JP2012054978A - 無線通信システムにおける受信機のためのスパー抑制 - Google Patents

無線通信システムにおける受信機のためのスパー抑制 Download PDF

Info

Publication number
JP2012054978A
JP2012054978A JP2011225164A JP2011225164A JP2012054978A JP 2012054978 A JP2012054978 A JP 2012054978A JP 2011225164 A JP2011225164 A JP 2011225164A JP 2011225164 A JP2011225164 A JP 2011225164A JP 2012054978 A JP2012054978 A JP 2012054978A
Authority
JP
Japan
Prior art keywords
digital samples
spur
processor
notch
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011225164A
Other languages
English (en)
Other versions
JP5199436B2 (ja
Inventor
F Philippovic Daviel
ダビエル・エフ.・フィリポビク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2012054978A publication Critical patent/JP2012054978A/ja
Application granted granted Critical
Publication of JP5199436B2 publication Critical patent/JP5199436B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • H04B1/1036Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal with automatic suppression of narrow band noise or interference, e.g. by using tuneable notch filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/71Interference-related aspects the interference being narrowband interference
    • H04B1/7101Interference-related aspects the interference being narrowband interference with estimation filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)
  • Transmitters (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

【課題】受信機におけるスパーの悪影響を軽減する。
【解決手段】プロセッサ150は、望まれる信号の帯域幅内に位置するスパーを有している望まれる信号についてのデジタルサンプルを受信する。スパーは、受信機120において内部的に生成され得る、あるいは外部の干渉ソースから生じ得る望ましくない信号である。プロセッサ150は、スパーを抑制するためにデジタルサンプルをフィルタにかけ、抑制されたスパーを有する出力サンプルを提供する。プロセッサ150は、デジタルサンプル上でFFTを実行することと、スペクトル反応を調べることによってスパーを検出する。プロセッサ150は、調整可能なノッチ周波数および/または調整可能なノッチ帯域幅を有するノッチフィルタ160を使って、デジタルサンプルをフィルタにかける。ノッチ周波数は、スパーの周波数に基づいてセットされ、ノッチ帯域幅はスパーの振幅に基づいてセットされる。
【選択図】図1

Description

背景
(I.分野)
本開示は、一般的に通信に関連し、より具体的には、無線通信における、受信機での信号を処理するための技術に関連する。
(II.背景)
無線通信システムにおいて、送信機は、無線周波数(radio frequency)(RF)キャリア信号(carrier signal)上にデータを変調し、送信(transmission)のためにより適しているRF変調された信号(RF modulated signal)を生成する。次に、送信機は、無線チャネルを介して、RF変調された信号を受信機に送信する。受信機は、送信された信号を受信し、受信された信号をフィルタにかけ、増幅し、周波数は、RFからベースバンドに、増幅された信号をダウンコンバートし(downconverts)、ベースバンド信号を、サンプルを得るためにデジタル化する。受信機は、次に、送信機によって送られたデータを回復するために、サンプルを処理する。
受信機は、典型的に、様々な望ましくない信号(undesired signals)を生成する、その信号は、しばしば、スパー(spurs)と呼ばれる。例えば、スパーは、受信機についてのリファレンスオシレータ(reference oscillator)の高調波(harmonics)、ベースバンド信号をデジタル化するのに使用されるサンプリングクロック(sampling clock)の高調波、受信機でデジタル回路のために使用されるクロックの高調波、RFコンポーネント(components)のミクシングプロダクト(mixing products)などであるかもしれない。いくつかのスパーは、望まれる信号の帯域幅内に入る(fall)かもしれない。これらの帯域内スパーは、受信信号(received signal)を適切に復調する受信機の能力を妨げ、したがって受信機の感度を減じる(desenses)ノイズとして、作用する。実際のところ、スパーに起因する劣った感度(poor sensitivity)を受信機が示す1つ以上の「悪い」周波数チャネルを、受信機が有することはまれではない。劣った感度は、低いパフォーマンス(poor performance)、減少された通信範囲(reduced communication coverage)、および、多分他の悪影響(deleterious effects)をもたらす可能性があり、それらのすべては、望ましくない。
したがって、受信機におけるスパーの悪影響を軽減する(mitigate)技術に対して、当技術分野において必要性がある。
[概要]
受信機におけるスパーを抑制するための技術がここに説明される。一般的に、スパーは、受信機において内部的に生成される、あるいは、外部の干渉ソースから生じうる、望ましくない信号である。本技術は、無線通信システムにおける基地局と同様に無線デバイスについて、使用されることができる。本技術は、望まれる信号の小さな一部分(small portion)のみを取り除き(remove)ながら、スパーを抑制することによって、いくつかの周波数チャネルについてのパフォーマンスと感度と、を改善することができる。
一実施形態において、プロセッサ(例えば、無線デバイス内の)は、望まれる信号の帯域幅内に位置するスパーを有する、望まれる信号についてのデジタルサンプルを受信する。プロセッサは、スパーを抑制するために、デジタルサンプルをフィルタにかけ、抑制されたスパーを有する出力サンプルを供給する。プロセッサは、例えば、高速フーリエ変換(fast Fourier transform)(FFT)あるいは離散フーリエ変換(discrete Fourier transform)(DFT)をデジタルサンプル上で実行することと、合成スペクトル反応(resultant spectral response)を調べることと、によってスパーを検出することができる。スパーはまた、受信機において内部的に生成されることが知られている複数のスパーのうちの1つであり得る。プロセッサは、調整可能な(adjustable)ノッチ周波数および/または調整可能なノッチ帯域幅を有するノッチフィルタを用いて、デジタルサンプルをフィルタにかける(filter)ことができる。例えば、ノッチ周波数は、スパーの周波数に基づいてセットされることができ、ノッチ帯域幅は、スパーの振幅に基づいてセットされることができる。
本発明の様々な態様および実施形態は、以下に、さらに詳細に説明される。
図1は、無線デバイスのブロック図を示す。 図2Aは、CDMA信号のスペクトルプロットを示す。 図2Bは、スパー抑制を備えたCDMA信号のスペクトルプロットを示す。 図3は、スパー抑制のために使用された、ノッチフィルタのブロック図を示す。 図4Aは、ノッチフィルタについてのポールとゼロのプロットを示す。 図4Bは、ノッチフィルタの周波数反応を示す。 図5Aは、ノッチフィルタの一実施形態を示す。 図5Bは、ノッチフィルタの一実施形態を示す。 図6は、スパーを検出し、抑制するためのプロセスを示す。
[詳細な説明]
本発明の特徴および本質は、同様の参照文字が全体を通して同様に識別する図面と併せて、以下に記述される詳細な説明から、より明らかになるであろう。
用語「例示的な(exemplary)」は、「例(example)、インスタンス(instance)、又は例証(illustration)として機能している」を意味するように、ここでは使用されている。「例示的な」としてここに説明されるいずれの実施形態あるいは設計(design)も、他の実施形態あるいは設計よりも、好ましいまたは有利であるとして、必ずしも解釈されるべきではない。
ここに説明されるスパー抑制技術は、符号分割多元接続(CDMA)システム、時分割多元接続(TDMA)システム、周波数分割多元接続(FDMA)システム、および直交周波数分割多元接続(OFDMA)システム、直交周波数分割多重(OFDM)システム、シングルキャリア周波数分割多元接続(single-carrier frequency division multiple access)(SC−FDMA)システム、などのような、様々な無線通信技術のために使用されることができる。CDMAシステムは、cdma2000、広帯域CDMA(W−CDMA)、などのような、1つ以上の無線接続技術をインプリメント(implement)することができる。cdma2000は、IS−95、IS―2000、およびIS−856標準規格をカバーする(covers)。TDMAシステムは、モバイル通信のためのグローバルシステム(GSM(登録商標))をインプリメントすることができる。GSM(登録商標)とW−CDMAは、「第三世代パートナーシッププロジェクト」(3GPP)と名づけられたコンソーシアム、のドキュメントにおいて説明されている。cdma2000は、「第三世代パートナーシッププロジェクト2」(3GPP2)と名づけられたコンソーシアム、のドキュメントにおいて説明されている。3GPPおよび3GPP2のドキュメントは、公的に入手可能である。OFDMAシステムは、OFDMを使用する。SC−FDMAシステムは、時間ドメインにおいて、変調信号を送信する一方で、OFDMベースのシステムは、周波数ドメインにおいて、変調信号を送信する。一般的に、ここに説明される技術は、抑制されるべきスパーが望まれる信号帯域幅の一部分のみを占める(occupies)任意の通信システムについて使用されることができる。本技術は、特に、例えば、CDMAおよびOFDMベースのシステムのような、広帯域通信システムに適用できる。
スパー抑制技術(spur suppression techniques)は、無線通信システムにおける基地局同様に無線デバイスについて使用されることができる。基地局は、一般的に、無線デバイスと通信する固定局であり、また、ベーストランシーバシステム(base transceiver system)(BTS)、ノードB、アクセスポイント、あるいはいくつかの他の用語で呼ばれることができる。無線デバイスは、固定されてもよいし、あるいはモバイル(mobile)であってもよく、また、移動局、ユーザ機器、端末、加入者ユニット、あるいはいくつかの他の用語で呼ばれることができる。無線デバイスは、携帯電話、携帯情報端末(personal digital assistant)(PDA)、無線モデムカードなどであってもよい。明確にするために、以下の説明の多くは、CDMAシステムにおける無線デバイスについてであり、それは、cdma2000あるいはW−CDMAをインプリメントすることができる。
図1は、CDMAシステムにおける無線デバイス100のブロック図を示す。受信経路上で、アンテナ110は、1つ以上の基地局から1つ以上のRF変調信号を、また多分他の送信機から干渉信号を、受信する。アンテナ110は、受信RF信号をデュプレクサ112に提供する。デュプレクサ112は、望まれる順方向リンク(あるいはダウンリンク)周波数帯域についての受信RF信号をフィルタにかけ、入力RF信号を受信機120に提供する。望まれる周波数帯域は、セルラ帯域(cellular band)、PCS帯域(PCS band)、あるいはいくつかの他の周波数帯域であってもよい。
概して、受信機は、スーパーヘテロダインアーキテクチャ(super-heterodyne architecture)あるいはダイレクトツーベースバンドアーキテクチャ(direct-to-baseband architecture)を、インプリメントすることができる。スーパーヘテロダインアーキテクチャにおいては、入力RF信号は、マルチプルのステージにおいて、例えば、1つのステージにおいてRFから中間周波数(intermediate frequency)(IF)に、別のステージにおいてIFからベースバンドに、ダウンコンバートされる周波数である。ダイレクトツーベースバンドアーキテクチャにおいて、入力RF信号は、1つのステージで、RFから直接的にベースバンドにダウンコンバートされる周波数である。スーパーヘテロダインおよびダイレクトツーベースバンドアーキテクチャは、異なる回路ブロックを使用してもよいし、かつ/または異なる回路要件(requirements)を有してもよい。次の説明は、ダイレクトツーベースバンドアーキテクチャについてである。
受信機120内で、低雑音増幅器(low noise amplifier)(LNA)122は、固定あるいは可変の利得で、入力RF信号を、受信し、増幅し、増幅RF信号を提供する。ミキサ124周波数は、増幅RF信号を、LOジェネレータ134からの受信ローカルオシレータ(RX_LO)信号でダウンコンバートし、ダウンコンバートされた信号を提供する。RX_LO信号の周波数は、望まれるCDMAチャネルについてのRF変調信号がベースバンドにあるいはベースバンド近く(near-baseband)にダウンコンバートされるよう、選択されることができる。可変利得増幅器(variable gain amplifier)(VGA)126は、可変利得で、ダウンコンバートされた信号を増幅し、望まれる振幅を有する入力ベースバンド信号を提供する。LNA122、VGA126、および受信(RX)デジタル信号プロセッサ(digital signal processor)(DSP)150内の他の回路ブロックは、入力RF信号のために必要とされる信号増幅(required signal amplification)を提供し、それは振幅において90デシベル(dB)以上変わり得る。
ベースバンドフィルタ128は、入力ベースバンド信号をフィルタにかけ、出力ベースバンド信号を提供する。簡潔のために、図1で示されていないが、LOジェネレータ134、ミキサ124、VGA126およびフィルタ128からの信号は、複素信号であり、各複素信号は、同相(inphase)(I)コンポーネントと直角位相(quadrature)(Q)コンポーネントを有する。A/Dコンバータ(analog-to-digital converters)(ADCs)130は、出力ベースバンド信号をデジタル化し、IおよびQ ADCサンプル(I Q ADC samples)、IadcおよびQadcを提供する。ADCs130は、ベースバンドで(図1で示されているように)、あるいは、IFサンプリングについての中間周波数(図1で示されていない)でデジタル化することができる。ADCs130は、デルタ−シグマADCs(ΔΣADCs)、フラッシュADCs、あるいはいくつかの他のタイプのADCsでインプリメントされることができる。AΔΣADCは、入力信号を、少しのビットの解像度(resolution)で、しかし、信号の帯域幅より何倍も大きいサンプリングレートで、デジタル化することができる。
RX DSP150、プリプロセッサ(pre-processor)(pre−proc)152は、前処理(例、デジタルフィルタリング、サンプルレート変換、内挿(interpolation)、など)を、IおよびQ ADCサンプル上で実行し、IおよびQ入力サンプル、IinおよびQinを提供する。具体的な例として、ADCs130は、出力ベースバンド信号を、cdma2000の場合は32倍チップレート(あるいはchip×32)で、4ビットの解像度を用いて、デジタル化することができるΔΣADCsであることができる。チップレートは、cdma2000の場合、1.2288メガチップ/秒(Mcps)で、W−CDMAの場合、3.84Mcpsである。プリプロセッサ152は、ADCサンプルをフィルタにかけ、チップレート(あるいはchip×1)で、18ビットの解像度を用いて、入力サンプルを得るために、サンプルレート変換を実行することができる。入力サンプルレートは、このようにして、ADCサンプルレートとは異なることができる。ノッチフィルタ160は、IおよびQ入力サンプルを、スパーを抑制するために、下に説明されるように、処理し、IおよびQ出力サンプル、IoutとQoutを提供する。ポストプロセッサ(post-processor)(post−proc)162は、後処理を、IおよびQ出力サンプル上で実行し、IおよびQデータサンプル、IdatおよびQdatを提供する。例えば、ポストプロセッサ162は、自動利得制御(automatic gain control)(AGC)、デジタルフィルタリング、直流電流(direct current)(DC)リムーバル、などを実行することができる。デモジュレータ(Demod)164は、復調を、IおよびQデータサンプル上で実行し、復調されたデータを提供する。デモジュレータ164は、レーキ受信機あるいはいくつかの他のタイプの受信機を、当技術分野において知られているように、インプリメントすることができる。
送信経路上で、送信(TX)DSP180は、データが送信されるように処理し、IおよびQデータチップ、IdacとQdacを提供する。D/A変換機(DACs)182は、IおよびQデータチップをアナログに変換し、複素アナログ信号を送信機190に提供する。送信機190内で、VGA192は、可変利得を用いて、アナログ信号を増幅する。ミキサ194周波数は、LOジェネレータ134からの送信LO(TX_LO)信号を使って、増幅された信号を、ベースバンドからRFにアップコンバートする(upconverts)。バンドパスフィルタ196は、アップコンバートされた信号を、D/A変換および周波数アップコンバージョン(frequency upconversion)によってもたらされたイメージ(images)を取り除くために、フィルタにかける。パワーアンプ(power amplifier)(PA)198は、アップコンバートされた信号を増幅し、必要とされるパワーレベル(required power level)を有する出力RF信号を提供する。デュプレクサ112は、逆方向リンク(あるいは、アップリンク)周波数帯域についての出力RF信号をフィルタにかけ、アンテナ110を介して、送信のために、フィルタにかけられた出力RF信号を提供する。簡潔にするため図1では示されてはいないが、DAC182とVGA192からの信号は、IおよびQコンポーネントを有する複素信号である。
リファレンスオシレータ132は、正確な周波数を有する基準信号(reference signal)を提供する。リファレンスオシレータ132は、水晶発振器(crystal oscillator)(XO)、温度補正水晶発振器(temperature compensated crystal oscillator)(TCXO)、電圧制御オシレータ(voltage controlled oscillator)(VCO)あるいは、いくつかの他のタイプのオシレータであってもよい。LOジェネレータ134は、RX_LOおよびTX_LO信号を、オシレータ132からの基準信号に基づいて、生成する。クロックジェネレータ136は、基準信号に基づいて、無線デバイス100内で、様々なユニットについてのクロックを生成する。例えば、クロックジェネレータ136は、ADCs130の場合、32倍チップレート(chip×32)でサンプリングクロックを、また、DSPs150および180、およびコントローラ170の場合、16倍チップレート(chip×16)でデジタルクロックを、生成することができる。
コントローラ170は、DSP150および180のオペレーションと無線デバイス100内の他の回路ブロックを制御する。例えば、コントローラ170は、スパーを検出し、検出されたスパーに基づいて、ノッチフィルタ160のオペレーションを制御する。メモリ172は、無線デバイス100内で、様々な処理ユニット(例、RX DSP150とコントローラ170)のための、データとプログラムコードを記憶する。
図1は、受信機と送信機の具体的な設計を示す。一般的に、各経路についての信号コンディショニング(signal conditioning)は、アンプ、フィルタ、ミキサなどの1つ以上のステージによって、実行されることができる。受信機と送信機は、図1には示されていない、異なる、かつ/あるいは、追加の回路ブロックを含んでもよい。
図1はまた、RXDSP150の具体的設計を示す。一般的に、デジタル処理は、様々な様式において実行されることができる。例えば、ノッチフィルタ160は、ADC130の後、プリプロセッサ152の後(図1で示されているように)、あるいはポストプロセッサ162の後、に位置してもよい。
図2Aは、図1において受信機120内の例示的なCDMA信号のスペクトルプロットを示す。cdma2000の場合、基地局は、1.2288Mcpのチップレートで、擬似乱数(pseudo-random number)(PN)シーケンス(sequence)で、データをスペクトル的に広げる(spectrally spreads)。結果として生じるスペクトラム拡散信号(spread spectrum signal)は、1.23メガヘルツ(MHz)の2面帯域幅を有しており、特定周波数帯域において特定CDMAチャネルにアップコンバートされる周波数である。順方向リンクに関しては、セルラ帯域は、869から894MHzに及び(spans)、そして、PCS帯域は、1930から19990MHzに及ぶ。各周波数帯域は、多くのCDMAチャネルをカバーし(covers)、各CDMAチャネルは、1.23MHzの帯域幅を有する。
無線デバイス100は、受信CDMA信号の帯域幅内に現れる様々なスパーを生成し得る。例えば、リファレンスオシレータ132は、19.2MHzで動作することができて、クロックジェネレータ136は、オシレータ132からの19.2MHzリファレンスクロックに基づいて、様々なクロックを生成することができる。これらのクロックは、対象の周波数帯域(frequency band of interest)の範囲に入る19.2MHzの強い高調波を有することができる。例えば、図2Aに示されているように、19.2MHzの46番目の高調波は、883.2MHzにあり、46番目の高調波についてのスパーは、セルラ帯域の範囲に入り、受信CDMA信号に対して強い可能性がある。
スパーはまた、RFコンポーネントのミクシングプロダクトによっても、生成され得る。例えば、19.2MHzリファレンスクロックの19番目高調波は、chip×32の13番目高調波と混ざり、875.98MHzでスパーを生成する可能性があり、そのスパーは、セルラ帯域の範囲に入る。LOジェネレータ134は、受信機120内で周波数ダウンコンバージョンについての1以上のLO信号を、送信機190内で周波数アップコンバージョンについての1以上のLO信号を、生成することができる。LO信号は、対象(interest)の周波数帯域内に入るスパーを生成するために、無線デバイス100内で、一緒に、および/または他のクロックとまぜることができる。
スパーはまた、受信信号における望ましくないコンポーネント(これはまたジャマ―(jammers)とも呼ばれる)のミクシングプロダクトによっても、生成され得る。例えば、cdma2000に適応可能であるIS−98Dは、無線デバイスにおける受信経路の線形性(linearity)および動的範囲(dynamic range)をテストすることを意図されているシングルトーンテスト(single-tone test)およびツートーンテスト(two-tone test)を規定する(specifies)。シングルトーンテストについては、単一のトーンは、CDMA信号の中心周波数から+900KHzに位置し、このテストの場合、−101dBmにあるCDMA信号レベルよりも振幅において71dB高い。受信経路における非線形性(non-linearity)は、トーンがCDMA信号とまざり、CDMA信号帯域幅の範囲に入る相互変調コンポーネントを生成する、原因となる。ツートーンテストについては、2つのトーンは、CDMA信号の中心周波数から+900KHzと1700KHzに位置づけられており、CDMA信号レベルよりも振幅において58dB高い。受信経路における非線形性は、これらの2つのトーンが一緒にまざり、+100KHzでスパーを生成する、原因となる。
一般的に、スパーは、様々なメカニズムによって無線デバイス100内で内部的に生成され得る。より多くの機能(例、RFとデジタル)が、単一の集積回路(IC)ダイ内に集積化され、あるいは複数のICダイが、単一のパッケージ内に封入される(encapsulated)につれ、内部的に生成されたスパーは、より広まり(prevalent)、より問題となる可能性が高い。スパーはまた、外部の干渉ソースから生じ、アンテナ110から受信RF信号において現れ得る。内部的に生成されたスパーは、典型的に、決定的な周波数でのトーンであるが、外部スパーは、ランダム周波数での狭帯域信号であり得る。どのようなケースにおいても、スパーは、これらのスパーに影響された各CDMAチャネルについての受信機の感度を減じる。
図2Bは、ノッチフィルタを使ったスパー抑制後の例示的なCDMA信号のスペクトルプロットを示す。内部的に生成されたスパーは、しばしば、リファレンスオシレータ132においてドリフト(drifts)を有する周波数における決定的、かつ、トラックである(both deterministic and track in frequency with drifts in reference oscillator 132)、狭帯域正弦波信号(narrowband sinusoidal signals)である。例えば、リファレンスクロックの高調波は、リファレンスオシレータ132の周波数によって決定される。それゆえに、CDMAチャネル内のスパーは、1つの適切に置かれたノッチフィルタで、抑制され得る。望まれるCDMA信号の小さな一部分のみを取り除きながら、スパーを抑制することによって、より高い感度および改善されたパフォーマンスは、CDMAチャネルのために達成されることができる。
図3は、図1におけるノッチフィルタ160の一実施形態である、ノッチフィルタ160aのブロック図を示す。図3において、x(n)は、サンプル期間nの間のプリプロセッサ152からの複素入力サンプルを表しており、y(n)は、サンプル期間nの間のノッチフィルタ160aによって供給された複素出力サンプルを表しており、w(n)は、サンプル期間nの間のノッチフィルタ160a内での複素中間サンプルを表す、なおここで、
x(n)=Iin(n)+jQin(n)および、
y(n)=Iout(n)+jQout(n) 式(1)
ノッチフィルタ160a内で、加算器312は、入力サンプルx(n)を受信し、そこから中間サンプルw(n)を差し引いて、出力サンプルy(n)を提供する。乗算器314は、出力サンプルを利得Kで掛ける。加算器316は、中間サンプルと乗算器314の出力を加える。レジスタ318は、加算器316の出力を記憶し、1サンプル期間の遅延を提供する。乗算器320は、レジスタ318からの記憶されたサンプルを、利得Aで掛け、中間サンプルを提供する。
ノッチフィルタ160aは、加算器316と、レジスタ318と、乗算器320と、によって形成されたループを含む。乗算器320は、レジスタ318からの保存されたサンプルに関して、相回転(phase rotation)を導入し、相回転の量は、利得Aによって決定される。加算器316およびレジスタ318は、それ上で蓄積するアキュムレータ(accumulator)を形成する。この自己蓄積(self-accumulation)は、各蓄積についての相回転の量および蓄積の率によって決定された周波数を有する、正弦コンポーネント(sinusoidal component)を導入する。正弦コンポーネントは、スパーを抑制させるようにモデル化し、入力サンプルから差し引かれる。
中間サンプルは、下記のように表される:
w(n)=A・[w(n−1)+K・y(n−1)] 式(2)
W(z)=A・[W(z)・z−1+K・Y(z)・z−1]および 式(3)
Figure 2012054978
式(2)は、離散時間nの場合であり、式(3)および(4)は、zドメインの場合である。
出力サンプルのための伝達関数(transfer function)H(z)は、次のように表される:
y(n)=x(n)−w(n) 式(5)
Figure 2012054978
Figure 2012054978
式(7)で示されているように、伝達関数H(z)は、利得Aによって決定された単一のゼロと、利得KおよびAによって決定された単一のポールを含む。利得KおよびAは、次のように定義されることができる:
K<<1、かつ 式(8)
A=ej2π M 式(9)
ただし、0≦M≦1である。
図4Aは、式(7)における、伝達関数H(z)についてのポールおよびゼロのプロットを示す。ゼロは、式(9)に示されているフォームを有するために、利得Aを規定することによって、ユニットサークル上に置かれることができる。量Mは、ユニットサークル上のゼロの位置を決定する。ノッチフィルタ160aの周波数反応は、ゼロに起因したノッチを有する。このノッチの中心周波数は、ゼロの位置によって決定され、次のように与えられることができる:
notch=f・M 式(10)
なお、fは、ノッチフィルタについてのサンプルレートであり、fnotchは、ノッチ周波数である。Aは、複素値なので、ノッチは周波数における1面上にのみ現れる。式(8)に示されるように、利得Kは、ノッチの帯域幅を決定し、典型的に、1よりもずっと小さい。
図4Bは、ノッチフィルタ160aの例示的周波数反応を示す。この例では、サンプルレートは、チップレートで(4/3)倍チップレートfであって、K=0.125、A=ejπ/5、そしてノッチ周波数は、0.164MHzである。
ノッチの幅は、利得Kによって決定され、より大きい利得Kは、より幅広いノッチに対応し、逆もまた同様である。ノッチの幅はまた、ノッチ深さに関連し、より幅広いノッチは、より深いノッチに対応し、逆もまた同様である。スパーは、より容易により幅広いノッチで捕獲される(captured)ことができ、それはまた、より深いノッチを理由に、スパーをもっと抑制することができる。しかしながら、より幅広いノッチはまた、もっと望まれる信号コンポーネントを減衰させる。逆に、スパーを狭いノッチを使って捕獲することは、もっと難しいかもしれない、それは、より浅いノッチのためにスパーを少ししか制することができない(less)。ノッチの幅は、可変パラメータであることができ、抑制されているスパーの特性に基づいて、次に説明されるように、調整されることができる。
ノッチフィルタ160aは、サンプルレートと呼ばれる入力サンプルのレートで、典型的に動作する。一般的に、いくつかの利益を達成するために、ノッチフィルタ160aを、可能なかぎり低いレートで動作することが望ましい。第1に、利得Aを表すために使用された与えられた数のビットについて、ノッチ周波数の解像度は、サンプルレートに比例している。したがって、よりよい解像度は、より低いサンプルレートで、ノッチ周波数に対して、達成されることができる。第2に、電力消費は、CMOSデジタル回路についてのクロックレートに比例しているので、低いサンプルレートは電力消費を減らす。サンプルレートは、エイリアシング(aliasing)を避けるために、チップレートよりも大きくあるべきである。一実施形態においては、サンプルレートは、(4/3)倍チップレートあるいはf=1.333×fとして選ばれる。cdma2000に関しては、1.2288Mcpsのチップレートの場合、サンプルレートは1.638MHzである。
図5Aは、図3におけるノッチフィルタ160aの具体的な実施形態である、ノッチフィルタ160bのブロック図を示す。この実施形態に関して、入力および出力サンプルは、18ビットの解像度を持っていると、仮定される。ノッチフィルタ160bは、I入力サンプルIinを処理するI経路と、Q入力サンプルQinを処理するQ経路と、を含む。ノッチフィルタ160b内の総量と同様に入力および出力サンプルは、符号付き整数で表される。kビットの符号付き数は、1つの符号ビットとk−1データビットを含む。
I経路については、飽和している(saturating)加算器512aは、I入力サンプルIinを受信し、そこからI中間サンプルWを差し引き、I出力サンプルIoutを提供する。シフトユニット514aは、I出力サンプルを、mビット分、右にシフトする。飽和している加算器516aは、飽和している加算器530aの出力とユニット514aからのシフトされたサンプルを加える。レジスタ518aは、加算器516aの出力を記憶し、1サンプル期間の遅延を提供する。
Q経路については、飽和している加算器512bは、Q入力サンプルQinを受信し、そこからQ中間サンプルWを差し引き、Q出力サンプルQoutを提供する。シフトユニット514bは、Q出力サンプルを、mビットごとに、右にシフトする。飽和している加算器516bは、飽和している加算器530bの出力と、ユニット514bからのシフトされたサンプルを加える。レジスタ518bは、加算器516bの出力を記憶し、1サンプル期間の遅延を提供する。
複素乗算器520は、複素利得A=Are+jAimを用いて、レジスタ518aおよび518bの複素出力の複素乗算を実行し、複素中間サンプルW=W+jWを提供する。乗算器520は、4つの実数乗算とビットマニピュレーション(bit manipulation)を使って、望まれる出力を得るために、複素乗算を実行する。
複素乗算器520内のI経路に関して、実数乗算器522aは、レジスタ518aの出力を利得Areで掛け、そして実数乗算器524aは、レジスタ518bの出力を利得Aimで掛ける。ユニット526aは、乗算器522aの出力の7つの最下位ビット(least significant bits)(LSBs)をカットし、ユニット528aは、乗算器524aの出力の7LSBsをカットする。「カット(cut)」オペレーションは、短縮(truncation)、切り上げ機能(rounding)および/あるいはいくつかの他のオペレーションを含むことができる。飽和している加算器530aは、ユニット528aの出力を、ユニット526aの出力から、差し引く。ユニット532aは、加算器530aの出力の3LSBsをカットし、I中間サンプルWを提供する。
複素乗算器520内のQ経路に関しては、実数乗算器522bは、レジスタ518bの出力を利得Areで掛け、実数乗算器524bは、レジスタ518aの出力を利得Aimで掛ける。ユニット526bは、乗算器522bの出力の7LSBsをカットし、ユニット528bは、乗算器524bの出力の7LSBsをカットする。飽和している加算器530bは、ユニット528bの出力と528bの出力を加える。ユニット532bは、加算器530bの出力の3LSBsをカットし、Q中間サンプルWを提供する。
図5Bは、図5Aにおける、各実数乗算器522aと、522bと、524aと524bと、のために使用されることができる、実数乗算器550の一実施形態を示す。乗算器550は、21ビット入力データを受信し、それで15ビット利得を乗算し、28ビット出力データを提供する。図5において、21ビット入力データは、レジスタ518aあるいは518からであってもよい。28ビット出力データは、ユニット526a、526b、528aあるいは528bについてであってもよい。15ビット利得は、AreあるいはAimであることができて、2つの係数に区分化される(partitioned)ことができる。第1の係数は、15ビット利得の7LSBsプラス(plus)1つの符号ビットを含む。第2の係数は、該1つの符号ビットをすでに含む(includes)、15ビット利得の8MSBsを含む。
乗算器550内で、乗算器552は、21ビット入力データを受信し、それを第1の係数で乗算し、28ビット出力を提供する。乗算器554は、21ビット入力データを受信し、それを第2の係数で乗算し、28ビット出力を提供する。ユニット556は、乗算器552からの28ビット出力の7LSBsをカットし、乗算器554からの28ビットできちんと位置合わせされている21ビット出力を提供する。飽和している加算器558は、ユニット556の21ビット出力と、乗算器554の28ビット出力と、を加え、28ビット出力データを供給する。
図5Aと5Bにおいて示されている実施形態については、Aによる複素乗算は、8のより小さい(21ビット×8ビット)実数乗算で、効率的にインプリメントされる。これらの8つの実数乗算は、時分割多重(TDM)様式で実数乗算を実行する単一のハードウェアユニットを使って、インプリメントされることができる。Kによる乗算は、ビットシフトユニット514aおよび514bを使ってインプリメントされる。利得Kは、そのとき2剰、あるいはK=2−mと等しく、なおmは、各出力サンプルについての右ビットのシフトの数であり、1以上にセットされることができる。ノッチフィルタ160bの周波数反応は、異なる数のビットをシフトすることによって、容易に調整されることができる。
図5Aおよび5Bは、ノッチフィルタ160bの具体的な実施形態を示す。具体的なビット幅は、ノッチフィルタを通して、様々なノードで与えられている。下記に説明されるように、各ノードでのビットの数は、様々なパフォーマンス基準に基づいて、選択されることができる。
ループは、乗算器520と、加算器516と、レジスタ518と、によって形成される。このループは、量子化インパクトが感度において無視できる(negligible)ように、十分な数のさらなるビットで、設計されることができる。感度は、無線デバイスが正確に復調することを必要とされる、最低CDMA信号レベルに関係する。さらなるビットの数は、レジスタ518のビット幅と入力および出力サンプルのビット幅との間の差異に等しい。コンピュータシミュレーションは、1つのさらなるビットが、無視できる量子化インパクトを達成するのに十分であり得ることを示す。図5Aおよび5Bに示されている例示的な設計については、3つのさらなるビットが、余分のマージン(extra margin)を達成するループのために使用されている。
利得AreおよびAimについてのビット幅は、ノッチ周波数の正確性と安定性を決定する。不十分な数のビットがAreとAimのために使用されている場合、そのときは、ノッチ周波数は、中心周波数の周りでディザする(dither)可能があり、また、スパーを捕獲し、抑制することが難しい可能性がある。図5Aおよび5Bに示されている例示的な設計に関して、コンピュータシミュレーションは、安定で正確なノッチ周波数を確実なものにするために、AreとAimにとって15ビット(あるいは14ビット符号付きの数)が十分であることを指し示す。AreとAimについての14ビットの符号付きの数で、ノッチ周波数は、f/214の解像度を有しており、それは、f=1.333×f=1.638Mcpsのサンプルレートの場合は100Hzに等しい。ノッチの帯域幅は、典型的に、100Hzよりもずっと幅広いので、この解像度は、十分であろう。
図5Aおよび5Bにおける例示的な設計に関して、利得AreまたはAimは、次のように決定されることができる:
M=fnotch/f 式(11)
A=214・jπ・M 式(12)
re=real(A)および 式(13)
im=imag(A) 式(14)
ユニット514による右ビットシフトの数は、利得Kの値を決定し、したがって、ノッチフィルタの帯域幅を決定する。いくつかの(例、1つの)右ビットシフトは、より大きい利得値と、より幅広くより深いノッチと、に対応しており、それは、より多くのスパー抑制を供給するが、もっと望まれる信号コンポーネントをもまた減退させる。より多くの右ビットシフトは、より小さな利得値とより狭く浅いノッチに対応する、それは、より少ないスパー抑制を供給するだけでなく、少ししか望まれる信号コンポーネントを減退させない。右ビットシフトの数は、可変であることができ、また、検出されるスパー、例えば、より大きなスパーについてより少数の右ビットシフト、に基づいて選択されることができる。一実施形態において、スパー抑制の量は、異なる数の右ビットシフト(例、m=1、2,3、4、・・・)の各々に対して、(例えば、コンピュータシミュレーションおよび/または実験測定(empirical measurement)に基づいて)決定され、参照テーブル(look-up table)において蓄積される。そして適切な数の右ビットシフトは、検出されたスパーの振幅に基づいて選択されることができる。
スパーの検出と抑制は、様々な様式において実行されることができる。一実施形態において、高速フーリエ変換(FFT)は、サンプルのスペクトル特性を決めるために、ADCs130あるいはプリプロセッサ152からのサンプル上で実行される。望まれる信号帯域幅内でのスパーは、FFT出力に基づいて識別される。これらのスパーの位置はまた、FFT出力に基づいて決定されることができる。ノッチフィルタは、最大スパーの位置に移されることができる、また、ノッチの幅は、望まれる信号レベルに関連する最大スパーの振幅に基づいて、セットされることができる。
別の実施形態においては、無線デバイスによって内部的に生成されたスパーは、例えば、実験測定、コンピュータシュミレーションなどに基づいて識別される。例えば、無線デバイス内クロックの異なる高調波についてのスパー、異なるミクシングプロダクトについてのスパー、などが、解明されることが可能である。これらのスパーは、参照テーブルにおいて蓄積されることができる。代替的に、これらのスパーのよい抑制を供給することができる利得KおよびAについての値は、解明され、参照テーブルにおいて、蓄積されることができる。無線デバイスは、例えば、参照テーブルからの異なる利得値を適用することによって(applying)、参照テーブルにおいて蓄積された異なるスパーを抑制することを試みること(attempt)ができる。参照テーブルにおいて蓄積された各スパーに関して、スパーが抑制されるというパフォーマンスが確認されることができる(ascertained)。最高のパフォーマンスという結果になる、抑制されたスパーは、保持されることができる。パフォーマンスは、例えば、より低いビットエラーレートあるいはフレームエラーレート、FFT出力からのよりよいスペクトル反応、などのような様々なメトリックによって、量化されることができる。
さらに別の実施形態において、無線デバイスは、望まれる信号帯域幅にわたって、ノッチフィルタをスイープすること(sweeping)によって、スパーをサーチする(searches)。無線デバイスは、よいパフォーマンスを提供するノッチ周波数で、止めることができる。スパー検出および抑制は、他の様式において、また実行されることができる。
図6は、スパー検出および抑制を実行するためのプロセス600の一実施形態を示す。望まれる信号を含むデジタルサンプルは、はじめに受信される(ブロック610)。望まれる信号の帯域幅内に位置するスパーは、検出される(ブロック612)。スパーは、FFTベースのスキーム、知られている内部的に生成されたスパーの参照テーブル、あるいはいくつかの他の検出スキームを使って、検出され得る。周波数と、多分スパーの振幅は決定される(ブロック614)。そして、ノッチ周波数およびノッチ帯域幅は、それぞれ、スパーの周波数と振幅と、に基づいて、決定される(ブロック616)。望まれるノッチ周波数と帯域幅を達成するAおよびK利得値は、例えば、式(11)から(14)に示されているように、コンピュートされる(ブロック618)。次に、ノッチフィルタの利得AおよびKは、コンピュートされた値にセットされる(ブロック620)。デジタルサンプルは、スパーを抑制するために、ノッチフィルタを用いて、フィルタにかけられる(ブロック622)。
上記に説明された実施形態の場合、可変ノッチ周波数と可変ノッチ帯域幅を有するノッチフィルタに基づいて、スパー抑制は実行される。ノッチフィルタは、特定のタイプのイコライザ(equalizer)としてみられる(viewed)ことができる。イコライザは、典型的に、有限インパルス応答(finite impulse response)(FIR)フィルタを用いてインプリメントされ、最小チップ間干渉(inter-chip interference)(ICI)、最小平均平方誤差(minimum mean square error)、などのようなメトリックに基づいてしばしば動作する。図3および5Aで示されているノッチフィルタは、無限インパルス応答(infinite impulse response)(IIR)フィルタでインプリメントされ、メトリック上でスパーを抑制するように、動作する、イコライザである。スパーを抑制することができるイコライザはまた、他のフィルタストラクチャ(filter structures)で、インプリメントされることができ、他のメトリックに基づいて動作することができる。スパー抑制はまた、他のタイプの回路に基づいて実行されることができ、また、これは、本発明の範囲の内である。例えば、回路は、スパーを合成することができ、合成されたスパーを入力サンプルから差し引くことができる。
ここに説明されたスパー抑制技術は、様々な手段によってインプリメントされることができる。例えば、これらの技術は、ハードウェア、ファームウェア、ソフトウェア、あるいはそれらの組み合わせにおいて、インプリメントされることができる。ハードウェアインプリメンテーションについては、スパー抑制を実行するために使用されるプロセッシングユニットは、1以上の特定用途向け集積回路(ASICs)、デジタルシグナルプロセッサ(DSPs)、デジタルシグナルプロセッサデバイス(DSPDs)、プログラマブル論理回路(PLDs)、フィールドプログラマブルゲートアレイ(FPGAs)、プロセッサ、コントローラ、マイクロコントローラ、電子デバイス、ここに説明された機能を実行するために設計された他の電子ユニット、あるいはそれらの組み合わせ、の中でインプリメントされることができる。
ソフトウェアインプリメンテーションについては、スパー抑制技術は、ここに説明された機能を実行するモジュール(例、プロシージャ(procedures)、ファンクション(functions)など)を使って、インプリメントされることができる。ソフトウェアコードは、メモリ(例、図1におけるメモリ172)に記憶されることができて、プロセッサ(例、プロセッサ170)によって実施されることができる。メモリは、プロセッサ内あるいはプロセッサの外で、インプリメントされることができる。
開示された実施形態の、以上の説明は、いずれの当業者も本発明を作り、使用することができるように提供されている。これらの実施形態に対する様々な修正は、当業者にとっては容易に明らかであろう、そして、ここにおいて定義された包括的な原理は、本発明の精神あるいは範囲から逸脱することなく、他の実施形態に適用されることができる。したがって、本発明は、ここに示された実施形態に限定されるようには意図されておらず、ここに開示された原理および新規な特徴に整合する最も広い範囲が与えられるべきである。
開示された実施形態の、以上の説明は、いずれの当業者も本発明を作り、使用することができるように提供されている。これらの実施形態に対する様々な修正は、当業者にとっては容易に明らかであろう、そして、ここにおいて定義された包括的な原理は、本発明の精神あるいは範囲から逸脱することなく、他の実施形態に適用されることができる。したがって、本発明は、ここに示された実施形態に限定されるようには意図されておらず、ここに開示された原理および新規な特徴に整合する最も広い範囲が与えられるべきである。
以下に、本出願時の特許請求の範囲に記載された発明を付記する。
[1] 望まれる信号の帯域幅内に位置するスパーを有する前記望まれる信号についてのデジタルサンプルを受信するように、前記スパーを抑制するために前記デジタルサンプルをフィルタにかけるように、そして、抑制された前記スパーを有する出力サンプルを供給するように動作するプロセッサと、
前記プロセッサに動作的に結合されるメモリと、
を備える装置
[2] 前記スパーは、前記装置内で内部的に生成されている、前記[1]に記載の装置。
[3] 前記スパーは、前記装置内での、クロックの高調波である、前記[1]に記載の装置。
[4] 前記スパーは、外部の干渉ソースによって生成されており、入力無線周波数(RF)信号において存在する、前記[1]に記載の装置。
[5] 前記プロセッサは、調整可能なノッチ周波数を有するノッチフィルタを用いて、前記デジタルサンプルをフィルタにかけるように動作する、前記[1]に記載の装置。
[6] 前記プロセッサは、調整可能なノッチ帯域幅を有するノッチフィルタを用いて、前記デジタルサンプルをフィルタにかけるように動作する、前記[1]に記載の装置。
[7] 前記プロセッサは、調整可能なノッチ周波数と調整可能なノッチ帯域幅とを有するノッチフィルタを用いて、前記デジタルサンプルをフィルタにかけるように動作する、前記[1]に記載の装置。
[8] 前記プロセッサは、スパーを検出するように、そして、前記スパーの特性に基づいて前記デジタルサンプルをフィルタにかけるように動作する、前記[1]に記載の装置。
[9] 前記プロセッサは、デジタルサンプル上で、高速フーリエ変換(FFT)あるいは、離散フーリエ変換(DFT)を実行することによって、前記スパーを検出するように動作する、前記[1]に記載の装置。
[10] 前記メモリは、複数の知られているスパーを記憶するように動作し、前記プロセッサは、前記複数の知られているスパーのうちの1つとして、前記スパーを識別するように動作する、前記[1]に記載の装置。
[11] 前記プロセッサは、前記スパーの振幅によって決定されるノッチ帯域幅、を有するノッチフィルタを用いて、前記デジタルサンプルをフィルタにかけるように動作する、前記[1]に記載の装置。
[12] 前記プロセッサは、複素利得を有するノッチフィルタを用いて、前記デジタルサンプルをフィルタにかけるように、そして、前記複素利得を備えた複素乗算をインプリメントするために複数の実数乗算を実行するように動作する、前記[1]に記載の装置。
[13] 前記プロセッサは、前記複素利得に基づいて第1および第2の係数を形成するように、そして、前記複数の実数乗算の各々についての前記第1および第2の係数で2つのより小さい実数乗算を実行するように動作する、前記[12]に記載の装置。
[14] 前記プロセッサは、実数利得を有するノッチフィルタを用いて、前記デジタルサンプルをフィルタにかけるように、そして、前記実数利得で実数乗算をインプリメントするためにビットシフトを実行するように動作する、前記[12]に記載の装置。
[15] 装置であって、
広帯域信号の帯域幅内に位置するスパーを有する前記広帯域信号についてのデジタルサンプルを受信するように、前記スパーを抑制するために前記デジタルサンプルをフィルタにかけるように、そして、抑制された前記スパーを有する出力サンプルを供給するように動作するプロセッサと、なおここでは、前記スパーは、前記装置で内部的に生成される;
前記プロセッサに動作的に結合されるメモリと;
を備える装置。
[16] 前記広帯域信号は、符号分割多元接続(CDMA)信号である、前記[15]に記載の装置。
[17] 前記広帯域信号は、直交周波数分割多元(OFDM)信号である、前記[15]に記載の装置。
[18] 無線デバイスであって、
CDMA信号の帯域幅内に位置するスパーを有する符号分割多元接続(CDMA)信号、についてのデジタルサンプルを受信するように、前記スパーを抑制するためにノッチフィルタを用いて前記デジタルサンプルをフィルタにかけるように、そして、抑制された前記スパーを有する出力サンプルを供給するように動作するプロセッサと、なおここでは、前記スパーは、前記無線デバイス内で内部的に生成される;
前記プロセッサに動作的に結合されるメモリと;
を備える無線デバイス。
[19] 前記プロセッサは、調整可能なノッチ周波数と調整可能なノッチ帯域幅を有する調整可能なノッチフィルタを用いて、前記デジタルサンプルをフィルタにかけるように動作する、前記[18]に記載の無線デバイス。
[20] 前記スパーは、前記無線デバイス内のクロックの高調波である、前記[18]に記載の無線デバイス。
[21] 望まれる信号の帯域幅内に位置するスパーを有する、前記望まれる信号についてのデジタルサンプルを受信することと、
前記スパーを抑制するために、前記デジタルサンプルをフィルタにかけることと、
前記の抑制されたスパーを有する出力サンプルを供給することと、
を備える方法。
[22] 前記デジタルサンプルを前記フィルタにかけることは、調整可能なノッチ周波数を有するノッチフィルタを用いて、前記デジタルサンプルをフィルタにかけること、を備える、前記[21]に記載の方法。
[23] 前記デジタルサンプルを前記フィルタにかけることは、調整可能なノッチ帯域幅を有するノッチフィルタを用いて、前記デジタルサンプルをフィルタにかけること、を備える、前記[21]に記載の方法。
[24] 前記デジタルサンプルを前記フィルタにかけることは、前記スパーを検出することと、前記スパーの特性に基づいて前記デジタルサンプルをフィルタにかけることと、を備える、前記[21]に記載の方法。
[25] 望まれる信号の帯域幅内に位置するスパーを有する前記望まれる信号についてのデジタルサンプルを、受信するための手段と、
前記スパーを抑制するために前記デジタルサンプルをフィルタにかけるための手段と、
前記の抑制されたスパーを有する出力サンプルを供給するための手段と、
を備える装置。
[26] 前記デジタルサンプルをフィルタにかけるための前記手段は、調整可能なノッチ周波数を有するノッチフィルタを用いて、前記デジタルサンプルをフィルタにかけるための手段を備える、前記[25]に記載の装置。
[27] 前記デジタルサンプルをフィルタにかけるための前記手段は、調整可能なノッチ帯域幅を有する前記ノッチフィルタを用いて、前記デジタルサンプルをフィルタにかけるための手段を備える、前記[25]に記載の装置。
[28] 前記デジタルサンプルをフィルタにかけるための前記手段は、前記スパーを検出するための手段と、前記スパーの特性に基づいて前記デジタルサンプルをフィルタにかけるための手段と、を備える、前記[25]に記載の装置。

Claims (28)

  1. 望まれる信号の帯域幅内に位置するスパーを有する前記望まれる信号についてのデジタルサンプルを受信するように、前記スパーを抑制するために前記デジタルサンプルをフィルタにかけるように、そして、抑制された前記スパーを有する出力サンプルを供給するように動作するプロセッサと、
    前記プロセッサに動作的に結合されるメモリと、
    を備える装置
  2. 前記スパーは、前記装置内で内部的に生成されている、請求項1に記載の装置。
  3. 前記スパーは、前記装置内での、クロックの高調波である、請求項1に記載の装置。
  4. 前記スパーは、外部の干渉ソースによって生成されており、入力無線周波数(RF)信号において存在する、請求項1に記載の装置。
  5. 前記プロセッサは、調整可能なノッチ周波数を有するノッチフィルタを用いて、前記デジタルサンプルをフィルタにかけるように動作する、請求項1に記載の装置。
  6. 前記プロセッサは、調整可能なノッチ帯域幅を有するノッチフィルタを用いて、前記デジタルサンプルをフィルタにかけるように動作する、請求項1に記載の装置。
  7. 前記プロセッサは、調整可能なノッチ周波数と調整可能なノッチ帯域幅とを有するノッチフィルタを用いて、前記デジタルサンプルをフィルタにかけるように動作する、請求項1に記載の装置。
  8. 前記プロセッサは、スパーを検出するように、そして、前記スパーの特性に基づいて前記デジタルサンプルをフィルタにかけるように動作する、請求項1に記載の装置。
  9. 前記プロセッサは、デジタルサンプル上で、高速フーリエ変換(FFT)あるいは、離散フーリエ変換(DFT)を実行することによって、前記スパーを検出するように動作する、請求項1に記載の装置。
  10. 前記メモリは、複数の知られているスパーを記憶するように動作し、前記プロセッサは、前記複数の知られているスパーのうちの1つとして、前記スパーを識別するように動作する、請求項1に記載の装置。
  11. 前記プロセッサは、前記スパーの振幅によって決定されるノッチ帯域幅、を有するノッチフィルタを用いて、前記デジタルサンプルをフィルタにかけるように動作する、請求項1に記載の装置。
  12. 前記プロセッサは、複素利得を有するノッチフィルタを用いて、前記デジタルサンプルをフィルタにかけるように、そして、前記複素利得を備えた複素乗算をインプリメントするために複数の実数乗算を実行するように動作する、請求項1に記載の装置。
  13. 前記プロセッサは、前記複素利得に基づいて第1および第2の係数を形成するように、そして、前記複数の実数乗算の各々についての前記第1および第2の係数で2つのより小さい実数乗算を実行するように動作する、請求項12に記載の装置。
  14. 前記プロセッサは、実数利得を有するノッチフィルタを用いて、前記デジタルサンプルをフィルタにかけるように、そして、前記実数利得で実数乗算をインプリメントするためにビットシフトを実行するように動作する、請求項12に記載の装置。
  15. 装置であって、
    広帯域信号の帯域幅内に位置するスパーを有する前記広帯域信号についてのデジタルサンプルを受信するように、前記スパーを抑制するために前記デジタルサンプルをフィルタにかけるように、そして、抑制された前記スパーを有する出力サンプルを供給するように動作するプロセッサと、なおここでは、前記スパーは、前記装置で内部的に生成される;
    前記プロセッサに動作的に結合されるメモリと;
    を備える装置。
  16. 前記広帯域信号は、符号分割多元接続(CDMA)信号である、請求項15に記載の装置。
  17. 前記広帯域信号は、直交周波数分割多元(OFDM)信号である、請求項15に記載の装置。
  18. 無線デバイスであって、
    CDMA信号の帯域幅内に位置するスパーを有する符号分割多元接続(CDMA)信号、についてのデジタルサンプルを受信するように、前記スパーを抑制するためにノッチフィルタを用いて前記デジタルサンプルをフィルタにかけるように、そして、抑制された前記スパーを有する出力サンプルを供給するように動作するプロセッサと、なおここでは、前記スパーは、前記無線デバイス内で内部的に生成される;
    前記プロセッサに動作的に結合されるメモリと;
    を備える無線デバイス。
  19. 前記プロセッサは、調整可能なノッチ周波数と調整可能なノッチ帯域幅を有する調整可能なノッチフィルタを用いて、前記デジタルサンプルをフィルタにかけるように動作する、請求項18に記載の無線デバイス。
  20. 前記スパーは、前記無線デバイス内のクロックの高調波である、請求項18に記載の無線デバイス。
  21. 望まれる信号の帯域幅内に位置するスパーを有する、前記望まれる信号についてのデジタルサンプルを受信することと、
    前記スパーを抑制するために、前記デジタルサンプルをフィルタにかけることと、
    前記の抑制されたスパーを有する出力サンプルを供給することと、
    を備える方法。
  22. 前記デジタルサンプルを前記フィルタにかけることは、調整可能なノッチ周波数を有するノッチフィルタを用いて、前記デジタルサンプルをフィルタにかけること、を備える、請求項21に記載の方法。
  23. 前記デジタルサンプルを前記フィルタにかけることは、調整可能なノッチ帯域幅を有するノッチフィルタを用いて、前記デジタルサンプルをフィルタにかけること、を備える、請求項21に記載の方法。
  24. 前記デジタルサンプルを前記フィルタにかけることは、前記スパーを検出することと、前記スパーの特性に基づいて前記デジタルサンプルをフィルタにかけることと、を備える、請求項21に記載の方法。
  25. 望まれる信号の帯域幅内に位置するスパーを有する前記望まれる信号についてのデジタルサンプルを、受信するための手段と、
    前記スパーを抑制するために前記デジタルサンプルをフィルタにかけるための手段と、
    前記の抑制されたスパーを有する出力サンプルを供給するための手段と、
    を備える装置。
  26. 前記デジタルサンプルをフィルタにかけるための前記手段は、調整可能なノッチ周波数を有するノッチフィルタを用いて、前記デジタルサンプルをフィルタにかけるための手段を備える、請求項25に記載の装置。
  27. 前記デジタルサンプルをフィルタにかけるための前記手段は、調整可能なノッチ帯域幅を有する前記ノッチフィルタを用いて、前記デジタルサンプルをフィルタにかけるための手段を備える、請求項25に記載の装置。
  28. 前記デジタルサンプルをフィルタにかけるための前記手段は、前記スパーを検出するための手段と、前記スパーの特性に基づいて前記デジタルサンプルをフィルタにかけるための手段と、を備える、請求項25に記載の装置。
JP2011225164A 2006-01-04 2011-10-12 無線通信システムにおける受信機のためのスパー抑制 Expired - Fee Related JP5199436B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/324,858 US8149896B2 (en) 2006-01-04 2006-01-04 Spur suppression for a receiver in a wireless communication system
US11/324,858 2006-01-04

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008549647A Division JP5269611B2 (ja) 2006-01-04 2007-01-04 無線通信システムにおける受信機のためのスパー抑制

Publications (2)

Publication Number Publication Date
JP2012054978A true JP2012054978A (ja) 2012-03-15
JP5199436B2 JP5199436B2 (ja) 2013-05-15

Family

ID=38224375

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008549647A Expired - Fee Related JP5269611B2 (ja) 2006-01-04 2007-01-04 無線通信システムにおける受信機のためのスパー抑制
JP2011225164A Expired - Fee Related JP5199436B2 (ja) 2006-01-04 2011-10-12 無線通信システムにおける受信機のためのスパー抑制

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008549647A Expired - Fee Related JP5269611B2 (ja) 2006-01-04 2007-01-04 無線通信システムにおける受信機のためのスパー抑制

Country Status (9)

Country Link
US (1) US8149896B2 (ja)
EP (1) EP1969726B1 (ja)
JP (2) JP5269611B2 (ja)
KR (1) KR101060042B1 (ja)
CN (1) CN101366186B (ja)
AT (1) ATE444596T1 (ja)
DE (1) DE602007002614D1 (ja)
TW (1) TW200803193A (ja)
WO (1) WO2007120939A2 (ja)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070202830A1 (en) * 2006-02-24 2007-08-30 Texas Instruments Incorporated Spurious tone suppressor and method of operation thereof
US7876867B2 (en) 2006-08-08 2011-01-25 Qualcomm Incorporated Intermodulation distortion detection and mitigation
US8098779B2 (en) 2006-08-08 2012-01-17 Qualcomm Incorporated Interference detection and mitigation
US8290100B2 (en) * 2006-08-08 2012-10-16 Qualcomm Incorporated Interference detection and mitigation
US7796683B2 (en) * 2006-09-28 2010-09-14 Broadcom Corporation RF transceiver with power optimization
US7986922B2 (en) 2006-12-15 2011-07-26 Qualcomm Incorporated Jammer detection and suppression for wireless communication
US20080146184A1 (en) * 2006-12-19 2008-06-19 Microtune (Texas), L.P. Suppression of lo-related interference from tuners
EP1976129B1 (en) * 2007-03-26 2010-05-12 U-Blox-AG A method of processing a digital signal derived from an analog input signal of a GNSS receiver, a GNSS receiver base band circuit for carrying out the method and a GNSS receiver
EP2015459A1 (en) * 2007-07-12 2009-01-14 STMicroelectronics N.V. Method for detecting the eventual presence of an interferer, for example a radar signal, adapted to interfere with a wireless device, for example an UWB device, and corresponding device.
US20090075644A1 (en) * 2007-09-19 2009-03-19 Adc Telecommunications, Inc. System and method for selectively rejecting frequency bands in wireless communication systems
EP2058993B1 (en) * 2007-11-12 2010-04-07 Lucent Technologies Inc. Radio frequency transmitter
ATE486411T1 (de) 2008-02-15 2010-11-15 Ericsson Telefon Ab L M Verfahren, vorrichtungen und systeme zum verarbeiten eines signals in gegenwart von schmalbandstörungen
US8254855B2 (en) * 2008-05-07 2012-08-28 Qualcomm, Incorporated Frequency spur detection and suppression
GB2453622B (en) 2008-08-21 2009-09-16 Cambridge Silicon Radio Ltd Tuneable filter
US8451918B1 (en) * 2008-11-17 2013-05-28 Qualcomm Incorporated System and method for spur estimation and mitigation
US8331894B2 (en) * 2009-01-13 2012-12-11 Mediatek Inc. Method for performing active jammer suppression on electronic device, and associated apparatus
EP2265082A3 (en) * 2009-06-21 2014-06-18 Ablaze Wireless, Inc. Multi-user, multi-mode baseband signaling methods, timing/frequency synchronization, and receiver architectures
US8976302B2 (en) * 2009-09-30 2015-03-10 Wi-Lan, Inc. Radio frequency front end for television band receiver and spectrum sensor
US20110096864A1 (en) * 2009-10-28 2011-04-28 Maxlinear, Inc. Programmable digital clock control scheme to minimize spur effect on a receiver
US8649463B2 (en) 2009-11-17 2014-02-11 Mitsubishi Electric Corporation Radio communication apparatus
US8238863B2 (en) * 2009-12-10 2012-08-07 Qualcomm Incorporated Methods and apparatuses for identifying and mitigating interference in a wireless signal
FR2956538B1 (fr) * 2010-02-15 2012-03-16 St Microelectronics Sa Convertisseur analogique/numerique a temps continu
JP2011193079A (ja) * 2010-03-12 2011-09-29 Fujitsu Ltd 無線通信受信回路
US8354947B2 (en) * 2010-09-08 2013-01-15 Mediatek Inc. Signal processing apparatus with sigma-delta modulating block collaborating with notch filtering block and related signal processing method thereof
US8548104B2 (en) * 2010-11-23 2013-10-01 Siano Mobile Silicon Ltd. Receiver with configurable clock frequencies
ES2428335T3 (es) * 2010-12-22 2013-11-07 Telefonaktiebolaget L M Ericsson (Publ) Métodos y receptor para el posicionamiento de señales espurias relativas a un reloj
US8731474B2 (en) 2011-05-25 2014-05-20 Shared Spectrum Company Method and system for man-made noise rejection detector
US8693598B2 (en) * 2011-08-05 2014-04-08 Texas Instruments Incorporated Radio receiver with mitigation modules and mixers with phase compensation
US8553748B2 (en) * 2011-09-16 2013-10-08 Renesas Mobile Corporation ADC clock selection based on determined maximum conversion rate
FR2980577B1 (fr) * 2011-09-26 2013-09-20 Biomerieux Sa Systeme de detection et/ou de quantification in vitro par fluorimetrie
US9008249B2 (en) * 2012-02-10 2015-04-14 Qualcomm Incorporated Detection and filtering of an undesired narrowband signal contribution in a wireless signal receiver
US9112748B2 (en) * 2012-02-13 2015-08-18 Qualcomm Incorporated Reduction of small spurs in transmitters
US9065686B2 (en) 2012-11-21 2015-06-23 Qualcomm Incorporated Spur detection, cancellation and tracking in a wireless signal receiver
CN104101871A (zh) * 2013-04-15 2014-10-15 中国科学院声学研究所 一种用于被动合成孔径的抑制窄带干扰方法及系统
EP2806566A1 (en) * 2013-05-23 2014-11-26 ST-Ericsson SA A matrix for use with a radio transceiver and methods thereto
US20150049651A1 (en) * 2013-08-14 2015-02-19 Qualcomm Incorporated Dynamically updating filtering configuration in modem baseband processing
US9160465B2 (en) * 2013-11-07 2015-10-13 Silicon Labortories Inc. Spur cancellation systems and related methods
US9252891B2 (en) 2013-11-07 2016-02-02 Silicon Laboratories Inc. Die-to-die communication links for receiver integrated circuit dies and related methods
US9698863B2 (en) * 2014-03-28 2017-07-04 Intel IP Corporation Methods and arrangements for spur estimation of a wireless communication packet
US10033343B2 (en) 2014-03-31 2018-07-24 Qualcomm Incorporated Spectrum sensing radio receiver
US10320432B2 (en) 2014-06-19 2019-06-11 Teko Telecom S.R.L. Appliance for receiving radio frequency signals, usable in particular for the management of uplink signals
CN105577219A (zh) * 2014-10-10 2016-05-11 中国科学院上海高等研究院 一种应用于有线同轴以太网的宽带收发器
US9407300B2 (en) 2014-10-15 2016-08-02 Qualcomm Incorporated Adjacent-channel interference and spur handling in wireless communications
US9160584B1 (en) * 2015-01-22 2015-10-13 Qualcomm Incorporated Spur cancellation using auxiliary synthesizer
US9548774B2 (en) * 2015-02-19 2017-01-17 Qualcomm Incorporated Signal generator with image rejection
US10439538B2 (en) * 2016-04-29 2019-10-08 Deere & Company Method and system for estimating a rotor position with a notch filter
JP6775275B2 (ja) * 2016-10-31 2020-10-28 パイオニア株式会社 ノイズ低減装置及びノイズ低減方法
CN110383700A (zh) * 2017-03-10 2019-10-25 英特尔Ip公司 杂散降低电路和装置、无线电收发器、移动终端、用于杂散降低的方法和计算机程序
US10211863B1 (en) * 2017-08-15 2019-02-19 Bae Systems Information And Electronic Systems Integration Inc. Complementary automatic gain control for anti-jam communications
CN109768810B (zh) * 2019-03-07 2021-01-08 维沃移动通信有限公司 一种信号处理电路、终端设备及信号处理方法
US11456901B2 (en) * 2020-09-25 2022-09-27 Cypress Semiconductor Corporation Transmit spur detection and mitigation for wireless communications devices
US11258643B1 (en) * 2021-05-18 2022-02-22 Skyworks Solutions, Inc. Frequency modulation tracking for band rejection to reduce dynamic range
CN113572487B (zh) * 2021-07-23 2022-08-19 闻泰通讯股份有限公司 射频信号杂波抑制方法、基站和终端

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000013357A (ja) * 1998-06-22 2000-01-14 Toshiba Corp Ofdm受信装置
JP2000101479A (ja) * 1998-09-14 2000-04-07 Terayon Communication Syst Inc Cdma信号から狭帯域の干渉信号を除去するためにフィルタのバンクを使用する方法および装置
JP2002374179A (ja) * 2001-06-12 2002-12-26 Hitachi Kokusai Electric Inc 干渉信号除去装置
JP2004336715A (ja) * 2003-05-09 2004-11-25 Samsung Electronics Co Ltd 特性の異なる信号の干渉を除去するための装置およびその除去方法
JP2005080272A (ja) * 2003-09-01 2005-03-24 Gcomm Corp スペクトラム拡散通信方式受信機
JP2005117365A (ja) * 2003-10-08 2005-04-28 Kokusai Denki Engineering:Kk 可変ノッチフィルタ付き携帯型無線機とその調整方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5449905A (en) * 1992-05-14 1995-09-12 Teledyne Et Method for generating filtered noise signal and broadband signal having reduced dynamic range for use in mass spectrometry
US5226057A (en) 1991-03-20 1993-07-06 Rockwell International Corporation Receiver and adaptive digital notch filter
US5325188A (en) * 1992-05-14 1994-06-28 Hitachi America, Ltd. Apparatus for NTSC signal interference cancellation through the use of digital recursive notch filters
US5325204A (en) * 1992-05-14 1994-06-28 Hitachi America, Ltd. Narrowband interference cancellation through the use of digital recursive notch filters
US5758275A (en) * 1995-09-29 1998-05-26 Motorola, Inc. Method and apparatus for scheduling adaptation for a notch filter
US5768166A (en) 1997-04-10 1998-06-16 Biochem International, Inc. Adaptive filter for electrical supply line noise
US6297637B1 (en) * 1998-12-29 2001-10-02 Siemens Aktiengesellschaft High-frequency receiver, particularly for a nuclear magnetic resonance apparatus
US6622044B2 (en) 2001-01-04 2003-09-16 Cardiac Pacemakers Inc. System and method for removing narrowband noise
US6976044B1 (en) * 2001-05-11 2005-12-13 Maxim Integrated Products, Inc. Narrowband interference canceller for wideband communication systems
US20040199082A1 (en) 2003-04-03 2004-10-07 Ostroff Alan H. Selctable notch filter circuits
US7606339B2 (en) * 2004-04-07 2009-10-20 Dell Products L.P. Information handling system including adaptive interference suppression feature and method of operation
EP1648093B1 (en) * 2004-10-15 2011-08-03 Broadcom Corporation Spur harmonic canceller for RF band clock

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000013357A (ja) * 1998-06-22 2000-01-14 Toshiba Corp Ofdm受信装置
JP2000101479A (ja) * 1998-09-14 2000-04-07 Terayon Communication Syst Inc Cdma信号から狭帯域の干渉信号を除去するためにフィルタのバンクを使用する方法および装置
JP2002374179A (ja) * 2001-06-12 2002-12-26 Hitachi Kokusai Electric Inc 干渉信号除去装置
JP2004336715A (ja) * 2003-05-09 2004-11-25 Samsung Electronics Co Ltd 特性の異なる信号の干渉を除去するための装置およびその除去方法
JP2005080272A (ja) * 2003-09-01 2005-03-24 Gcomm Corp スペクトラム拡散通信方式受信機
JP2005117365A (ja) * 2003-10-08 2005-04-28 Kokusai Denki Engineering:Kk 可変ノッチフィルタ付き携帯型無線機とその調整方法

Also Published As

Publication number Publication date
EP1969726A2 (en) 2008-09-17
KR101060042B1 (ko) 2011-08-29
US8149896B2 (en) 2012-04-03
CN101366186A (zh) 2009-02-11
WO2007120939A2 (en) 2007-10-25
KR20080083053A (ko) 2008-09-12
WO2007120939A3 (en) 2008-01-17
EP1969726B1 (en) 2009-09-30
US20070153878A1 (en) 2007-07-05
DE602007002614D1 (de) 2009-11-12
ATE444596T1 (de) 2009-10-15
JP2009522946A (ja) 2009-06-11
CN101366186B (zh) 2013-01-09
JP5199436B2 (ja) 2013-05-15
TW200803193A (en) 2008-01-01
JP5269611B2 (ja) 2013-08-21

Similar Documents

Publication Publication Date Title
JP5199436B2 (ja) 無線通信システムにおける受信機のためのスパー抑制
JP5180206B2 (ja) 無線通信用マルチキャリア受信機
US8693525B2 (en) Multi-carrier transmitter for wireless communication
EP2441175B1 (en) Apparatus and method for dynamic scaling of adc sampling rate to avoid receiver interference
JP2006148854A (ja) マルチキャリア受信機及び遅延補正機能付き送信機
EP2181533B1 (en) IQ imbalance image suppression in presence of unknown phase shift
Zou et al. Digital compensation of cross-modulation distortion in software-defined radios
WO2010111542A1 (en) Spur attenuation devices, systems, and methods
US20080170606A1 (en) Method and apparatus for providing a digital automatic gain control (AGC)
US8532225B2 (en) DC compensation for VLIF signals
JP2010166338A (ja) 電子装置
US8149902B1 (en) Methods to relax the second order intercept point of transceivers
KR100678244B1 (ko) 주파수 직접 변환 장치에서 직류 옵셋 제거 장치 및 방법
JPH1022859A (ja) ダイレクトコンバージョン受信機
WO2007032550A1 (ja) 受信振幅補正回路及び受信振幅補正方法並びにそれを用いた受信機
KR100764522B1 (ko) 복소 신호들을 곱하기 위한 곱셈기
JP2005020121A (ja) 通信用半導体集積回路および無線通信システム並びにdcオフセットおよびゲインの補正方法
Gao et al. Transceiver II: Receiver Architectures
Shah et al. Baseband I/Q regeneration method for direct conversion receiver to nullify effect of second order intermodulation distortion
JP2011182149A (ja) 半導体集積回路、および半導体集積回路を備える情報処理装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5199436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees