JP2012044394A - 信号伝送装置、及び伝送制御方法 - Google Patents

信号伝送装置、及び伝送制御方法 Download PDF

Info

Publication number
JP2012044394A
JP2012044394A JP2010182998A JP2010182998A JP2012044394A JP 2012044394 A JP2012044394 A JP 2012044394A JP 2010182998 A JP2010182998 A JP 2010182998A JP 2010182998 A JP2010182998 A JP 2010182998A JP 2012044394 A JP2012044394 A JP 2012044394A
Authority
JP
Japan
Prior art keywords
transmission
signal
communication module
unit
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010182998A
Other languages
English (en)
Inventor
Tatsuo Shimizu
達夫 清水
Takeshi Maeda
毅 前田
Uichiro Omae
宇一郎 大前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2010182998A priority Critical patent/JP2012044394A/ja
Priority to CN2011102349649A priority patent/CN102377554A/zh
Priority to US13/207,685 priority patent/US8824613B2/en
Publication of JP2012044394A publication Critical patent/JP2012044394A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0272Arrangements for coupling to multiple lines, e.g. for differential transmission
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/14Use of low voltage differential signaling [LVDS] for display data communication
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2092Details of a display terminals using a flat panel, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Dc Digital Transmission (AREA)
  • Bidirectional Digital Transmission (AREA)

Abstract

【課題】伝送遅延が生じる状況において受信データの再生精度を向上させること。
【解決手段】所定の伝送線路を通じて、第1の振幅を持つ第1の送信信号を第2の通信モジュールに送信する第1の信号送信部を有する、第1の通信モジュールと、前記所定の伝送線路を通じて、前記第1の振幅とは異なる第2の振幅を持つ第2の送信信号を前記第1の通信モジュールに送信する第2の信号送信部と、前記第1の通信モジュールから送信された第1の送信信号の遷移タイミングと、前記第2の送信信号の遷移タイミングとが一致するように、前記第2の信号送信部による第2の送信信号の送信タイミングを調整する送信タイミング調整部と、を有する、前記第2の通信モジュールと、を備える、信号伝送装置が提供される。
【選択図】図8

Description

本発明は、信号伝送装置、及び伝送制御方法に関する。
携帯電話やノートPCなどの携帯機器は、ユーザが操作するための操作手段が搭載された本体部分と、LCD(Liquid Crystal Display)などの表示装置が搭載された表示部分とで構成されていることが多い。また、本体部分と表示部分とを接続するヒンジ部分には可動部材が用いられている。通常、このヒンジ部分には電力線や信号線が通っている。そのため、ヒンジ部分の変形に応じてヒンジ部分を通る配線に劣化が生じる。そこで、ヒンジ部分が変形した際に、ヒンジ部分を通る配線に劣化が生じないようにする工夫が求められている。
ヒンジ部分を通る配線に生じる劣化を抑制するには、まず、ヒンジ部分を通る配線の本数を減らすことが重要になる。これまで、本体部分から表示部分へのデータ伝送には、パラレル伝送方式が多く用いられてきた。パラレル伝送方式を適用する場合、表示装置に表示される画像データを伝送するのに、数十本以上の信号線をヒンジ部分に配線することが求められる。そのため、ヒンジ部分の変形に伴って信号線に捻れが生じ、電力線や信号線が断線する危険があった。そこで、パラレル伝送方式に代わるデータ伝送方式として、1本程度の配線で画像データを伝送することが可能なシリアル伝送方式が考案された(例えば、下記の特許文献1を参照)。
なお、携帯機器におけるデータの伝送方向は、本体部分から表示部分へと向かう方向に限らない。例えば、表示部分には、表示装置の他、通信用のアンテナや各種のスイッチ類などが設けられているため、アンテナにより受信した受信信号やスイッチ類から出力された制御信号などが本体部分へと伝送される。そのため、シリアル伝送方式において全二重双方向伝送する方式などが考案されている(例えば、下記の特許文献2、3を参照)。例えば、表示部分から本体部分へと伝送される信号の振幅と、本体部分から表示部分へと伝送される信号の振幅とを異ならせ、両信号の遷移タイミングを一致させて伝送する方式などが考えられている。
特開昭60−239141号公報 特開2009−130852号公報 特開2009−225335号公報
上記のようなシリアル伝送方式を適用すると、ヒンジ部分の変形自由度が増し、携帯機器のデザイン性を向上させることが可能になる。また、配線の本数が少なくなり、捻れなどに対する耐性が高まることから、ヒンジ部分を通る配線の信頼度が向上する。しかしながら、シリアル伝送方式の場合、パラレル伝送方式に比べて1クロック当たりに伝送されるデータの量が減るため、同じデータ伝送速度を得るには高速なクロックを用いる必要がある。特に、最近の携帯端末に搭載されるLCDは解像度が高いため、LCDに表示される画像データをシリアル伝送するには非常に高速なクロックを用いる必要がある。
データ伝送速度が向上すると、全二重双方向伝送を行う場合に、伝送路において生じる遅延により本体部分から表示部分へと伝送される信号の遷移タイミングと、表示部分から本体部分へと伝送される信号の遷移タイミングに顕著なずれが生じてしまう。遷移タイミングのずれが大きくなると、信号の振幅を正しく検出することが可能な期間に相当するタイミングマージンが減少してしまい、信号振幅の検出精度が低下してしまう。
そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、十分なタイミングマージンを維持することにより、より高速な全二重双方向伝送を実現することが可能な、新規かつ改良された信号伝送装置、及び伝送制御方法を提供することにある。
上記課題を解決するために、本発明のある観点によれば、所定の伝送線路を通じて、第1の振幅を持つ第1の送信信号を第2の通信モジュールに送信する第1の信号送信部を有する、第1の通信モジュールと、前記所定の伝送線路を通じて、前記第1の振幅とは異なる第2の振幅を持つ第2の送信信号を前記第1の通信モジュールに送信する第2の信号送信部と、前記第1の通信モジュールから送信された第1の送信信号の遷移タイミングと前記第2の送信信号の遷移タイミングとが前記第1の通信モジュールの受信端で一致するように、前記第2の信号送信部による第2の送信信号の送信タイミングを調整する送信タイミング調整部と、を有する、前記第2の通信モジュールと、を備える、信号伝送装置が提供される。
また、前記送信タイミング調整部は、前記所定の伝送線路を通じて信号を送信する際に生じる遅延時間の分だけ前記第2の送信信号の送信タイミングを調整するように構成されていてもよい。
また、前記第1の通信モジュールは、送信データから生成されたデータ信号にクロックを重畳した波形を持つ第1の送信信号を生成する信号生成部をさらに有していてもよい。さらに、前記第2の通信モジュールは、前記第1の通信モジュールから送信された第1の送信信号からクロックを抽出するクロック抽出部をさらに有していてもよい。この場合、前記第2の信号送信部は、前記クロック抽出部により抽出されたクロックを用いて前記第2の送信信号を送信する。
また、前記第2の信号送信部は、前記第1の振幅よりも小さな第2の振幅を持つ第2の送信信号を前記第1の通信モジュールに送信するように構成されていてもよい。
また、前記第1の通信モジュールは、前記第2の通信モジュールから送信された第2の送信信号の遷移タイミングと、前記第1の送信信号の遷移タイミングとの差から、前記所定の伝送線路を通じて信号を送信する際に生じる遅延時間を検出する遅延時間検出部と、前記遅延時間検出部により検出された遅延時間を前記第2の通信モジュールに通知する遅延時間通知部と、をさらに有していてもよい。この場合、前記送信タイミング調整部は、前記遅延時間通知部により通知された遅延時間に基づいて前記第2の送信信号の送信タイミングを調整する。
また、前記第2の通信モジュールは、前記所定の伝送線路を通じて既知のトレーニング信号を前記第1の通信モジュールに送信するトレーニング信号送信部をさらに有していてもよい。この場合、前記遅延時間検出部は、前記トレーニング信号送信部により送信された既知のトレーニング信号の送信タイミングを走査することにより、前記所定の伝送線路を通じて信号を送信する際に生じる遅延時間を検出する。
また、上記の信号伝送装置は、画像データを出力する演算処理部と、前記画像データを表示する表示部と、をさらに備えていてもよい。この場合、前記第1の信号送信部は、前記演算処理部から出力された画像データを変調して得られる第1の送信信号を前記第2の通信モジュールに送信し、前記表示部は、前記所定の伝送線路を通じて前記第1の通信モジュールから前記第2の通信モジュールに送信された第1の送信信号を復調して得られる画像データを表示する。
また、上記課題を解決するために、本発明の別の観点によれば、第1の通信モジュールにより、所定の伝送線路を通じて、第1の振幅を持つ第1の送信信号を第2の通信モジュールに送信する第1の信号送信ステップと、前記第2の通信モジュールにより、前記所定の伝送線路を通じて、前記第1の振幅とは異なる第2の振幅を持つ第2の送信信号を前記第1の通信モジュールに送信する第2の信号送信ステップと、を含み、前記第2の通信モジュールは、前記第1の通信モジュールから送信された第1の送信信号の遷移タイミングと前記第2の送信信号の遷移タイミングとが前記第1の通信モジュールの受信端で一致するように、前記第2の信号送信ステップにおける第2の送信信号の送信タイミングを調整する、伝送制御方法が提供される。
以上説明したように本発明によれば、十分なタイミングマージンを維持することにより、より高速な全二重双方向伝送を実現することが可能になる。
パラレル伝送方式を採用した携帯端末の構成について説明するための説明図である。 シリアル伝送方式を採用した携帯端末の構成について説明するための説明図である。 全二重双方向伝送が可能なモジュール構成について説明するための説明図である。 マスターモジュールが送信する信号の波形について説明するための説明図である。 スレーブモジュールが送信する信号の波形について説明するための説明図である。 両モジュールが信号を送信した際に伝送路で観測される理想的な信号波形について説明するための説明図である。 両モジュールが送信するデータと、両モジュールが検出する信号振幅と、両モジュールが受信するデータとの関係について説明するための説明図である。 本発明の一実施形態に係る全二重双方向伝送が可能なモジュール構成について説明するための説明図である。 同実施形態に係るマスターモジュールが送信する信号の波形について説明するための説明図である。 同実施形態に係るスレーブモジュールが送信する信号の波形について説明するための説明図である。 伝送遅延を考慮しない場合にマスターモジュールが受信する信号の波形について説明するための説明図である。 伝送遅延を考慮しない場合にスレーブモジュールが受信する信号の波形について説明するための説明図である。 伝送遅延を考慮しない場合に両モジュールの受信端において観測されるアイパターンについて説明するための説明図である。 伝送遅延を考慮した場合にマスターモジュールが受信する信号の波形について説明するための説明図である。 伝送遅延を考慮した場合にスレーブモジュールが受信する信号の波形について説明するための説明図である。 伝送遅延を考慮した場合に両モジュールの受信端において観測されるアイパターンについて説明するための説明図である。
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
[説明の流れについて]
ここで、以下に記載する本発明の実施形態に関する説明の流れについて簡単に述べる。まず、図1を参照しながら、パラレル伝送方式を採用した携帯端末P10の構成について説明する。次いで、図2を参照しながら、シリアル伝送方式を採用した携帯端末P20の構成について説明する。次いで、図3を参照しながら、全二重双方向伝送が可能なモジュール構成について説明する。この中で、図4〜図7を参照しながら、全二重双方向伝送を実施した際に伝送路で観測される信号の波形などについて考察する。
次いで、図8を参照しながら、本実施形態に係る全二重双方向伝送を実現することが可能なマスターモジュール21、スレーブモジュール23の構成について説明する。次いで、図9〜図13を参照しながら、伝送路22における伝送遅延を考慮しない場合に生じる問題点について考察する。次いで、図14〜図16を参照しながら、伝送路22における伝送遅延を考慮した全二重双方向伝送方法、及びその方法を適用することにより得られる効果について説明する。最後に、同実施形態の技術的思想について纏め、当該技術的思想から得られる作用効果について簡単に説明する。
(説明項目)
1:はじめに
1−1:パラレル伝送方式に係る携帯端末P10の構成
1−2:シリアル伝送方式に係る携帯端末P20の構成
1−3:全二重双方向伝送について
2:実施形態
2−1:モジュール構成
2−2:伝送遅延による影響について
2−3:伝送遅延の影響を回避する仕組みについて
2−4:補足
3:まとめ
<1:はじめに>
はじめに、これまで機器内のデータ伝送方式として多く利用されてきたパラレル伝送方式と、これから多く利用されつつあるシリアル伝送方式の概要について、それぞれの方式を採用した携帯端末P10、130の装置構成を例に挙げて簡単に説明する。
[1−1:パラレル伝送方式に係る携帯端末P10の構成]
まず、図1を参照しながら、パラレル伝送方式を採用した携帯端末P10の装置構成について簡単に説明する。図1は、パラレル伝送方式を採用した携帯端末P10の装置構成の一例を示す説明図である。図1には、携帯端末P10の一例として携帯電話が模式的に描画されている。しかし、以下で説明する技術の適用範囲は携帯電話に限定されない。例えば、ノートPC等の情報処理装置や各種の携帯型電子機器にも適用可能である。
図1に示すように、携帯端末P10は、主に、表示部P11と、接続部P12と、操作部P13と、ベースバンドプロセッサP14(BBP)と、パラレル信号線路P15と、液晶部P16(LCD)と、により構成される。但し、LCDは、Liquid Crystal Displayの略である。なお、表示部P11を表示側、操作部P13を本体側と呼ぶ場合がある。なお、ここでは説明の都合上、パラレル信号線路P15を介して映像信号が伝送されるケースを例に挙げる。もちろん、パラレル信号線路P15を介して伝送される信号の種類はこれに限定されず、例えば、制御信号や音声信号などもある。
図1に示すように、表示部P11には、液晶部P16が設けられている。液晶部P16には、パラレル信号線路P15を介して伝送された映像信号が入力される。そして、液晶部P16は、入力された映像信号に基づいて映像を表示する。接続部P12は、表示部P11と操作部P13とを接続する部材である。この接続部P12を形成する接続部材は、例えば、表示部P11をZ−Y平面内で180度回転できる構造を有する。また、この接続部材は、X−Z平面内で表示部P11が回転可能に形成されていてもよい。この場合、携帯端末P10は折り畳みできる構造になる。なお、この接続部材は、自由な方向に表示部P11を可動にする構造を有していてもよい。
ベースバンドプロセッサP14は、携帯端末P10の通信制御、及びアプリケーションの実行機能を提供する演算処理部である。ベースバンドプロセッサP14から出力されるパラレル信号は、パラレル信号線路P15を通じて表示部P11の液晶部P16に伝送される。パラレル信号線路P15には、多数の信号線が配線されている。例えば、携帯電話の場合、この信号線数nは50本程度である。また、パラレル信号線路P15は、接続部P12を通るように配線されている。なお、液晶部P16の解像度がQVGAの場合、映像信号の伝送速度は130Mbps程度となる。
上記のように、接続部P12には、パラレル信号線路P15を形成する多数の信号線が配線されている。そのため、接続部P12の可動範囲を広げると、その動きによりパラレル信号線路P15に損傷が発生する危険性が高まり、パラレル信号線路P15の信頼性が損なわれてしまう。一方で、パラレル信号線路P15の信頼性を維持しようとすると、接続部P12の可動範囲が制約され、携帯端末P10のデザイン性や機能性が低下してしまう。こうした理由から、接続部P12を形成する可動部材の自由度及びパラレル信号線路P15の信頼性を向上させる仕組みとして、後述するシリアル伝送方式が考案された。
以上、パラレル伝送方式を採用した携帯端末P10の装置構成について説明した。
[1−2:シリアル伝送方式に係る携帯端末P20の構成]
次に、図2を参照しながら、シリアル伝送方式を採用した携帯端末P20の装置構成について簡単に説明する。図2は、シリアル伝送方式を採用した携帯端末P20の装置構成の一例を示す説明図である。
なお、図2には、携帯端末P20の一例として携帯電話が模式的に描画されている。しかし、以下で説明する技術の適用範囲は携帯電話に限定されない。例えば、ノートPC等の情報処理装置や各種の携帯型電子機器にも適用可能である。
図2に示すように、携帯端末P20は、主に、表示部P21と、接続部P22と、操作部P23と、液晶部P30(LCD)と、を有する。さらに、携帯端末P20は、ベースバンドプロセッサP24(BBP)と、パラレル信号線路P25、P29と、シリアル信号線路P27と、シリアライザP26と、デシリアライザP28とを有する。
携帯端末P20は、上記の携帯端末P10とは異なり、接続部P22に配線されたシリアル信号線路P27を通じてシリアル伝送方式により映像信号を伝送している。そのため、操作部P23には、ベースバンドプロセッサP24から出力されたパラレル信号をシリアル化するためのシリアライザP26が設けられている。一方、表示部P21には、シリアル信号線路P27を通じて伝送されるシリアル信号をパラレル化するためのデシリアライザP28が設けられている。
シリアライザP26は、ベースバンドプロセッサP24から出力され、かつ、パラレル信号線路P25を介して入力されたパラレル信号をシリアル信号に変換する。例えば、シリアライザP26は、パラレル信号用クロック(P−CLK)に同期して並列に入力された4つの信号を直列に整列し、パラレル信号用クロックの4倍の周波数を持つシリアル信号用クロック(S−CLK)に同期したシリアル信号を生成する。シリアライザP26により得られたシリアル信号は、シリアル信号線路P27を通じてデシリアライザP28に入力される。
シリアル信号が入力されると、デシリアライザP28は、入力されたシリアル信号から各信号を分離してパラレル信号を復元する。そして、デシリアライザP28は、パラレル信号線路P29を通じてパラレル信号を液晶部P30に入力する。なお、シリアル信号は、LVDS(Low Voltage Differential Signal)などの差動信号を用いた伝送方式で伝送されるようにしてもよい。
このように、シリアル伝送方式を採用することで、シリアル信号線路P27の配線数kは、図1の携帯端末P10が有するパラレル信号線路P15の配線数nよりも大幅に少ない数(1≦k≪n)にすることができる。その結果、シリアル信号線路P27の信頼性を維持しつつ、シリアル信号線路P27が配線された接続部P22の可動範囲を大きく向上させることが可能になる。
以上、シリアル伝送方式を採用した携帯端末P20の装置構成について説明した。
[1−3:全二重双方向伝送について]
さて、ここまでは操作部P23から表示部P21への信号伝送だけを考えてきた。しかし、表示部P21には、撮像手段、スイッチ類、センサ類など、各種のデバイスが搭載されており、表示部P21から操作部P23への信号伝送も考える必要がある。そこで、シリアル伝送方式において全二重双方向伝送を実現する仕組みについて考えてみたい。なお、全二重双方向伝送とは、ある伝送路の両側から同時に信号を伝送することを言う。全二重双方向伝送の場合、例えば、シリアル信号線路P27を通じて、操作部P23から表示部P21へ、表示部P21から操作部P23へと同時に信号が伝送される。
全二重双方向伝送の仕組みは、図3に示すようなモジュール構成により実現される。図3に示すように、全二重双方向伝送を実現可能な携帯端末P20は、マスターモジュール11と、スレーブモジュール13とを有する。また、マスターモジュール11とスレーブモジュール13とは伝送路12を介して接続されている。例えば、マスターモジュール11は操作部P23に搭載され、スレーブモジュール13は表示部P21に搭載される。また、伝送路12は、シリアル信号線路P27に対応する。
マスターモジュール11は、主に、差動送信回路111と、終端抵抗112と、差動受信回路113とを有する。一方、スレーブモジュール13は、終端抵抗131と、差動受信回路132と、差動送信回路133とを有する。なお、ここでは一例として差動伝送方式の場合について考える。
マスターモジュール11からスレーブモジュール13へとデータを伝送する場合、まず、マスターモジュール11のTX入力(送信データの入力端子)から差動送信回路111に送信データが入力される。送信データが入力されると、差動送信回路111は、入力された送信データに応じて、所定の第1振幅(例えば、±2V)を有する送信信号を生成する。例えば、図4に示すように、差動送信回路111は、送信データが1の場合に終端抵抗112の両端に+2Vの電圧を発生させ、送信データが0の場合に終端抵抗112の両端に−2Vの電圧を発生させる。このようにして生成された送信信号(以下、第1送信信号)は、差動送信回路111から出力され、伝送路12を通じてスレーブモジュール13に伝送される。
スレーブモジュール13からマスターモジュール11へとデータを伝送する場合、まず、スレーブモジュール13のTX入力(送信データの入力端子)から差動送信回路133に送信データが入力される。送信データが入力されると、差動送信回路133は、入力された送信データに応じて、所定の第2振幅(例えば、±1V)を有する送信信号を生成する。例えば、図5に示すように、差動送信回路133は、送信データが1の場合に終端抵抗131の両端に+1Vの電圧を発生させ、送信データが0の場合に終端抵抗131の両端に−1Vの電圧を発生させる。このようにして生成された送信信号(以下、第2送信信号)は、差動送信回路133から出力され、伝送路12を通じてマスターモジュール11に伝送される。
上記のように、マスターモジュール11からスレーブモジュール13へ、スレーブモジュール13からマスターモジュール11へと同時に送信信号が伝送されると、伝送路12における電圧波形は図6のようになる。図4、図5に示したように、ここで考えている全二重双方向伝送方式は、伝送方向に応じて異なる信号振幅(例えば、第1振幅>第2振幅)を用いる方式である。そのため、伝送路12において観測される第1送信信号と第2送信信号の重畳信号は、図6に示すように多値の信号になる。
ここで、図6に示した重畳信号から第1送信信号の成分と第2送信信号の成分を分離する方法について考えてみたい。
上記の通り、第1送信信号は、±2Vの電圧振幅を有する。一方、第2送信信号は、±1Vの電圧振幅を有する。そのため、第1送信信号が+2Vの場合、重畳信号の電圧振幅は+3V又は+1Vとなる。また、第1送信信号が−2Vの場合、重畳信号の電圧振幅は−3V又は−1Vとなる。さらに、第2送信信号の電圧振幅が+1Vの場合、重畳信号の電圧振幅は+3V又は−1Vとなる。そして、第2送信信号の電圧振幅が−1Vの場合、重畳信号の電圧振幅は−3V又は+1Vとなる。
従って、重畳信号の電圧振幅>0Vの場合、第1送信信号の電圧振幅は+2Vであったことが分かる。同様に、重畳信号の電圧振幅<0Vの場合、第1送信信号の電圧振幅は−2Vであったことが分かる。そのため、閾値0Vを用いて重畳信号の電圧振幅を閾値判定することにより、その重畳信号に含まれる第1送信信号の成分を分離することができる。
一方、第2送信信号の成分を分離するには、重畳信号の電圧振幅+3V、+1V、−1V、−3Vをそれぞれ閾値判定することが必要になる。重畳信号の電圧振幅>+2Vの場合、第2送信信号の電圧振幅は+1Vであったことが分かる。また、重畳信号の電圧振幅<+2V、かつ、重畳信号の電圧振幅>0Vの場合、第2送信信号の電圧振幅は−1Vであったことが分かる。
同様に、重畳信号の電圧振幅<−2Vの場合、第2送信信号の電圧振幅は−1Vであったことが分かる。また、重畳信号の電圧振幅>−2、かつ、重畳信号の電圧振幅<0Vの場合、第2送信信号の電圧振幅は+1Vであったことが分かる。そのため、閾値+2V、0V、−2Vを用いて重畳信号の電圧振幅を閾値判定することにより、その重畳信号に含まれる第2送信信号の成分を分離することができる。
上記の性質を利用してマスターモジュール11、スレーブモジュール13のそれぞれで重畳信号から第1送信信号の成分と第2送信信号の成分を分離する処理が行われる。
再び図3を参照する。上記の通り、マスターモジュール11から送信された第1送信信号は、伝送路12において第2送信信号の重畳される。一方、スレーブモジュール13から送信された第2送信信号は、伝送路12において第1送信信号に重畳される。そのため、マスターモジュール11が有する差動受信回路113、スレーブモジュール13が有する差動受信回路132には、それぞれ図6に示すような重畳信号が入力される。なお、以下の説明では、簡単のため、第1振幅が±2V、第2振幅が±1Vであるものとする。
スレーブモジュール13に重畳信号が入力されると、差動受信回路132は、閾値0Vを用いて重畳信号の電圧振幅を閾値判定(2値判定)する。重畳信号の電圧振幅>0Vの場合、差動受信回路132は、第1送信信号の電圧振幅が+2Vであったと判定し、第1送信信号の電圧振幅が+2Vの場合に対応するデータ1を出力する。一方、重畳信号の電圧振幅<0Vの場合、差動受信回路132は、第1送信信号の電圧振幅が−2Vであったと判定し、第1送信信号の電圧振幅が−2Vの場合に対応するデータ0を出力する。差動受信回路132から出力されたデータは、受信データとしてスレーブモジュール13のRX出力(受信データの出力端子)から出力される。
一方、マスターモジュール11に重畳信号が入力されると、差動受信回路113は、閾値−2V、0V、+2Vを用いて重畳信号の電圧振幅を閾値判定(4値判定)する。重畳信号の電圧振幅>+2Vの場合、差動受信回路113は、第2送信信号の電圧振幅が+1Vであったと判定し、第1送信信号の電圧振幅が+1Vの場合に対応するデータ1を出力する。また、重畳信号の電圧振幅<−2Vの場合、差動受信回路113は、第2送信信号の電圧振幅が−1Vであったと判定し、第1送信信号の電圧振幅が−1Vの場合に対応するデータ1を出力する。
また、重畳信号の電圧振幅<+2V、かつ、重畳信号の電圧振幅>0Vの場合、差動受信回路113は、第1送信信号の電圧振幅が−1Vであったと判定し、第1送信信号の電圧振幅が−1Vの場合に対応するデータ0を出力する。さらに、重畳信号の電圧振幅>−2V、かつ、重畳信号の電圧振幅<0Vの場合、差動受信回路113は、第1送信信号の電圧振幅が+1Vであったと判定し、第1送信信号の電圧振幅が+1Vの場合に対応するデータ1を出力する。差動受信回路113から出力されたデータは、受信データとしてマスターモジュール11のRX出力(受信データの出力端子)から出力される。
ここで、TX入力から入力されるデータ、差動受信回路113、132から出力されるデータ、RX出力から出力されるデータの関係を図7に示す。図4〜図6の例では、第1送信信号の伝送速度が第2送信信号の伝送速度の半分に設定されていた。この場合、図7に示すように、差動受信回路132から1ビットのデータが出力される間に、差動受信回路113から2ビットのデータが出力される。但し、図7の例では、差動受信回路113から出力された2ビットのLSBをRX出力として採用する構成が示されている。
以上、全二重双方向伝送を実現することが可能な仕組みについて説明した。この仕組みを用いることにより、全二重双方向伝送を実現することが可能になる。但し、これまで説明してきた仕組みは、送信信号の伝送遅延が無視できることを前提としていた。しかしながら、データレートが高速なシステムにおいては、伝送路12における送信信号の伝送遅延が無視できなくなり、受信データの再生精度に影響が及んでしまう。具体的には、伝送遅延によって2つの送信信号の遷移タイミングにずれが生じることにより、タイミングマージンが減少し、信号振幅の検出精度が低下してしまうのである。
<2:実施形態>
そこで、本件発明者は、伝送遅延に起因してタイミングマージンが減少してしまうことを回避することが可能な全二重双方向伝送の仕組みを考案した。以下、この全二重双方向伝送の仕組みに係る実施形態について詳細に説明する。
[2−1:モジュール構成]
まず、図8を参照しながら、本実施形態に係る全二重双方向伝送システムの構成(モジュール構成)について説明する。図8は、本実施形態に係る全二重双方向伝送システムの構成(モジュール構成)について説明するための説明図である。なお、本実施形態に係る全二重双方向伝送の仕組みは、先に説明した携帯端末P20のシリアル信号線路P27を通じたデータ伝送に適用することができる。
図8に示すように、本実施形態に係る全二重双方向伝送システムは、マスターモジュール21と、伝送路22と、スレーブモジュール23とにより構成される。なお、ここでは差動伝送方式を想定して説明するが、任意のシリアル伝送方式に応用することが可能である。例えば、送信データをDCフリーの符号に符号化し、その符号をDC電源に重畳し、電源ケーブルを介して伝送する電源重畳方式に応用することも可能である。
さて、図8に示すように、マスターモジュール21は、主に、差動送信回路211と、終端抵抗212と、多値差動受信回路213と、ラッチ回路214とを有する。一方、スレーブモジュール23は、主に、終端抵抗231と、2値差動受信回路232と、CDR回路233と、タイミング調整回路234と、ラッチ回路235と、差動送信回路236とを有する。なお、上記のCDRは、Clock Data Recoveryの略である。
マスターモジュール21からスレーブモジュール23へとデータを伝送する場合、まず、マスターモジュール21のTX入力(送信データの入力端子)から差動送信回路211に送信データが入力される。送信データが入力されると、差動送信回路211は、入力された送信データに応じて、所定の第1振幅(例えば、±200mV)を有する送信信号を生成する。
例えば、図9に示すように、差動送信回路211は、送信データが1の場合に終端抵抗212の両端に+200mVの電圧を発生させ、送信データが0の場合に終端抵抗212の両端に−200mVの電圧を発生させる。このようにして生成された送信信号(以下、第1送信信号)は、差動送信回路211から出力され、伝送路22を通じてスレーブモジュール23に伝送される。
スレーブモジュール23からマスターモジュール21へとデータを伝送する場合、まず、スレーブモジュール23のTX入力(送信データの入力端子)からラッチ回路235を介して差動送信回路236に送信データが入力される。送信データが入力されると、差動送信回路236は、入力された送信データに応じて、所定の第2振幅(例えば、±100mV)を有する送信信号を生成する。
例えば、図10に示すように、差動送信回路236は、送信データが1の場合に終端抵抗231の両端に+100mVの電圧を発生させ、送信データが0の場合に終端抵抗231の両端に−100mVの電圧を発生させる。このようにして生成された送信信号(以下、第2送信信号)は、差動送信回路236から出力され、伝送路22を通じてマスターモジュール21に伝送される。
例えば、伝送路22のインピーダンスが差動100Ω、終端抵抗212、231のインピーダンスが100Ωならば、並列合成インピーダンスは50Ωとなる。この場合、差動送信回路211の電流出力振幅を4mAに設定し、差動送信回路236の電流出力振幅を2mAに設定した場合、差動送信回路211の電圧振幅は400mVppdとなり、差動送信回路236の電圧振幅は200mVppdとなる。つまり、第2送信信号が持つ振幅は、第1送信信号が持つ振幅の半分になる。
マスターモジュール21から送信された第1送信信号と、スレーブモジュール23から送信された第2送信信号とは伝送路22において重畳される。マスターモジュール21で受信された重畳信号は、多値差動受信回路213に入力される。一方、スレーブモジュール23で受信された重畳信号は、2値差動受信回路232に入力される。
マスターモジュール21で重畳信号が受信されると、多値差動受信回路213は、3つの閾値(例えば、−200mV、0V、+200mV)を用いて重畳信号の電圧振幅を4値判定する。例えば、重畳信号の電圧振幅<−200mVの場合、多値差動受信回路213は、第2送信信号の電圧振幅−100mVに対応するデータ0を出力する。また、重畳信号の電圧振幅>+200mVの場合、多値差動受信回路213は、第2送信信号の電圧振幅+100mVに対応するデータ1を出力する。
さらに、重畳信号の電圧振幅>−200mV、かつ、重畳信号の電圧振幅<0Vの場合、多値差動受信回路213は、第2送信信号の電圧振幅−100mVに対応するデータ0を出力する。そして、重畳信号の電圧振幅<+200mV、かつ、重畳信号の電圧振幅>0Vの場合、多値差動受信回路213は、第2送信信号の電圧振幅−100mVに対応するデータ0を出力する。このようにして出力されたデータは、ラッチ回路214に入力される。ラッチ回路214には、CLK入力(クロックの入力端子)から入力されたクロックも入力される。そして、ラッチ回路214に入力されたデータは、クロックの遷移タイミングに同期してRX出力(受信データの出力端子)に出力される。
一方、スレーブモジュール23で重畳信号が受信されると、2値差動受信回路232は、1つの閾値(例えば、0V)を用い手重畳信号の電圧振幅を2値判定する。例えば、重畳信号の電圧振幅>0Vの場合、2値差動受信回路232は、第1送信信号の電圧振幅+200mVに対応するデータ1を出力する。また、重畳信号の電圧振幅<0Vの場合、2値差動受信回路232は、第1送信信号の電圧振幅−200mVに対応するデータ0を出力する。そして、2値差動受信回路232から出力されたデータは、CDR回路233に入力される。CDR回路233は、2値差動受信回路232から入力されたデータの遷移タイミングに基づいてクロックを抽出する。また、CDR回路233は、2値差動受信回路232から入力されたデータをRX出力(受信データの出力端子)に出力する。
CDR回路233により抽出されたクロックは、CLK出力(クロックの出力端子)に出力されると共に、タイミング調整回路234に入力される。クロックが入力されると、タイミング調整回路234は、伝送路22において生じる伝送遅延の遅延時間TDだけクロックの遷移タイミングを調整し、調整後のクロックをラッチ回路235に入力する。ラッチ回路235は、タイミング調整回路234から入力されたクロックの遷移タイミングに同期してTX入力(送信データの入力端子)から入力された送信データを出力する。ラッチ回路235から出力された送信データは、差動送信回路236に入力され、マスターモジュール21に伝送される。
以上、全二重双方向伝送システムのモジュール構成について説明した。
[2−2:伝送遅延による影響について]
次に、伝送路22において生じる伝送遅延の影響について説明する。ここでは、図11〜図13を参照しながら、タイミング調整回路234によりクロックの遷移タイミングが調整されなかった場合に、伝送路22において生じる伝送遅延の影響について考察する。
あるタイミングで送信された第1送信信号と第2送信信号は伝送路22において重畳される。上記の通り、伝送路22において伝送遅延が発生するため、伝送路22のマスターモジュール21側における端部(以下、マスターモジュール21の受信端)で観測される重畳信号は、図11に示すような信号波形となる。
図11には、マスターモジュール21から送信された第1送信信号の電圧波形(A)、スレーブモジュール23から送信された第2送信信号の電圧波形(B)、及びマスターモジュール21の受信端で観測される電圧波形(C)が示されている。(B)に示すように、第2送信信号は、マスターモジュール21の受信端に到達するまでに伝送路22で遅延時間TDだけ伝送遅延が発生する。そのため、マスターモジュール21の受信端で観測される電圧波形(C)は、電圧波形(A)と、遅延時間TDだけ遅延した電圧波形((B)の破線)との合成波形となる。
同様に、伝送路22のスレーブモジュール23側における端部(以下、スレーブモジュール23の受信端)で観測される重畳信号は、図12に示すような信号波形となる。
図12には、マスターモジュール21から送信された第1送信信号の電圧波形(A)、スレーブモジュール23から送信された第2送信信号の電圧波形(B)、及びスレーブモジュール23の受信端で観測される電圧波形(C)が示されている。(A)に示すように、第1送信信号は、スレーブモジュール23の受信端に到達するまでに伝送路22で遅延時間TDだけ伝送遅延が発生する。そのため、スレーブモジュール23の受信端で観測される電圧波形(C)は、遅延時間TDだけ遅延した電圧波形((A)の破線)と、電圧波形(B)との合成波形となる。
マスターモジュール21の受信端で観測される電圧波形(図11の(C))のアイパターン、及びスレーブモジュール23の受信端で観測される電圧波形(図12の(C))のアイパターンは、図13に示すような形状になる。図13(A)は、マスターモジュール21の受信端で観測される電圧波形のアイパターンを示している。一方、図13(B)は、スレーブモジュール23の受信端で観測される電圧波形のアイパターンを示している。
先に述べたように、第2送信信号が持つ電圧振幅(図11の例では±100mV)は、第1送信信号が持つ電圧振幅(図12の例では±200mV)の半分である。そのため、マスターモジュール21が有する多値差動受信回路213は、マスターモジュール21の受信端で観測される電圧波形の電圧振幅を3つの閾値(図13の例では+200mV、0V、−200mV)を用いて4値の閾値判定をする必要がある。この場合、図13(A)に示すように、閾値±200mVにおけるアイパターン(A)のタイミングマージンはΔTである。図13(A)から分かるように、タイミングマージンΔTは、伝送遅延が生じない場合のタイミングマージンΔTに比べ、遅延時間TDの分だけ減少している。
一方、スレーブモジュール23が有する2値差動受信回路232は、スレーブモジュール23の受信端で観測される電圧波形を1つの閾値(図13の例では0V)を用いて2値判定すればよい。そのため、図13(B)に示すように、閾値0Vにおけるアイパターン(B)のタイミングマージンはΔTとなり、伝送遅延が生じない場合のタイミングマージンΔTに等しい。つまり、電圧振幅の大きい送信信号(第1送信信号)を受信する側においては伝送遅延の影響を受けずに済む。このような理由から、全二重双方向伝送システムにおいては、電圧振幅の小さい送信信号(第2送信信号)を受信する側において、伝送遅延の影響によりタイミングマージンが減少するのを防止する仕組みが必要になる。
[2−3:伝送遅延の影響を回避する仕組みについて]
上記のような仕組みを実現するために、本実施形態に係るスレーブモジュール23にはタイミング調整回路234が設けられているのである。ここでは、図14〜図16を参照しながら、タイミング調整回路234によりクロックの遷移タイミングを調整することにより得られる作用及び効果について詳細に説明する。
まず、図14を参照する。図14には、マスターモジュール21から送信された第1送信信号の電圧波形(A)、スレーブモジュール23から送信された第2送信信号の電圧波形(B)、及びスレーブモジュール23の受信端で観測される電圧波形(C)が示されている。(A)に示すように、第1送信信号は、スレーブモジュール23の受信端に到達するまでに伝送路22で遅延時間TDだけ伝送遅延が発生する。そのため、スレーブモジュール23の受信端で観測される電圧波形(C)は、遅延時間TDだけ遅延した電圧波形((A)の破線)と、電圧波形(B)との合成波形となる。
但し、スレーブモジュール23から送信される第2送信信号は、タイミング調整回路234により遅延時間TDの分だけ遷移タイミングが調整されたクロックに同期して送信される。そのため、スレーブモジュール23の受信端で観測される電圧波形(C)は、図12に示した電圧波形(C)よりも複雑な形状になる。しかし、第2送信信号の遷移タイミングに関わらず、第1送信信号の電圧振幅が+200mVの場合には電圧波形(C)の振幅>0Vとなり、第1送信信号の電圧振幅が−200mVの場合には電圧波形(C)の振幅<0Vとなる。そのため、電圧波形(C)から第1送信信号の電圧振幅を判定する際には電圧波形(C)の複雑さが影響することはない。
次に、図15を参照する。図15には、マスターモジュール21から送信された第1送信信号の電圧波形(A)、スレーブモジュール23から送信された第2送信信号の電圧波形(B)、及びマスターモジュール21の受信端で観測される電圧波形(C)が示されている。(A)に示すように、第2送信信号は、マスターモジュール21の受信端に到達するまでに伝送路22で遅延時間TDだけ伝送遅延が発生する。そのため、マスターモジュール21の受信端で観測される電圧波形(C)は、遅延時間TDだけ遅延した電圧波形((A)の破線)と、電圧波形(B)との合成波形となる。
但し、スレーブモジュール23から送信される第2送信信号は、タイミング調整回路234により遅延時間TDの分だけ遷移タイミングが調整されたクロックに同期して送信される。そのため、マスターモジュール21の受信端で観測される電圧波形(C)は、遷移タイミングを揃えて第1送信信号と第2送信信号を合成した合成波形に等しくなる。つまり、タイミング調整回路234によりクロックの遷移タイミングが調整されたことで、マスターモジュール21の受信端で観測される電圧波形(C)は、伝送遅延がない場合に観測される重畳信号の電圧波形に等しくなる。
図14に示したスレーブモジュール23の受信端で観測される電圧波形(C)のアイパターンは、図16(B)のようになる。また、図15に示したマスターモジュール21の受信端で観測される電圧波形(C)のアイパターンは、図16(A)のようになる。
図16(A)に示すように、マスターモジュール21の受信端で観測される電圧波形のタイミングマージンΔTは、タイミング調整回路234によりクロックの遷移タイミングが調整されたことにより、伝送遅延がない場合に観測されるタイミングマージンΔTに等しくなる。一方、図16(B)に示すように、スレーブモジュール23の受信端で観測される電圧波形のタイミングマージンΔTは、タイミング調整回路234によりクロックの遷移タイミングが調整されたとしても変わらず、伝送遅延がない場合に観測されるタイミングマージンΔTに等しくなる。
このように、タイミング調整回路234によりクロックの遷移タイミングを調整することにより、伝送遅延による影響を回避することが可能になる。つまり、タイミングマージンが減少せずに済むことにより、伝送遅延に起因して受信データの再生精度が低下してしまうのを防止することが可能になる。
[2−4:補足]
さて、タイミング調整回路234による送信タイミング(クロックの遷移タイミング)の調整は、何らかのフィードバック制御回路にて自動的に行えるようにすることが好ましい。このようなフィードバックの仕組みを実現するためには、例えば、マスターモジュール21とスレーブモジュール23との間で制御信号とデータを含むパケットをやり取りするパケット通信機構を設ける必要がある。
さらに、スレーブモジュール23から送信される第2送信信号の遷移タイミングとマスターモジュール21から送信される第1送信信号の遷移タイミングとの差を検出するタイミング検出機構を設ける必要がある。そして、このタイミング検出機構による検出結果をマスターモジュール21からスレーブモジュール23へと通知する結果通知機構を設ける必要がある。
また、マスターモジュール21とスレーブモジュール23との間で通信を開始する際にトレーニング期間を設け、タイミング調整回路234の調整を行えるようにする。例えば、タイミング調整回路234によりクロックの遷移タイミングを逐次調整しながら、事前に決めたトレーニング信号をスレーブモジュール23からマスターモジュール21へと送信しつつ、その送信タイミングをマスターモジュール21が順次走査する。そして、その走査結果から、マスターモジュール21で期待値チェックを行い、一致が確認された場合に、その旨をスレーブモジュール23に通知する。その通知を受けたスレーブモジュール23は、一致が確認された送信タイミングとなるタイミング調整回路234の調整値を採用する。なお、そのような送信タイミングが複数検出された場合には、それらの中心値を送信タイミングとする調整値を採用する。
<3:まとめ>
最後に、本発明の実施形態に係る技術内容について簡単に纏める。ここで述べる技術内容は、例えば、PC、携帯電話、携帯ゲーム機、携帯情報端末、情報家電、カーナビゲーションシステム等に対して適用することができる。
上記の通り、本実施形態は、振幅の異なる2つの送信信号を伝送路で多重化して伝送する全二重双方向伝送システムに関する。例えば、伝送路の両端から入力される送信信号の振幅比は2倍以上に設定される。また、この全二重双方向伝送システムは、伝送路の両端にそれぞれ接続された2つのモジュールから構成され、少なくとも一方のモジュールには送信信号の出力タイミングを調整するタイミング調整手段が設けられている。このタイミング調整手段は、振幅の大きい送信信号を出力するモジュールの受信端において両送信信号の遷移タイミングが一致するように、送信信号の出力タイミングを調整する。つまり、タイミング調整手段は、振幅の大きい送信信号の遷移タイミングと、伝送路を経て伝搬してきた送信信号(遅延した送信信号)の遷移タイミングとが一致するように、一方又は両方の送信信号の出力タイミングを調整する。
このようにして送信信号の出力タイミングが調整されることにより、伝送路で多重化された多値の信号から各送信信号の振幅を正確に判定することが可能になる。特に、振幅の大きな送信信号を送信する側のモジュールにおいては多値判定が必要になるが、上記のタイミング調整が行われていることにより、十分なタイミングマージンをもって振幅の多値判定を行うことが可能になる。その結果、受信データの再生精度が向上する。
(備考)
上記のマスターモジュール21は、第1の通信モジュールの一例である。上記のスレーブモジュール23は、第2の通信モジュールの一例である。上記の伝送路22は、所定の伝送線路の一例である。上記の差動送信回路211は、第1の信号送信部、信号生成部の一例である。上記の差動送信回路236は、第2の信号送信部の一例である。上記のタイミング調整回路234、ラッチ回路235は、送信タイミング調整部の一例である。上記のCDR回路233は、クロック抽出部の一例である。上記のベースバンドプロセッサP24は、演算処理部の一例である。上記の液晶部P30は、表示部の一例である。
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
例えば、図8において、タイミング調整回路234とCDR回路233とを別体として記載したが、タイミング調整回路234の機能をCDR回路233に組み込んでもよい。具体的には、CDR回路233が備える発振器を多相発振器とし、複数の位相から最適な位相を選択するように構成することにより、CDR回路233にてタイミング調整回路234の機能を実現することが可能である。
例えば、マスターモジュール21からスレーブモジュール23へとデータを伝送する際に、8B10Bなどのクロック重畳符号を用いてもよい。但し、8B10B符号は、送信データを構成するデータ値(0又は1)が連続して同じ値とならないように、適当な頻度で0から1又は1から0の遷移を含むように形成された符号である。このような符号に基づいて生成される信号波形は、送信データのデータ値を振幅とする送信信号と、当該送信信号よりも大きな振幅のクロックとを重畳して得られる信号の波形となる。なお、クロック重畳符号の一例として、特開2009−267624号公報に記載された多値符号を挙げることができる。この多値符号を用いると、受信側においてPLL回路などを設けずにクロックを抽出することができるようになる。
P10、P20 携帯端末
P11、P21 表示部
P12、P22 接続部
P13、P23 操作部
P14、P24 ベースバンドプロセッサ
P15、P25、P29 パラレル信号線路
P16、P30 液晶部
P26 シリアライザ
P27 シリアル信号線路
P28 デシリアライザ
11 マスターモジュール
12 伝送路
13 スレーブモジュール
111、133 差動送信回路
112、131 終端抵抗
113、132 差動受信回路
21 マスターモジュール
22 伝送路
23 スレーブモジュール
211、236 差動送信回路
212、231 終端抵抗
213 多値差動受信回路
214、235 ラッチ回路
232 2値差動受信回路
233 CDR回路
234 タイミング調整回路

Claims (8)

  1. 所定の伝送線路を通じて、第1の振幅を持つ第1の送信信号を第2の通信モジュールに送信する第1の信号送信部
    を有する、第1の通信モジュールと、
    前記所定の伝送線路を通じて、前記第1の振幅とは異なる第2の振幅を持つ第2の送信信号を前記第1の通信モジュールに送信する第2の信号送信部と、
    前記第1の通信モジュールから送信された第1の送信信号の遷移タイミングと前記第2の送信信号の遷移タイミングとが前記第1の通信モジュールの受信端で一致するように、前記第2の信号送信部による第2の送信信号の送信タイミングを調整する送信タイミング調整部と、
    を有する、前記第2の通信モジュールと、
    を備える、信号伝送装置。
  2. 前記送信タイミング調整部は、前記所定の伝送線路を通じて信号を送信する際に生じる遅延時間の分だけ前記第2の送信信号の送信タイミングを調整する、
    請求項1に記載の信号伝送装置。
  3. 前記第1の通信モジュールは、
    送信データから生成されたデータ信号にクロックを重畳した波形を持つ第1の送信信号を生成する信号生成部をさらに有し、
    前記第2の通信モジュールは、
    前記第1の通信モジュールから送信された第1の送信信号からクロックを抽出するクロック抽出部をさらに有し、
    前記第2の信号送信部は、前記クロック抽出部により抽出されたクロックを用いて前記第2の送信信号を送信する、
    請求項2に記載の信号伝送装置。
  4. 前記第2の信号送信部は、前記第1の振幅よりも小さな第2の振幅を持つ第2の送信信号を前記第1の通信モジュールに送信する、
    請求項3に記載の信号伝送装置。
  5. 前記第1の通信モジュールは、
    前記第2の通信モジュールから送信された第2の送信信号の遷移タイミングと、前記第1の送信信号の遷移タイミングとの差から、前記所定の伝送線路を通じて信号を送信する際に生じる遅延時間を検出する遅延時間検出部と、
    前記遅延時間検出部により検出された遅延時間を前記第2の通信モジュールに通知する遅延時間通知部と、
    をさらに有し、
    前記送信タイミング調整部は、前記遅延時間通知部により通知された遅延時間に基づいて前記第2の送信信号の送信タイミングを調整する、
    請求項4に記載の信号伝送装置。
  6. 前記第2の通信モジュールは、前記所定の伝送線路を通じて既知のトレーニング信号を前記第1の通信モジュールに送信するトレーニング信号送信部をさらに有し、
    前記遅延時間検出部は、前記トレーニング信号送信部により送信された既知のトレーニング信号の送信タイミングを走査することにより、前記所定の伝送線路を通じて信号を送信する際に生じる遅延時間を検出する、
    請求項5に記載の信号伝送装置。
  7. 画像データを出力する演算処理部と、
    前記画像データを表示する表示部と、
    をさらに備え、
    前記第1の信号送信部は、前記演算処理部から出力された画像データを変調して得られる第1の送信信号を前記第2の通信モジュールに送信し、
    前記表示部は、前記所定の伝送線路を通じて前記第1の通信モジュールから前記第2の通信モジュールに送信された第1の送信信号を復調して得られる画像データを表示する、
    請求項1に記載の信号伝送装置。
  8. 第1の通信モジュールにより、所定の伝送線路を通じて、第1の振幅を持つ第1の送信信号を第2の通信モジュールに送信する第1の信号送信ステップと、
    前記第2の通信モジュールにより、前記所定の伝送線路を通じて、前記第1の振幅とは異なる第2の振幅を持つ第2の送信信号を前記第1の通信モジュールに送信する第2の信号送信ステップと、
    を含み、
    前記第2の通信モジュールは、前記第1の通信モジュールから送信された第1の送信信号の遷移タイミングと、前記第2の送信信号の遷移タイミングとが前記第1の通信モジュールの受信端で一致するように、前記第2の信号送信ステップにおける第2の送信信号の送信タイミングを調整する、
    伝送制御方法。
JP2010182998A 2010-08-18 2010-08-18 信号伝送装置、及び伝送制御方法 Withdrawn JP2012044394A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010182998A JP2012044394A (ja) 2010-08-18 2010-08-18 信号伝送装置、及び伝送制御方法
CN2011102349649A CN102377554A (zh) 2010-08-18 2011-08-11 信号传输设备和传输控制方法
US13/207,685 US8824613B2 (en) 2010-08-18 2011-08-11 Signal transmission device, and transmission control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010182998A JP2012044394A (ja) 2010-08-18 2010-08-18 信号伝送装置、及び伝送制御方法

Publications (1)

Publication Number Publication Date
JP2012044394A true JP2012044394A (ja) 2012-03-01

Family

ID=45594081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010182998A Withdrawn JP2012044394A (ja) 2010-08-18 2010-08-18 信号伝送装置、及び伝送制御方法

Country Status (3)

Country Link
US (1) US8824613B2 (ja)
JP (1) JP2012044394A (ja)
CN (1) CN102377554A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015146511A1 (ja) * 2014-03-25 2017-04-13 ソニー株式会社 送信装置および通信システム

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9684942B2 (en) 2013-09-11 2017-06-20 Apple Inc. Link aggregator for an electronic display
US9397871B2 (en) 2014-09-30 2016-07-19 Infineon Technologies Ag Communication devices
CN109155871B (zh) * 2016-04-26 2020-11-13 麦克赛尔株式会社 影像输出系统、影像输出装置和连接线缆
US11408919B2 (en) * 2018-12-31 2022-08-09 Tektronix, Inc. Device signal separation for full duplex serial communication link
TWI694718B (zh) * 2019-01-21 2020-05-21 友達光電股份有限公司 驅動裝置以及其驅動信號產生方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60239141A (ja) 1984-05-14 1985-11-28 Oki Electric Ind Co Ltd 信号のシリアル収集方式
US5631757A (en) * 1995-06-07 1997-05-20 Lucent Technologies Inc. Full-duplex data communication system using different transmit and receive data symbol lengths
US6625206B1 (en) * 1998-11-25 2003-09-23 Sun Microsystems, Inc. Simultaneous bidirectional data transmission system and method
US6754841B2 (en) * 2001-04-27 2004-06-22 Archic Technology Corporation One-wire approach and its circuit for clock-skew compensating
US7224739B2 (en) * 2002-08-21 2007-05-29 Intel Corporation Controlled frequency signals
KR100891322B1 (ko) * 2002-09-25 2009-03-31 삼성전자주식회사 데이터 입력 마진을 개선할 수 있는 동시 양방향 입출력회로
KR100524938B1 (ko) * 2002-12-20 2005-10-31 삼성전자주식회사 반도체 장치 및 이를 구비하는 동시 양방향 신호전송 시스템
US7516029B2 (en) * 2004-06-09 2009-04-07 Rambus, Inc. Communication channel calibration using feedback
US7627044B2 (en) * 2005-10-31 2009-12-01 Silicon Image, Inc. Clock-edge modulated serial link with DC-balance control
JP4949816B2 (ja) * 2006-12-01 2012-06-13 ルネサスエレクトロニクス株式会社 双方向通信回路、双方向通信システム及び双方向通信回路の通信方法
JP2009130852A (ja) 2007-11-27 2009-06-11 Panasonic Corp データ転送システム
JP5085382B2 (ja) 2008-03-18 2012-11-28 株式会社東芝 伝送装置及び二重伝送方式
US8787146B2 (en) * 2008-03-31 2014-07-22 Hitachi, Ltd. Timing adjustment method, receiving station, and transmitting station in wireless communication system, and wireless communication system
JP5136374B2 (ja) * 2008-11-21 2013-02-06 オムロン株式会社 光伝送システム及びそれを備えた電子機器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015146511A1 (ja) * 2014-03-25 2017-04-13 ソニー株式会社 送信装置および通信システム
US10194443B2 (en) 2014-03-25 2019-01-29 Sony Corporation Transmitter and communication system
US10687336B2 (en) 2014-03-25 2020-06-16 Sony Corporation Transmitter and communication system
US11096174B2 (en) 2014-03-25 2021-08-17 Sony Corporation Transmitter and communication system
US11606795B2 (en) 2014-03-25 2023-03-14 Sony Group Corporation Transmitter and communication system

Also Published As

Publication number Publication date
US20120045015A1 (en) 2012-02-23
CN102377554A (zh) 2012-03-14
US8824613B2 (en) 2014-09-02

Similar Documents

Publication Publication Date Title
US8559531B2 (en) Method and apparatus for serial communication using clock-embedded signals
US20180006851A1 (en) Three phase and polarity encoded serial interface
US9148198B1 (en) Programmable pre-emphasis circuit for MIPI C-PHY
JP4718933B2 (ja) 並列信号のスキュー調整回路及びスキュー調整方法
JP2012044394A (ja) 信号伝送装置、及び伝送制御方法
JP5945812B2 (ja) 「lvds」タイプのリンク用のビデオデジタル信号を送信および受信するためのシステム
JP4877312B2 (ja) 情報処理装置、及び全二重伝送方法
EP2552026A1 (en) Low output skew double data rate serial encoder
JP5018726B2 (ja) 情報処理装置、及び信号伝送方法
KR20150028783A (ko) N-상 극성 출력 pin 모드 멀티플렉서
KR20100124659A (ko) 정보 처리 장치, 부호화 방법 및 프레임 동기화 방법
KR20100103451A (ko) 직렬 스트림에 걸쳐서 lcd, 카메라, 키패드 및 gpio 데이터를 인터리빙하고 직렬 변환하고/직병렬 변환하기 위한 방법론 및 회로
US11122187B2 (en) Transmitter, receiver, transmitter/receiver, and transmitting/receiving system
JP2011234199A (ja) 通信装置、及びデータ伝送方法
JP4693943B2 (ja) インターフェイス回路
JP2011103552A (ja) 情報処理装置、及び信号処理方法
US11310075B2 (en) Asymmetric duplex transmission device and switching system thereof
CN117397187A (zh) 发送装置、接收装置、参数调整方法、SerDes电路和电子设备
WO2012153843A1 (ja) 信号伝送方式及び送信装置
CN101364960A (zh) 高速差分接口
US10623032B2 (en) Transmission device and system
JP2010114636A (ja) 情報処理装置、及びモード切り替え方法
JP2012134848A (ja) 信号処理装置、及び信号処理方法
KR20110000016A (ko) 인터페이스 장치 및 인터페이스 시스템

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131105