で、(b)は、蛍光
板の表側(反射方向)における観察である。
FIG. 2 is a projection imaging measurement of the light intensity distribution of the fluorescent surface light source in the transmission direction and the reflection direction of the fluorescent plate. (A) is an observation on the back side (transmission direction) of the fluorescent plate, and (b) is an observation on the front side (reflection direction) of the fluorescent plate.

【図3】 蛍光板から透過したレーザー光の反射防止の
方法。(a)は、抜け出したレーザー光を吸収させる方
法である。強い吸収且つ無蛍光の液体(例えば紫外光な
ら、水)、又は固体(UV光なら、普通のBK7等ガラ
ス)でも結構である;(b)は、レーザービームダンパ
ーによる反射防止の方法である。
FIG. 3 is a method for preventing reflection of laser light transmitted from a fluorescent plate. (A) is a method of absorbing the emitted laser light. A strongly absorbing and non-fluorescent liquid (for example, water for ultraviolet light) or a solid (for UV light, ordinary glass such as BK7) may be used; (b) is a method of preventing reflection by a laser beam damper.

【図4】 実施例:真空チャンバー内におけるレーザー
ビームプロファイルの観察。
FIG. 4 Example: Observation of laser beam profile in a vacuum chamber.

【符号の説明】[Explanation of symbols]

○○’ 測定系の光軸; A 検出素子を置く像平面と結像レンズの主平面
との蛍光面における交差線の位置。 L: Condenser Lens of a
Laser BeamHomogenizer L’: Image Lens D: Detector (CCD/CID Ca
mera) C: Vaccum Chamber W: Window H: Sample Holder F: Fluorescense Plate
○ ○ 'Optical axis of measurement system; A Position of intersection line on fluorescent screen between image plane on which detector element is placed and main plane of imaging lens. L: Condenser Lens of a
Laser Beam Homogenizer L ': Image Lens D: Detector (CCD / CID Ca
mera) C: Vaccum Chamber W: Window H: Sample Holder F: Fluorescence Plate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 測定対象のレーザー光束の照射によっ
て、蛍光が十分発生する蛍光薄膜層があり、その蛍光が
元の照射レーザー光に線形的な強度関係を有する蛍光板
を用いて、元のレーザー光強度空間分布(ビームパター
ン)の直接観察の代りに、そのレーザー照射から発生し
た蛍光の面蛍光による測定方法。
1. A fluorescent thin film layer in which fluorescence is sufficiently generated by irradiation of a laser beam to be measured, and the original laser light is obtained by using a fluorescent plate having a linear intensity relationship with the original irradiation laser light. Instead of directly observing the intensity spatial distribution (beam pattern), a method of measuring the fluorescence generated from the laser irradiation by surface fluorescence.
【請求項2】 上記請求項1の蛍光を用いるレーザー光
束ビーム強度分布の測定方法として、蛍光板に対して照
射レーザー光束の透過方向(蛍光板の裏側)と反射方向
(蛍光板の表側)両方向の蛍光強度分布の投影測定方
法。
2. A method for measuring a laser beam beam intensity distribution using fluorescence according to claim 1, wherein the fluorescence intensity in both the transmitting direction (back side of the fluorescent plate) and the reflecting direction (front side of the fluorescent plate) of the irradiation laser beam with respect to the fluorescent plate. Distribution projection measurement method.
【請求項3】 上記請求項2の蛍光板に対してレーザー
光束反射方向の蛍光強度分布を測定する方法の中にレー
ザー光の反射を伴っている測定誤差の防止と測定精度の
向上の方法。
3. A method for preventing measurement error caused by reflection of laser light and improving measurement accuracy in the method for measuring the fluorescence intensity distribution in the laser beam reflection direction with respect to the fluorescent plate according to claim 2.
JP4166993A 1993-01-22 1993-01-22 Beam pattern measuring method for laser flux Pending JPH06221917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4166993A JPH06221917A (en) 1993-01-22 1993-01-22 Beam pattern measuring method for laser flux

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4166993A JPH06221917A (en) 1993-01-22 1993-01-22 Beam pattern measuring method for laser flux

Publications (1)

Publication Number Publication Date
JPH06221917A true JPH06221917A (en) 1994-08-12

Family

ID=12614808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4166993A Pending JPH06221917A (en) 1993-01-22 1993-01-22 Beam pattern measuring method for laser flux

Country Status (1)

Country Link
JP (1) JPH06221917A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6636297B2 (en) * 1999-01-20 2003-10-21 Gigaphoton, Inc. Vacuum ultraviolet laser wavelength measuring apparatus
WO2017002830A1 (en) * 2015-06-30 2017-01-05 株式会社日立製作所 Radiation measuring apparatus
DE112017007786T5 (en) 2017-07-27 2020-05-14 Canare Electric Co., Ltd. Laser beam profile measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6636297B2 (en) * 1999-01-20 2003-10-21 Gigaphoton, Inc. Vacuum ultraviolet laser wavelength measuring apparatus
WO2017002830A1 (en) * 2015-06-30 2017-01-05 株式会社日立製作所 Radiation measuring apparatus
DE112017007786T5 (en) 2017-07-27 2020-05-14 Canare Electric Co., Ltd. Laser beam profile measuring device

Similar Documents

Publication Publication Date Title
JPH06112106A (en) Apparatus and method for focusing of object image as well as apparatus for focusing of mask image
JPH05119035A (en) Imaging flow sight meter
JP2005106815A (en) Optical alignment of x-ray microanalyzer
US20080192264A1 (en) Device for Determining the Position of at Least One Structure on an Object, Use of an Illumination Apparatus with the Device and Use of Protective Gas with the Device
JP2928277B2 (en) Projection exposure method and apparatus
JP4021596B2 (en) Front illuminated phosphor screen for UV imaging
JP3003708B2 (en) Surface analyzer
JPH06221917A (en) Beam pattern measuring method for laser flux
JP2004531734A (en) Inspection system and method for transparent mask substrate
Mann et al. Monitoring and shaping of excimer laser beam profiles
US5729348A (en) Fluorescence dot area meter
JP2004348113A (en) Apparatus for detecting information included in phosphorus layer
EP0884582A1 (en) Fluorescence dot area meter.
JPH02259515A (en) Measuring instrument for fluorescent x-rays film thickness
JP2948662B2 (en) Radiation image magnifying observation device
JPH01120749A (en) Automatic focusing device for electron microscope
Mann et al. Characterization of excimer laser beam parameters
JP2796906B2 (en) Foreign matter inspection device
TW202009081A (en) Laser processing apparatus
Kalantar et al. X‐ray laser radiography of perturbations due to imprint of laser speckle in 0.35 μm laser irradiation of a thin Si foil
JP2001099753A (en) Method and device for evaluating optical element laser durability and exposing device
JPH01149354A (en) Electron microscope
WO2019169817A1 (en) Device and method for detecting porosity of porous fluorescent ceramic
JPH0618447A (en) Detecting method for x-ray focal point position
JP2001336914A (en) Collimation inspection device