JPH11160230A - Method and apparatus for detecting crystal defect near surface - Google Patents

Method and apparatus for detecting crystal defect near surface

Info

Publication number
JPH11160230A
JPH11160230A JP9327857A JP32785797A JPH11160230A JP H11160230 A JPH11160230 A JP H11160230A JP 9327857 A JP9327857 A JP 9327857A JP 32785797 A JP32785797 A JP 32785797A JP H11160230 A JPH11160230 A JP H11160230A
Authority
JP
Japan
Prior art keywords
lens
light
crystal
incident
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9327857A
Other languages
Japanese (ja)
Inventor
Jun Furukawa
純 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Silicon Corp
Original Assignee
Mitsubishi Materials Silicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Silicon Corp filed Critical Mitsubishi Materials Silicon Corp
Priority to JP9327857A priority Critical patent/JPH11160230A/en
Publication of JPH11160230A publication Critical patent/JPH11160230A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve depth resolution by moving a high-magnification optical system lens close to a crystal surface without interrupting an advancement of a light entering to the crystal surface. SOLUTION: Lights 12 of a plurality of wavelengths and different penetration depths are brought into the same position of a crystal surface 11. Scattering lights 13 are detected via a lens 14 of an optical system. A crystal defect in the vicinity of the surface is detected on the basis of a difference of detected values. The incident lights 12 are sent from sideways of the lens 14 via a semitransparent mirror 10 set above the lens 14 of the optical system to enter the crystal surface 11 through the lens 14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体等の結晶体
表面に赤外線レーザビームのような光を入射し、その散
乱光に基づいて結晶体の表面近傍に存在する酸素析出
物、転位等の母相と異なる屈折率をもつ内部欠陥を光散
乱中心として検出する表面近傍結晶欠陥の検出方法及び
この方法に使用する検出装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for irradiating light such as an infrared laser beam onto the surface of a crystal of a semiconductor or the like, based on the scattered light. The present invention relates to a method for detecting near-surface crystal defects for detecting an internal defect having a refractive index different from that of a parent phase as a light scattering center, and a detection apparatus used for the method.

【0002】[0002]

【従来の技術】従来より半導体結晶は赤外線を透過する
性質を有することを利用して半導体表面近傍の結晶欠陥
を検出する方法が知られている(特開平7−29442
2)。この従来方法において図4に示すように、ステー
ジ2上に載置されて水平のX方向及びY方向に可動なシ
リコンウエーハ1の表面に斜めから所定の角度で赤外線
レーザ光を複数のレーザ発振器から構成される光源4か
ら入射する。入射したレーザ光はその波長に対応した深
さまでシリコンウエーハ1の内部に侵入し、結晶内部に
結晶欠陥が存在するとレーザ光により光散乱が生じる。
この散乱光をシリコンウエーハ1の上方に位置する赤外
顕微鏡5で集光し、赤外ビジコン6により検出する。結
晶欠陥は散乱中心(散乱体)として検出される。赤外ビ
ジコン6の出力はパソコン3で制御されるモニタ7に表
示される。この散乱中心(散乱体)の検出を同一の入射
位置に光源4から波長を変えたレーザ光を照射して再び
行う。その結果、これらの散乱中心(散乱体)の検出値
の差に基づいてその深さでの内部欠陥を算出することが
できる。またステージ2のX方向及びY方向への動き、
光源4の発振のオン/オフ動作、赤外顕微鏡5のピント
合わせ動作等はいずれもパソコン3で制御される。
2. Description of the Related Art Conventionally, there is known a method for detecting a crystal defect near a semiconductor surface by utilizing the fact that a semiconductor crystal has a property of transmitting infrared rays (Japanese Patent Laid-Open No. 7-29442).
2). In this conventional method, as shown in FIG. 4, an infrared laser beam is emitted from a plurality of laser oscillators at a predetermined angle from a diagonal angle to the surface of a silicon wafer 1 mounted on a stage 2 and movable in horizontal X and Y directions. Light is incident from the light source 4 configured. The incident laser light penetrates into the silicon wafer 1 to a depth corresponding to the wavelength, and if a crystal defect exists in the crystal, light scattering occurs due to the laser light.
The scattered light is collected by an infrared microscope 5 located above the silicon wafer 1 and detected by an infrared vidicon 6. Crystal defects are detected as scattering centers (scatterers). The output of the infrared vidicon 6 is displayed on a monitor 7 controlled by the personal computer 3. The detection of the scattering center (scattering body) is performed again by irradiating the same incident position with a laser beam having a different wavelength from the light source 4. As a result, the internal defect at that depth can be calculated based on the difference between the detected values of these scattering centers (scatterers). Also, the movement of the stage 2 in the X and Y directions,
The ON / OFF operation of the oscillation of the light source 4 and the focusing operation of the infrared microscope 5 are all controlled by the personal computer 3.

【0003】この従来法において、深さ分解能は図3に
示すように赤外顕微鏡5に収納された光学系の対物レン
ズ8の焦点深度に依存する。例えば50倍の対物レンズ
を赤外顕微鏡5に取付けた場合、約±10μmの範囲で
焦点が合う。即ちこの場合、深さ分解能は約20μmと
なる。深さ分解能を上げるためには、対物レンズを高倍
率に変える方法が考えられる。一般に光学系において、
対物レンズを高倍率化すると、それに比例して作動距離
(対物レンズと結晶表面との間の距離)が短縮されるこ
とが知られている。例えば、対物レンズの倍率を80
倍、100倍、150倍とした場合、作動距離はそれぞ
れ4.10mm、3.18mm、1.00mmとなる。
これは対物レンズの高倍率化に比例して対物レンズを試
料に接近させないと焦点が合わなくなることを意味して
いる。
In this conventional method, the depth resolution depends on the depth of focus of the objective lens 8 of the optical system housed in the infrared microscope 5 as shown in FIG. For example, when a 50 × objective lens is attached to the infrared microscope 5, focus is achieved in a range of about ± 10 μm. That is, in this case, the depth resolution is about 20 μm. In order to increase the depth resolution, a method of changing the objective lens to a high magnification can be considered. Generally, in an optical system,
It is known that when the magnification of the objective lens is increased, the working distance (the distance between the objective lens and the crystal surface) is reduced in proportion thereto. For example, if the magnification of the objective lens is 80
When the magnification is 100, 150, and 150, the working distances are 4.10 mm, 3.18 mm, and 1.00 mm, respectively.
This means that if the objective lens is not brought closer to the sample in proportion to the increase in the magnification of the objective lens, the focus will not be achieved.

【0004】[0004]

【発明が解決しようとする課題】従って上記従来例にお
いて、図3に示すように対物レンズ8を収納する赤外顕
微鏡5を試料のシリコンウエーハ1の表面に接近させよ
うとした場合には、シリコンウエーハ1の表面に斜めか
ら入射するレーザ光9が対物レンズ8を収納する赤外顕
微鏡5の側面に衝突し、レーザ光9がシリコンウエーハ
1の表面に入射できない不都合が生じる。本発明の目的
は、結晶表面に入射する入射光の進路を妨害することな
く高倍率の光学系レンズを結晶表面に接近させて深さ分
解能を向上させることができる表面近傍結晶欠陥の検出
方法を提供することにある。
Therefore, in the above conventional example, when the infrared microscope 5 accommodating the objective lens 8 is to approach the surface of the sample silicon wafer 1 as shown in FIG. Laser light 9 obliquely incident on the surface of the wafer 1 collides with the side surface of the infrared microscope 5 containing the objective lens 8, causing a problem that the laser light 9 cannot be incident on the surface of the silicon wafer 1. An object of the present invention is to provide a method for detecting near-surface crystal defects that can improve the depth resolution by bringing a high-magnification optical system lens close to the crystal surface without obstructing the path of incident light incident on the crystal surface. To provide.

【0005】本発明の別の目的は、結晶表面に入射する
入射光の進路を妨害することなく高倍率の光学系レンズ
を結晶表面に接近させて深さ分解能を向上させることが
できる表面近傍結晶欠陥の検出装置を提供することにあ
る。
Another object of the present invention is to provide a near-surface crystal in which a high-magnification optical lens can be brought close to the crystal surface without disturbing the path of incident light incident on the crystal surface to improve the depth resolution. An object of the present invention is to provide a defect detection device.

【0006】[0006]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように、結晶表面11の同一位置に侵入深さ
の異なる複数の波長の光12をそれぞれ入射し、それら
の散乱光13を光学系のレンズ14を介して検出し、こ
れらの検出値の差に基づいて結晶欠陥を検出する表面近
傍の結晶欠陥を検出する方法の改良であって、入射光1
2を光学系のレンズ14を通して結晶表面11に入射す
ることを特徴とする方法である。この発明によれば、結
晶表面11に入射する入射光12の進路を光学系のレン
ズ14が妨害することがない。従って高倍率の光学系レ
ンズを使用し、これを結晶表面11に接近させて深さ分
解能を向上させることができる。請求項2に係る発明
は、請求項1に係る発明であって、入射光12は光学系
のレンズ14の上方に設けられた半透鏡10を介してレ
ンズ14の側方からレンズ14を通って結晶表面11に
入射する方法である。この発明によれば、入射光12は
半透鏡10で反射した後、レンズ14の側方からレンズ
14を通って結晶表面11に入射するため、入射光12
の進路をレンズ14が妨害することなくレンズ14を結
晶表面11に接近させることができる。また半透鏡10
は散乱光13を透過させるため、半透鏡10の存在によ
って結晶欠陥の検出精度は低下しない。
The invention according to claim 1 is
As shown in FIG. 1, light 12 having a plurality of wavelengths having different penetration depths is respectively incident on the same position on a crystal surface 11, and the scattered light 13 is detected via a lens 14 of an optical system. It is an improvement of a method for detecting a crystal defect near a surface for detecting a crystal defect based on a difference in the value of incident light 1.
2 is incident on the crystal surface 11 through the lens 14 of the optical system. According to the present invention, the path of the incident light 12 entering the crystal surface 11 is not obstructed by the lens 14 of the optical system. Therefore, a high-magnification optical system lens can be used and brought closer to the crystal surface 11 to improve the depth resolution. The invention according to claim 2 is the invention according to claim 1, wherein the incident light 12 passes through the lens 14 from the side of the lens 14 via the semi-transparent mirror 10 provided above the lens 14 of the optical system. In this method, the light is incident on the crystal surface 11. According to the present invention, the incident light 12 is reflected by the semi-transparent mirror 10 and then enters the crystal surface 11 from the side of the lens 14 through the lens 14.
Lens 14 can be brought closer to crystal surface 11 without obstructing the course of the lens. Semi-transparent mirror 10
Since the scattered light 13 is transmitted, the detection accuracy of the crystal defect does not decrease due to the presence of the semi-transparent mirror 10.

【0007】請求項3に係る発明は、図1及び図2に示
すように、結晶表面11の同一位置に侵入深さの異なる
複数の波長の光12をそれぞれ入射するための光源15
と、光源15からの入射光12が結晶表面11で散乱す
る散乱光13を集光する光学系のレンズ14,16を含
む集光手段17と、集光手段17からの散乱光13を検
出する検出手段18と、検出手段18の検出結果に基づ
いて結晶欠陥を算出する算出手段19と、光源15から
の入射光12を光学系のレンズ14を通して結晶表面1
1に入射する入射手段とを備えた表面近傍結晶欠陥の検
出装置である。この発明によれば、光源15からの入射
光12を光学系のレンズ14を通して結晶表面11に入
射する入射手段とを備えているので、入射光12の進路
を光学系のレンズ14が妨害することなく、高倍率の光
学系レンズを使用し、これを結晶表面11に接近させて
深さ分解能を向上させることができる。請求項4に係る
発明は、請求項3に係る発明であって、入射手段は光学
系のレンズ14の上方に設けられた半透鏡10を含む装
置である。この発明によれば、入射光12は半透鏡10
で反射した後、レンズ14の側方からレンズ14を通っ
て結晶表面11に入射するため、入射光12の進路をレ
ンズ14が妨害することなくレンズ14を結晶表面11
に接近させることができる。また半透鏡10は散乱光1
3を透過させるため、半透鏡10の存在によって結晶欠
陥の検出精度は低下しない。
According to a third aspect of the present invention, as shown in FIGS. 1 and 2, a plurality of light sources 15 having a plurality of wavelengths having different penetration depths enter the same position on a crystal surface 11 respectively.
And light collecting means 17 including lenses 14 and 16 of an optical system for collecting scattered light 13 in which incident light 12 from light source 15 is scattered on crystal surface 11, and scattered light 13 from light collecting means 17 is detected. Detecting means 18, calculating means 19 for calculating a crystal defect based on the detection result of the detecting means 18, and the incident light 12 from the light source 15 passing through the lens 14 of the optical system to the crystal surface 1.
1 is a device for detecting near-surface crystal defects, comprising: According to the present invention, since there is provided an incident means for entering the incident light 12 from the light source 15 to the crystal surface 11 through the lens 14 of the optical system, the path of the incident light 12 is obstructed by the lens 14 of the optical system. Instead, it is possible to use a high-magnification optical system lens and bring it closer to the crystal surface 11 to improve the depth resolution. The invention according to claim 4 is the invention according to claim 3, wherein the incident means includes the semi-transparent mirror 10 provided above the lens 14 of the optical system. According to the present invention, the incident light 12 is
After the light is reflected by the lens 14, the light enters the crystal surface 11 through the lens 14 from the side of the lens 14.
Can be approached. Further, the semi-transparent mirror 10 has the scattered light 1
3, the detection accuracy of crystal defects does not decrease due to the presence of the semi-transparent mirror 10.

【0008】[0008]

【発明の実施の形態】次に本発明の表面近傍結晶欠陥の
検出方法を実施するのに用いる検出装置の実施例を図1
及び図2に基づいて説明する。図1及び図2に示すよう
に、結晶欠陥が検出される結晶体のシリコンウエーハ1
1はその表面が鏡面研磨されており、ステージ20上に
載置される。ステージ20はパソコン19により制御さ
れる図示しない駆動機構により水平面内で互いに直交す
るX方向及びY方向に可動である。シリコンウエーハ1
1の斜め上方にはその表面に赤外線レーザ光12を入射
するための光源15が配置される。光源15は例えば複
数のレーザ発振器で構成され、各レーザ発振器の発する
レーザ光の波長はそれぞれ異なるが、その他に波長を連
続的に変化させることのできるレーザ発振器を使用して
もよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of a detection apparatus used for carrying out the method for detecting near-surface crystal defects according to the present invention.
A description will be given based on FIG. As shown in FIGS. 1 and 2, a crystalline silicon wafer 1 in which a crystal defect is detected
1 has its surface mirror-polished and is mounted on a stage 20. The stage 20 is movable in an X direction and a Y direction orthogonal to each other in a horizontal plane by a drive mechanism (not shown) controlled by the personal computer 19. Silicon wafer 1
A light source 15 for irradiating the infrared laser light 12 on the surface thereof is disposed obliquely above 1. The light source 15 is composed of, for example, a plurality of laser oscillators, and the laser light emitted from each laser oscillator has a different wavelength. Alternatively, a laser oscillator capable of continuously changing the wavelength may be used.

【0009】シリコンウエーハ11の上方には入射光で
あるレーザ光12がシリコンウエーハ11の表面に入射
することにより生じる散乱光13を集光する集光手段の
赤外顕微鏡17が配置される。この赤外顕微鏡17の上
部には赤外ビジコン18が配置され、赤外顕微鏡17で
集光された散乱光13は赤外ビジコン18により検出さ
れる。図1に示すように、赤外顕微鏡17内には一対の
対向離間する対物レンズ14、16が収納され、これら
のレンズの間には半透鏡10が設けられる。光源15か
ら水平に進行するレーザ光12は赤外顕微鏡17内の半
透鏡10に入射し、ここでその方向をほぼ90度垂直に
変えて下側の対物レンズ14に入射し、屈折してシリコ
ンウエーハ11表面の所定位置に入射する。
Above the silicon wafer 11, an infrared microscope 17 is provided as a light collecting means for collecting scattered light 13 generated when the laser light 12 as incident light is incident on the surface of the silicon wafer 11. An infrared vidicon 18 is arranged above the infrared microscope 17, and the scattered light 13 collected by the infrared microscope 17 is detected by the infrared vidicon 18. As shown in FIG. 1, a pair of opposed and separated objective lenses 14 and 16 are housed in an infrared microscope 17, and a semi-transparent mirror 10 is provided between these lenses. The laser beam 12 traveling horizontally from the light source 15 is incident on the semi-transparent mirror 10 in the infrared microscope 17, where its direction is changed to approximately 90 degrees vertically and is incident on the lower objective lens 14, refracted and silicon The light enters a predetermined position on the surface of the wafer 11.

【0010】シリコンウエーハ11表面に入射したレー
ザ光12はその波長に対応した深さまでシリコンウエー
ハ11の内部に侵入し、結晶内部に結晶欠陥が存在する
とレーザ光12はこの結晶欠陥を中心として散乱光13
を生じる。散乱光13は赤外顕微鏡17内の対物レンズ
14、16で集光されて、赤外ビジコン18に入り、検
出される。赤外顕微鏡17内の下側の対物レンズ14を
通過した散乱光13の一部は半透鏡10を透過した後、
上側の対物レンズ16で屈折して赤外ビジコン18に入
り、検出される。
The laser beam 12 incident on the surface of the silicon wafer 11 penetrates to the inside of the silicon wafer 11 to a depth corresponding to the wavelength thereof. 13
Is generated. The scattered light 13 is collected by the objective lenses 14 and 16 in the infrared microscope 17, enters the infrared vidicon 18, and is detected. After a part of the scattered light 13 that has passed through the lower objective lens 14 in the infrared microscope 17 passes through the semi-transparent mirror 10,
The light is refracted by the upper objective lens 16, enters the infrared vidicon 18, and is detected.

【0011】図2に示すように、赤外ビジコン18で検
出された散乱光13の出力、即ち検出された散乱光13
の中心である結晶欠陥の位置がパソコン19で制御され
るモニタ21に表示される。ステージ20のX方向及び
Y方向への動き、光源15の発振のオン/オフ動作、赤
外顕微鏡17のピント合わせ動作等はいずれもパソコン
19で制御される。
As shown in FIG. 2, the output of the scattered light 13 detected by the infrared vidicon 18, ie, the detected scattered light 13
Is displayed on the monitor 21 controlled by the personal computer 19. The movement of the stage 20 in the X and Y directions, the on / off operation of the oscillation of the light source 15, the focusing operation of the infrared microscope 17, and the like are all controlled by the personal computer 19.

【0012】[0012]

【実施例】次に本発明の実施例の表面近傍結晶欠陥の検
出方法を図1及び図2に示す上記検出装置に基づいて説
明する。 <実施例1>上記装置において、光源15としてシリコ
ンウエーハ11表面から約20μmの深さまでの結晶欠
陥を検出できる波長810nmの半導体レーザ(以下、
レーザAと略称する)及びシリコンウエーハ11表面か
ら約1.5μmの深さまでの結晶欠陥を検出できる波長
670nmの半導体レーザ(以下、レーザBと略称す
る)を使用した。また赤外顕微鏡17の対物レンズ14
は倍率が150倍であり、焦点を表面に合せた作動距離
(対物レンズ14とシリコンウエーハ11の距離)は1
mmであった。まず対物レンズ14の焦点を表面に合わ
せて、X方向2mm、Y方向2mmの領域を走査し、散
乱欠陥をカウントした。
Next, a method for detecting near-surface crystal defects according to an embodiment of the present invention will be described with reference to the above-described detection apparatus shown in FIGS. <Embodiment 1> In the above apparatus, a semiconductor laser having a wavelength of 810 nm (hereinafter, referred to as a light source 15) capable of detecting a crystal defect from the surface of the silicon wafer 11 to a depth of about 20 μm as the light source 15
A laser A (abbreviated as laser A) and a semiconductor laser (hereinafter abbreviated as laser B) with a wavelength of 670 nm capable of detecting crystal defects from the surface of the silicon wafer 11 to a depth of about 1.5 μm were used. The objective lens 14 of the infrared microscope 17
Has a magnification of 150 times, and the working distance (distance between the objective lens 14 and the silicon wafer 11) at which the focal point is adjusted to the surface is 1
mm. First, the focus of the objective lens 14 was adjusted to the surface, and an area of 2 mm in the X direction and 2 mm in the Y direction was scanned, and scattering defects were counted.

【0013】レーザAを使用した場合、散乱欠陥の個数
は23個であり、このときレーザBを使用した場合、結
晶欠陥の個数は21個であった。従って、結晶表面11
から波長が異なることによる侵入長が異なってもほぼ同
数の結晶欠陥を検出していた。次に対物レンズ14の焦
点を表面から3μmの深さにずらして、同様な測定を行
った。レーザAでは20個、レーザBでは0個であっ
た。従って今回の対物レンズの焦点深度は±1.5μm
以内と考えられる。
When the laser A was used, the number of scattering defects was 23, and when the laser B was used, the number of crystal defects was 21. Therefore, the crystal surface 11
As a result, almost the same number of crystal defects were detected even when the penetration length was different due to the different wavelength. Next, the same measurement was performed by shifting the focal point of the objective lens 14 to a depth of 3 μm from the surface. The number of laser A was 20 and the number of laser B was 0. Therefore, the depth of focus of this objective lens is ± 1.5 μm
It is considered within.

【0014】<比較例1>図3及び図4に示すように、
光源4からの入射光を斜め上方からシリコンウエーハ1
の表面に直接に入射したことを除いては実施例1と実質
的に同じ方法(対物レンズ150倍)使用を繰り返し
た。その結果、入射光は対物レンズ8を収納した赤外顕
微鏡5の側面に衝突し、シリコンウエーハ1の表面近傍
の結晶欠陥を検出することは不可能であった。
Comparative Example 1 As shown in FIGS. 3 and 4,
The incident light from the light source 4 is directed obliquely upward from the silicon wafer 1
The procedure was substantially the same as in Example 1 (objective lens x 150), except that the light was directly incident on the surface of No. 1. As a result, the incident light collides with the side surface of the infrared microscope 5 containing the objective lens 8, and it was impossible to detect a crystal defect near the surface of the silicon wafer 1.

【0015】[0015]

【発明の効果】以上述べたように、本発明によれば、結
晶表面の同一位置に侵入深さの異なる複数の波長の光を
それぞれ入射し、それらの散乱光を光学系のレンズを介
して検出し、これらの検出値の差に基づいて結晶欠陥を
検出する表面近傍の結晶欠陥を検出する方法であって、
入射光を検出光学系のレンズを通して結晶表面に入射す
るようにしたので、結晶表面に入射する入射光の進路を
妨害することなく高倍率の光学系レンズを結晶表面に接
近させて深さ分解能を向上させることができる。
As described above, according to the present invention, light of a plurality of wavelengths having different penetration depths is incident on the same position on the crystal surface, and the scattered light is transmitted through the lens of the optical system. A method for detecting crystal defects near the surface that detects and detects crystal defects based on the difference between these detection values,
Since the incident light is made to enter the crystal surface through the lens of the detection optical system, a high-magnification optical system lens can be brought close to the crystal surface without disturbing the path of the incident light entering the crystal surface to improve the depth resolution. Can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の表面近傍結晶欠陥の検出装置
の要部を示す説明図。
FIG. 1 is an explanatory view showing a main part of an apparatus for detecting near-surface crystal defects according to an embodiment of the present invention.

【図2】図2の全体を示す説明図。FIG. 2 is an explanatory view showing the whole of FIG. 2;

【図3】従来の表面近傍結晶欠陥の検出装置の要部を示
す説明図。
FIG. 3 is an explanatory view showing a main part of a conventional apparatus for detecting near-surface crystal defects.

【図4】図3の全体を示す説明図。FIG. 4 is an explanatory view showing the whole of FIG. 3;

【符号の説明】[Explanation of symbols]

10 半透鏡 11 結晶表面 12 入射光 13 散乱光 14,16 光学系のレンズ 15 光源 17 集光手段 18 検出手段 19 算出手段 REFERENCE SIGNS LIST 10 semi-transparent mirror 11 crystal surface 12 incident light 13 scattered light 14, 16 lens of optical system 15 light source 17 condensing means 18 detecting means 19 calculating means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 結晶表面(11)の同一位置に侵入深さの異
なる複数の波長の光(12)をそれぞれ入射し、それらの散
乱光(13)を光学系のレンズ(14)を介して検出し、これら
の検出値の差に基づいて結晶欠陥を検出する表面近傍の
結晶欠陥を検出する方法において、 前記入射光(12)を前記光学系のレンズ(14)を通して結晶
表面(11)に入射することを特徴とする表面近傍結晶欠陥
の検出方法。
1. A plurality of wavelengths of light (12) having different penetration depths are respectively incident on the same position on a crystal surface (11), and their scattered light (13) is passed through a lens (14) of an optical system. A method for detecting and detecting crystal defects near the surface that detects crystal defects based on the difference between these detection values, wherein the incident light (12) is applied to the crystal surface (11) through the lens (14) of the optical system. A method for detecting near-surface crystal defects, which is incident.
【請求項2】 入射光(12)は光学系のレンズ(14)の上方
に設けられた半透鏡(10)を介して前記レンズ(14)の側方
から前記レンズ(14)を通って結晶表面(11)に入射する請
求項1記載の検出方法。
2. The incident light (12) passes through the lens (14) from the side of the lens (14) through a semi-transparent mirror (10) provided above the lens (14) of the optical system, and The detection method according to claim 1, wherein the light is incident on the surface (11).
【請求項3】 結晶表面(11)の同一位置に侵入深さの異
なる複数の波長の光(12)をそれぞれ入射するための光源
(15)と、 前記光源(15)からの入射光(12)が結晶表面(11)で散乱す
る散乱光(13)を集光する光学系のレンズ(14,16)を含む
集光手段(17)と、 前記集光手段(17)からの散乱光(13)を検出する検出手段
(18)と、 前記検出手段(18)の検出結果に基づいて結晶欠陥を算出
する算出手段(19)と、 前記光源(15)からの入射光(12)を前記光学系のレンズ(1
4)を通して結晶表面(11)に入射する入射手段とを備えた
表面近傍結晶欠陥の検出装置。
3. A light source for irradiating light (12) of a plurality of wavelengths having different penetration depths into the same position on a crystal surface (11).
(15), a condensing means including an optical lens (14, 16) for condensing scattered light (13) in which incident light (12) from the light source (15) is scattered on the crystal surface (11) ( 17), and detection means for detecting scattered light (13) from the light collection means (17)
(18), calculating means (19) for calculating a crystal defect based on the detection result of the detecting means (18), and incident light (12) from the light source (15) to the lens (1
A near-surface crystal defect detection device, comprising: an incidence means for entering the crystal surface (11) through 4).
【請求項4】入射手段は光学系のレンズ(14)の上方に設
けられた半透鏡(10)を含む請求項3記載の検出装置。
4. The detecting device according to claim 3, wherein the incident means includes a semi-transparent mirror provided above the lens of the optical system.
JP9327857A 1997-11-28 1997-11-28 Method and apparatus for detecting crystal defect near surface Pending JPH11160230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9327857A JPH11160230A (en) 1997-11-28 1997-11-28 Method and apparatus for detecting crystal defect near surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9327857A JPH11160230A (en) 1997-11-28 1997-11-28 Method and apparatus for detecting crystal defect near surface

Publications (1)

Publication Number Publication Date
JPH11160230A true JPH11160230A (en) 1999-06-18

Family

ID=18203758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9327857A Pending JPH11160230A (en) 1997-11-28 1997-11-28 Method and apparatus for detecting crystal defect near surface

Country Status (1)

Country Link
JP (1) JPH11160230A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022153763A1 (en) * 2021-01-13 2022-07-21 株式会社デンソー Device for inspecting semiconductor substrate and inspection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264468A (en) * 1992-03-19 1993-10-12 Mitsui Mining & Smelting Co Ltd Method and apparatus for detecting internal
JPH07294422A (en) * 1994-04-27 1995-11-10 Mitsubishi Materials Corp Detecting method for surface vicinity crystal defect and device therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264468A (en) * 1992-03-19 1993-10-12 Mitsui Mining & Smelting Co Ltd Method and apparatus for detecting internal
JPH07294422A (en) * 1994-04-27 1995-11-10 Mitsubishi Materials Corp Detecting method for surface vicinity crystal defect and device therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022153763A1 (en) * 2021-01-13 2022-07-21 株式会社デンソー Device for inspecting semiconductor substrate and inspection method

Similar Documents

Publication Publication Date Title
JP4312777B2 (en) Confocal self-interference microscope with side lobes removed
US8139288B2 (en) Prism design for scanning applications and illumination of microscopy sample
JP5268061B2 (en) Board inspection equipment
JPH11295233A (en) Particle inspection apparatus
KR940002356B1 (en) Method and apparatus for noncontact automatic focusing
JPH0812046B2 (en) Two-step detection non-contact positioning device
JP2916321B2 (en) Method for detecting internal defects in multilayer semiconductor substrate, etc.
JP3267551B2 (en) Method for detecting defects in multilayer semiconductors etc.
JP3186695B2 (en) Device for detecting defects in semiconductors, etc.
JP3021872B2 (en) Cantilever, atomic force microscope
JPH11160230A (en) Method and apparatus for detecting crystal defect near surface
JPH07167793A (en) Phase difference semiconductor inspection device and its production method
JP2022115567A (en) Observation device and observation method
JP3237023B2 (en) Position detection device
JP2000081383A (en) Scattering-type proximity field microscope
US8108942B2 (en) Probe microscope
JP2002310881A (en) Scanning near field microscope
JPH09281401A (en) Object inspecting instrument
JPH0694613A (en) Infrared microscopic measuring apparatus
JPH10133117A (en) Microscope equipped with focus detecting device
JP4713391B2 (en) Infrared microscope
JPH06177218A (en) Measuring device for free-carrier life and the like of semiconductor
JP2004279087A (en) Laser light irradiation device
JP2000146802A (en) Optical near-field microscope
JPH0231103A (en) Apparatus for detecting three-dimensional shape of pattern

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040630