JP2012066781A - 車両用電源装置 - Google Patents

車両用電源装置 Download PDF

Info

Publication number
JP2012066781A
JP2012066781A JP2010215404A JP2010215404A JP2012066781A JP 2012066781 A JP2012066781 A JP 2012066781A JP 2010215404 A JP2010215404 A JP 2010215404A JP 2010215404 A JP2010215404 A JP 2010215404A JP 2012066781 A JP2012066781 A JP 2012066781A
Authority
JP
Japan
Prior art keywords
power
power supply
charging
vehicle
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010215404A
Other languages
English (en)
Other versions
JP5183709B2 (ja
Inventor
Hideki Sugita
英樹 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010215404A priority Critical patent/JP5183709B2/ja
Publication of JP2012066781A publication Critical patent/JP2012066781A/ja
Application granted granted Critical
Publication of JP5183709B2 publication Critical patent/JP5183709B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】使用バッテリが変更となった場合でも、負荷や補機類の流用を可能として、開発コストの削減や開発リードタイムの短縮を可能にした車両用電源装置を得る。
【解決手段】モータ1との間でインバータ2を介して電力授受を行い、且つ負荷としての空調制御装置5および補機用電力変換装置6に電力供給するために電力を蓄える電源装置3と、電源装置3から空調制御装置5および補機用電力変換装置6に電力供給するために、通流率制御により昇圧比を設定する電力変換装置4とを備える。補機用電力変換装置6は、補機類に電力供給する補機用電源装置7に電力供給するために、通流率制御により昇圧比を設定して電源装置の電力を変換する。空調制御装置5と補機用電力変換装置6との入力電圧仕様を同一として、電力変換装置4は、各入力電圧仕様に応じた電圧を出力するように電圧制御する。
【選択図】図1

Description

この発明は、永久磁石式交流同期モータからなる回転電機を駆動する車両用電源装置に関し、特に空調装置を含む車載負荷に電力供給するとともに、充電装置を介して充電するための車両用電源装置に関するものである。
従来から、車両に搭載された電源装置において、永久磁石式交流同期モータからなる回転電機(以下、単に「モータ」という)を駆動するための電力を獲得可能な車両用電源装置が提案されている(たとえば、特許文献1参照)。
上記特許文献1に記載の従来装置においては、バッテリ(電源装置)とモータとの間に電力変換器(インバータ)を接続し、バッテリ電力を電力変換器で昇圧することにより、モータが必要とする電力を供給している。また、バッテリ電力からモータの必要電力を効率的に生成するために、電力変換器で昇圧した供給電力を制御している。
一方、モータ駆動用の要求電力を獲得するために昇圧タイプの電力変換器を用いるのと同様に、車両の負荷や補機類への負荷供給電力をバッテリから効率的に配分するために電力変換器を使用することも考えられる。
しかしながら、一般的に、バッテリから負荷や補機類につながるラインの電圧は、バッテリの電圧仕様に依存する。したがって、たとえば使用バッテリの仕様が変更となった場合には、バッテリに接続されている負荷や補機類の入力電圧の仕様も変わることになるので、負荷や補機類の再設計または新規開発が必要となる。
また、モータを駆動して推進力を得るような電気自動車や、ハイブリッド自動車において、採用・搭載することを目的に開発が進められているバッテリは、日々変化している。たとえば、バッテリの価格、性能、サイズなど、種々の要素がバッテリ採用に関わる案件として挙げられるが、概してバッテリは高価であることから、より安価なバッテリが求められる傾向も見られる。
仮に安価なバッテリに差し替える場合、バッテリの出力電圧仕様が変更されると、上述のように、バッテリに接続されている負荷や補機類も、新しいバッテリの電圧仕様に合わせた入力電圧と整合するように再開発する必要が生じる。したがって、バッテリの変更時には、バッテリ単体以外にも、追加の開発リードタイム、開発コストがかかる、という問題があり、一度採用したバッテリを容易に変更しにくい、という懸案事項があった。
特許第3750681号公報
従来の車両用電源装置は、安価なバッテリに差し替えるなどによってバッテリの出力電圧仕様が変更されると、負荷や補機類の再開発が必要となるので、バッテリの変更時に、バッテリ単体のみならず追加の開発リードタイムおよび開発コストがかかることから、一度採用したバッテリを容易に変更しにくい、という課題があった。
この発明は、上記のような課題を解決するためになされたものであり、使用バッテリが変更となった場合でも、負荷や補機類の流用を可能として、これらの再設計または新規開発を不要とすることにより、開発コストの削減や開発リードタイムの短縮することのできる車両用電源装置を得ることを目的とする。
この発明に係る車両用電源装置は、車両に搭載されたモータとの間でインバータを介して電力授受を行うとともに、車両の負荷に電力供給を行う車両用電源装置であって、電力を蓄える電源装置と、電源装置の電力を負荷に供給するために、通流率制御により昇圧比を設定して電力を変換する電力変換装置と、を備え、負荷は、車両の空調を制御する空調制御装置と、車両の補機類に電力を供給するための補機用電源装置と、補機用電源装置に電力を供給するために、通流率制御により昇圧比を設定して電源装置の電力を変換する補機用電力変換装置と、を含み、空調制御装置および補機用電力変換装置の入力電圧仕様は同一に設定され、電力変換装置は、空調制御装置と補機用電力変換装置との入力電圧仕様に応じた電圧を出力するように電圧制御するものである。
この発明によれば、空調制御装置と補機用電力変換装置との入力電圧仕様を同一として、電力変換装置が空調制御装置と補機用電力変換装置との入力電圧仕様に応じた電圧を出力するように電圧制御することのより、接続される電源装置が仕様変更となった場合でも、負荷(空調制御装置や補機用電力変換装置など)や補機類を現行のまま流用することを可能とし、これらの再設計または新規開発を不要とすることができるので、開発コストの削減や開発リードタイムの短縮を図ることが可能となる。
この発明の実施の形態1に係る車両用電源装置の処理機能構成を示すブロック図である。 図1内の電力変換装置の処理手順を概略的に示すフローチャートである。 この発明の実施の形態1による状態検出処理を示すフローチャートである。 この発明の実施の形態1による電圧制御処理を示すフローチャートである。 この発明の実施の形態2に係る車両用電源装置の処理機能構成を示すブロック図である。 この発明の実施の形態2による処理手順を示すフローチャートである。 この発明の実施の形態2による状態検出処理を示すフローチャートである。 この発明の実施の形態2による電流制御処理を示すフローチャートである。 この発明の実施の形態3に係る車両用電源装置の処理機能構成を示すブロック図である。 この発明の実施の形態3による処理手順を示すフローチャートである。 この発明の実施の形態3による状態検出処理を示すフローチャートである。 この発明の実施の形態4に係る車両用電源装置の処理機能構成を示すブロック図である。 この発明の実施の形態4による状態検出処理を示すフローチャートである。 この発明の実施の形態4による電圧制御処理を示すフローチャートである。 この発明の実施の形態5に係る車両用電源装置の処理機能構成を示すブロック図である。 この発明の実施の形態5による状態検出処理を示すフローチャートである。 この発明の実施の形態5による電圧制御処理を示すフローチャートである。 この発明の実施の形態6に係る車両用電源装置の処理機能構成を示すブロック図である。 この発明の実施の形態6による状態検出処理を示すフローチャートである。 この発明の実施の形態6による電圧制御処理を示すフローチャートである。 この発明の実施の形態7に係る車両用電源装置の処理機能構成を示すブロック図である。 この発明の実施の形態7による状態検出処理を示すフローチャートである。 この発明の実施の形態7による電圧制御処理を示すフローチャートである。 この発明の実施の形態8に係る車両用電源装置の処理機能構成を示すブロック図である。 この発明の実施の形態8による処理手順を示すフローチャートである。 この発明の実施の形態8による状態検出処理を示すフローチャートである。 この発明の実施の形態8による電源投入制御処理を示すフローチャートである。 この発明の実施の形態9に係る車両用電源装置の処理機能構成を示すブロック図である。 この発明の実施の形態9による処理手順を示すフローチャートである。 この発明の実施の形態9による状態検出処理を示すフローチャートである。 この発明の実施の形態9による故障検出時処理を示すフローチャートである。 この発明の実施の形態10による状態検出処理を示すフローチャートである。 この発明の実施の形態10による電流制御処理を示すフローチャートである。 この発明の実施の形態11に係る車両用電源装置の処理機能構成を示すブロック図である。 この発明の実施の形態11による処理手順を示すフローチャートである。 この発明の実施の形態11による状態検出処理を示すフローチャートである。
実施の形態1.
以下、図面を参照しながら、この発明の実施の形態1について説明する。
図1はこの発明の実施の形態1に係る車両用電源装置の処理機能構成を示すブロック図である。なお、車両用電源装置が搭載された車両については、煩雑さを回避するために、図示を省略する。
図1において、車両用電源装置は、車両の駆動力を発生するモータ1(永久磁石式交流同期モータからなる回転電機)と、モータ1への供給電力を直流から交流に変換するインバータ2と、インバータ2に接続された電源装置3および電力変換装置4と、電力変換装置4に接続された空調制御装置5、補機用電力変換装置6および充電装置8と、補機用電力変換装置6からの補機類への負荷供給電力を蓄える補機用電源装置7と、充電装置8に充電電力を供給する充電口9と、を備えている。
電源装置3は、自身の蓄積電力を、インバータ2を介してモータ1に供給し、且つモータ1の回生電力を蓄えるとともに、負荷および補機類を動作させるために蓄積電力を供給する。ここでは、電源装置3としてリチウムイオン電池を使用し、補機用電源装置7として鉛蓄電池を使用するものとするが、これらに限定されることはなく、他の電源手段であってもよい。
電力変換装置4は、電源装置3の蓄積電力を車両の負荷(空調制御装置5)および補機類(補機用電力変換装置6、補機用電源装置7)に供給するために、通流率を制御することにより昇圧比を設定して、電源装置3からの電力を変換する。
空調制御装置5は、負荷としてヒータおよびエアコンコンプレッサ(図示せず)の少なくとも一方を有し、電力変換装置4からの給電により車両の空調を制御する。
補機用電力変換装置6は、電源装置3から電力変換装置4を介して供給される電力を、補機用電源装置7に供給するために、通流率を制御することにより昇圧比を設定して、電力を変換する。
充電装置8は、充電口9から供給される電力を交流から直流に変換し、且つ直流変換制御を行い、電力変換装置4を介して電源装置3に充電を行う。
なお、ここでは、車両の負荷として、空調制御装置5、補機用電力変換装置6および充電装置8を示しているが、対象とする負荷および補機類がこれらに限定されることはなく、また、図示されたすべてのものが含まれる必要もなく、その他の負荷手段であってもよい。
次に、図2〜図4を参照しながら、図1に示したこの発明の実施の形態1による動作について説明する。
図2は図1内の電力変換装置4の処理手順を概略的に示すフローチャートである。
図2において、電力変換装置4は、まず状態検出処理により、制御処理の実行に必要な情報(検出電圧V)を取得する(ステップS1)。
続いて、取得した状態情報(検出電圧V)に基づく電圧制御処理を行い、負荷への電力供給を行い(ステップS2)、図2の処理を終了する。
図3は図2内の状態検出処理(ステップS1)の処理手順を概略的に示すフローチャートである。
図3において、電力変換装置4は、電力変換装置4の負荷側、すなわち、空調制御装置5、補機用電力変換装置6および充電装置8が接続された端子側の検出電圧Vを取得して(ステップS11)、直ちにリターンする。
図4は図2内の電圧制御処理(ステップS2)を概略的にフローチャートである。
図4において、電力変換装置4は、まず、状態検出処理(ステップS1)で取得した電力変換装置4の負荷側の検出電圧Vを、所定電圧Vth(目標電圧に相当)と比較して、V<Vthの条件を満たすか否かを判定する(ステップS21)。
ステップS21において、V<Vth(すなわち、Yes)と判定されれば、電力変換装置4の出力電圧が大きくなるように、電圧指示値を増加するための電圧制御を行う(ステップS22)。
一方、ステップS21において、V≧Vth(すなわち、No)と判定されれば、続いて、検出電圧Vが、V>Vthの条件を満たすか否かを判定する(ステップS23)。
ステップS23において、V>Vth(すなわち、Yes)と判定されれば、電力変換装置4の出力電圧が小さくなるように、電圧指示値を減少させるための電圧制御を行う(ステップS24)。
一方、ステップS23において、V=Vth(すなわち、No)と判定されれば、ステップS24を実行せずに、図4の電圧制御処理を抜け出てリターンする。
なお、電圧指示値の具体的な指定方法としては、電力変換装置4内のスイッチング素子のスイッチング周期(すなわち、デューティ)を指定する手法や、直接電圧値を指定する手法などが挙げられるが、特にこれらに限定されることはなく、他の手法を適用してもよい。
以上のように、この発明の実施の形態1(図1〜図4)に係る車両用電源装置は、車両に搭載されたモータ1との間でインバータ2を介して電力授受を行うとともに、車両の負荷に電力供給を行う車両用電源装置であって、電力を蓄える電源装置3と、電源装置3の電力を負荷に供給するために、通流率制御により昇圧比を設定して電力を変換する電力変換装置4と、を備えている。
また、負荷として、車両の空調を制御する空調制御装置5と、車両の補機類に電力を供給するための補機用電源装置7と、補機用電源装置7に電力を供給するために、通流率制御により昇圧比を設定して電源装置3の電力を変換する補機用電力変換装置6と、を備えている。
空調制御装置5および補機用電力変換装置6の入力電圧仕様は同一に設定されている。
電力変換装置4は、空調制御装置5と補機用電力変換装置6との入力電圧仕様に応じた電圧を出力するように電圧制御する。
これにより、接続される電源装置3(使用バッテリ)が仕様変更となった場合でも、空調制御装置5や補機用電力変換装置6などの負荷や補機類を現行のまま流用することが可能となり、これらの再設計または新規開発が不要となるので、開発コストの削減や開発リードタイムの短縮を図ることが可能となる。
この結果、一度採用した電源装置を容易には変更しにくいという、従来からの懸案事項を排除することができる。
実施の形態2.
なお、上記実施の形態1(図1〜図4)では、充電装置8から電源装置3への充電時の電流制御について考慮しなかったが、図5〜図8に示すように、電力変換装置14において、充電装置8からの充電時の検出電流I[A]に基づく電流制御処理を行うようにしてもよい。
以下、図5〜図8を参照しながら、この発明の実施の形態2について説明する。
図5はこの発明の実施の形態2に係る車両用電源装置の処理機能構成を示すブロック図であり、前述(図1参照)と同様のものについては、前述と同一符号を付して詳述を省略する。
図5において、電力変換装置14は、電源装置3の蓄積電力を負荷および補機類に供給するとともに、充電装置8から電源装置3への充電時に、検出電流Iに基づき充電電力を制御する。
次に、図6〜図8を参照しながら、図5に示したこの発明の実施の形態2による電力変換装置14の動作について説明する。
図6はこの発明の実施の形態2による電力変換装置14の処理手順を概略的に示すフローチャートであり、ステップS1は、前述(図2参照)と同様の状態検出処理である。
図6において、電力変換装置14は、まず状態検出処理により、充電時の電流制御処理の実行に必要な情報(検出電流I)を取得する(ステップS1)。
続いて、取得情報に基づいて電流制御処理を行い(ステップS3)、図6の処理を終了する。
図7は図6内の状態検出処理(ステップS1)を概略的に示すフローチャートである。
図7において、電力変換装置14は、電源装置3側の電流値(検出電流I)を取得して(ステップS12)、直ちにリターンする。
図8は図6内の電流制御処理(ステップS3)を概略的に示すフローチャートである。
図8において、電力変換装置14は、まず、状態検出処理(ステップS1)で取得した電力変換装置14の電源装置3側の検出電流Iを、所定電流Ith(目標電流に相当)と比較して、I<Ithの条件を満たすか否かを判定する(ステップS31)。
ステップS31において、I<Ith(すなわち、Yes)と判定されれば、電力変換装置14の出力電流が大きくなるように、電流指示値を増加するための電流制御を行う(ステップS32)。
一方、ステップS31において、I≧Ith(すなわち、No)と判定されれば、続いて、検出電流Iが、I>Ithの条件を満たすか否かを判定する(ステップS33)。
ステップS33において、I>Ith(すなわち、Yes)と判定されれば、電力変換装置14の出力電流が小さくなるように、電流指示値を減少させるための電流制御を行う(ステップS34)。
一方、ステップS33において、I=Ith(すなわち、No)と判定されれば、ステップS34を実行せずに、図8の電圧制御処理を抜け出てリターンする。
なお、電流指示値の具体的な指定方法としては、電力変換装置14内のスイッチング素子のスイッチング周期(すなわち、デューティ)を指定する手法や、直接電流値を指定する手法などが挙げられるが、特にこれらに限定されることはなく、他の手法を適用してもよい。
以上のように、この発明の実施の形態2(図5〜図8)に係る車両用電源装置は、車両に搭載されたモータ1との間でインバータ2を介して電力授受を行うとともに、車両の負荷に電力供給を行う車両用電源装置であって、電力を蓄える電源装置3と、通流率制御により昇圧比を設定して電力を変換する電力変換装置14と、を備えている。
また、負荷として、車両の空調を制御する空調制御装置5と、車両の補機類に電力を供給するための補機用電源装置7と、補機用電源装置7に電力を供給するために、通流率制御により昇圧比を設定して電源装置3の電力を変換する補機用電力変換装置6と、電源装置3を充電するために、充電口9からの供給電力を交流から直流に変換し、且つ直流変換制御を行う充電装置8と、を備えている。
充電装置8は、電源装置3に充電する場合には、出力電圧が所定値となるように電圧制御を行う。
電力変換装置14は、電源装置3の電力を空調制御装置5および補機用電力変換装置6に供給し、且つ充電装置8が出力する充電電力を電源装置3に充電するために、通流率制御により昇圧比を設定して電力を変換し、充電装置8を介して電源装置3に充電する場合には、電源装置3に流れる電流値(検出電流I)を制御量として電流制御を行う。
これにより、充電口9から供給される電力を、充電装置8および電力変換装置14を介して電源装置3に引き込み、確実且つ安定した充電制御を実現することが可能となる。
また、電力変換装置14を介して電源装置3と充電装置8とが接続されるので、接続される電源装置3が仕様変更となった場合でも、充電装置を現行のまま流用することを可能とし、再設計または新規開発を不要とすることができるので、開発コストの削減や開発リードタイムの短縮を図ることが可能となる。
実施の形態3.
なお、上記実施の形態1、2(図1〜図8)では、負荷への給電時の電圧制御または電源装置3への充電時の電流制御の一方のみを考慮したが、図9〜図11に示すように、電力変換装置24において、検出電圧Vに基づく電圧制御処理および検出電流Iに基づく電流制御処理の両方を行うようにしてもよい。
以下、図9〜図11を参照しながら、この発明の実施の形態3について説明する。
図9はこの発明の実施の形態3に係る車両用電源装置の処理機能構成を示すブロック図であり、前述(図1、図5参照)と同様のものについては、前述と同一符号を付して詳述を省略する。
図9において、電力変換装置24は、電源装置の蓄積電力を負荷および補機類に供給するために電源装置の電力を変換し、電圧制御を行うとともに、充電装置8から電源装置3への充電時に、検出電流Iに基づき充電電力を制御する。
次に、図10および図11を参照しながら、図9に示したこの発明の実施の形態3による電力変換装置24の動作について説明する。
図10はこの発明の実施の形態3による電力変換装置24の処理手順を概略的に示すフローチャートであり、ステップS1〜S3は、前述(図2、図6参照)と同様の処理である。
図10において、電力変換装置24は、まず状態検出処理により、制御処理の実行に必要な情報(検出電圧V、検出電流I)を取得する(ステップS1)。
続いて、充電装置8からの情報を取得することにより、現在の状態が充電時であるか否かを判定する(ステップS4)。
ステップS4において、充電時である(すなわち、Yes)と判定されれば、電流制御処理を行い(ステップS3)、図10の処理を終了する。
一方、ステップS4において、充電時でない(すなわち、No)と判定されれば、電圧制御処理を行い(ステップS2)、図10の処理を終了する。
図11は図10内の状態検出処理(ステップS1)を概略的に示すフローチャートであり、ステップS11、S12は、前述(図2、図6参照)と同様の処理である。
図11において、電力変換装置24は、負荷側(空調制御装置5、補機用電力変換装置6および充電装置8が接続された側)の検出電圧Vを取得し(ステップS11)、また、電源装置3側の検出電流Iを取得する。
以下、図11の状態検出処理に続いて、充電時の場合は電流制御処理(ステップS3)へと進み、充電時以外の場合は電圧制御処理(ステップS2)へと進む。
電圧制御処理(ステップS2)および電流制御処理(ステップS3)については、前述の実施の形態1、2(図4、図8)で説明した通りなので、ここでは詳述を省略する。
以上のように、この発明の実施の形態3(図9〜図11)に係る車両用電源装置は、車両に搭載されたモータ1との間でインバータ2を介して電力授受を行うとともに、車両の負荷に電力供給を行う車両用電源装置であって、電力を蓄える電源装置3と、通流率制御により昇圧比を設定して電力を変換する電力変換装置24と、を備えている。
また、負荷としては、車両の空調を制御する空調制御装置5と、車両の補機類に電力を供給するための補機用電源装置7と、補機用電源装置7に電力を供給するために、通流率制御により昇圧比を設定して電源装置3の電力を変換する補機用電力変換装置6と、電源装置3を充電するために、充電口9からの供給電力を交流から直流に変換し、且つ直流変換制御を行う充電装置8と、を備えている。
空調制御装置5、補機用電力変換装置6および充電装置8の入力電圧仕様は同一に設定されている。
充電装置8は、電源装置3に充電する場合には、出力電圧が所定値となるように電圧制御を行う。
電力変換装置24は、電源装置3の電力を空調制御装置5および補機用電力変換装置6に供給し、且つ充電装置8が出力する充電電力を電源装置3に充電するために、通流率制御により昇圧比を設定して電力を変換する。
また、電力変換装置24は、空調制御装置5と補機用電力変換装置6と充電装置8の入力電圧仕様に応じた電圧を出力するように電圧制御するとともに、充電装置8を介して電源装置3に充電する場合には、電源装置3に流れる電流値(検出電流I)を制御量として電流制御を行う。
これにより、接続される電源装置3が仕様変更となった場合でも、負荷(空調制御装置5や補機用電力変換装置6、充電装置8など)や補機類を現行のまま流用することが可能となり、これらの再設計または新規開発を不要とすることができるので、開発コストの削減や開発リードタイムの短縮を図ることが可能となる。
また、充電口9から供給される電力を、充電装置8と電力変換装置24を介して電源装置3に引き込み、確実且つ安定した充電制御を実現することが可能となる。
実施の形態4.
なお、上記実施の形態1、3(図1〜図4、図9〜図11)では、特に言及しなかったが、図12〜図14に示すように、電源装置3の充電状態Cを検出する電源充電状態検出装置33を設け、電力変換装置34は、電源装置3の充電状態Cに応じて、負荷および補機類に対して出力制限を行うようにしてもよい。
以下、図12〜図14を参照しながら、この発明の実施の形態4について説明する。
図12はこの発明の実施の形態4に係る車両用電源装置の処理機能構成を示すブロック図であり、前述(図1、図9参照)と同様のものについては、前述と同一符号を付して詳述を省略する。
図12において、電源装置3には、電源装置3の充電状態C(充電状態に相当する電力量または電圧値)を検出する電源充電状態検出装置33が設けられており、検出された充電状態Cは、電力変換装置34に入力されている。
電力変換装置34は、電源装置3の蓄積電力を負荷および補機類に供給するために電源装置3の電力を変換するとともに、電源装置3の充電状態Cに応じて、負荷(空調制御装置5、補機用電力変換装置6)への負荷供給電力を制限する。
次に、図13および図14を参照しながら、図12に示したこの発明の実施の形態4による電力変換装置34の動作について説明する。
図13は電力変換装置34による状態検出処理を概略的に示すフローチャートであり、ステップS11は、前述(図3、図11参照)と同様の電圧取得処理である。
図13において、電力変換装置34は、負荷側(空調制御装置5、補機用電力変換装置6および充電装置8が接続された側)の検出電圧Vを取得する(ステップS11)。
続いて、電源装置の充電状態Cを取得して(ステップS13)、図13の状態検出処理を抜け出てリターンする。
図14は電力変換装置34による電圧制御処理を概略的に示すフローチャートであり、ステップS21、S22、S24は、前述(図4参照)と同様の処理である。
図14において、電力変換装置34は、まず、負荷側の検出電圧Vを所定電圧Vthと比較するとともに、状態検出処理(図13)で取得した電源装置3の充電状態Cを所定値Cth(充電状態に対応する下限値)と比較し、「V>Vth」または「C<Cth」の条件を満たすか否かを判定する(ステップS25)。
ステップS25において、「V>Vth」または「C<Cth」(すなわち、Yes)と判定されれば、出力電圧が小さくなるように、電圧指示値を減少させるための電圧制御を行い(ステップS24)、リターンする。
一方、ステップS25において、「V≦Vth」且つ「C≧Cth」(すなわち、No)と判定されれば、続いて、V<Vthの条件を満たすか否かを判定する(ステップS21)。
ステップS22において、V<Vthの条件を満たす(すなわち、Yes)と判定されれば、出力電圧が大きくなるように、電圧指示値を増加させるための電圧制御を行い(ステップS22)、リターンする。
一方、ステップS22において、V=Vth(すなわち、No)と判定されれば、ステップS22を実行せずに、リターンする。
なお、ここでは、電力変換装置34は、電源装置3の充電状態Cに応じて、負荷および補機類への負荷供給電力を制限(ステップS24)したが、電力変換装置34から負荷および補機類に対して出力制限の実行を要求してもよい。
たとえば、電力変換装置34は、空調制御装置5および補機用電力変換装置6に対して動作電力制限の実行を要求するようにしてもよい。
以上のように、この発明の実施の形態4(図12〜図14)に係る車両用電源装置は、電源装置3の充電状態Cを検出する電源充電状態検出装置33を備えている。
電力変換装置34は、電源充電状態検出装置33により検出された充電状態に応じて、空調制御装置5および補機用電力変換装置6への負荷供給電力を制限するか、または、空調制御装置5および補機用電力変換装置6に対して動作電力制限の実行を要求する。
これにより、充電状態C(たとえば、電源装置3の充電量)が所定値Cthよりも低下している場合には、駆動系に優先して電源装置3の電力を供給できるようにするために、電力変換装置34により負荷供給電力を抑制する、という制御も可能となるので、電源装置3の電力の浪費を抑制して、好適な電力供給を実現することができる。
実施の形態5.
なお、上記実施の形態4(図12〜図14)では、電源装置3の充電状態Cに応じて負荷および補機類に対して出力制限したが、図15〜図17に示すように、モータ状態検出装置42を設け、モータ状態Dが力行状態(または、回生状態)を示す場合に、負荷および補機類に対して出力制限を行うようにしてもよい。
以下、図15〜図17を参照しながら、この発明の実施の形態5について説明する。
図15はこの発明の実施の形態5に係る車両用電源装置の処理機能構成を示すブロック図であり、前述(図1、図9、図12参照)と同様のものについては、前述と同一符号を付して詳述を省略する。
図15において、インバータ2には、モータ状態Dを検出するモータ状態検出装置42が設けられており、検出されたモータ状態D(モータ1の力行または回生状態)は、電力変換装置44に入力されている。
電力変換装置44は、電源装置3の蓄積電力を負荷および補機類に供給するために電源装置3の電力を変換するとともに、モータ状態Dが力行状態(または、回生状態)を示す場合に、負荷(空調制御装置5、補機用電力変換装置6)への負荷供給電力を制限する。
次に、図16および図17を参照しながら、図15に示したこの発明の実施の形態5による電力変換装置44の動作について説明する。
図16は電力変換装置44による状態検出処理を概略的に示すフローチャートであり、ステップS11は前述と同様の電圧取得処理である。
図16において、電力変換装置44は、まず、負荷側の検出電圧Vを取得し(ステップS11)、続いて、モータ状態検出装置42からモータ状態D(力行または回生状態)を取得して(ステップS14)、図16の状態検出処理を抜け出てリターンする。
図17は電力変換装置44による電圧制御処理を概略的に示すフローチャートであり、ステップS21、S22、S24は、前述(図4、図14参照)と同様の処理である。
図17において、電力変換装置44は、まず、負荷側の検出電圧Vを所定電圧Vthと比較するとともに、状態検出処理(図16)で取得したモータ状態Dを確認し、「V>Vth」または「モータ状態Dが力行状態」の条件を満たすか否かを判定する(ステップS26)。
ステップS26において、「V>Vth」または「モータ状態Dが力行状態」(すなわち、Yes)と判定されれば、出力電圧が小さくなるように、電圧指示値を減少させるための電圧制御を行い(ステップS24)、リターンする。
一方、ステップS26において、「V≦Vth」且つ「モータ状態Dが力行状態でない」(すなわち、No)と判定されれば、続いて、V<Vthの条件を満たすか否かを判定する(ステップS21)。
ステップS22において、V<Vthの条件を満たす(すなわち、Yes)と判定されれば、出力電圧が大きくなるように、電圧指示値を増加させるための電圧制御を行い(ステップS22)、リターンする。
一方、ステップS22において、V=Vth(すなわち、No)と判定されれば、ステップS22を実行せずに、リターンする。
なお、図17においては、モータ状態Dが力行状態の場合に電力変換装置44の供給電力を制限(ステップS24)したが、モータ状態Dが回生状態の場合に同様の出力抑制制御を実行してもよい。
また、モータ状態Dに応じた電力変換装置44の制御内容も、図17に示したものに限定されることはなく、他の制御を適用してもよい。
さらに、上記説明では、電力変換装置44が負荷および補機類への負荷供給電力を制限したが、たとえば電力変換装置44が負荷および補機類に対して出力制限の実行を要求してもよい。
以上のように、この発明の実施の形態5(図15〜図17)に係る車両用電源装置は、インバータ2からモータ状態Dを検出するモータ状態検出装置42を備えている。
電力変換装置44は、モータ状態検出装置42により検出されたモータ状態Dがモータ1の力行状態または回生状態を示す場合に、空調制御装置5および補機用電力変換装置6への負荷供給電力を制限するか、または、空調制御装置5および補機用電力変換装置6に対して動作電力制限の実行を要求する。
これにより、たとえばモータ1の力行時には、駆動系に優先して電源装置3の電力を供給できるようにすることができ、電力変換装置44は負荷供給電力を抑制するという制御も可能となるので、電源装置3の電力浪費を抑制して、好適な電力供給を実現することができる。
実施の形態6.
なお、上記実施の形態4(図12〜図14)では、電源装置3の充電状態Cに応じて負荷および補機類に対して出力制限したが、図18〜図20に示すように、急速充電装置51を設け、急速充電装置51による急速充電状態Eに応じて、負荷および補機類に対して出力制限を行うようにしてもよい。
以下、図18〜図20を参照しながら、この発明の実施の形態6について説明する。
図18はこの発明の実施の形態6に係る車両用電源装置の処理機能構成を示すブロック図であり、前述(図1、図9、図12、図15参照)と同様のものについては、前述と同一符号を付して詳述を省略する。
図18において、電源装置3と電力変換装置54との接続ラインには、急速充電装置51が接続されており、急速充電装置51には、急速充電口52が接続されている。
急速充電装置51は、急速充電口52から電力を取り込み、電源装置3に対する急速充電を制御するとともに、急速充電状態Eを電力変換装置54に入力する。
電力変換装置54は電源装置の蓄積電力を負荷および補機類に供給するために電源装置の電力を変換するとともに、急速充電装置51からの急速充電状態Eに応じて、負荷および補機類に対して出力抑制を行う。
次に、図19および図20を参照しながら、図18に示したこの発明の実施の形態6による電力変換装置54の動作について説明する。
図19は電力変換装置54による状態検出処理を概略的に示すフローチャートであり、ステップS11は前述と同様の電圧取得処理である。
図19において、電力変換装置54は、まず、負荷側の検出電圧Vを取得し(ステップS11)、続いて、急速充電装置51による急速充電の実行有無を示す急速充電状態Eを取得して(ステップS15)、リターンする。
図20は電力変換装置54による電圧制御処理を概略的に示すフローチャートであり、ステップS21、S22、S24は前述と同様の処理である。
図20において、電力変換装置54は、まず、負荷側の検出電圧Vを所定電圧Vthと比較するとともに、状態検出処理(図19)で取得した急速充電状態Eを確認し、「V>Vth」または「急速充電状態Eの実行中」の条件を満たすか否かを判定する(ステップS27)。
ステップS27において、「V>Vth」または「急速充電状態Eの実行中」(すなわち、Yes)と判定されれば、出力電圧が小さくなるように、電圧指示値を減少させるための電圧制御を行い(ステップS24)、リターンする。
一方、ステップS27において、「V≦Vth」且つ「急速充電状態Eの実行中でない」(すなわち、No)と判定されれば、続いて、V<Vthの条件を満たすか否かを判定する(ステップS21)。
ステップS22において、V<Vthの条件を満たす(すなわち、Yes)と判定されれば、出力電圧が大きくなるように、電圧指示値を増加させるための電圧制御を行い(ステップS22)、リターンする。
一方、ステップS22において、V=Vth(すなわち、No)と判定されれば、ステップS22を実行せずに、リターンする。
なお、図20においては、急速充電状態Eに応じて、負荷および補機類への負荷供給電力を制限したが、たとえば、負荷および補機類に対して出力制限の実行を要求してもよい。
以上のように、この発明の実施の形態6(図18〜図20)に係る車両用電源装置は、電源装置3への急速充電を制御する急速充電装置51を備えている。
電力変換装置54は、急速充電装置51による急速充電時を示す急速充電状態Eに応じて、空調制御装置5および補機用電力変換装置6への負荷供給電力を制限するか、または、空調制御装置5および補機用電力変換装置6に対して動作電力制限の実行を要求する。
これにより、急速充電装置51による急速充電時に負荷が動作する場合でも、電力変換装置54が負荷供給電力を抑制するので、電源装置3への充電を確実に行うことが可能となる。
実施の形態7.
なお、上記実施の形態4(図12〜図14)では、電源充電状態検出装置33からの充電状態Cに応じて負荷および補機類に対して出力制限したが、電源充電状態検出装置33を用いずに、図21〜図23に示すように、充電装置68による充電状態Fに応じて、負荷および補機類に対して出力制限を行うようにしてもよい。
以下、図21〜図23を参照しながら、この発明の実施の形態7について説明する。
図21はこの発明の実施の形態7に係る車両用電源装置の処理機能構成を示すブロック図であり、前述(図1、図9、図12、図15、図18参照)と同様のものについては、前述と同一符号を付して詳述を省略する。
図21において、充電装置68は、充電口9から供給される電力を交流から直流に変換し且つ直流変換制御を行うとともに、電源装置3への充電時に充電状態Fを電力変換装置64に入力する。
電力変換装置64は、充電装置68による充電状態Fに応じて、負荷および補機類に対して出力制限を行う。
次に、図22および図23を参照しながら、図21に示したこの発明の実施の形態7による電力変換装置64の動作ついて説明する。
図22は電力変換装置64による状態検出処理を概略的に示すフローチャートであり、ステップS11は、前述と同様の電圧取得処理である。
図22において、電力変換装置64は、まず、負荷側の検出電圧Vを取得し(ステップS11)、続いて、充電装置68による充電の実行有無を示す充電状態Fを取得して(ステップS16)、リターンする。
図23はこの発明の実施の形態7における電圧制御処理を概略的に示すフローチャートであり、ステップS21、S22、S24は前述と同様の処理である。
図23において、電力変換装置64は、まず、負荷側の検出電圧Vを所定電圧Vthと比較するとともに、状態検出処理(図22)で取得した充電状態Fを確認し、「V>Vth」または「充電状態Fの実行中」の条件を満たすか否かを判定する(ステップS28)。
ステップS28において、「V>Vth」または「充電状態Fの実行中」(すなわち、Yes)と判定されれば、出力電圧が小さくなるように、電圧指示値を減少させるための電圧制御を行い(ステップS24)、リターンする。
一方、ステップS28において、「V≦Vth」且つ「充電状態Fの実行中でない」(すなわち、No)と判定されれば、続いて、V<Vthの条件を満たすか否かを判定する(ステップS21)。
ステップS22において、V<Vthの条件を満たす(すなわち、Yes)と判定されれば、出力電圧が大きくなるように、電圧指示値を増加させるための電圧制御を行い(ステップS22)、リターンする。
一方、ステップS22において、V=Vth(すなわち、No)と判定されれば、ステップS22を実行せずに、リターンする。
なお、図23においては、充電状態F(充電装置68による充電実行状態)に応じて、電力変換装置64が負荷および補機類への負荷供給電力を制限したが、たとえば、電力変換装置64が負荷および補機類に対して出力制限の実行を要求してもよい。
以上のように、この発明の実施の形態7(図21〜図23)に係る車両用電源装置の電力変換装置64は、充電装置68から電源装置3への充電状態を認識した場合には、空調制御装置5および補機用電力変換装置6への負荷供給電力を制限するか、または、空調制御装置5および補機用電力変換装置6に対して動作電力制限の実行を要求する。
これにより、充電装置68から電源装置3への充電時に負荷が動作する場合でも、電力変換装置64が負荷供給電力を抑制するので、電源装置3への充電を確実に行うことが可能となる。
実施の形態8.
なお、上記実施の形態1〜7では、特に言及しなかったが、図24〜図27に示すように、電力変換装置74および負荷(空調制御装置75、補機用電力変換装置76、充電装置78)の電源投入を制御する電源投入制御装置71を設け、電源装置3への充電状態または非充電状態に応じて各装置の電源投入タイミングを変更してもよい。
以下、図24〜図27を参照しながら、この発明の実施の形態8について説明する。
図24はこの発明の実施の形態8に係る車両用電源装置の処理機能構成を示すブロック図であり、前述と同様のものについては、前述と同一符号を付して詳述を省略する。
図24において、電力変換装置74、空調制御装置75、補機用電力変換装置76および充電装置78には、電源投入制御装置71が接続されている。
電源投入制御装置71は、各装置74〜78の状態(充電装置78からの充電要求状態Gを含む)を取得して、各装置74〜78の電源投入タイミングを制御する。
電力変換装置74は、電源投入制御装置71により電源投入されて、電源装置3の蓄積電力を変換して負荷および補機類に供給する。
空調制御装置75は、電源投入制御装置71により電源投入されるヒータおよびエアコンコンプレッサの少なくとも一方を有し、車両の空調を制御する。
補機用電力変換装置76は、電源投入制御装置71により電源投入され、電力変換装置74を介して供給される電源装置3の電力を変換して補機用電源装置7に供給する。
充電装置78は、電源投入制御装置71により電源投入されて、充電口9から供給される電力を交流から直流に変換し且つ直流変換制御を行う。
図25はこの発明の実施の形態8による電源投入制御装置71および電力変換装置74の処理手順を概略的に示すフローチャートであり、ステップS2は、前述と同様の電圧制御処理である。
図25において、電源投入制御装置71および電力変換装置74は、まず、状態検出処理により、制御処理の実行に必要な情報(充電要求状態Gを含む)を取得する(ステップS10)。
続いて、電源投入制御装置71は、状態検出処理(ステップS10)で取得した情報(充電要求状態G)に基づき電圧制御処理を行い、電力変換装置74の電源投入状態と、充電装置78、空調制御装置75および補機用電力変換装置76の電源投入状態とを制御する(ステップS5)。
最後に、電力変換装置74は、電圧制御処理S2を行い(ステップS2)、図25の処理を終了する。
図26は図25内の状態検出処理(ステップS10)を概略的に示すフローチャートであり、ステップS11は、前述と同様の電圧取得処理である。
図26において、まず、電力変換装置74は、負荷側の検出電圧Vを取得する(ステップS11)。
続いて、電源投入制御装置71は、充電装置から充電要求状態Gを取得して(ステップS17)、リターンする。
図27は電源投入制御装置71による電源投入制御処理(ステップS5)を概略的に示すフローチャートである。
図27において、電源投入制御装置71は、まず、状態検出処理(ステップS10)で取得した充電要求状態Gを確認し、充電要求状態Gの実行中であるか否かを判定する(ステップS51)。
ステップS51において、充電要求状態Gの実行中(すなわち、Yes)と判定されれば、充電要求状態Gに応答するために、まず第1に充電装置78の電源を投入し(ステップS52)、続いて、第2に電力変換装置74の電源を投入して(ステップS53)、リターンする。
一方、充電要求時以外の場合であって、ステップS51において、充電要求状態Gの実行中でない(すなわち、No)と判定されれば、まず第1に電力変換装置74の電源を投入し(ステップS54)、続いて、第2に空調制御装置75および補機用電力変換装置76の電源を投入して(ステップS55)、リターンする。
以上のように、この発明の実施の形態8(図24〜図27)に係る車両用電源装置は、電力変換装置74の電源投入状態と、空調制御装置75、補機用電力変換装置76および充電装置78の電源投入状態とを制御する電源投入制御装置71を備えている。
電源投入制御装置71は、電源装置3への充電時に電源を投入する場合には、第1に充電装置78の電源を投入し(ステップS52)、第2に電力変換装置の電源を投入するので(ステップS53)、電力源に近い位置にある充電装置78から順に電源を投入することとなり、確実で安定な動作を実現することが可能となる。
また、電源投入制御装置71は、電力変換装置74の電源投入状態と、空調制御装置75および補機用電力変換装置76の電源投入状態とを制御し、電源装置3への充電時以外に電源を投入する場合には、第1に電力変換装置74の電源を投入し(ステップS54)、第2に空調制御装置75および補機用電力変換装置76の電源を投入するので(ステップS55)、同様に、電力源に近い位置にある装置から順に電源を投入することとなり、確実で安定な動作を実現することが可能となる。
実施の形態9.
なお、上記実施の形態1〜8では、特に言及しなかったが、電力変換装置の異常発生時に負荷や補機類の制御動作が不能となる事態に速やかに対処するために、図28〜図31に示すように、電力変換装置24の故障状態を検出する故障検出装置81と、故障検出装置81からの故障検出結果Hに応じて故障の有無を報知する故障状態報知装置82とを設けてもよい。
以下、図28〜図31を参照しながら、この発明の実施の形態9について説明する。
図28はこの発明の実施の形態9に係る車両用電源装置の処理機能構成を示すブロック図であり、前述と同様のものについては、前述と同一符号を付して詳述を省略する。
ここでは、代表的に実施の形態3(図9)の回路構成に適用した場合を示しているが、前述の実施の形態1〜8のいずれの回路構成にも適用可能なことは言うまでもない。
一般に、電力変換装置24に異常が発生すると、その下に接続されている負荷や補機類の制御動作が不可能になり、場合によっては車両の機能不全状態に陥る可能性があるので、このような異常状態に速やかに対処して、異常状態のまま車両を使用し続けることを未然に防止する必要がある。
図28において、故障検出装置81は、電力変換装置24の故障状態を検出する。
故障状態報知装置82は、故障検出装置81から出力される故障検出結果Hに応じて、電力変換装置24の故障の有無状態を報知する。
をそれぞれ示す。
なお、ここでは詳述しないが、故障検出としては、電力変換装置24の内部故障を想定しており、任意の公知手法が適用可能である。
たとえば、故障状態報知装置82は、電力変換装置24の出力過電圧、出力過電流、過熱などから故障検出が可能であるが、検出する故障形態は、これらに限定されることはなく、他の任意の故障パラメータを適用してもよい。
図29はこの発明の実施の形態9による電力変換装置24、故障検出装置81および故障状態報知装置82の処理手順を概略的に示すフローチャートであり、ステップS2は、前述と同様の電圧制御処理である。
図29において、電力変換装置24および故障検出装置81は、まず、状態検出処理により、制御処理の実行に必要な情報(電力変換装置24の状態パラメータを含む)を取得する(ステップS20)。
続いて、電力変換装置24は、状態検出処理(ステップS20)で取得した情報に基づいて電圧制御処理を行う(ステップS2)。
最後に、故障検出装置81および故障状態報知装置82は、状態検出処理(ステップS20)で取得した情報(状態パラメータ)に基づき故障検出時処理を行い、電力変換装置24の故障の有無を示す故障検出結果Hを生成し、故障検出結果Hに応じた報知を実行して(ステップS6)、図29の処理を終了する。
図30は図29内の状態検出処理(ステップS20)を概略的に示すフローチャートであり、ステップS11は、前述と同様の電圧取得処理である。
図30において、まず、電力変換装置24は、負荷側の検出電圧Vを取得する(ステップS11)。
続いて、故障検出装置81は、電力変換装置24の故障状態(状態パラメータ)を取得して(ステップS18)、リターンする。
図31は故障検出装置81および故障状態報知装置82による故障検出時処理(ステップS6)を概略的に示すフローチャートである。
図31において、故障検出装置81は、上述のように電力変換装置24の故障検出結果Hを出力し、故障状態報知装置82は、故障検出結果Hを確認して電力変換装置24が故障状態であるか否かを判定する(ステップS61)。
ステップS61において、故障検出結果Hが故障状態を示す(すなわち、Yes)と判定されれば、故障状態報知装置82は、故障状態報知を実行して(ステップS62)、リターンする。
一方、ステップS61において、故障検出結果Hが故障状態を示していない(すなわち、No)と判定されれば、故障状態報知装置82は、故障状態報知を停止して(ステップS63)、リターンする。
以上のように、この発明の実施の形態9(図28〜図31)に係る車両用電源装置は、電力変換装置24の故障状態を検出する故障検出装置81と、故障検出装置からの故障検出結果Hに応じて電力変換装置24の故障の有無を報知する故障状態報知装置82とを備えている。
これにより、電力変換装置24に異常が発生すると、故障検出装置81および故障状態報知装置82により故障状態が報知されるので、至急修理を必要とする状態であることを促すことができる。
したがって、負荷や補機類の動作不能状態のまま車両を使用され続けることを未然に防止することができる。
実施の形態10.
なお、上記実施の形態2、3(図5〜図11)では、充電装置8から電源装置3への充電時における電流制御の停止条件について言及しなかったが、図32および図33に示すように、検出電流Iおよび充電状態C(図12参照)が電流制御停止条件を満たす場合には、電源装置3の過充電を防止するために、電力変換装置による電流制御を停止してもよい。
以下、図12、図32および図33を参照しながら、この発明の実施の形態10について説明する。
なお、この発明の実施の形態10に係る車両用電源装置としては、前述の図12の処理機能構成を適用することができるので、便宜的に、図12内の電力変換装置34の制御動作として説明する。
図32はこの発明の実施の形態10による電力変換装置34の状態検出処理を概略的に示すフローチャートであり、ステップS12、S13は、前述(図7、図13参照)と同様の処理である。
図32において、電力変換装置34は、電源装置3側の検出電流Iを取得するとともに(ステップS12)、電源充電状態検出装置33から、電源装置3の充電状態Cを取得して(ステップS13)、リターンする。
図33はこの発明の実施の形態10による電力変換装置34の電流制御処理を概略的に示すフローチャートであり、ステップS31〜S34は、前述(図8参照)と同様の処理である。
図33において、電力変換装置34は、電源装置3側の検出電流Iを所定電流Ith’(電流制御の下限値)と比較するとともに、状態検出処理(図32)で取得した電源装置3の充電状態Cを所定値Cth’(電流制御の上限値)と比較し、「I<Ith’」且つ「C>Cth’」の条件を満たすか否かを判定する(ステップS35)。
ステップS35において、「I<Ith’」且つ「C>Cth’」(すなわち、Yes)と判定されれば、電源装置3の過充電を防止するために、電流制御を停止して(ステップS36)、リターンする。
一方、ステップS35において、「I≧Ith’」または「C≦Cth’」(すなわち、No)と判定されれば、前述の電流制御(ステップS31〜S34)に移行する。
すなわち、検出電流Iが所定電流Ithよりも小さい場合には、出力電流が大きくなるように、電流指示値を増加させるように電流制御し(ステップS31、S32)、検出電流Iが所定電流Ithよりも大きい場合には、出力電流が小さくなるように、電流指示値を減少させるように電流制御して(ステップS33、S34)、リターンする。
なお、図33においては、電流制御実行の判定条件として、電源装置3の充電状態Cと電源装置3に流れる電流値(検出電流I)との両方を用いたが、これに限定されることはなく、いずれか一方の条件のみを用いてもよい。
以上のように、この発明の実施の形態10(図12、図32、図33)に係る車両用電源装置は、電源装置3の充電状態Cを検出する電源充電状態検出装置33を備えている。
電力変換装置34は、電源充電状態検出装置33により検出された充電状態Cに応じて、電源装置3への充電時に電源装置3に流れる電流値(検出電流I)に基づき、電流制御(電源装置3への充電電力の供給)を停止する。
これにより、電源装置3への充電時において、電源装置3への過充電を抑制して、電源装置3の破壊や、車両の損傷などの事態を未然に防止することが可能となる。
実施の形態11.
なお、上記実施の形態3(図9〜図11)では、特に言及しなかったが、図34〜図36に示すように、電力変換装置94において、充電装置98からの充電電力Jと負荷および補機類(空調制御装置95、補機用電力変換装置96)への負荷供給電力Kとを比較して、電圧制御と電流制御とを選択するように構成してもよい。
以下、図34〜図36を参照しながら、この発明の実施の形態11について説明する。
図34はこの発明の実施の形態11に係る車両用電源装置の処理機能構成を示すブロック図であり、前述(図9)と同様のものについては、前述と同一符号を付して詳述を省略する。
図34において、電力変換装置94は、電源装置3の蓄積電力を負荷および補機類に供給するために電源装置3の電力を変換し、且つ充電時には充電装置98からの充電電力を電源装置3に供給する。
また、電力変換装置94は、制御選択手段(図35とともに後述する)を含み、充電電力Jと負荷供給電力Kとの比較結果に応じて、電圧制御と電流制御とを選択する。
空調制御装置95は、電力変換装置94から給電されるヒータおよびエアコンコンプレッサの少なくとも一方を有し、車両の空調を制御するとともに、自身に対する負荷供給電力Kを電力変換装置94に入力する。
補機用電力変換装置96は、電力変換装置94を介して供給される電源装置3の電力を変換して補機用電源装置7に供給するとともに、自身に対する負荷供給電力Kを電力変換装置94に入力する。
充電装置98は、充電口9から供給される電力を交流から直流に変換し且つ直流変換制御を行うとともに、自身からの充電電力Jを電力変換装置94に入力する。
図35はこの発明の実施の形態11による電力変換装置94の処理手順を概略的に示すフローチャートであり、ステップS1〜S3は前述(図10参照)と同様の処理である。
図35において、電力変換装置94は、まず、状態検出処理により、制御処理の実行に必要な情報(充電電力J、負荷供給電力Kを含む)を取得する(ステップS1)。
続いて、電力変換装置94は、状態検出処理(ステップS1)の取得情報、すなわち、空調制御装置95および補機用電力変換装置96からの負荷供給電力K(総合電力値)と、充電装置98から取得した充電電力Jとを比較し、J≧Kの条件を満たすか否かを判定する(ステップS7)。
ステップS7において、充電電力Jが負荷供給電力K以上であって、J≧K(すなわち、Yes)と判定されれば、電流制御処理を行い(ステップS3)、図35の処理を終了する。
一方、ステップS7において、充電電力Jが負荷供給電力Kよりも小さく、J<K(すなわち、No)と判定されれば、電圧制御処理を行い(ステップS2)、図35の処理を終了する。
図36は図35内の状態検出処理を概略的に示すフローチャートであり、ステップS11、S12は、前述(図11参照)と同様の処理である。
図36において、電力変換装置94は、まず、負荷側の検出電圧Vを取得し(ステップS11)、また、電源装置側の検出電流Iを取得する(ステップS12)。
続いて、充電装置98から充電電力Jの情報を取得し(ステップS19a)、空調制御装置95および補機用電力変換装置96から負荷供給電力Kの情報を取得して(ステップS19a)、リターンする。
以下、電力変換装置94は、図35内のステップS7において、充電電力Jと負荷供給電力Kの情報比較に基づき、電流制御または電圧制御のいずれを実行するかを判定する。
なお、ここでは、充電電力Jの情報を充電装置98から取得し、負荷供給電力Kの情報を負荷(空調制御装置95および補機用電力変換装置96)から直接取得したが、充電電力Jおよび負荷供給電力Kの情報取得方法は、これらに限定されることはなく、他の手法を適用してもよい。
たとえば、電力変換装置94と充電装置98との間の電圧および電流値、または、電力変換装置94と負荷との間の電圧および電流値、を検出した結果から、充電電力Jまたは負荷供給電力Kを推定演算してもよい。
また、負荷(空調制御装置95および補機用電力変換装置96)または充電装置98の動作開始前に事前に各電力情報を取得しておき、電力変換装置94においては、既知の電力情報に基づき電流制御または電圧制御のいずれを実行するかを決定し、動作のための準備が整ってから、負荷または充電装置98に動作開始を要求するような手法を適用してもよい。
以上のように、この発明の実施の形態11(図34〜図36)に係る車両用電源装置の電力変換装置94は、電圧制御または電流制御を選択する制御選択手段(ステップS7)を備えており、充電装置98からの充電電力Jと、空調制御装置95および補機用電力変換装置96への負荷供給電力Kとを比較して、充電電力Jが負荷供給電力K以上の場合には電流制御を実行し(ステップS3)、充電電力Jが負荷供給電力Kよりも小さい場合には電圧制御を実行する(ステップS2)。
これにより、電力変換装置94は、充電電力Jと負荷供給電力Kとのバランスを確認したうえで、好適な電力供給制御を実現することが可能となる。
1 モータ、2 インバータ、3 電源装置、4、14、24、34、44、54、64、74、94 電力変換装置、5、75、95 空調制御装置、6、76、96 補機用電力変換装置、7、78 補機用電源装置、8、68、98 充電装置、33 電源充電状態検出装置、42 モータ状態検出装置、51 急速充電装置、71 電源投入制御装置、81 故障検出装置、82 故障状態報知装置、C、F 充電状態、Cth、Cth’ 所定値、D モータ状態、E 急速充電状態、G 充電要求状態、H 故障検出結果、I 検出電流、I[A] 検出電流、Ith、Ith’ 所定電流、J 充電電力、K 負荷供給電力、V 検出電圧、Vth 所定電圧。

Claims (12)

  1. 車両に搭載されたモータとの間でインバータを介して電力授受を行うとともに、前記車両の負荷に電力供給を行う車両用電源装置であって、
    電力を蓄える電源装置と、
    前記電源装置の電力を前記負荷に供給するために、通流率制御により昇圧比を設定して電力を変換する電力変換装置と、を備え、
    前記負荷は、
    前記車両の空調を制御する空調制御装置と、
    前記車両の補機類に電力を供給するための補機用電源装置と、
    前記補機用電源装置に電力を供給するために、通流率制御により昇圧比を設定して前記電源装置の電力を変換する補機用電力変換装置と、を含み、
    前記空調制御装置および前記補機用電力変換装置の入力電圧仕様は同一に設定され、
    前記電力変換装置は、前記空調制御装置と前記補機用電力変換装置との前記入力電圧仕様に応じた電圧を出力するように電圧制御することを特徴とする車両用電源装置。
  2. 車両に搭載されたモータとの間でインバータを介して電力授受を行うとともに、前記車両の負荷に電力供給を行う車両用電源装置であって、
    電力を蓄える電源装置と、
    通流率制御により昇圧比を設定して電力を変換する電力変換装置と、を備え、
    前記負荷は、
    前記車両の空調を制御する空調制御装置と、
    前記車両の補機類に電力を供給するための補機用電源装置と、
    前記補機用電源装置に電力を供給するために、通流率制御により昇圧比を設定して前記電源装置の電力を変換する補機用電力変換装置と、
    前記電源装置を充電するために、充電口からの供給電力を交流から直流に変換し、且つ直流変換制御を行う充電装置と、を含み、
    前記充電装置は、前記電源装置に充電する場合には、出力電圧が所定値となるように電圧制御を行い、
    前記電力変換装置は、
    前記電源装置の電力を前記空調制御装置および前記補機用電力変換装置に供給し、且つ前記充電装置が出力する充電電力を前記電源装置に充電するために、前記通流率制御により昇圧比を設定して電力を変換し、
    前記充電装置を介して前記電源装置に充電する場合には、前記電源装置に流れる電流値を制御量として電流制御を行うことを特徴とする車両用電源装置。
  3. 車両に搭載されたモータとの間でインバータを介して電力授受を行うとともに、前記車両の負荷に電力供給を行う車両用電源装置であって、
    電力を蓄える電源装置と、
    通流率制御により昇圧比を設定して電力を変換する電力変換装置と、を備え、
    前記負荷は、
    前記車両の空調を制御する空調制御装置と、
    前記車両の補機類に電力を供給するための補機用電源装置と、
    前記補機用電源装置に電力を供給するために、通流率制御により昇圧比を設定して前記電源装置の電力を変換する補機用電力変換装置と、
    前記電源装置を充電するために、充電口からの供給電力を交流から直流に変換し、且つ直流変換制御を行う充電装置と、を含み、
    前記空調制御装置、前記補機用電力変換装置および前記充電装置の入力電圧仕様は同一に設定され、
    前記充電装置は、前記電源装置に充電する場合には、出力電圧が所定値となるように電圧制御を行い、
    前記電力変換装置は、
    前記電源装置の電力を前記空調制御装置および前記補機用電力変換装置に供給し、且つ前記充電装置が出力する充電電力を前記電源装置に充電するために、前記通流率制御により昇圧比を設定して電力を変換し、
    前記空調制御装置と前記補機用電力変換装置と前記充電装置の前記入力電圧仕様に応じた電圧を出力するように電圧制御するとともに、
    前記充電装置を介して前記電源装置に充電する場合には、前記電源装置に流れる電流値を制御量として電流制御を行うことを特徴とする車両用電源装置。
  4. 前記電源装置の充電状態を検出する電源充電状態検出装置を備え、
    前記電力変換装置は、前記電源充電状態検出装置により検出された充電状態に応じて、前記空調制御装置および前記補機用電力変換装置への負荷供給電力を制限するか、または、前記空調制御装置および前記補機用電力変換装置に対して動作電力制限の実行を要求することを特徴とする請求項1または請求項3に記載の車両用電源装置。
  5. 前記インバータからモータ状態を検出するモータ状態検出装置を備え、
    前記電力変換装置は、前記モータ状態検出装置により検出されたモータ状態が前記モータの力行状態または回生状態を示す場合に、前記空調制御装置および前記補機用電力変換装置への負荷供給電力を制限するか、または、前記空調制御装置および前記補機用電力変換装置に対して動作電力制限の実行を要求することを特徴とする請求項1または請求項3に記載の車両用電源装置。
  6. 前記電源装置への急速充電を制御する急速充電装置を備え、
    前記電力変換装置は、前記急速充電装置による急速充電状態に応じて、前記空調制御装置および前記補機用電力変換装置への負荷供給電力を制限するか、または、前記空調制御装置および前記補機用電力変換装置に対して動作電力制限の実行を要求することを特徴とする請求項1または請求項3に記載の車両用電源装置。
  7. 前記電力変換装置は、前記充電装置から前記電源装置への充電状態を認識した場合には、前記空調制御装置および前記補機用電力変換装置への負荷供給電力を制限するか、または、前記空調制御装置および前記補機用電力変換装置に対して動作電力制限の実行を要求することを特徴とする請求項3に記載の車両用電源装置。
  8. 前記電力変換装置の電源投入状態と、前記空調制御装置および前記補機用電力変換装置の電源投入状態とを制御する電源投入制御装置を備え、
    前記電源投入制御装置は、前記電源装置への充電時以外に電源を投入する場合には、第1に前記電力変換装置の電源を投入し、第2に前記空調制御装置および前記補機用電力変換装置の電源を投入することを特徴とする請求項1または請求項3から請求項7までのいずれか1項に記載の車両用電源装置。
  9. 前記電力変換装置の電源投入状態と、前記空調制御装置、前記補機用電力変換装置および前記充電装置の電源投入状態とを制御する電源投入制御装置を備え、
    前記電源投入制御装置は、前記電源装置への充電時に電源を投入する場合には、第1に前記充電装置の電源を投入し、第2に前記電力変換装置の電源を投入することを特徴とする請求項2または請求項3または請求項7に記載の車両用電源装置。
  10. 前記電力変換装置の故障状態を検出する故障検出装置と、
    前記故障検出装置からの故障検出結果に応じて前記電力変換装置の故障の有無を報知する故障状態報知装置と、
    を備えたことを特徴とする請求項1から請求項9までのいずれか1項に記載の車両用電源装置。
  11. 前記電源装置の充電状態を検出する電源充電状態検出装置を備え、
    前記電力変換装置は、前記電源充電状態検出装置により検出された充電状態に応じて、前記電源装置への充電時に前記電源装置に流れる電流値に基づき、前記電源装置への充電電力の供給を停止することを特徴とする請求項2または請求項3に記載の車両用電源装置。
  12. 前記電力変換装置は、電圧制御または電流制御を選択する制御選択手段を含み、
    前記充電装置からの充電電力と、前記空調制御装置および前記補機用電力変換装置への負荷供給電力とを比較して、
    前記充電電力が前記負荷供給電力以上の場合には電流制御を実行し、
    前記充電電力が前記負荷供給電力よりも小さい場合には電圧制御を実行することを特徴とする請求項3に記載の車両用電源装置。
JP2010215404A 2010-09-27 2010-09-27 車両用電源装置 Active JP5183709B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010215404A JP5183709B2 (ja) 2010-09-27 2010-09-27 車両用電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010215404A JP5183709B2 (ja) 2010-09-27 2010-09-27 車両用電源装置

Publications (2)

Publication Number Publication Date
JP2012066781A true JP2012066781A (ja) 2012-04-05
JP5183709B2 JP5183709B2 (ja) 2013-04-17

Family

ID=46164563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010215404A Active JP5183709B2 (ja) 2010-09-27 2010-09-27 車両用電源装置

Country Status (1)

Country Link
JP (1) JP5183709B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020068573A (ja) * 2018-10-23 2020-04-30 トヨタ自動車株式会社 車両
WO2020110508A1 (ja) * 2018-11-27 2020-06-04 サンデン・オートモーティブクライメイトシステム株式会社 車両のバッテリ温度調整装置及びそれを備えた車両用空気調和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07107620A (ja) * 1993-09-29 1995-04-21 Nippondenso Co Ltd 電気自動車用dc−dcコンバータの異常監視装置
JPH089558A (ja) * 1994-06-23 1996-01-12 Fuji Electric Co Ltd 二次電池電圧変換装置
JP2005020960A (ja) * 2003-06-27 2005-01-20 Honda Motor Co Ltd 車両用制御装置
JP2006050799A (ja) * 2004-08-05 2006-02-16 Honda Motor Co Ltd 電圧変換器の制御方法
JP2008187884A (ja) * 2007-01-04 2008-08-14 Toyota Motor Corp 電源システムおよびそれを備える車両、ならびにその制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07107620A (ja) * 1993-09-29 1995-04-21 Nippondenso Co Ltd 電気自動車用dc−dcコンバータの異常監視装置
JPH089558A (ja) * 1994-06-23 1996-01-12 Fuji Electric Co Ltd 二次電池電圧変換装置
JP2005020960A (ja) * 2003-06-27 2005-01-20 Honda Motor Co Ltd 車両用制御装置
JP2006050799A (ja) * 2004-08-05 2006-02-16 Honda Motor Co Ltd 電圧変換器の制御方法
JP2008187884A (ja) * 2007-01-04 2008-08-14 Toyota Motor Corp 電源システムおよびそれを備える車両、ならびにその制御方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020068573A (ja) * 2018-10-23 2020-04-30 トヨタ自動車株式会社 車両
JP7200599B2 (ja) 2018-10-23 2023-01-10 トヨタ自動車株式会社 車両
WO2020110508A1 (ja) * 2018-11-27 2020-06-04 サンデン・オートモーティブクライメイトシステム株式会社 車両のバッテリ温度調整装置及びそれを備えた車両用空気調和装置
JP2020089093A (ja) * 2018-11-27 2020-06-04 サンデン・オートモーティブクライメイトシステム株式会社 車両のバッテリ温度調整装置及びそれを備えた車両用空気調和装置
CN112996689A (zh) * 2018-11-27 2021-06-18 三电汽车空调系统株式会社 车辆的电池温度调节装置及包括该装置的车用空调装置
JP7213665B2 (ja) 2018-11-27 2023-01-27 サンデン株式会社 車両のバッテリ温度調整装置及びそれを備えた車両用空気調和装置
CN112996689B (zh) * 2018-11-27 2024-08-02 三电株式会社 车辆的电池温度调节装置及包括该装置的车用空调装置

Also Published As

Publication number Publication date
JP5183709B2 (ja) 2013-04-17

Similar Documents

Publication Publication Date Title
JP5553677B2 (ja) ハイブリッド式発動発電機の出力制御装置
CN110707768B (zh) 充电控制设备和充电控制系统
US20140028256A1 (en) Power supply apparatus for electrically powered vehicle and method for controlling the same
US9496804B2 (en) Inverter-charger combined device for electric vehicles and method thereof
US11211813B2 (en) Battery charge control apparatus for vehicle and method of controlling battery charging of vehicle
JP2015216781A (ja) 電動車両
WO2013129231A1 (ja) 電源装置
EP3576273A1 (en) Dc/dc conversion unit
JP6876992B2 (ja) 車両電源装置
CN111746308B (zh) 电力系统及其控制方法
JP6428524B2 (ja) 車両用電源システム
US9533580B2 (en) Power converter for vehicle generator-motor and method for controlling vehicle generator-motor
JP6651605B2 (ja) ハイブリッド車両の制御装置
JP5183709B2 (ja) 車両用電源装置
KR20150116843A (ko) 차상 전력 시스템을 위한 에너지 공급 유닛을 작동시키기 위한 방법
JP6058287B2 (ja) エンジン駆動発電装置
KR20190043733A (ko) 컨버터 시스템의 과전류 방지 장치 및 방법
JP6805395B2 (ja) 電源システム
JP2007306778A (ja) Dc/dcコンバータ及びdc/dcコンバータの電源切替え方法
KR102030179B1 (ko) 마이크로 하이브리드 시스템용 전력관리장치
US9350280B2 (en) Method for operating a power supply unit for an electrical system of a motor vehicle
JP2016146699A (ja) 電源装置
JP6096825B2 (ja) 電力供給システム
WO2024053424A1 (ja) 電力変換装置、プログラム
WO2024095729A1 (ja) 電源システム及びプログラム

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130115

R150 Certificate of patent or registration of utility model

Ref document number: 5183709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250