JP2012038658A - Discharge lamp - Google Patents

Discharge lamp Download PDF

Info

Publication number
JP2012038658A
JP2012038658A JP2010179652A JP2010179652A JP2012038658A JP 2012038658 A JP2012038658 A JP 2012038658A JP 2010179652 A JP2010179652 A JP 2010179652A JP 2010179652 A JP2010179652 A JP 2010179652A JP 2012038658 A JP2012038658 A JP 2012038658A
Authority
JP
Japan
Prior art keywords
electrode
discharge
discharge tube
discharge lamp
lamp according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010179652A
Other languages
Japanese (ja)
Other versions
JP5504095B2 (en
Inventor
Takeshi Kobayashi
剛 小林
Yukio Shioya
幸男 塩谷
Makoto Yasuda
誠 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orc Manufacturing Co Ltd
Original Assignee
Orc Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orc Manufacturing Co Ltd filed Critical Orc Manufacturing Co Ltd
Priority to JP2010179652A priority Critical patent/JP5504095B2/en
Priority to TW100119750A priority patent/TWI500067B/en
Priority to PCT/JP2011/067931 priority patent/WO2012020703A1/en
Priority to CN201180036021.3A priority patent/CN103026456B/en
Priority to KR1020137001683A priority patent/KR101792563B1/en
Priority to EP11816368.2A priority patent/EP2608245A4/en
Publication of JP2012038658A publication Critical patent/JP2012038658A/en
Application granted granted Critical
Publication of JP5504095B2 publication Critical patent/JP5504095B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/046Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/54Igniting arrangements, e.g. promoting ionisation for starting
    • H01J61/545Igniting arrangements, e.g. promoting ionisation for starting using an auxiliary electrode inside the vessel

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a discharge lamp which can maintain illuminance for a long time by enhancing startability of lighting.SOLUTION: In a discharge lamp, i.e., an excimer lamp, a foil electrode 30 is arranged along a tube axis C in a discharge tube 20. The foil electrode 30 is covered with a dielectric 50. Meanwhile, external electrodes 40 having a polarity different from that of the foil electrode 30 are arranged on the external surface of the discharge tube 20. Edges 30K1, 30K2 of the foil electrode 30 are formed in the shape of knife edge which becomes thinner toward the edge.

Description

本発明は、誘電体バリア放電、あるいは容量結合型高周波放電によって放電発光するエキシマランプ、外部電極型蛍光ランプなどの無電極型放電ランプに関し、特に、ランプの電極構成に関する。   The present invention relates to an electrodeless discharge lamp such as an excimer lamp or an external electrode type fluorescent lamp that emits light by dielectric barrier discharge or capacitively coupled high-frequency discharge, and more particularly to an electrode configuration of the lamp.

二重円筒管型のエキシマランプでは、軸方向に長い2つの同軸円筒管によって発光部が構成されており、高圧ガスが発光管内に封入され、軸方向に沿って内側管内面と外側管外面に一対の電極が対向配置される。そして、電極間に数kVの高周波電圧を印加することにより放電発光する(例えば、特許文献1参照)。   In the double cylindrical tube type excimer lamp, the light emitting portion is constituted by two coaxial cylindrical tubes that are long in the axial direction, and high-pressure gas is enclosed in the light emitting tube, and the inner tube inner surface and the outer tube outer surface along the axial direction. A pair of electrodes are arranged to face each other. Then, discharge light emission is performed by applying a high-frequency voltage of several kV between the electrodes (see, for example, Patent Document 1).

また、外部電極型蛍光ランプのように単管式構造を採用する放電ランプでは、誘電体によって被覆された帯状電極を放電管内部の軸方向に沿って配置し、放電管の外表面に配設した外部電極との間で放電発光する(特許文献2参照)。   Also, in a discharge lamp adopting a single tube structure such as an external electrode type fluorescent lamp, a strip electrode covered with a dielectric is disposed along the axial direction inside the discharge tube and disposed on the outer surface of the discharge tube. Discharge light emission between the external electrodes (see Patent Document 2).

特開平6−275242号公報JP-A-6-275242 特開平11−283579号公報JP-A-11-283579

従来の放電ランプでは、放電管内部の電極が円柱状あるいは薄板状であり、その断面形状は円形あるいは矩形状になっている。このような断面形状では、誘電体内の電極と放電管外にある電極との間で放電させるためには、非常に大きな電力が必要となり、ランプの点灯始動が遅い。   In the conventional discharge lamp, the electrode inside the discharge tube has a columnar shape or a thin plate shape, and its cross-sectional shape is circular or rectangular. In such a cross-sectional shape, in order to discharge between the electrode in the dielectric and the electrode outside the discharge tube, a very large electric power is required, and the start-up of the lamp is slow.

ランプへ大電力が供給されると、電極を覆う誘電体と電極との間の熱膨張差によって電極が誘電体から剥離しやすくなり、電極材料の放電空間に対する露出によって電極酸化が生じる恐れがある。   When high power is supplied to the lamp, the electrode is likely to be peeled off from the dielectric due to the difference in thermal expansion between the dielectric covering the electrode and the electrode, and electrode oxidation may occur due to exposure of the electrode material to the discharge space. .

本発明の放電ランプは、誘電体バリア放電、あるいは容量結合型高周波放電などによって発光する放電ランプであり、放電ガスが封入される放電管と、前記放電容器内に配設される少なくとも1つの帯状電極と、前記電極を被覆する少なくとも1つの誘電体とを備える。箔電極などの帯状電極は、誘電体に埋設されて放電空間に露出しない。放電空間に封入するガスは任意であり、希ガス単体、または、塩素などのハロゲン単体、あるいはハロゲンと希ガスの混合ガスを封入すればよい。   The discharge lamp of the present invention is a discharge lamp that emits light by dielectric barrier discharge, capacitively coupled high frequency discharge, or the like, and includes a discharge tube in which a discharge gas is sealed, and at least one strip-shaped member disposed in the discharge vessel. An electrode, and at least one dielectric covering the electrode. A strip electrode such as a foil electrode is embedded in a dielectric and is not exposed to the discharge space. The gas to be enclosed in the discharge space is arbitrary, and a rare gas alone, a halogen alone such as chlorine, or a mixed gas of halogen and rare gas may be enclosed.

本発明では、電極の長手方向に沿った両縁の少なくとも一方の厚さが、電極中央部よりも薄い。これによって、その薄い電極縁部分において電界集中が生じ、電界強度が強くなる。その結果、比較的低い入力電圧によっても電極間で放電が生じる。   In the present invention, the thickness of at least one of both edges along the longitudinal direction of the electrode is thinner than the central portion of the electrode. As a result, electric field concentration occurs in the thin electrode edge portion, and the electric field strength is increased. As a result, discharge occurs between the electrodes even with a relatively low input voltage.

幾つかの電極をまとめて1つの誘電体で被覆してもよく、また、それぞれ異なる誘電体によって被覆してもよい。帯状電極の両縁の厚さを電極中央部の厚さよりも薄くし、電極両端で点灯始動性を改善させるのが望ましい。   Several electrodes may be covered together with one dielectric, or may be covered with different dielectrics. It is desirable that the thickness of both edges of the strip electrode is made thinner than the thickness of the central portion of the electrode to improve the lighting startability at both ends of the electrode.

電極形状としては、縁に向けて先鋭化する様々な形状が適用可能であるが、縁部に向けて滑らかに尖っている形状としてナイフエッジ形状にするのが望ましい。これによって、縁部分断面が軸方向に線状となって放電開始電圧レベルをより低く抑えることができ、また、ナイフエッジ形状によって被覆される誘電体との境界部分に隙間が生じにくくなり、剥離などが生じにくくなる。   Various shapes that sharpen toward the edge can be applied as the electrode shape, but it is desirable to use a knife edge shape as a shape that is smoothly pointed toward the edge. As a result, the cross-section of the edge portion is linear in the axial direction, so that the discharge start voltage level can be further reduced, and a gap is less likely to occur at the boundary portion with the dielectric covered by the knife edge shape. Etc. are less likely to occur.

電極配置については、放電管外部に一方の電極を配設してもよく、あるいは放電管内部だけで電極を構成することも可能である。例えば、極性の同じ複数の帯状電極を放電管内に配置し、放電管外部に電極が配置される。この場合、放電管全体から均一に光を放射させることを考慮し、複数の帯状電極を、その幅方向を互いに平行にした状態で配置するのがよい。あるいは、複数の帯状電極を、放電管軸に関して対称的な位置に配置してもよい。   Regarding the electrode arrangement, one electrode may be disposed outside the discharge tube, or the electrode may be configured only inside the discharge tube. For example, a plurality of strip electrodes having the same polarity are arranged in the discharge tube, and the electrodes are arranged outside the discharge tube. In this case, in consideration of uniformly emitting light from the entire discharge tube, it is preferable to arrange a plurality of strip electrodes in a state where their width directions are parallel to each other. Or you may arrange | position a some strip | belt-shaped electrode in a symmetrical position about a discharge tube axis | shaft.

一方、極性の異なる複数の帯状電極を放電管内に配置してもよい。この場合、放電管全体からできるだけ均一に放射させることを考慮し、複数の帯状電極を、放電管軸に関して対称的な位置に配置するのがよい。また、複数の帯状電極の幅方向を同一方向にする、すなわち互いに平行にすることによっても全体的な放射が実現される。   On the other hand, a plurality of strip electrodes having different polarities may be arranged in the discharge tube. In this case, in consideration of radiation as uniformly as possible from the entire discharge tube, it is preferable to arrange the plurality of strip electrodes at symmetrical positions with respect to the discharge tube axis. The overall radiation can also be realized by making the width directions of the plurality of strip-like electrodes the same direction, that is, parallel to each other.

例えば放電管外部に電極を配置するランプ構成の場合、電極縁部との電界強度を高めるためには、帯状電極を前記放電管内で同軸的に配置し、電極の幅方向を放電管内部の径方向と一致させるのがよい。これによって、電極縁部の延長方向が電界強度最大となり、点灯始動電圧を抑えることができる。   For example, in the case of a lamp configuration in which an electrode is disposed outside the discharge tube, in order to increase the electric field strength with the electrode edge, a strip electrode is disposed coaxially within the discharge tube, and the width direction of the electrode is the diameter inside the discharge tube. It is better to match the direction. Thereby, the extension direction of the electrode edge becomes the maximum electric field intensity, and the lighting start voltage can be suppressed.

電極の材質は、導電性の高い金属あるいは合金によって成形すればよい。電極の厚さは、電流容量や膨張係数を考慮して定めるのが望ましく、例えば、20μm〜50μmのいずれかの範囲に定められる。また、電極の幅は、電流容量を考慮して定めるのが望ましく、例えば、1.2mm〜10mmの範囲内に定めるのが望ましい。   The electrode material may be formed of a highly conductive metal or alloy. The thickness of the electrode is preferably determined in consideration of the current capacity and the expansion coefficient, and is determined in any range of 20 μm to 50 μm, for example. The width of the electrode is preferably determined in consideration of the current capacity, for example, it is preferably determined within a range of 1.2 mm to 10 mm.

放電管の肉厚は、エキシマ光による放電管劣化を防ぐ厚さを有し、その一方、放電開始電圧や点灯維持電圧を上げる厚さ以下に定めるのがよい。例えば、放電管の肉厚は、0.8mm〜1.5mmの範囲に定められる。放電管の内径は、放電距離が短くなって照度不足が起きず、一方で放電距離が長くなって放電不安定とならないようにするのが望ましく、例えば、8mm〜20mmの範囲内に定められる。   The thickness of the discharge tube has a thickness that prevents deterioration of the discharge tube due to excimer light. On the other hand, it is preferable that the thickness be set to a thickness that increases the discharge start voltage and the lighting sustain voltage. For example, the thickness of the discharge tube is determined in the range of 0.8 mm to 1.5 mm. The inner diameter of the discharge tube is desirably set within a range of 8 mm to 20 mm, for example, so that the discharge distance is short and illuminance is not insufficient, while the discharge distance is long and the discharge is not unstable.

誘電体は、例えば断面円形の柱状誘電体で構成すればよい。使用温度での電極熱膨張率と近似している絶縁材料によって構成するのが望ましい。また、誘電体の厚さは、絶縁性を維持する一方で放電開始電圧が高くなるのを防ぐことを考慮し、0.1mm〜2mmの範囲であるのが望ましい。   What is necessary is just to comprise a dielectric material with the columnar dielectric material with a circular cross section, for example. It is desirable to use an insulating material that approximates the coefficient of thermal expansion of the electrode at the operating temperature. The thickness of the dielectric is preferably in the range of 0.1 mm to 2 mm in consideration of preventing the discharge start voltage from being increased while maintaining insulation.

電極と極性の異なる他の電極との放電距離は、放電ガスの種類や印加電圧などによって定められる。放電区間が狭くなって照度不足になるのを防ぐ一方、放電距離が長くなって放電不安定になるのを防ぐため、放電距離を3mm〜10mmの範囲に定めるのがよい。   The discharge distance between the electrode and another electrode having a different polarity is determined by the type of discharge gas and the applied voltage. In order to prevent the discharge interval from becoming narrow and insufficient illuminance, in order to prevent the discharge distance from becoming longer and causing the discharge to become unstable, the discharge distance is preferably set in a range of 3 mm to 10 mm.

帯状電極の幅をw、前記放電管の内径をdとしたとき、その比が「1.6≦d/w≦13.4」を満たすようにするのが望ましい。d/wの値が1.6より小さいと、放電容器に占める箔の面積が大きくなり、放電距離が短くなり、帯状電極により放電光が遮られ照度不足となる。d/wの値が13.4より大きいと、帯状電極の幅が小さいことで過電流による過熱や、放電距離が長くなることで放電不安定となるおそれがある。   When the width of the strip electrode is w and the inner diameter of the discharge tube is d, it is desirable that the ratio satisfies “1.6 ≦ d / w ≦ 13.4”. If the value of d / w is smaller than 1.6, the area of the foil occupying the discharge vessel is increased, the discharge distance is shortened, the discharge light is blocked by the strip electrode, and the illuminance is insufficient. If the value of d / w is greater than 13.4, the width of the strip electrode may be small, causing overheating due to overcurrent, or increasing the discharge distance, which may result in unstable discharge.

本発明によれば、点灯始動性を向上させ、照度を長時間維持することが可能な放電ランプを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the discharge lamp which can improve lighting startability and can maintain illumination intensity for a long time can be provided.

第1の実施形態である放電ランプの概略的平面図である。It is a schematic plan view of the discharge lamp which is 1st Embodiment. 図1のII−IIに沿った断面図である。It is sectional drawing along II-II of FIG. 図2の電極縁部付近を拡大した断面図である。It is sectional drawing to which the electrode edge part vicinity of FIG. 2 was expanded. 放電ランプの製造工程を示した図である。It is the figure which showed the manufacturing process of the discharge lamp. 第2の実施形態における放電ランプの概略的断面図である。It is a schematic sectional drawing of the discharge lamp in 2nd Embodiment. 第3の実施形態である放電ランプの概略的断面図である。It is a schematic sectional drawing of the discharge lamp which is 3rd Embodiment. 第4の実施形態である放電ランプについて説明する。A discharge lamp according to a fourth embodiment will be described.

以下では、図面を参照して本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、第1の実施形態である放電ランプの概略的平面図である。図2は、図1のII−IIに沿った断面図である。   FIG. 1 is a schematic plan view of a discharge lamp according to the first embodiment. FIG. 2 is a cross-sectional view taken along the line II-II in FIG.

エキシマランプである放電ランプ10は、石英ガラスなどの誘電材料から成る断面円形状の放電管20を備え、放電管20内には、キセノンガスなどの希ガス、あるいはこれらの混合ガスが放電ガスとして封入されている。放電ガスの封入圧は、例えば5kPa〜150kPaに定められる。   A discharge lamp 10 which is an excimer lamp includes a discharge tube 20 having a circular cross section made of a dielectric material such as quartz glass. In the discharge tube 20, a rare gas such as xenon gas or a mixed gas thereof is used as a discharge gas. It is enclosed. The sealed pressure of the discharge gas is set to, for example, 5 kPa to 150 kPa.

放電管20内部には、管軸Cに沿って帯状に延びる1枚の箔電極30が配置されている。箔電極30は、断面が略円形状である柱状誘電体50によって被覆されており、放電空間に露出せずに誘電体50内に埋設されている。   Inside the discharge tube 20, one foil electrode 30 extending in a strip shape along the tube axis C is disposed. The foil electrode 30 is covered with a columnar dielectric 50 having a substantially circular cross section, and is embedded in the dielectric 50 without being exposed to the discharge space.

箔電極30は、誘電体50の中心位置にその幅方向中心位置を合わせた状態で同軸的に配置されている。また、誘電体50は、放電管20に対して同軸的に配置されている。したがって、箔電極30は、放電管20に対し同軸的な位置に配置されており、管軸Cに関して対称的な位置に配置されている。   The foil electrode 30 is coaxially arranged with the center position of the dielectric 50 aligned with the center position in the width direction. The dielectric 50 is disposed coaxially with the discharge tube 20. Therefore, the foil electrode 30 is disposed at a coaxial position with respect to the discharge tube 20 and is disposed at a symmetrical position with respect to the tube axis C.

後述するように、箔電極30の管軸方向に沿った両縁になる縁部30K1、30K2は、ナイフエッジ形状に構成されている。したがって、箔電極30を厚さは、幅方向の中心から縁に向けて薄くなり、電極断面形状は、先細く尖っている。図2では、箔電極30の幅方向をY方向、それに直交する方向(厚さ方向)をX方向として定めている。   As will be described later, the edges 30K1 and 30K2 which are both edges along the tube axis direction of the foil electrode 30 are configured in a knife edge shape. Therefore, the thickness of the foil electrode 30 is reduced from the center in the width direction toward the edge, and the electrode cross-sectional shape is tapered and sharp. In FIG. 2, the width direction of the foil electrode 30 is defined as the Y direction, and the direction orthogonal to the width direction (thickness direction) is defined as the X direction.

放電管20の外面に配設された外部電極40は、複数の電極部を網状に配設した構成であり、管軸Cに沿って螺旋状に所定間隔で並んで配置されている。箔電極30の端部に接続される給電線70は、外部に設置された電源部(図示せず)と接続しており、給電線70を介して放電ランプ10に電力が供給される。   The external electrode 40 disposed on the outer surface of the discharge tube 20 has a configuration in which a plurality of electrode portions are disposed in a net shape, and are arranged along the tube axis C in a spiral manner at predetermined intervals. The power supply line 70 connected to the end of the foil electrode 30 is connected to a power supply unit (not shown) installed outside, and power is supplied to the discharge lamp 10 via the power supply line 70.

箔電極30、外部電極40の極性は、それぞれ陽極、陰極に定められている。放電ランプ10に数kVの電圧が供給されると、箔電極30と外部電極40との間で誘電体バリア放電が生じ、所定スペクトル(例えば、172nm)のエキシマ光が放射される。   The polarities of the foil electrode 30 and the external electrode 40 are determined as an anode and a cathode, respectively. When a voltage of several kV is supplied to the discharge lamp 10, dielectric barrier discharge occurs between the foil electrode 30 and the external electrode 40, and excimer light having a predetermined spectrum (for example, 172 nm) is emitted.

放電管20の軸方向長さは、100mm〜250mmに定められている。一方、放電管20の肉厚は、エキシマ光による放電管劣化の防止、および放電開始電圧の上昇を抑えるため、0.8mm〜1.5mmに定められている。また、放電管20の内径は、長い放電距離による放電不安定、短い放電距離による照度不足の両方を防ぐように、8mm〜20mmに定められている。   The axial length of the discharge tube 20 is set to 100 mm to 250 mm. On the other hand, the thickness of the discharge tube 20 is set to 0.8 mm to 1.5 mm in order to prevent discharge tube deterioration due to excimer light and to suppress an increase in the discharge start voltage. The inner diameter of the discharge tube 20 is set to 8 mm to 20 mm so as to prevent both unstable discharge due to a long discharge distance and insufficient illuminance due to a short discharge distance.

箔電極30の厚さは、電流容量や製造容易さ、および熱膨張による剥離防止などを考慮し、20μm〜50μmに定められる。また、箔の幅は、電流容量や製造容易さ、さらには、電極面積肥大化による放電光の遮断防止を考慮し、1.2mm〜10mmに定められる。電極材料は、モリブデン、あるいはそれを含む合金などが使用される。   The thickness of the foil electrode 30 is set to 20 μm to 50 μm in consideration of current capacity, ease of manufacture, and prevention of peeling due to thermal expansion. Further, the width of the foil is set to 1.2 mm to 10 mm in consideration of current capacity, ease of manufacture, and prevention of blocking of discharge light due to enlargement of the electrode area. As the electrode material, molybdenum or an alloy containing the same is used.

誘電体50は、電極の熱膨張率とできるだけ近似する誘電材料(SiO2など)によって構成される。誘電体50の厚さは、絶縁性を維持させる限界、放電開始電圧の上昇防止を考慮し、0.1mm〜2mmに定められる。   The dielectric 50 is made of a dielectric material (such as SiO 2) that approximates the thermal expansion coefficient of the electrode as much as possible. The thickness of the dielectric 50 is set to 0.1 mm to 2 mm in consideration of the limit for maintaining insulation and prevention of increase in the discharge start voltage.

放電距離、すなわち誘電体50と放電管20の内径との距離間隔は、照度不足の防止、および放電の安定性を考慮して、3mm〜10mmに定められる。また、箔電極30の幅をw、放電管内径をdとすると、以下の条件式を満たすように電極幅、放電管内径が定められる。

1.6≦d/w≦13.4 ・・・・(1)
A discharge distance, that is, a distance interval between the dielectric 50 and the inner diameter of the discharge tube 20 is set to 3 mm to 10 mm in consideration of prevention of insufficient illuminance and discharge stability. Further, when the width of the foil electrode 30 is w and the inner diameter of the discharge tube is d, the electrode width and the inner diameter of the discharge tube are determined so as to satisfy the following conditional expressions.

1.6 ≦ d / w ≦ 13.4 (1)

図3は、図2の電極縁部付近を拡大した断面図である。ただし、電極、誘電体、放電管のサイズ、相対的位置関係は図1と一部相違している。   FIG. 3 is an enlarged cross-sectional view of the vicinity of the electrode edge in FIG. However, the sizes and relative positional relationships of the electrodes, dielectrics, and discharge tubes are partially different from those in FIG.

上述したように、箔電極30の縁部30K1、30K2は、ナイフエッジ形状になっている。箔電極30は幅方向の中心から縁に向けて先鋭化し、その厚さは幅方向の中心部の厚さTに比べて薄くなり、縁30T1は尖っている。図示しない縁部30K2も同様の形状である。   As described above, the edges 30K1 and 30K2 of the foil electrode 30 have a knife edge shape. The foil electrode 30 is sharpened from the center in the width direction toward the edge, the thickness thereof is thinner than the thickness T at the center in the width direction, and the edge 30T1 is sharp. The edge 30K2 (not shown) has a similar shape.

このような電極形状により、縁30T1において電界集中が生じる。すなわち、電界強度が縁30T1付近の領域(破線E参照)において最大となり、その領域は縁30T1の尖った形状によって狭い。これは、縁部が尖ってない従来の断面矩形状では、その縁の平面部分全体に渡って電界集中が生じる、すなわち電位傾度が大きくなるが、本実施形態では縁30T1が実質的に軸方向に沿って線であり、縁だけに電界集中が生じるためである。   Such an electrode shape causes electric field concentration at the edge 30T1. In other words, the electric field intensity becomes maximum in the region near the edge 30T1 (see the broken line E), and the region is narrow due to the sharp shape of the edge 30T1. This is because, in the conventional rectangular cross section having no sharp edge, electric field concentration occurs over the entire plane portion of the edge, that is, the potential gradient increases. In this embodiment, the edge 30T1 is substantially axial. This is because the electric field concentration occurs only at the edge.

また、箔電極30は誘電体50および放電管20に対して同軸的に配置され、その幅方向は径方向に沿っている。したがって、箔電極30の縁部30K1、30K2と放電管20の内面までの距離(放電距離)は等しい。そのため、放電管20から全体的にバランス良く光が放射される。   The foil electrode 30 is coaxially disposed with respect to the dielectric 50 and the discharge tube 20, and the width direction thereof is along the radial direction. Therefore, the distances (discharge distances) between the edges 30K1 and 30K2 of the foil electrode 30 and the inner surface of the discharge tube 20 are equal. Therefore, light is radiated from the discharge tube 20 as a whole with good balance.

図4は、放電ランプの製造工程を示した図である。   FIG. 4 is a diagram showing a manufacturing process of the discharge lamp.

箔電極70に給電線80を抵抗溶接などによって接続し、誘電体被膜材となるガラス管60に挿入する。電極70を挿入後に管内を真空にし、その後、誘電体被膜材60を外側から加熱し、箔電極70と溶着させる(工程(1))。なお、誘電体をコーティングする工程を代わりに行っても良い。   A power supply line 80 is connected to the foil electrode 70 by resistance welding or the like, and is inserted into a glass tube 60 serving as a dielectric coating material. After inserting the electrode 70, the inside of the tube is evacuated, and then the dielectric coating material 60 is heated from the outside and welded to the foil electrode 70 (step (1)). Note that the step of coating the dielectric may be performed instead.

電極縁部に相当するガラス管の位置に、鍔状のいわゆるそろばん珠形状封止部85を形成する(工程(2))。そして、一端に排気管、他方の端に挿入口を設けた石英ガラスなどの放電管90を形成し(工程(3))、電極70を放電管90内に挿入し、放電管70の挿入口をそろばん珠形状封止部85と溶着させる(工程(4))。   A so-called abacus-shaped sealing part 85 having a bowl shape is formed at the position of the glass tube corresponding to the electrode edge (step (2)). Then, a discharge tube 90 made of quartz glass or the like having an exhaust tube at one end and an insertion port at the other end is formed (step (3)), the electrode 70 is inserted into the discharge tube 90, and the insertion port of the discharge tube 70 is inserted. Is welded to the abacus-shaped sealing portion 85 (step (4)).

全体を加熱しながら、放電管90の排気管を通じた真空引きを行い、不純物を除去する。そして、放電ガスを封入した後に排気管を封止し、放電管90の外面に外部電極95を配設する(工程(5))。   While heating the whole, evacuation through the exhaust tube of the discharge tube 90 is performed to remove impurities. Then, after the discharge gas is sealed, the exhaust tube is sealed, and the external electrode 95 is disposed on the outer surface of the discharge tube 90 (step (5)).

このように本実施形態によれば、放電管20内部に誘電体50で被覆された箔電極30が管軸Cに沿って配置されている。また、極性の異なる外部電極40が放電管20の外面に配設されている。そして、箔電極30の縁部30K1、30K2はナイフエッジ状に形成されている。   Thus, according to the present embodiment, the foil electrode 30 covered with the dielectric 50 inside the discharge tube 20 is disposed along the tube axis C. In addition, external electrodes 40 having different polarities are disposed on the outer surface of the discharge tube 20. The edges 30K1 and 30K2 of the foil electrode 30 are formed in a knife edge shape.

電極縁部が尖っているため、電解強度が局所的に電極縁部で高くなり、点灯開始時の放電が低電圧で生じる。電極縁部が放電開始のトリガーの役割を果たし、ランプ長時間点灯でも照度が維持される。   Since the electrode edge is sharp, the electrolytic strength locally increases at the electrode edge, and discharge at the start of lighting occurs at a low voltage. The electrode edge serves as a trigger for starting discharge, and the illuminance is maintained even when the lamp is lit for a long time.

また、電極縁部が滑らかに先鋭化しているため、電極と誘電体との間に隙間が生じにくく、点灯時の熱膨張差によっても電極が放電空間に露出せず、酸化を免れる。   Further, since the electrode edge is smoothly sharpened, a gap is not easily formed between the electrode and the dielectric, and the electrode is not exposed to the discharge space due to a difference in thermal expansion during lighting, thus avoiding oxidation.

次に、図5を用いて第2の実施形態である放電ランプについて説明する。第2の実施形態では、互いに極性の異なる2つの箔電極が放電管内部に配置されている。   Next, the discharge lamp which is 2nd Embodiment is demonstrated using FIG. In the second embodiment, two foil electrodes having different polarities are arranged inside the discharge tube.

図5は、第2の実施形態における放電ランプの概略的断面図である。   FIG. 5 is a schematic cross-sectional view of a discharge lamp according to the second embodiment.

放電ランプ100は、放電管120内部に2つの箔電極130A、130Bを備え、それぞれ柱状誘電体150A、150Bによって被覆されている。箔電極130A、130Bは互いに極性が異なり、ここでは箔電極130Aが陽極、箔電極130Bが陰極に定められている。   The discharge lamp 100 includes two foil electrodes 130A and 130B inside the discharge tube 120 and is covered with columnar dielectrics 150A and 150B, respectively. The foil electrodes 130A and 130B have different polarities. Here, the foil electrode 130A is defined as an anode, and the foil electrode 130B is defined as a cathode.

また、箔電極130A、130Bは、管軸Cに関して対称的な位置に配置され、幅方向はともにY軸に平行である。箔電極130A、130Bの両縁部は、第1の実施形態同様、ナイフエッジ形状になっている。このような電極配置により、放電管20に対して対称的な放電発光が生じ、放電管20全体から光が放射される。   Further, the foil electrodes 130A and 130B are arranged at symmetrical positions with respect to the tube axis C, and both the width directions are parallel to the Y axis. Both edge portions of the foil electrodes 130A and 130B have a knife edge shape as in the first embodiment. With such an electrode arrangement, symmetrical discharge light emission occurs with respect to the discharge tube 20, and light is emitted from the entire discharge tube 20.

図6は、第3の実施形態である放電ランプの概略的断面図である。第3の実施形態では、箔電極が放電管内に複数配列している。   FIG. 6 is a schematic cross-sectional view of a discharge lamp according to the third embodiment. In the third embodiment, a plurality of foil electrodes are arranged in the discharge tube.

放電ランプ200は、放電管210内に9つの箔電極埋設誘電体220A〜220CがX、Y軸に沿って2次元配列されている。各箔電極は、その幅方向をY軸方向に向けている。放電管210の外面には、極性の異なる外部電極250が配設されている。このような電極の対称配置により、放電管全体から光が均一に放射される。   In the discharge lamp 200, nine foil electrode buried dielectrics 220A to 220C are two-dimensionally arranged in the discharge tube 210 along the X and Y axes. Each foil electrode has its width direction in the Y-axis direction. External electrodes 250 having different polarities are disposed on the outer surface of the discharge tube 210. Due to the symmetrical arrangement of the electrodes, light is uniformly emitted from the entire discharge tube.

図7は、第4の実施形態である放電ランプについて説明する。放電ランプ300は、放電管310内に3つの箔電極埋設誘電体320を備え、列になって配置されている。断面が矩形状の放電管300の両側には、極性の異なる外部電極350が配置されている。このような電極配置構成により、放電管下方から光が照射される。   FIG. 7 illustrates a discharge lamp according to a fourth embodiment. The discharge lamp 300 includes three foil electrode embedded dielectrics 320 in a discharge tube 310 and is arranged in a row. External electrodes 350 having different polarities are arranged on both sides of the discharge tube 300 having a rectangular cross section. With such an electrode arrangement, light is irradiated from below the discharge tube.

誘電体は断面円形以外の形状でも可能であり、例えば、箔電極を同軸的な配置関係とするように被覆すればよい。電極縁部はナイフエッジ形状に限定されず、幅方向の中央部よりも厚さの薄い形状となるように電界集中を生じさせる形状であればよい。また、一方の電極縁部だけ先鋭化させてもよい。更に、電極の形状は、幅が不均一であるノコギリ状としたり、誘電体の中心位置と箔電極の中心位置を合わせないことにより配置したりすることで、電界集中を生じさせる位置を設定しても良い。また、放電管の軸方向に対して電極箔の幅方向を捻ることでスパイラル状の箔電極とすることで、電極箔と誘電体とを剥離させる厚さ方向の応力を分散しても良い。   The dielectric may have a shape other than a circular cross section, and for example, the foil electrode may be coated so as to have a coaxial arrangement relationship. The electrode edge is not limited to the knife edge shape, and may be any shape as long as the electric field is concentrated so as to be thinner than the central portion in the width direction. Alternatively, only one electrode edge may be sharpened. Furthermore, the position of the electric field concentration is set by making the shape of the electrode a saw with a non-uniform width, or by arranging the center position of the dielectric and the center position of the foil electrode not to match. May be. Moreover, the stress in the thickness direction that separates the electrode foil and the dielectric may be dispersed by twisting the width direction of the electrode foil with respect to the axial direction of the discharge tube to form a spiral foil electrode.

放電方式としては、放電空間の軸に沿って均一な放電が安定して発生させることができる上記誘電体バリア放電エキシマランプの代わりに、例えばスキャナ光源などで用いられるような外部電極型蛍光ランプであって比較的低電圧の容量結合型(静電容量型)高周波放電方式のランプとして適用してもよい。容量結合型高周波放電方式の場合、電源部の最終部分をLC共振回路とすることによって、容易に高電圧を印加することができる。   As a discharge method, instead of the dielectric barrier discharge excimer lamp that can stably generate a uniform discharge along the axis of the discharge space, for example, an external electrode type fluorescent lamp used in a scanner light source or the like is used. Therefore, it may be applied as a relatively low voltage capacitively coupled (capacitance type) high frequency discharge type lamp. In the case of the capacitively coupled high-frequency discharge method, a high voltage can be easily applied by making the final part of the power supply unit an LC resonance circuit.

第1の実施形態に相当する実施例の放電ランプについて説明する。放電管の軸方向長さは300mm、肉厚は1mm、内径が12.8mm、断面円形状の誘電体の厚さは、箔電極の幅と平行な方向においては1mm、箔電極の厚さと平行な方向においては1.5mm、放電距離が約5mmに定められている。箔電極の厚さは、20μm、幅は1.5mmに定められている。放電管の内径をd、箔電極の幅をwとすると、その比d/wは、8.5である。   The discharge lamp of the Example equivalent to 1st Embodiment is demonstrated. The axial length of the discharge tube is 300 mm, the thickness is 1 mm, the inner diameter is 12.8 mm, and the thickness of the dielectric having a circular cross section is 1 mm in the direction parallel to the width of the foil electrode, and is parallel to the thickness of the foil electrode. In this direction, the discharge distance is set to 1.5 mm and the discharge distance is set to about 5 mm. The foil electrode has a thickness of 20 μm and a width of 1.5 mm. If the inner diameter of the discharge tube is d and the width of the foil electrode is w, the ratio d / w is 8.5.

Xeガスを放電ガスとして封入し、印加電圧6.5kV、ガス圧力47kPaで点灯実験を行った。172nmのスペクトル光を放射するランプ点灯動作を2500時間続けたところ、照度については90%の維持率を得ることができた。   Xe gas was enclosed as a discharge gas, and a lighting experiment was performed at an applied voltage of 6.5 kV and a gas pressure of 47 kPa. When the lamp lighting operation that radiates spectrum light of 172 nm was continued for 2500 hours, a maintenance rate of 90% was obtained for the illuminance.

10 放電ランプ
20 放電管
30 箔電極(帯状電極)
40 外部電極
50 誘電体

10 Discharge lamp 20 Discharge tube 30 Foil electrode (band electrode)
40 External electrode 50 Dielectric

Claims (12)

放電ガスが封入される放電管と、
前記放電容器内に配設される少なくとも1つの帯状電極と、
前記電極を被覆する少なくとも1つの誘電体とを備え、
前記電極の長手方向に沿った両縁の少なくとも一方の厚さが、電極中央部よりも薄いことを特徴とする放電ランプ。
A discharge tube filled with discharge gas;
At least one strip electrode disposed in the discharge vessel;
And at least one dielectric covering the electrode,
The discharge lamp according to claim 1, wherein the thickness of at least one of both edges along the longitudinal direction of the electrode is thinner than the central portion of the electrode.
前記帯状電極の縁が、ナイフエッジ形状であることを特徴とする請求項1に記載の放電ランプ。   The discharge lamp according to claim 1, wherein an edge of the belt-like electrode has a knife edge shape. 前記帯状電極が、前記放電管内で同軸的に配置されることを特徴とする請求項1乃至2のいずれかに記載の放電ランプ。   The discharge lamp according to any one of claims 1 to 2, wherein the strip electrode is coaxially arranged in the discharge tube. 前記帯状電極の両縁の厚さが、電極中央部の厚さよりも薄いことを特徴とする請求項1乃至3のいずれかに記載の放電ランプ。   The discharge lamp according to any one of claims 1 to 3, wherein a thickness of both edges of the belt-like electrode is thinner than a thickness of a central portion of the electrode. 極性の異なる複数の帯状電極が、前記放電管内に配置されることを特徴とする請求項1に記載の放電ランプ。   The discharge lamp according to claim 1, wherein a plurality of strip electrodes having different polarities are arranged in the discharge tube. 極性の同じ複数の帯状電極が、前記放電管内に配置され、
前記放電管外に、前記帯状電極と異なる極性の外部電極が配置されることを特徴とする請求項1に記載の放電ランプ。
A plurality of strip electrodes having the same polarity are arranged in the discharge tube,
The discharge lamp according to claim 1, wherein an external electrode having a polarity different from that of the strip electrode is disposed outside the discharge tube.
前記複数の帯状電極が、放電管軸に関して対称的な位置に配置されることを特徴とする請求項5乃至6のいずれかに記載の放電ランプ。   The discharge lamp according to any one of claims 5 to 6, wherein the plurality of strip-like electrodes are disposed at symmetrical positions with respect to the discharge tube axis. 複数の帯状電極が、その幅方向を互いに平行にした状態で配置されることを特徴とする請求項5乃至6のいずれかに記載の放電ランプ。   The discharge lamp according to any one of claims 5 to 6, wherein the plurality of strip electrodes are arranged in a state where their width directions are parallel to each other. 複数の電極が、それぞれ異なる誘電体によって被覆されていることを特徴とする請求項1乃至8のいずれかに記載の放電ランプ。   The discharge lamp according to any one of claims 1 to 8, wherein the plurality of electrodes are respectively covered with different dielectrics. 前記帯状電極の厚さが20μm〜50μm、前記帯状電極の幅が1.2mm〜10mmの範囲内に定められることを特徴とする請求項1に記載の放電ランプ。   2. The discharge lamp according to claim 1, wherein a thickness of the belt-like electrode is set within a range of 20 μm to 50 μm and a width of the belt-like electrode is within a range of 1.2 mm to 10 mm. 前記放電管の肉厚が0.8mm〜1.5mm、前記放電管の内径が8mm〜20mm、前記誘電体の厚さが0.1mm〜2mm、放電距離が3mm〜10mmの範囲内に定められることを特徴とする請求項1に記載の放電ランプ。   The discharge tube has a thickness of 0.8 mm to 1.5 mm, the inner diameter of the discharge tube is 8 mm to 20 mm, the thickness of the dielectric is 0.1 mm to 2 mm, and the discharge distance is 3 mm to 10 mm. The discharge lamp according to claim 1. 前記帯状電極の幅をw、前記放電管の内径をdとしたとき、以下の式を満たすことを特徴とする請求項10乃至11のいずれかに記載の放電ランプ。
1.6≦d/w≦13.4
The discharge lamp according to any one of claims 10 to 11, wherein the following expression is satisfied, where w is a width of the strip electrode and d is an inner diameter of the discharge tube.
1.6 ≦ d / w ≦ 13.4
JP2010179652A 2010-08-10 2010-08-10 Discharge lamp Active JP5504095B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010179652A JP5504095B2 (en) 2010-08-10 2010-08-10 Discharge lamp
TW100119750A TWI500067B (en) 2010-08-10 2011-06-07 Discharge lamp
PCT/JP2011/067931 WO2012020703A1 (en) 2010-08-10 2011-08-05 Discharge lamp
CN201180036021.3A CN103026456B (en) 2010-08-10 2011-08-05 Discharge lamp
KR1020137001683A KR101792563B1 (en) 2010-08-10 2011-08-05 Discharge lamp
EP11816368.2A EP2608245A4 (en) 2010-08-10 2011-08-05 Discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010179652A JP5504095B2 (en) 2010-08-10 2010-08-10 Discharge lamp

Publications (2)

Publication Number Publication Date
JP2012038658A true JP2012038658A (en) 2012-02-23
JP5504095B2 JP5504095B2 (en) 2014-05-28

Family

ID=45567671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010179652A Active JP5504095B2 (en) 2010-08-10 2010-08-10 Discharge lamp

Country Status (6)

Country Link
EP (1) EP2608245A4 (en)
JP (1) JP5504095B2 (en)
KR (1) KR101792563B1 (en)
CN (1) CN103026456B (en)
TW (1) TWI500067B (en)
WO (1) WO2012020703A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016139463A (en) * 2015-01-26 2016-08-04 株式会社オーク製作所 Excimer lamp
JP2017183276A (en) * 2016-03-23 2017-10-05 株式会社オーク製作所 Discharge lamp
JP2018160353A (en) * 2017-03-22 2018-10-11 学校法人 名城大学 Plasma processing device and plasma processing method
JP2018160352A (en) * 2017-03-22 2018-10-11 学校法人 名城大学 Plasma generator and plasma generating method
CN111370293A (en) * 2018-12-26 2020-07-03 株式会社奥珂制作所 Discharge lamp with a discharge lamp
KR20220161111A (en) 2021-05-28 2022-12-06 가부시키가이샤 오크세이사쿠쇼 Excimer lamp, method for lighting excimer lamp, and method for producing excimer lamp
KR20230089526A (en) 2021-12-13 2023-06-20 가부시키가이샤 오크세이사쿠쇼 Excimer lamp, method for lighting excimer lamp, and method for producing excimer lamp
JP7462524B2 (en) 2020-09-17 2024-04-05 株式会社オーク製作所 Excimer lamps, UV irradiation devices and ozone generators

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI622082B (en) * 2013-10-04 2018-04-21 Orc Manufacturing Co Ltd Excimer lamp and manufacturing method thereof
DE102019202479B4 (en) * 2019-02-25 2021-12-02 Osram Gmbh ELECTRODE ARRANGEMENT FOR A DISCHARGE LAMP, GAS DISCHARGE LAMP, PROTECTIVE FILM AND METHOD FOR PROVIDING A PROTECTIVE FILM ON AN ELECTRODE ARRANGEMENT
KR102256709B1 (en) * 2019-04-05 2021-05-28 오영래 A plasma lamp apparatus
KR20210093122A (en) 2020-01-17 2021-07-27 유니램 주식회사 Light center-concentration type excimer lamp and light irradiating device using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11283579A (en) * 1998-03-30 1999-10-15 Toshiba Lighting & Technology Corp Inner outer electrode type fluorescent lamp and lighting system
JP2001006623A (en) * 1999-06-22 2001-01-12 Wataru Sasaki Vacuum ultraviolet ray lamp
JP2004014238A (en) * 2002-06-05 2004-01-15 Fuji Photo Film Co Ltd Internal electrode type discharge lamp
JP2004152605A (en) * 2002-10-30 2004-05-27 Harison Toshiba Lighting Corp Discharge lamp and liquid crystal backlight apparatus

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4311197A1 (en) * 1993-04-05 1994-10-06 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Method for operating an incoherently radiating light source
DE19636965B4 (en) * 1996-09-11 2004-07-01 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Electrical radiation source and radiation system with this radiation source
TW464911B (en) * 1999-05-19 2001-11-21 Quark Systems Co Ltd Excimer irradiation device
DE10048409A1 (en) * 2000-09-29 2002-04-11 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Discharge lamp with capacitive field modulation
DE10048410A1 (en) * 2000-09-29 2002-04-11 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Dielectric barrier discharge lamp
DE10140356A1 (en) * 2001-08-17 2003-02-27 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Tubular discharge lamp with ignition aid
JP4305298B2 (en) * 2004-06-28 2009-07-29 ウシオ電機株式会社 Excimer lamp
US20060006804A1 (en) * 2004-07-06 2006-01-12 Lajos Reich Dielectric barrier discharge lamp
JP2006228563A (en) * 2005-02-17 2006-08-31 Ushio Inc Excimer lamp
JP4559926B2 (en) * 2005-07-14 2010-10-13 パナソニック株式会社 External electrode type discharge lamp and backlight unit
US7834900B2 (en) 2009-02-03 2010-11-16 Xerox Corporation Method and apparatus for correcting banding defects in a photoreceptor image forming apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11283579A (en) * 1998-03-30 1999-10-15 Toshiba Lighting & Technology Corp Inner outer electrode type fluorescent lamp and lighting system
JP2001006623A (en) * 1999-06-22 2001-01-12 Wataru Sasaki Vacuum ultraviolet ray lamp
JP2004014238A (en) * 2002-06-05 2004-01-15 Fuji Photo Film Co Ltd Internal electrode type discharge lamp
JP2004152605A (en) * 2002-10-30 2004-05-27 Harison Toshiba Lighting Corp Discharge lamp and liquid crystal backlight apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016139463A (en) * 2015-01-26 2016-08-04 株式会社オーク製作所 Excimer lamp
JP2017183276A (en) * 2016-03-23 2017-10-05 株式会社オーク製作所 Discharge lamp
JP2018160353A (en) * 2017-03-22 2018-10-11 学校法人 名城大学 Plasma processing device and plasma processing method
JP2018160352A (en) * 2017-03-22 2018-10-11 学校法人 名城大学 Plasma generator and plasma generating method
CN111370293A (en) * 2018-12-26 2020-07-03 株式会社奥珂制作所 Discharge lamp with a discharge lamp
CN111370293B (en) * 2018-12-26 2024-04-09 株式会社奥珂制作所 Discharge lamp with a discharge vessel having a discharge vessel with a discharge lamp chamber
JP7462524B2 (en) 2020-09-17 2024-04-05 株式会社オーク製作所 Excimer lamps, UV irradiation devices and ozone generators
KR20220161111A (en) 2021-05-28 2022-12-06 가부시키가이샤 오크세이사쿠쇼 Excimer lamp, method for lighting excimer lamp, and method for producing excimer lamp
KR20230089526A (en) 2021-12-13 2023-06-20 가부시키가이샤 오크세이사쿠쇼 Excimer lamp, method for lighting excimer lamp, and method for producing excimer lamp

Also Published As

Publication number Publication date
EP2608245A4 (en) 2014-01-15
KR101792563B1 (en) 2017-11-01
CN103026456B (en) 2015-12-02
CN103026456A (en) 2013-04-03
WO2012020703A1 (en) 2012-02-16
KR20130138716A (en) 2013-12-19
TWI500067B (en) 2015-09-11
EP2608245A1 (en) 2013-06-26
JP5504095B2 (en) 2014-05-28
TW201207887A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
JP5504095B2 (en) Discharge lamp
US9159545B2 (en) Excimer lamp
JP4544204B2 (en) External electrode type discharge lamp and its lamp device
JPWO2008129745A1 (en) Foil seal lamp
KR20070017898A (en) External electrode discharge lamp and lamp apparatus thereof
KR102190649B1 (en) Discharge lamp
JP2010257875A (en) Discharge lamp
US7057345B2 (en) Short arc discharge lamp and light source device
JP5828364B1 (en) Excimer discharge lamp
JP2004200009A (en) Short arc type discharge lamp
US20220076938A1 (en) Vacuum ultraviolet excimer lamp with a thin wire inner electrode
JP6303946B2 (en) Noble gas fluorescent lamp
JP2008053187A (en) Electrodeless discharge lamp and luminaire using the same
JP5640998B2 (en) Excimer lamp
JP2019185856A (en) Excimer lamp, light irradiation device, and ozone generator
JP5276485B2 (en) Short arc type discharge lamp
JP2009230904A (en) Short arc discharge lamp
JP5640966B2 (en) Excimer lamp
JP6423642B2 (en) Discharge lamp
KR20120048060A (en) Cold cathode fluorescent lamp of high efficiency and long life for illumination
JP2011034787A (en) Ultra-high pressure mercury lamp
JP2010282749A (en) Ultra-high pressure mercury lamp
JP2019149286A (en) Discharge lamp
KR20070006230A (en) An electrodeless lamp with spirally guide-railed core
JP2012195179A (en) Short arc type high pressure mercury lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R150 Certificate of patent or registration of utility model

Ref document number: 5504095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250