JP2012059878A - 記憶素子、メモリ装置 - Google Patents

記憶素子、メモリ装置 Download PDF

Info

Publication number
JP2012059878A
JP2012059878A JP2010200983A JP2010200983A JP2012059878A JP 2012059878 A JP2012059878 A JP 2012059878A JP 2010200983 A JP2010200983 A JP 2010200983A JP 2010200983 A JP2010200983 A JP 2010200983A JP 2012059878 A JP2012059878 A JP 2012059878A
Authority
JP
Japan
Prior art keywords
layer
magnetization
storage layer
film
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010200983A
Other languages
English (en)
Other versions
JP2012059878A5 (ja
Inventor
Yutaka Higo
豊 肥後
Masakatsu Hosomi
政功 細見
Hiroyuki Omori
広之 大森
Kazuhiro Bessho
和宏 別所
Ichiyo Yamane
一陽 山根
Hiroyuki Uchida
裕行 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2010200983A priority Critical patent/JP2012059878A/ja
Priority to US13/216,474 priority patent/US8455967B2/en
Priority to CN201110255449.9A priority patent/CN102403025B/zh
Publication of JP2012059878A publication Critical patent/JP2012059878A/ja
Publication of JP2012059878A5 publication Critical patent/JP2012059878A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell

Abstract

【課題】スピン注入型磁気メモリでの書込電流の低減と熱安定性の改善。
【解決手段】記憶素子は、膜面に垂直な磁化を有し、情報に対応して磁化の向きが変化される記憶層17と、記憶層に記憶された情報の基準となる膜面に垂直な磁化を有する磁化固定層15と、記憶層と磁化固定層の間に設けられる非磁性体による絶縁層16とを有する。そして積層方向にスピン偏極した電子を注入することにより、記憶層の磁化の向きが変化して情報の記録が行われる。ここで記憶層が受ける実効的な反磁界の大きさが、記憶層の飽和磁化量よりも小さいものとされている。さらに記憶層及び磁化固定層が、界面磁気異方性エネルギーが反磁界エネルギーよりも大きくなる膜厚とされている。
【選択図】図2

Description

本発明は、強磁性層の磁化状態を情報として記憶する記憶層と、磁化の向きが固定された磁化固定層とを有し、電流を流すことにより記憶層の磁化の向きを変化させる記憶素子及びこの記憶素子を備えたメモリ装置に関する。
特開2003−17782号公報 米国特許第6256223号明細書 米国特許第7242045号明細書 特開2008−227388号公報
PHYs. Rev. B,54.9353(1996) J. Magn. Mat.,159,L1(1996) F. J. Albert et al.,Appl. Phy. Lett.,77,3809(2000)
コンピュータ等の情報機器では、ランダム・アクセス・メモリとして、動作が高速で、高密度なDRAMが広く使われている。
しかし、DRAMは電源を切ると情報が消えてしまう揮発性メモリであるため、情報が消えない不揮発のメモリが望まれている。
そして、不揮発メモリの候補として、磁性体の磁化で情報を記録する磁気ランダム・アクセス・メモリ(MRAM)が注目され、開発が進められている。
MRAMは、ほぼ直交する2種類のアドレス配線(ワード線、ビット線)にそれぞれ電流を流して、各アドレス配線から発生する電流磁場によって、アドレス配線の交点にある磁気記憶素子の磁性層の磁化を反転して情報の記録を行うものである。
一般的なMRAMの模式図(斜視図)を図13に示す。
シリコン基板等の半導体基体110の素子分離層102により分離された部分に、各メモリセルを選択するための選択用トランジスタを構成する、ドレイン領域108、ソース領域107、並びにゲート電極101が、それぞれ形成されている。
また、ゲート電極101の上方には、図中前後方向に延びるワード線105が設けられている。
ドレイン領域108は、図中左右の選択用トランジスタに共通して形成されており、このドレイン領域108には、配線109が接続されている。
そして、ワード線105と、上方に配置された、図中左右方向に延びるビット線106との間に、磁化の向きが反転する記憶層を有する磁気記憶素子103が配置されている。この磁気記憶素子103は、例えば磁気トンネル接合素子(MTJ素子)により構成される。
さらに、磁気記憶素子103は、水平方向のバイパス線111及び上下方向のコンタクト層104を介して、ソース領域107に電気的に接続されている。
ワード線105及びビット線106にそれぞれ電流を流すことにより、電流磁界を磁気記憶素子103に印加して、これにより磁気記憶素子103の記憶層の磁化の向きを反転させて、情報の記録を行うことができる。
そして、MRAM等の磁気メモリにおいて、記録した情報を安定に保持するためには、情報を記録する磁性層(記憶層)が、一定の保磁力を有していることが必要である。
一方、記録された情報を書き換えるためには、アドレス配線にある程度の電流を流さなければならない。
ところが、MRAMを構成する素子の微細化に従い、アドレス配線も細くなるため、充分な電流が流せなくなってくる。
そこで、より少ない電流で磁化反転が可能な構成として、スピン注入による磁化反転を利用する構成のメモリが注目されている(例えば、特許文献1、2、4、非特許文献1、2参照)。
スピン注入による磁化反転とは、磁性体の中を通過してスピン偏極した電子を、他の磁性体に注入することにより、他の磁性体において磁化反転を起こさせるものである。
例えば、巨大磁気抵抗効果素子(GMR素子)や磁気トンネル接合素子(MTJ素子)に対して、その膜面に垂直な方向に電流を流すことにより、これらの素子の少なくとも一部の磁性層の磁化の向きを反転させることができる。
そして、スピン注入による磁化反転は、素子が微細化されても、電流を増やさずに磁化反転を実現することができる利点を有している。
上述したスピン注入による磁化反転を利用する構成のメモリ装置の模式図を、図14及び図15に示す。図14は斜視図、図15は断面図である。
シリコン基板等の半導体基体60の素子分離層52により分離された部分に、各メモリセルを選択するための選択用トランジスタを構成する、ドレイン領域58、ソース領域57、並びにゲート電極51が、それぞれ形成されている。このうち、ゲート電極51は、図14中前後方向に延びるワード線を兼ねている。
ドレイン領域58は、図14中左右の選択用トランジスタに共通して形成されており、このドレイン領域58には、配線59が接続されている。
そして、ソース領域57と、上方に配置された、図14中左右方向に延びるビット線56との間に、スピン注入により磁化の向きが反転する記憶層を有する記憶素子53が配置されている。
この記憶素子53は、例えば磁気トンネル接合素子(MTJ素子)により構成される。記憶素子53は2つの磁性層61、62を有する。この2層の磁性層61,62のうち、一方の磁性層を磁化の向きが固定された磁化固定層として、他方の磁性層を磁化の向きが変化する磁化自由層即ち記憶層とする。
また、記憶素子53は、ビット線56と、ソース領域57とに、それぞれ上下のコンタクト層54を介して接続されている。これにより、記憶素子53に電流を流して、スピン注入により記憶層の磁化の向きを反転させることができる。
このようなスピン注入による磁化反転を利用する構成のメモリ装置の場合、図13に示した一般的なMRAMと比較して、デバイス構造を単純化することができ、そのために高密度化が可能になるという特徴も有している。
また、スピン注入による磁化反転を利用することにより、外部磁界により磁化反転を行う一般的なMRAMと比較して、素子の微細化が進んでも、書き込みの電流が増大しないという利点がある。
ところで、MRAMの場合は、記憶素子とは別に書き込み配線(ワード線やビット線)を設けて、書き込み配線に電流を流して発生する電流磁界により、情報の書き込み(記録)を行っている。そのため、書き込み配線に、書き込みに必要となる電流量を充分に流すことができる。
一方、スピン注入による磁化反転を利用する構成のメモリ装置においては、記憶素子に流す電流によりスピン注入を行って、記憶層の磁化の向きを反転させる必要がある。
そして、このように記憶素子に直接電流を流して情報の書き込み(記録)を行うことから、書き込みを行うメモリセルを選択するために、記憶素子を選択トランジスタと接続してメモリセルを構成する。この場合、記憶素子に流れる電流は、選択トランジスタに流すことが可能な電流(選択トランジスタの飽和電流)の大きさに制限される。
このため、選択トランジスタの飽和電流以下の電流で書き込みを行う必要があり、スピン注入の効率を改善して、記憶素子に流す電流を低減する必要がある。
また、読み出し信号を大きくするためには、大きな磁気抵抗変化率を確保する必要があり、そのためには記憶層の両側に接している中間層をトンネル絶縁層(トンネルバリア層)とした記憶素子の構成にすることが効果的である。
このように中間層としてトンネル絶縁層を用いた場合には、トンネル絶縁層が絶縁破壊することを防ぐために、記憶素子に流す電流量に制限が生じる。この観点からも、スピン注入時の電流を抑制する必要がある。
この電流値を下げるためには、この電流値が記憶層の膜厚に比例し、記憶層の飽和磁化の2乗に比例するので、これら(膜厚や飽和磁化)を調節すれば良いことがわかる(例えば、非特許文献3参照)。
そして、例えば特許文献3には、記録材料の磁化量(Ms)を低減すれば、電流値を低減できることが示されている。
しかしながら、一方で、電流によって書き込まれた情報を記憶しなければ不揮発性メモリとはなり得ない。つまり、記憶層の熱揺らぎに対する安定性(熱安定性)の確保が必要である。
スピン注入による磁化反転を利用する記憶素子の場合、従来のMRAMと比較して、記憶層の体積が小さくなるので、単純に考えると熱安定性は低下する方向にある。
記憶層の熱安定性が確保されていないと、反転した磁化の向きが、熱により再反転してしまい、書き込みエラーとなってしまう。
そして、スピン注入による磁化反転を利用する記憶素子の大容量化を進めた場合、記録素子の体積は一層小さくなるので、熱安定性の確保は重要な課題となる。
そのため、スピン注入による磁化反転を利用する記憶素子において、熱安定性は非常に重要な特性である。
従って、スピン注入により記憶層の磁化の向きを反転させる構成の記憶素子がメモリとして存在し得るためには、スピン注入による磁化反転に必要な電流をトランジスタの飽和電流以下に減らし、また、書き込まれた情報をしっかり保持する熱安定性を確保する必要がある。
以上のように、スピン注入による磁化反転に必要な電流を低減するには、記憶層の飽和磁化量Msを低減することや、記憶層を薄くすることが考えられる。例えば、上述の特許文献3のように、記憶層の材料に、飽和磁化量Msの低い材料を使用することが有効である。しかしながら、このように、単純に飽和磁化量Msの低い材料を用いた場合、情報をしっかりと保持する熱安定性を確保することができない。
そこで本発明においては、書き込み電流の低減と、熱安定性の改善を両立することができる記憶素子、並びにこの記憶素子を有するメモリ装置を提供することを目的とする。
本発明の記憶素子は、膜面に垂直な磁化を有し、情報に対応して磁化の向きが変化される記憶層と、上記記憶層に記憶された情報の基準となる膜面に垂直な磁化を有する磁化固定層と、上記記憶層と上記磁化固定層の間に設けられる非磁性体による絶縁層と、上記磁化固定層の上記絶縁層側とは反対側に隣接する反強磁性層とを有する層構造を備える。そして上記層構造の積層方向にスピン偏極した電子を注入することにより、上記記憶層の磁化の向きが変化して、上記記憶層に対して情報の記録が行われるとともに、上記記憶層が受ける、実効的な反磁界の大きさが、上記記憶層の飽和磁化量よりも小さいものとされ、さらに上記記憶層及び上記磁化固定層が、界面磁気異方性エネルギーが反磁界エネルギーよりも大きくなる膜厚とされている。
特には、上記記憶層及び上記磁化固定層の膜厚は、E=Ki−(μ0・Ms2・t)/2で表される単位面積あたりのエネルギー障壁Eが、E>0となる膜厚である。但し、Kiは単位面積あたりの界面磁気異方性エネルギー、Msは飽和磁化、μ0は真空の透磁率、tは膜厚である。
また上記記憶層はCo−Fe−Bを有して構成される。
また上記磁化固定層はCo−Fe−Bを有して構成される。
本発明のメモリ装置は、情報を磁性体の磁化状態により保持する記憶素子と、互いに交差する2種類の配線とを備え、記憶素子は上記本発明の記憶素子の構成であり、2種類の配線の間に記憶素子が配置され、これら2種類の配線を通じて、記憶素子に積層方向の電流が流れ、スピン偏極した電子が注入されるものである。
上述の本発明の記憶素子の構成によれば、情報を磁性体の磁化状態により保持する記憶層を有し、この記憶層に対して中間層を介して磁化固定層が設けられ、中間層が絶縁体から成り、積層方向にスピン偏極した電子を注入することにより、記憶層の磁化の向きが変化して、記憶層に対して情報の記録が行われるので、積層方向に電流を流してスピン偏極した電子を注入することによって情報の記録を行うことができる。
そして、記憶層が受ける、実効的な反磁界の大きさが、記憶層の飽和磁化量よりも小さいことにより、記憶層が受ける反磁界が低くなっており、記憶層の磁化の向きを反転させるために必要となる、書き込み電流量を低減することができる。
一方、記憶層の飽和磁化量を低減しなくても書き込み電流量を低減することができるため、記憶層の飽和磁化量を充分な量として、記憶層の熱安定性を充分に確保することが可能になる。
また、強磁性層である記憶層、磁化固定層の膜厚を一定の範囲で設計することにより、垂直磁気異方性を付与する。
強磁性層の膜厚が一定の範囲内にあるとき、界面磁気異方性エネルギーが反磁界エネルギーを上回る。このとき、強磁性層の磁化容易軸が積層面に対して垂直方向となる。これによって、磁化の容易軸が面内方向の場合に比べて、記憶素子の反転電流を減少させることができる。
また上述の本発明のメモリ装置の構成によれば、2種類の配線の間に記憶素子が配置され、これら2種類の配線を通じて記憶素子に積層方向の電流が流れ、スピン偏極した電子が注入されるものであることにより、2種類の配線を通じて記憶素子の積層方向に電流を流してスピン注入による情報の記録を行うことができる。
また、記憶層の飽和磁化量を低減しなくても、記憶素子の書き込み電流量を低減することが可能になるため、記憶素子に記録された情報を安定して保持すると共に、メモリ装置の消費電力を低減することが可能になる。
本発明によれば、記憶層の飽和磁化量を低減しなくても、記憶素子の書き込み電流量を低減することが可能になるため、情報保持能力である熱安定性を充分に確保して、特性バランスに優れた記憶素子を構成することができる。特に記憶層及び磁化固定層が、界面磁気異方性エネルギーが反磁界エネルギーよりも大きくなる膜厚とされていることで、記憶層及び磁化固定層の磁化容易軸が積層面に対して垂直方向となる。これによって、磁化の容易軸が面内方向の場合に比べて、記憶素子の反転電流を減少させることができる。
従って、安定して動作する、信頼性の高いメモリ装置を実現することができる。
また、書き込み電流を低減して、記憶素子に書き込みを行う際の消費電力を低減することが可能になる。従って、メモリ装置全体の消費電力を低減することが可能になる。
本発明の実施の形態のメモリ装置の概略構成の説明図である。 実施の形態の記憶素子の断面図である。 0.09×0.18μmサイズの記憶層のCoの量と、反転電流密度との関係を示した図である。 0.09×0.18μmサイズの記憶層のCoの量と、熱安定性の指標との関係を示した図である。 50nmφサイズの記憶層のCoの量と、熱安定性の指標との関係を示した図である。 実施の形態の実験5の試料の層構造及び測定結果の説明図である。 実施の形態の実験5による膜厚依存性の説明図である。 実施の形態の実験6の試料の層構造の説明図である。 実施の形態の実験6の測定結果の説明図である。 実施の形態の実験7の試料の層構造及び測定結果の説明図である。 実施の形態の実験8の試料の層構造及び測定結果の説明図である。 実施の形態の実験8の測定結果の説明図である。 従来のMRAMの構成を模式的に示した斜視図である。 スピン注入による磁化反転を利用したメモリ装置の概略構成の説明図である。 図14のメモリ装置の断面図である。
以下、本発明の実施の形態を次の順序で説明する。
<1.実施の形態の記憶素子の概要>
<2.実施の形態の構成>
<3.実験>
<1.実施の形態の記憶素子の概要>

まず、発明の実施の形態となる記憶素子の概要について説明する。
本発明の実施の形態は、前述したスピン注入により、記憶素子の記憶層の磁化の向きを反転させて、情報の記録を行うものである。
記憶層は、強磁性層等の磁性体により構成され、情報を磁性体の磁化状態(磁化の向き)により保持するものである。
詳しくは後述するが、記憶素子は、例えば図2に一例を示す層構造とされ、少なくとも2つの強磁性層としての記憶層17、磁化固定層15を備え、またその2つの磁性層の間の中間層としての絶縁層16(トンネル絶縁層)を備える。
特に本実施の形態の場合、強磁性体層である記憶層17、磁化固定層15が、界面磁気異方性エネルギーが反磁界エネルギーよりも大きくなる膜厚とされている。
記憶層17は、膜面に垂直な磁化を有し、情報に対応して磁化の向きが変化される。
磁化固定層15は、記憶層17に記憶された情報の基準となる膜面に垂直な磁化を有する。
絶縁層16は、非磁性体であって、記憶層17と磁化固定層15の間に設けられる。
そして記憶層17、絶縁層16、磁化固定層15を有する層構造の積層方向にスピン偏極した電子を注入することにより、記憶層17の磁化の向きが変化して、記憶層17に対して情報の記録が行われる。
スピン注入により磁性層(記憶層17)の磁化の向きを反転させる基本的な動作は、巨大磁気抵抗効果素子(GMR素子)もしくはトンネル磁気抵抗効果素子(MTJ素子)から成る記憶素子に対して、その膜面に垂直な方向に、ある閾値以上の電流を流すものである。このとき、電流の極性(向き)は、反転させる磁化の向きに依存する。
この閾値よりも絶対値が小さい電流を流した場合には、磁化反転を生じない。
スピン注入型磁気メモリにとって重要な課題は、熱安定性の確保と反転電流低減の両立である。
熱揺らぎによる磁化反転が原因で、書き込まれた状態が意図せずに変わってしまうことがある得る。熱揺らぎによる磁化反転の発生頻度は、熱安定性の指標Δを用いて記述される。
また、スピン注入磁化反転に必要な電流Ic0は、消費電力やセルサイズの観点から小さいほうが望ましい。
熱安定性の指標Δと反転電流Ic0は、記憶層の磁化の容易軸の向きに応じて異なる。具体的には、以下の通りである。式(1)(2)は面内磁化(磁化の方向が膜面に平行)の場合の指標Δと、反転電流Ic0を示し、式(3)(4)は本実施の形態のように垂直磁化(磁化の方向が膜面に垂直)の場合の指標Δと、反転電流Ic0を示している。
Figure 2012059878
上記式(1)〜(4)において、
K:容易軸方向の磁気異方性エネルギー密度、μ0:真空の透磁率、Ms:飽和磁化、V:体積、kB:ボルツマン定数、T:温度、(Nx,Ny,Nz):反磁界係数、α:ダンピング定数、η:スピン偏極率、e:電子の電荷、バー付きのh:換算プランク定数、である。
反磁界係数の添え字(x、y、z)は3次元空間の方向を示しており、(x、y)が積層面内方向、zが積層面に垂直な方向である。
Δは記憶層の磁化を反転させるために必要なエネルギー(以下、エネルギー障壁と呼ぶ。)と熱エネルギーの比で定義され、この値が大きいほど熱安定性に優れていることになる。
面内磁化型においては、磁気異方性エネルギー密度Kは一般に無視できるほど小さく、上記式(1)の第二項がΔを支配的に決定する。
0以上のΔを確保するためには、Ny>Nxとする必要がある。このためには、記憶層の(x、y)面内の形状を楕円形や長方形とするとよい。
ここで、(y方向の長さ)<(x方向の長さ)とする。このようにして得られるエネルギー障壁は、形状磁気異方性エネルギーと呼ばれる。形状磁気異方性エネルギーは、飽和磁化Msの2乗に比例する。
一方、垂直磁化型においては、ある程度大きな磁気異方性エネルギー密度Kが、0以上のΔを確保するために必要である。
一般には、結晶磁気異方性エネルギーと呼ばれる、磁性層の結晶構造に由来するエネルギーを用いる。
上記式(3)の第二項は、反磁界項と呼ばれ、Δを減少させる方向に働く。
また、垂直磁化型では形状異方性エネルギーを利用する必要はないために、記憶層17の(x、y)面内の形状は、円形や正方形とされることが多い。このときNy=Nxとなる。
垂直磁化型の別の形態では、磁性層自体に結晶磁気異方性がない場合でも、隣接する層との界面にはたらく界面磁気異方性を用いる。
ここで、単位面積あたりの界面磁気異方性エネルギーをKiとすると、K=Ki/tとなる。ここで、tは磁性層の膜厚である。Δの式から、単位面積あたりのエネルギー障壁Eは、次のようになる。
Figure 2012059878
なお、ここでは簡単のためNz−Nx=1とした。この式(5)の第二項は反磁界エネルギーである。
そしてE>0が垂直磁化となる条件である。これより、膜厚が薄いほど垂直磁化に成りやすい。
界面磁気異方性エネルギーを用いる場合、飽和磁化Msと単位面積あたりの界面磁気異方性エネルギーKi自体も膜厚依存を持つために、記憶層17や磁化固定層15が垂直磁化となるためには上記式(5)のE>0を満たすような膜厚を用いる必要がある。
従って本実施の形態では、強磁性体層である記憶層17、磁化固定層15は、単位面積あたりのエネルギー障壁Eが、E>0となる膜厚とされる。
また、本実施の形態では、記憶層17が受ける、実効的な反磁界の大きさが、記憶層17の飽和磁化量よりも小さいものとされる。
熱安定性の指標Δと電流の閾値Icとは、トレードオフの関係になることが多い。そのため、メモリ特性を維持するには、これらの両立が課題となる。
記憶層17の磁化状態を変化させる電流の閾値は、実際には、例えば記憶層17の厚さが2nmであり、平面パターンが100nm×150nmの略楕円形のTMR素子において、+側の閾値+Ic=+0.5mAであり、−側の閾値−Ic=−0.3mAであり、その際の電流密度は約3.5×106A/cm2である。
これに対して、電流磁場により磁化反転を行う通常のMRAMでは、書き込み電流が数mA以上必要となる。
従って、スピン注入によって磁化反転を行う場合には、上述のように書き込み電流の閾値が充分に小さくなるため、集積回路の消費電力を低減させるために有効であることが分かる。
また、通常のMRAMで必要とされる、電流磁界発生用の配線(図13の配線105)が不要となるため、集積度においても通常のMRAMに比較して有利である。
そして、スピン注入により磁化反転を行う場合には、記憶素子に直接電流を流して情報の書き込み(記録)を行うことから、書き込みを行うメモリセルを選択するために、記憶素子を選択トランジスタと接続してメモリセルを構成する。
この場合、記憶素子に流れる電流は、選択トランジスタで流すことが可能な電流(選択トランジスタの飽和電流)の大きさによって制限される。
選択トランジスタの飽和電流よりも、スピン注入による磁化の反転電流Ic0を小さくするためには、記憶層17の飽和磁化量Msを減らせば良い。
しかし、単純に飽和磁化量Msを減らした場合(例えば、特許文献3)には、記憶層17の熱安定性が著しく損なわれ、メモリとしての機能を果せなくなる。
メモリを構成するためには、熱安定性の指標Δがある程度以上の大きさである必要がある。
そこで、本願の発明者等が種々の検討を行った結果、記憶層17を構成する強磁性層として、例えばCo−Fe−Bの組成を選定することにより、記憶層17が受ける実効的な反磁界(Meffective)の大きさが、記憶層17の飽和磁化量Msよりも小さくなることを見出した。
上述の強磁性材料を用いることにより、記憶層17が受ける実効的な反磁界の大きさが、記憶層17の飽和磁化量Msよりも小さい構成となる。
これにより、記憶層17が受ける反磁界を小さくすることができるので、式(3)により表される熱安定性Δを損ねることなく、式(4)により表される反転電流Ic0を低減する効果が得られる。
さらに、発明者らは、上記の選定されたCo−Fe−B組成の内、限られた組成範囲において、Co−Fe−Bが膜面垂直方向に磁化し、それにより、Gbitクラスの容量を実現可能な極微小記録素子においても十分な熱安定性が確保可能であることを見出した。
従って、Gbitクラスのスピン注入型メモリにおいて熱安定性を保った状態で、低電流で情報の書き込みができる、という安定したメモリの形成を可能にする。
本実施の形態では、記憶層17が受ける実効的な反磁界の大きさが、記憶層17の飽和磁化量Msよりも小さい構成、即ち、記憶層17の飽和磁化量Msに対する実効的な反磁界の大きさの比の値を1より小さくする。
さらに、選択トランジスタの飽和電流値を考慮して、記憶層17と磁化固定層15との間の非磁性の中間層として、絶縁体から成るトンネル絶縁層(絶縁層16)を用いて磁気トンネル接合(MTJ)素子を構成する。
トンネル絶縁層を用いて磁気トンネル接合(MTJ)素子を構成することにより、非磁性導電層を用いて巨大磁気抵抗効果(GMR)素子を構成した場合と比較して、磁気抵抗変化率(MR比)を大きくすることができ、読み出し信号強度を大きくすることができるためである。
そして、特に、このトンネル絶縁層16の材料として、酸化マグネシウム(MgO)を用いることにより、これまで一般的に用いられてきた酸化アルミニウムを用いた場合よりも、磁気抵抗変化率(MR比)を大きくすることができる。
また、一般に、スピン注入効率はMR比に依存し、MR比が大きいほど、スピン注入効率が向上し、磁化反転電流密度を低減することができる。
従って、中間層であるトンネル絶縁層16の材料として酸化マグネシウムを用い、同時に上記の記憶層17を用いることにより、スピン注入による書き込み閾値電流を低減することができ、少ない電流で情報の書き込み(記録)を行うことができる。また、読み出し信号強度を大きくすることができる。
これにより、MR比(TMR比)を確保して、スピン注入による書き込み閾値電流を低減することができ、少ない電流で情報の書き込み(記録)を行うことができる。また、読み出し信号強度を大きくすることができる。
このようにトンネル絶縁層16を酸化マグネシウム(MgO)膜により形成する場合には、MgO膜が結晶化していて、001方向に結晶配向性を維持していることがより望ましい。
なお、本実施の形態において、記憶層17と磁化固定層15との間の中間層(トンネル絶縁層16)は、酸化マグネシウムから成る構成とする他にも、例えば酸化アルミニウム、窒化アルミニウム、SiO2、Bi23、MgF2、CaF、SrTiO2、AlLaO3、Al−N−O等の各種の絶縁体、誘電体、半導体を用いて構成することもできる。
トンネル絶縁層16の面積抵抗値は、スピン注入により記憶層17の磁化の向きを反転させるために必要な電流密度を得る観点から、数十Ωμm2程度以下に制御する必要がある。
そして、MgO膜から成るトンネル絶縁層16では、面積抵抗値を上述の範囲とするために、MgO膜の膜厚を1.5nm以下に設定する必要がある。
また、記憶層17の磁化の向きを、小さい電流で容易に反転できるように、記憶素子を小さくすることが望ましい。
従って、好ましくは、記憶素子の面積を0.01μm2以下とする。
なお、本実施の形態における記憶層17は組成の異なる他の強磁性層を直接積層させることも可能である。また、強磁性層と軟磁性層とを積層させたり、複数層の強磁性層を軟磁性層や非磁性層を介して積層させたりすることも可能である。このように積層させた場合でも、本発明でいう効果が得られる。
特に複数層の強磁性層を非磁性層に介して積層させた構成としたときには、強磁性層の層間の相互作用の強さを調整することが可能になるため、記憶素子の寸法がサブミクロン以下になっても、磁化反転電流が大きくならないように抑制することが可能になるという効果が得られる。この場合の非磁性層の材料としては、Ru,Os,Re,Ir,Au,Ag,Cu,Al,Bi,Si,B,C,Cr,Ta,Pd,Pt,Zr,Hf,W,Mo,Nbまたはそれらの合金を用いることができる。
記憶素子のその他の構成は、スピン注入により情報を記録する記憶素子の従来公知の構成と同様とすることができる。
磁化固定層15は、強磁性層のみにより、或いは反強磁性層と強磁性層の反強磁性結合を利用することにより、その磁化の向きが固定された構成とすることが出来る。
また、磁化固定層15は、単層の強磁性層から成る構成、或いは複数層の強磁性層を非磁性層を介して積層した積層フェリピン構造とすることが出来る。
積層フェリピン構造の磁化固定層15を構成する強磁性層の材料としては、Co,CoFe,CoFeB等を用いることができる。また、非磁性層の材料としては、Ru,Re,Ir,Os等を用いることができる。
反強磁性層の材料としては、FeMn合金、PtMn合金、PtCrMn合金、NiMn合金、IrMn合金、NiO、Fe23等の磁性体を挙げることができる。
また、これらの磁性体に、Ag,Cu,Au,Al,Si,Bi,Ta,B,C,O,N,Pd,Pt,Zr,Hf,Ir,W,Mo,Nb等の非磁性元素を添加して、磁気特性を調整したり、その他の結晶構造や結晶性や物質の安定性等の各種物性を調整したりすることができる。
また、記憶素子の膜構成は、記憶層17が磁化固定層15の下側に配置される構成でも、下側に配置される構成でも全く問題はない。
さらには、磁化固定層15が記憶層17の上下に存在する、いわゆるデュアル構造でもよい。
なお、記憶素子の記憶層17に記録された情報を読み出す方法としては、記憶素子の記憶層17に薄い絶縁膜を介して、情報の基準となる磁性層を設けて、絶縁層16を介して流れる強磁性トンネル電流によって読み出してもよいし、磁気抵抗効果により読み出してもよい。
<2.実施の形態の構成>

続いて、本発明の実施の形態の具体的構成について説明する。
本発明の一実施の形態としてのメモリ装置の概略構成図(斜視図)を図1に示す。
このメモリ装置は、互いに直交する2種類のアドレス配線(例えばワード線とビット線)の交点付近に、磁化状態で情報を保持することができる記憶素子3が配置されて成る。
即ち、シリコン基板等の半導体基体10の素子分離層2により分離された部分に、各メモリセルを選択するための選択用トランジスタを構成する、ドレイン領域8、ソース領域7、並びにゲート電極1が、それぞれ形成されている。このうち、ゲート電極1は、図中前後方向に延びる一方のアドレス配線(例えばワード線)を兼ねている。
ドレイン領域8は、図中左右の選択用トランジスタに共通して形成されており、このドレイン領域8には、配線9が接続されている。
そして、ソース領域7と、上方に配置された、図中左右方向に延びる他方のアドレス配線(例えばビット線)6との間に、記憶素子3が配置されている。この記憶素子3は、スピン注入により磁化の向きが反転する強磁性層から成る記憶層を有する。
また、この記憶素子3は、2種類のアドレス配線1,6の交点付近に配置されている。
この記憶素子3は、ビット線6と、ソース領域7とに、それぞれ上下のコンタクト層4を介して接続されている。
これにより、2種類のアドレス配線1,6を通じて、記憶素子3に上下方向の電流を流して、スピン注入により記憶層の磁化の向きを反転させることができる。
また、本実施の形態のメモリ装置の記憶素子3の断面図を図2に示す。
図2に示すように、記憶素子3は、下層側から順に、下地層14、磁化固定層15、絶縁層16、記憶層17、キャップ層18が積層されている。
この場合、スピン注入により磁化M17の向きが反転する記憶層17に対して、下層に磁化固定層15を設けている。
スピン注入型メモリにおいては、記憶層17の磁化M17と磁化固定層15の磁化M15の相対的な角度によって情報の「0」「1」を規定している。
記憶層17と磁化固定層15との間には、トンネルバリア層(トンネル絶縁層)となる絶縁層16が設けられ、記憶層17と磁化固定層15とにより、MTJ素子が構成されている。
また、磁化固定層15の下には下地層14が形成され、記憶層17の上にはキャップ層18が形成されている。
記憶層17は、磁化M17の方向が層面垂直方向に自由に変化する磁気モーメントを有する強磁性体から構成されている。
磁化固定層15は、磁化M15が膜面垂直方向に固定された磁気モーメントを有する強磁性体から構成されている。
情報の記憶は一軸異方性を有する記憶層15の磁化の向きにより行う。書込みは、膜面垂直方向に電流を印加し、スピントルク磁化反転を起こすことにより行う。このように、スピン注入により磁化の向きが反転する記憶層15に対して、下層に磁化固定層15が設けられ、記憶層17の記憶情報(磁化方向)の基準とされる。
本実施の形態では、記憶層17、磁化固定層15としてはCo−Fe−Bを用いる。
また記憶層17、磁化固定層15は、単位面積あたりのエネルギー障壁Eが、E>0となる膜厚とされる。
磁化固定層15は情報の基準であるので、記録や読み出しによって磁化の方向が変化してはいけないが、必ずしも特定の方向に固定されている必要はなく、記憶層17よりも保磁力を大きくするか、膜厚を厚くするか、あるいは磁気ダンピング定数を大きくして記憶層17よりも動きにくくすればよい。
磁化を固定する場合にはPtMn、IrMnなどの反強磁性体を磁化固定層15に接触させるか、あるいはそれらの反強磁性体に接触した磁性体をRu等の非磁性体を介して磁気的に結合させ、磁化固定層15を間接的に固定しても良い。
本実施の形態においては、特に、記憶層17が受ける実効的な反磁界の大きさが記憶層17の飽和磁化量Msよりも小さくなるように、記憶素子3の記憶層17の組成が調整されている。
即ち、記憶層17の強磁性材料Co−Fe−B組成を選定し、記憶層17が受ける実効的な反磁界の大きさを低くして、記憶層17の飽和磁化量Msよりも小さくなるようにする。
さらに、本実施の形態において、中間層である絶縁層16を、酸化マグネシウム(MgO)層としている。この場合には、磁気抵抗変化率(MR比)を高くすることができる。
このようにMR比を高くすることによって、スピン注入の効率を向上して、記憶層17の磁化M17の向きを反転させるために必要な電流密度を低減することができる。
本実施の形態の記憶素子3は、下地層14からキャップ層18までを真空装置内で連続的に形成して、その後エッチング等の加工により記憶素子3のパターンを形成することにより、製造することができる。
以上の本実施の形態によれば、記憶素子3の記憶層17が、記憶層17が受ける実効的な反磁界の大きさが記憶層17の飽和磁化量Msよりも小さくなるように構成されているので、記憶層17が受ける反磁界が低くなっており、記憶層17の磁化M17の向きを反転させるために必要となる、書き込み電流量を低減することができる。
一方、記憶層17の飽和磁化量Msを低減しなくても書き込み電流量を低減することができるため、記憶層17の飽和磁化量Msを充分な量として、記憶層17の熱安定性を充分に確保することが可能になる。
また本実施の形態では記憶層17、磁化固定層15は、単位面積あたりのエネルギー障壁Eが、E>0となる膜厚とされる。
記憶層17、磁化固定層15の膜厚がE>0となる一定の範囲内にあるとき、界面磁気異方性エネルギーが反磁界エネルギーを上回る。このとき、記憶層17、磁化固定層15の磁化容易軸が積層面に対して垂直方向となる。これによって、磁化の容易軸が面内方向の場合に比べて、記憶素子の反転電流を減少させることができる。
これらのことから、情報保持能力である熱安定性を充分に確保することと、磁化反転電流(書き込み電流)の低減が両立でき、特性バランスに優れた記憶素子3を構成することができる。これにより、動作エラーをなくして、記憶素子3の動作マージンを充分に得ることができ、記憶素子3を安定して動作させることができる。
従って、安定して動作する、信頼性の高いメモリ装置を実現することができる。
また、書き込み電流を低減して、記憶素子3に書き込みを行う際の消費電力を低減することが可能なため、本実施の形態の記憶素子3によりメモリセルを構成した、メモリ装置全体の消費電力を低減することが可能になる。
従って、情報保持特性が優れた、安定して動作する信頼性の高いメモリ装置を実現することができ、記憶素子3を備えたメモリ装置において、消費電力を低減することができる。
また、図2に示した記憶素子3を備え、図1に示した構成のメモリ装置は、メモリ装置を製造する際に、一般の半導体MOS形成プロセスを適用できるという利点を有している。
従って、本実施の形態のメモリ装置を、汎用メモリとして適用することが可能になる。
<3.実験>

ここで、本実施の形態の記憶素子の構成において、具体的に記憶層17を構成する強磁性層の材料を選定することにより、記憶層17が受ける実効的な反磁界の大きさを調整して、記憶素子の試料を作製し、その特性を調べた。
さらに、強磁性体層である記憶層17、磁化固定層15としての適切な膜厚についての実験も行った。
実際のメモリ装置には、図1に示したように、記憶素子3以外にもスイッチング用の半導体回路等が存在するが、ここでは、記憶層17の磁化反転特性を調べる目的で、記憶素子のみを形成したウェハにより検討を行った。
なお、以下の[実験1]〜[実験4]では、記憶層17の強磁性材料Co−Fe−B組成を選定し、記憶層17が受ける実効的な反磁界の大きさを低くして、記憶層17の飽和磁化量Msよりも小さくなるようにすることについて検討した。
また[実験5]〜[実験8]では、記憶層17、磁化固定層15の膜厚について検討した。
[実験1]
厚さ0.725mmのシリコン基板上に、厚さ300nmの熱酸化膜を形成し、その上に図2に示した構成の記憶素子3を形成した。
具体的には、図2に示した構成の記憶素子3において、各層の材料及び膜厚を次のように選定した。
・下地層14:膜厚10nmのTa膜と膜厚25nmのRu膜の積層膜
・磁化固定層15:膜厚2.5nmのCoFeB膜
・トンネル絶縁層16:膜厚0.9nmの酸化マグネシウム膜
・記憶層17:磁化固定層と同じ組成のCoFeB膜
・キャップ層18:膜厚3nmのTa膜、膜厚3nmのRu膜、膜厚3nmのTa膜の積層膜
このように各層を選定し、また下地層14とシリコン基板との間に図示しない膜厚100nmのCu膜(後述するワード線となるもの)を設けた。
上記膜構成で、記憶層17の強磁性層は、材質をCo−Fe−Bの3元系合金とし、強磁性層の膜厚を2.0nmに固定した。
酸化マグネシウム膜から成る絶縁層16以外の各層は、DCマグネトロンスパッタ法を用いて成膜した。
酸化マグネシウム(MgO)膜から成る絶縁層16は、RFマグネトロンスパッタ法を用いて成膜した。
さらに、記憶素子3の各層を成膜した後に、磁場中熱処理炉で加熱処理を行った。
次に、ワード線部分をフォトリソグラフィによってマスクした後に、ワード線以外の部分の積層膜に対してArプラズマにより選択エッチングを行うことにより、ワード線(下部電極)を形成した。
この際に、ワード線部分以外は、基板の深さ5nmまでエッチングされた。
その後、電子ビーム描画装置により記憶素子3のパターンのマスクを形成し、積層膜に対して選択エッチングを行い、記憶素子3を形成した。記憶素子3部分以外は、ワード線のCu層直上までエッチングした。
なお、特性評価用の記憶素子には、磁化反転に必要なスピントルクを発生させるために、記憶素子に充分な電流を流す必要があるため、トンネル絶縁層の抵抗値を抑える必要がある。そこで、記憶素子3のパターンを、短軸0.09μm×長軸0.18μmの楕円形状として、記憶素子3の面積抵抗値(Ωμm2)が20Ωμm2となるようにした。
次に、記憶素子3部分以外を、厚さ100nm程度のAl23のスパッタリングによって絶縁した。
その後、フォトリソグラフィを用いて、上部電極となるビット線及び測定用のパッドを形成した。
このようにして、記憶素子3の試料を作製した。
そして、上述の製造方法により、それぞれ記憶層17の強磁性層のCo−Fe−B合金の組成を変えた、記憶素子3の各試料を作製した。
Co−Fe−B合金の組成は、CoFeとBとの組成比(原子%)を80:20に固定して、CoFe中のCoの組成比x(原子%)を、90%、80%、70%、60%、50%、40%、30%、20%、10%、0%と変化させた。
以上、作製した記憶素子3の各試料に対して、それぞれ以下のようにして、特性の評価を行った。
測定に先立ち、反転電流のプラス方向とマイナス方向の値を対称になるように制御することを可能にするため、記憶素子3に対して、外部から磁界を与えることができるように構成した。
また、記憶素子3に印加される電圧が、絶縁層16が破壊しない範囲内の1Vまでとなるように設定した。
(飽和磁化量の測定)
飽和磁化量Msを、試料振動型磁力計(Vibrating Sample Magnetometer)を使用した、VSM測定によって、測定した。
(実効的な反磁界の測定)
実効的な反磁界の測定用の試料として、上述した記憶素子3の試料とは別に、記憶素子3を構成する各層を形成し、これを20mm×20mm角の平面パターンに形成した試料を作製した。
そして、FMR(Ferromagnetic Resonance)測定によって、実効的な反磁界の大きさMeffectiveを求めた。
このFMR測定によって求められる、任意の外部磁場Hexに対する共鳴周波数fFMRは、下記の式(6)で与えられる。
Figure 2012059878
ここで、式(6)中のMeffectiveは、4πMeffective=4πMs−H⊥(H⊥:膜面に垂直な方向の異方性磁界)で表すことができる。
(反転電流値及び熱安定性の測定)
本実施の形態による記憶素子3の書き込み特性を評価する目的で、反転電流値の測定を行った。
記憶素子3に10μsから100msのパルス幅の電流を流して、その後の記憶素子3の抵抗値を測定した。
さらに、記憶素子3に流す電流量を変化させて、この記憶素子3の記憶層17の磁化M17の向きが反転する電流値を求めた。この電流値のパルス幅依存性をパルス幅1nsに外挿した値を、反転電流値とした。
また、反転電流値のパルス幅依存性の傾きは、記憶素子3の前述した熱安定性の指標(Δ)に対応する。反転電流値がパルス幅によって変化しない(傾きが小さい)ほど、熱の擾乱に強いことを意味する。
そして、記憶素子3間のばらつきを考慮するために、同一構成の記憶素子3を20個程度作製して、上述の測定を行い、反転電流値及び熱安定性の指標Δの平均値を求めた。
さらに、測定により得られた反転電流値の平均値と、記憶素子3の平面パターンの面積とから、反転電流密度Jc0を算出した。
記憶素子3の各試料について、記憶層17のCo−Fe−B合金の組成と、飽和磁化量Ms及び実効的な反磁界の大きさMeffectiveの測定結果、さらに飽和磁化量と実効的な反磁界の大きさとの比Meffective/Msを表1に示す。ここで、表1に記載の記憶層17のCo−Fe−B合金のCo量は原子%で示している。
Figure 2012059878
表1から、(CoxFe100-x8020のCo量xが70%以下の場合においては、実効的な反磁界の大きさ(Meffective)は飽和磁化量Msよりも小さく、つまり、Co量xが70%以下のときの比Meffective/はMs、1.0より小さな値になっている。
さらに、Co量xが小さくなるほど、MeffectiveとMsの差が大きくなっていることが確認できる。
反転電流値の測定結果を図3に示し、熱安定性の指標の測定結果を図4に示す。
図3は、記憶層17のCo−Fe−B合金のCo量x(CoFe中の含有量;原子%)と、反転電流値から求めた反転電流密度Jc0との関係を示している。
図4は、記憶層17のCo−Fe−B合金のCo量(CoFe中の含有量;原子%)と、熱安定性の指標Δとの関係を示している。
図3より、Co量xが小さくになるにつれて、反転電流密度Jc0が小さくなっていくことがわかる。
これは、Co量xが小さくなった場合、飽和磁化量Msは増加するが実効的な反磁界Meffectiveが小さくなるために、両者の積(Ms×Meffective)としては小さくなることに起因する。
図4より、Co量xが小さくなるにつれて、熱安定性の指標Δが大きくなっていき、Co量xがある程度以上小さくなると熱安定性の指標Δが大きい値で安定することが分かる。
これは、図5に示した飽和磁化量Msの測定結果と、式(2)より熱安定性の指標Δが飽和磁化量Msに比例することとから予想される変化とよく一致している。
表1、図4、図5の結果より、実効的な反磁界Meffectiveが飽和磁化量Msよりも小さくなる、Co量xが70%以下の組成において、Msを下げるといった熱安定性を犠牲にする手法を用いずに、高い熱安定性を有したまま、反転電流値Jc0を低減できることが明らかになった。
[実験2]
上記の[実験1]により、(CoxFe100-x8020の場合、Co量xが70%より大きい組成で高い熱安定性を有したまま、反転電流値Jc0を低減できることがわかった。
そこで、[実験2]において(Co70Fe3080z、および(Co80Fe2080z組成の記憶層17を用いて、B量zがCoとFeの比とMeffective/Msにどのような影響を与えるかを調べた。試料の詳細は[実験1]と同様である。
表2に(Co70Fe30100-zzで、B量z(原子%)を5〜40%としたCoFeB合金の組成と、飽和磁化量Ms及び実効的な反磁界の大きさMeffectiveの測定結果、さらに飽和磁化量と実効的な反磁界の大きさとの比Meffective/Msを示す。
また表3には、(Co80Fe20100-zzの場合で、同様に、B量z(原子%)を5〜40%としたCoFeB合金の組成と、飽和磁化量Ms、実効的な反磁界の大きさMeffective、比Meffective/Msを示している。
Figure 2012059878
Figure 2012059878
表2の結果より、(Co70Fe30100-zzのようにCoとFeの比を70/30で固定した場合、B量z=40原子%以外の組成では飽和磁化量Msが実効的な反磁界Meffectiveより小さくなっていることが確認できる。
表3の結果より、(Co80Fe20100-zzのようにCoとFeの比を80/20で固定した場合、いずれの組成においても飽和磁化量Msが実効的な反磁界Meffectiveより大きくなっていることが確認できる。
上述の表1〜3の結果より、B量zが30原子%以下の範囲であれば、飽和磁化量Msと実効的な反磁界Meffectiveの大小関係はCoとFeの比で決定されることが明らかになった。
従って、記憶層17の飽和磁化量Msが実効的な反磁界Meffectiveより小さくなるCo−Fe−B合金の組成は、
0≦Cox≦70、
30≦Fey≦100、
0<Bz≦30において、
(Cox−Fey)100-z−Bzである。
[実験3]
Gbitクラスのスピン注入型メモリでは、記録素子のサイズが100nmφ以下になることが想定される。そこで、[実験3]において、50nmφのサイズの記録素子を用いて、熱安定性を評価した。
Co−Fe−B合金の組成は、CoFeとBとの組成比(原子%)を80:20に固定して、CoFe中のCoの組成比x(原子%)を、90%、80%、70%、60%、50%、40%、30%、20%、10%、0%と変化させた。
素子サイズ以外の試料の詳細は[実験1]と同様である。
記録素子3のサイズが50nmφの場合のCo−Fe−B合金のCo量(CoFe中の含有量;原子%)と熱安定性の指標Δの関係を図5に示す。
図5より、素子サイズが50nmφになったことにより、熱安定性指数ΔのCo−Fe−B合金組成依存性が、図4に示した短軸0.09μm×長軸0.18μmの楕円形状記録素子で得られたΔのCo−Fe−B合金組成依存性から大きく変化したことが分かる。
図5によると、Feが60原子%以上存在するCo−Fe−B合金組成の場合にのみ、高い熱安定性が保持されている。
種々の検討を行った結果、Feが60原子%以上存在するCo−Fe−B合金が極微小な記録素子において高い熱安定性Δを示す理由は、Co−Fe−B合金の磁化が膜面面直方向を向いていることに起因していることが明らかになった。
Co−Fe−B合金の磁化が膜面面直方向になっている理由は、飽和磁化量Msが実効的な反磁界Meffectiveより著しく小さい組成であることに起因していると思われる。
また、垂直磁化膜になると極微小素子においても熱安定性が保たれる理由は、実効的な異方性磁界に関係しており、垂直磁化膜の実効的な異方性磁界は一般的に面内磁化膜よりも遥かに大きな値になる。つまり、垂直磁化膜では、大きな実効的な異方性磁界の効果により、面内磁化膜では十分な熱安定性(Δ)を確保できない極微小な素子においても高い熱安定性(Δ)を保つことが出来る。
上記の実験結果から、(CoxFe100-x8020という組成のCo−Fe−B合金では、Fe100-xが60以上になる場合、Gbitクラスのスピン注入を利用したメモリ装置に好適となるといえる。
[実験4]
上記[実験3]において、(CoxFe100-x8020という組成のCo−Fe−B合金では、Fe量が60以上になる場合、Gbitクラスのスピン注入を利用したメモリ装置に好適となることを示した。[実験4]では、さらに、B量を5〜30原子%の範囲のCo−Fe−B合金で50nmφのサイズの記録素子を作製し、熱安定性を評価した。
素子サイズ以外の試料の詳細は[実験1]と同様である。
Co量x=50、40、30、20、10、0およびB量z=5、10、20、30という範囲における(CoxFe100-x100-zzという組成のCo−Fe−B合金と熱安定性の指標Δの関係を表4に示す。
Figure 2012059878
表4より、Co量x=50かつB量z=5〜30の場合を除いたすべての組成において熱安定性Δが大きく保たれていることが分かる。
つまり、[実験4]の結果と同様に、Co量x=50と60がGbitクラスのスピン注入型メモリに対応した極微小素子で高い熱安定性を確保する際の境界線になることが明らかになった。
従って、上記の結果より、記憶層17のCo−Fe−B合金の組成が、
0≦Cox≦40、
60≦Fey≦100、
0<Bz≦30において、
(Cox−Fey)100-z−Bzである場合、Gbitクラスのスピン注入型メモリを作製するのに好適であることが判明した。
なおCo−Fe−B合金は、CoとFe比のFeが大きい組成において、MeffectiveとMsの乖離が大きくなり、垂直磁化し易くなるため、熱安定性が確保し易くなる。
そのため、磁気メモリの容量が増加し、記憶素子3のサイズが小さくなったときはFeを多く含むCo−Fe−B合金の方が熱安定性を確保し易くなる。
そこで、例えば、Feyが60、70nmφの記憶層17でGbitクラスのスピン注入型磁気メモリが実現できている状況を考えると、記憶素子3の直径が5nmφ小さくなる毎にCo−Fe−B合金のFe量yは5ずつ増えた状態になっていることが望ましい。
例えばFe量yは、上記の(Cox−Fey)100-z−Bzの場合において、CoFe中の含有量としての原子%が65%、70%、75%、80%・・・という組成とする(Co量xでいえば、35%,30%,25%,20%・・・とする)ことが、記憶素子サイズの縮小に応じてより好適な例となる。
[実験5]
次に、記憶層17、磁化固定層15についての膜厚についての実験を行った。
まず[実験5]では、厚さ0.725mmのシリコン基板上に、厚さ300nmの熱酸化膜を形成し、その上に図6(a)に示す構成の磁気多層膜を形成した。
具体的には、磁気多層膜において、下地膜側から順にTa膜(5nm)、Ru膜(10nm)、Ta膜(5nm)、(Co20Fe808020膜(tnm)、Mg膜(0.15nm)、MgO膜(1nm)、Mg膜(0.15nm)、Ru膜(5nm)、Ta膜(5nm)とした。
磁気多層膜を成膜した後に、磁場中熱処理炉で、熱処理を行った。
(Co20Fe808020膜(tnm)の膜厚tを、0.7nm、0.8nm、0.9nm、1.0nm、1.1nmとした複数の試料を作成してそれぞれ測定を行った。
この図6(a)に示す層構成では、強磁性体層である(Co20Fe808020膜を一層有する。まず1つの強磁性体層において適切な膜厚を調べるものである。
なお、この場合、Ta膜、Ru膜、Ta膜が下地層14、(Co20Fe808020膜が磁化固定層15、Mg膜、MgO膜、Mg膜が絶縁層16に相当するモデルと考えることもできる。
(飽和磁化量と異方性磁界の測定)
飽和磁化量Msと異方性磁界Hkを、試料振動型磁力計(Vibrating Sample Magnetometer)を使用した、VSM測定によって、測定した。
(Co20Fe808020膜(強磁性体層)の膜厚t=1.0nmのときの結果を図6(b)に示す。
実線は磁界を積層面に垂直に印加したとき、点線は面内に印加したときに対応する。
磁界を積層面に垂直に印加したときに、ゼロ磁界付近で磁化が急激に変化していることから、垂直磁化になっていることが分かる。
面内方向の磁化曲線において、磁化が飽和磁化に一致する磁界を異方性磁界Hkと呼ぶ。Hkは次の式(7)で表される
Figure 2012059878
従って、飽和磁化Ms、異方性磁界Hk、膜厚tより、上述の式(5)における単位面積あたりの界面磁気異方性エネルギーKiを求めることができる。
KiとMsの膜厚依存性を図7(a)(b)に示す。
膜厚tがおよそ0.9nm以上のとき、KiとMsは一定である。一方、膜厚tが0.9nm以下のときは、ほぼ線形に膜厚tとともに減少する。
この図7(a)(b)から導かれる、単位体積あたりのエネルギー障壁Eの膜厚依存性を図7(c)に示す。
E>0のとき垂直磁化である。これより、0.63nm<t<1.17nmのとき、垂直磁化になることが分かった。
つまり0.63nm<t<1.17nmが垂直磁化を持つ強磁性体層として好適な範囲である。
但し、この条件は、CoFeBの組成や接する層の材料によって異なる。つまりE>0を満たす範囲であり、条件によって垂直磁化膜の強磁性体層として適切な数値範囲の上限・下限は変化しうる。
[実験6]
上記[実験5]と同様の膜構成でKerr測定を行った。図8(a)に膜構成を示す。
ここでは、(Co20Fe808020膜の膜厚tは、0.8nm、1.0nm、1.2nm、1.4nmの各試料で測定した。
また、比較のため図8(b)に示すように、(Co20Fe808020膜の上部の膜を5nm厚のTaに置き換えた膜構成も作成した。
図9(a)にKerr測定の結果を示す。
t<1.0nmのときは垂直磁化である。t=1.2nmのときは波形が崩れ始め、面内磁化になりつつあることが分かる。t=1.4nmのときは完全に面内磁化になっている。これは[実験5]の結果とほぼ一致する。
なお、単位体積あたりのエネルギー障壁Eについてみると、t=0.8、t=1.0、t=1.2の各場合でE>0となり、t=1.4の場合でE<0となっている。
またMgO/RuをTaで置き換えた図6(b)の膜構成でのKerr測定を図9(b)に示している。この場合、垂直磁化が見られていない。
このことから、CoFeB膜が垂直磁化になるためには、片面でMgOに接することが必要となることが分かった。
[実験7]
上記の[実験5]および[実験6]では、単層のCoFeBの垂直磁気異方性を調べた。実際にスピン注入型磁気メモリとして用いるためには、強磁性層/トンネルバリア層/強磁性層の構造を有するMTJ構造としなければならない。
そこで、図10(a)に示すような、いわゆる保磁力差型MTJの磁気特性を[実験6]と同様のKerr測定によって調べた。
この場合の試料は、下地膜側から順にTa膜(5nm)、Ru膜(10nm)、Ta膜(5nm)、(Co20Fe808020膜(1nm)、MgO膜(1nm)、(Co20Fe808020膜(tnm)、Ta膜(5nm)、Ru膜(5nm)とした。
下側のCoFeB層の膜厚は1nmに固定した。これは垂直磁化をもつことが[実験6]より確かめられている。
上側CoFeB層の膜厚tを1.2nm、1.3nm、1.6nm、1.7nmとした各試料を作成して測定した。
なお、この場合、下側から、Ta膜、Ru膜、Ta膜が下地層14、下側の(Co20Fe808020膜が磁化固定層15、MgO膜が絶縁層16、上側の(Co20Fe808020膜が記憶層17、Ta膜、Ru膜がキャップ層18に相当するモデルと考えることができる。
また、下側の(Co20Fe808020膜が記憶層17、上側の(Co20Fe808020膜が磁化固定層15と考えても良い。
図10(b)にKerr測定の結果を示す。
t=1.2nmのとき磁化反転のステップが1段しかない。これは下側のCoFeB層由来のものであり、上CoFeB層が垂直磁化になっていないことを示している。
一方、t=1.3nmから1.6nmのとき、磁化反転のステップが2段ある。これは上下両方のCoFeB層が垂直磁化になっていることを示している。
t=1.7nmになると上CoFeB層の磁化反転がなだらかになっており、垂直磁化が弱まっていることを示している。
このように、図10(a)に示した膜構成において、上側のCoFeB層の膜厚は1.3nmから1.6nmまでの範囲にすることが望ましいことが分かった。
なお、単位体積あたりのエネルギー障壁Eについてみると、t=1.3、t=1.6、の各場合でE>0となり、t=1.2、t=1.7の場合でE<0となっている。
[実験8]
スピン注入型磁気メモリに用いるMTJにおいては、トンネルバリア層に接する2つの強磁性層のうち、片方(磁化固定層15)はその磁化が固定されていることが望ましい。
磁化を固定するには層間結合を用いたシンセティックピン層構造を用いるとよい。
そこで、図11(a)に示す膜構成においてKerr測定を行い、磁気特性を調べた。
この場合、下地膜側から順にTa膜(3nm)、Ru膜(25nm)、Pt膜(5nm)、Co膜(1.1nm)、Ru膜(0.8nm)、(Co20Fe808020膜(1nm)、Mg膜(0.15nm)、MgO膜(1nm)、Mg膜(0.15nm)、(Co20Fe808020膜(tnm)、Ta膜(1nm)、Ru膜(5nm)、Ta膜(3nm)とした。
この場合、下側から、Ta膜、Ru膜が下地層14、Pt膜、Co膜、Ru膜、(Co20Fe808020膜がシンセティックピン層構造による磁化固定層15、Mg膜、MgO膜、Mg膜が絶縁層16、上側の(Co20Fe808020膜が記憶層17、Ta膜、Ru膜、Ta膜がキャップ層18に相当するモデルと考えることができる。
上側のCoFeB層の膜厚tは1.2nm、1.3nm、1.4nm、1.5nm、1.6nm、1.7nmの各試料を用いた。
まず、t=1.4の場合で、8kOeの範囲でKerr測定を行った。図11(b)に結果を示す。
ゼロ磁界付近での反転のほかに±4kOeで反転している。ゼロ磁界付近での反転が上のCoFeB層、±4kOeでの反転がシンセティックピン層の反転に対応する。
このことから、印加される磁界が4kOe以下であれば、実質シンセティックピン層の磁化は固定されているとみなすことができる。
ゼロ磁場付近での測定結果を図12に示す。
上側のCoFeB層の膜厚tが1.3nmから1.6nmの範囲にあるとき、垂直磁化になっていることが見て取れる。
この場合も、上側のCoFeB層の膜厚は1.3nmから1.6nmまでの範囲にすることが望ましいことが分かった。
なお、単位体積あたりのエネルギー障壁Eについてみると、t=1.3〜t=1.6の各場合でE>0となり、t=1.2、t=1.7の場合でE<0となっている。
以上の[実験5]〜[実験8]の結果から、強磁性層の膜厚を一定の範囲で設計することにより、垂直磁気異方性を付与することができ、強磁性層の磁化容易軸が積層面に対して垂直方向とすることができる。これによって、磁化の容易軸が面内方向の場合に比べて、記憶素子の反転電流を減少させることができることがわかった。
以上実施の形態について説明してきたが、本発明では、上述の実施の形態で示した記憶素子3の膜構成に限らず、様々な層構成を採用することが可能である。
例えば実施の形態では、記憶層17と磁化固定層15のCo−Fe−Bの組成を同一のものとしたが、上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲でその他様々な構成が取り得る。
また、実施の形態では、下地層14やキャップ層18は、単一材料でも複数材料の積層構造でも良い。
また磁化固定層15は単層でも、2層の強磁性層と非磁性層から成る積層フェリピン構造を用いても良い。また、さらに、積層フェリピン構造膜に反強磁性膜を付与した構造でもよい。
また、記憶素子の膜構成は、記憶層17が磁化固定層15の上側に配置される構成でも、下側に配置される構成でも全く問題はない。さらには、磁化固定層15が記憶層17の上下に存在する、いわゆるデュアル構造でも全く問題ない。
3 記憶素子、14 下地層、15 磁化固定層、16 絶縁層、17 記憶層、18 キャップ層

Claims (5)

  1. 膜面に垂直な磁化を有し、情報に対応して磁化の向きが変化される記憶層と、
    上記記憶層に記憶された情報の基準となる膜面に垂直な磁化を有する磁化固定層と、
    上記記憶層と上記磁化固定層の間に設けられる非磁性体による絶縁層と、
    を有する層構造を備え、
    上記層構造の積層方向にスピン偏極した電子を注入することにより、上記記憶層の磁化の向きが変化して、上記記憶層に対して情報の記録が行われるとともに、
    上記記憶層が受ける、実効的な反磁界の大きさが、上記記憶層の飽和磁化量よりも小さいものとされ、
    さらに上記記憶層及び上記磁化固定層が、界面磁気異方性エネルギーが反磁界エネルギーよりも大きくなる膜厚とされている記憶素子。
  2. 上記記憶層及び上記磁化固定層の膜厚は、
    E=Ki−(μ0・Ms2・t)/2
    で表される単位面積あたりのエネルギー障壁Eが、E>0となる膜厚である請求項1に記載の記憶素子。
    但し、Kiは単位面積あたりの界面磁気異方性エネルギー、Msは飽和磁化、μ0は真空の透磁率、tは膜厚である。
  3. 上記記憶層はCo−Fe−Bを有して構成される請求項2に記載の記憶素子。
  4. 上記磁化固定層はCo−Fe−Bを有して構成される請求項2に記載の記憶素子。
  5. 情報を磁性体の磁化状態により保持する記憶素子と、
    互いに交差する2種類の配線とを備え、
    上記記憶素子は、
    膜面に垂直な磁化を有し、情報に対応して磁化の向きが変化される記憶層と、上記記憶層に記憶された情報の基準となる膜面に垂直な磁化を有する磁化固定層と、上記記憶層と上記磁化固定層の間に設けられる非磁性体による絶縁層と、上記磁化固定層の上記絶縁層側とは反対側に隣接する反強磁性層とを有する層構造を備え、上記層構造の積層方向にスピン偏極した電子を注入することにより、上記記憶層の磁化の向きが変化して、上記記憶層に対して情報の記録が行われるとともに、上記記憶層が受ける、実効的な反磁界の大きさが、上記記憶層の飽和磁化量よりも小さいものとされ、さらに上記記憶層及び上記磁化固定層が、界面磁気異方性エネルギーが反磁界エネルギーよりも大きくなる膜厚とされている構成とされ、
    上記2種類の配線の間に上記記憶素子が配置され、
    上記2種類の配線を通じて、上記記憶素子に上記積層方向の電流が流れ、スピン偏極した電子が注入されるメモリ装置。
JP2010200983A 2010-09-08 2010-09-08 記憶素子、メモリ装置 Pending JP2012059878A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010200983A JP2012059878A (ja) 2010-09-08 2010-09-08 記憶素子、メモリ装置
US13/216,474 US8455967B2 (en) 2010-09-08 2011-08-24 Memory element and memory device
CN201110255449.9A CN102403025B (zh) 2010-09-08 2011-08-31 存储元件和存储装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010200983A JP2012059878A (ja) 2010-09-08 2010-09-08 記憶素子、メモリ装置

Publications (2)

Publication Number Publication Date
JP2012059878A true JP2012059878A (ja) 2012-03-22
JP2012059878A5 JP2012059878A5 (ja) 2013-10-10

Family

ID=45770089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010200983A Pending JP2012059878A (ja) 2010-09-08 2010-09-08 記憶素子、メモリ装置

Country Status (3)

Country Link
US (1) US8455967B2 (ja)
JP (1) JP2012059878A (ja)
CN (1) CN102403025B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017010549A1 (ja) * 2015-07-16 2018-05-31 国立大学法人東北大学 磁気抵抗効果素子および磁気メモリ
JPWO2018134929A1 (ja) * 2017-01-18 2019-11-07 国立大学法人東北大学 磁気抵抗効果素子、磁気メモリ及び磁気抵抗効果素子の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5786341B2 (ja) * 2010-09-06 2015-09-30 ソニー株式会社 記憶素子、メモリ装置
JP2012064623A (ja) * 2010-09-14 2012-03-29 Sony Corp 記憶素子、メモリ装置
JP2013070008A (ja) * 2011-09-26 2013-04-18 Toshiba Corp 半導体装置およびその製造方法
JP2013115413A (ja) 2011-12-01 2013-06-10 Sony Corp 記憶素子、記憶装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098523A (ja) * 2006-10-13 2008-04-24 Toshiba Corp 磁気抵抗効果素子および磁気メモリ
JP2008227388A (ja) * 2007-03-15 2008-09-25 Sony Corp 記憶素子及びメモリ
US20090080238A1 (en) * 2007-09-25 2009-03-26 Kabushiki Kaisha Toshiba Magnetoresistive element and magnetoresistive random access memory including the same
US20090080124A1 (en) * 2007-09-25 2009-03-26 Kabushiki Kaisha Toshiba Magnetoresistive element and magnetoresistive random access memory including the same
JP2009081315A (ja) * 2007-09-26 2009-04-16 Toshiba Corp 磁気抵抗素子及び磁気メモリ
JP2009094104A (ja) * 2007-10-03 2009-04-30 Toshiba Corp 磁気抵抗素子
JP2010010720A (ja) * 2009-10-13 2010-01-14 Toshiba Corp 磁気抵抗効果素子およびそれを用いた磁気ランダムアクセスメモリ
JP2010093091A (ja) * 2008-10-09 2010-04-22 Hitachi Ltd 磁気メモリ、磁気メモリアレイおよび磁気メモリアレイへの情報書込み方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130814A (en) 1998-07-28 2000-10-10 International Business Machines Corporation Current-induced magnetic switching device and memory including the same
JP2003017782A (ja) 2001-07-04 2003-01-17 Rikogaku Shinkokai キャリヤスピン注入磁化反転型磁気抵抗効果膜と該膜を用いた不揮発性メモリー素子及び該素子を用いたメモリー装置
US7242045B2 (en) 2004-02-19 2007-07-10 Grandis, Inc. Spin transfer magnetic element having low saturation magnetization free layers
US8120949B2 (en) * 2006-04-27 2012-02-21 Avalanche Technology, Inc. Low-cost non-volatile flash-RAM memory
JP2007305882A (ja) * 2006-05-12 2007-11-22 Sony Corp 記憶素子及びメモリ
JP2008160031A (ja) * 2006-12-26 2008-07-10 Sony Corp 記憶素子及びメモリ
JP4380707B2 (ja) * 2007-01-19 2009-12-09 ソニー株式会社 記憶素子
WO2009001706A1 (ja) * 2007-06-25 2008-12-31 Nec Corporation 磁気抵抗効果素子、および磁気ランダムアクセスメモリ
JP5104090B2 (ja) * 2007-07-19 2012-12-19 ソニー株式会社 記憶素子及びメモリ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098523A (ja) * 2006-10-13 2008-04-24 Toshiba Corp 磁気抵抗効果素子および磁気メモリ
JP2008227388A (ja) * 2007-03-15 2008-09-25 Sony Corp 記憶素子及びメモリ
US20090080238A1 (en) * 2007-09-25 2009-03-26 Kabushiki Kaisha Toshiba Magnetoresistive element and magnetoresistive random access memory including the same
US20090080124A1 (en) * 2007-09-25 2009-03-26 Kabushiki Kaisha Toshiba Magnetoresistive element and magnetoresistive random access memory including the same
JP2009081215A (ja) * 2007-09-25 2009-04-16 Toshiba Corp 磁気抵抗効果素子およびそれを用いた磁気ランダムアクセスメモリ
JP2009081216A (ja) * 2007-09-25 2009-04-16 Toshiba Corp 磁気抵抗効果素子およびそれを用いた磁気ランダムアクセスメモリ
JP2009081315A (ja) * 2007-09-26 2009-04-16 Toshiba Corp 磁気抵抗素子及び磁気メモリ
JP2009094104A (ja) * 2007-10-03 2009-04-30 Toshiba Corp 磁気抵抗素子
JP2010093091A (ja) * 2008-10-09 2010-04-22 Hitachi Ltd 磁気メモリ、磁気メモリアレイおよび磁気メモリアレイへの情報書込み方法
JP2010010720A (ja) * 2009-10-13 2010-01-14 Toshiba Corp 磁気抵抗効果素子およびそれを用いた磁気ランダムアクセスメモリ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S.IKEDA(他9名): "A Perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction", NATURE MATERIALS, vol. 9, JPN7014002720, 11 July 2010 (2010-07-11), GB, pages 721 - 724, ISSN: 0002898983 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017010549A1 (ja) * 2015-07-16 2018-05-31 国立大学法人東北大学 磁気抵抗効果素子および磁気メモリ
JPWO2018134929A1 (ja) * 2017-01-18 2019-11-07 国立大学法人東北大学 磁気抵抗効果素子、磁気メモリ及び磁気抵抗効果素子の製造方法
US11081641B2 (en) 2017-01-18 2021-08-03 Tohoku University Magnetoresistance effect element, magnetic memory, and method for manufacturing magnetoresistance effect element
JP7018652B2 (ja) 2017-01-18 2022-02-14 国立大学法人東北大学 磁気抵抗効果素子、磁気メモリ及び磁気抵抗効果素子の製造方法

Also Published As

Publication number Publication date
CN102403025B (zh) 2016-08-03
CN102403025A (zh) 2012-04-04
US20120056286A1 (en) 2012-03-08
US8455967B2 (en) 2013-06-04

Similar Documents

Publication Publication Date Title
US9515254B2 (en) Storage element, memory and electronic apparatus
US10374146B2 (en) Memory element and memory device
JP4682998B2 (ja) 記憶素子及びメモリ
US8436438B2 (en) Memory element and memory device
US10937955B2 (en) Memory element and memory device
US9196333B2 (en) Magnetic memory element and magnetic memory device
JP2012160681A (ja) 記憶素子、メモリ装置
JP2011003617A (ja) 記憶素子及びメモリ
JP2012059878A (ja) 記憶素子、メモリ装置
JP5742142B2 (ja) 記憶素子、メモリ装置
JP2012064624A (ja) 記憶素子、メモリ装置
JP5724256B2 (ja) 記憶素子、メモリ装置
JP2012054439A (ja) 記憶素子及び記憶装置
JP5803079B2 (ja) 記憶素子、メモリ装置
JP2012059809A (ja) 記憶素子、メモリ装置
JP2012059807A (ja) 記憶素子、メモリ装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130822

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150526