JP2018160352A - Plasma generator and plasma generating method - Google Patents

Plasma generator and plasma generating method Download PDF

Info

Publication number
JP2018160352A
JP2018160352A JP2017056382A JP2017056382A JP2018160352A JP 2018160352 A JP2018160352 A JP 2018160352A JP 2017056382 A JP2017056382 A JP 2017056382A JP 2017056382 A JP2017056382 A JP 2017056382A JP 2018160352 A JP2018160352 A JP 2018160352A
Authority
JP
Japan
Prior art keywords
discharge
discharge vessel
plasma
electrode
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017056382A
Other languages
Japanese (ja)
Other versions
JP6974677B2 (en
Inventor
準席 呉
Zhuoxi Wu
準席 呉
昌文 伊藤
Masafumi Ito
昌文 伊藤
壮則 早川
Takenori Hayakawa
壮則 早川
芹澤 和泉
Izumi Serizawa
和泉 芹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orc Manufacturing Co Ltd
Meijo University
Original Assignee
Orc Manufacturing Co Ltd
Meijo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orc Manufacturing Co Ltd, Meijo University filed Critical Orc Manufacturing Co Ltd
Priority to JP2017056382A priority Critical patent/JP6974677B2/en
Publication of JP2018160352A publication Critical patent/JP2018160352A/en
Application granted granted Critical
Publication of JP6974677B2 publication Critical patent/JP6974677B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a plasma generator capable of surely generating plasma while preventing degradation of an electrode in a discharge vessel and creeping discharge.SOLUTION: Disclosed is a plasma generator having a pair of electrodes (13a and 15, 13a' and 15, and 23 and 23 or 23' and 23") which are arranged and installed opposite to each other via discharge containers (10, 20). The pair of electrodes is covered with dielectric bodies (13b, 13b' and 20a) constituting a part of the discharge vessel so as not to be exposed to discharge gas in the discharge vessel.SELECTED DRAWING: Figure 1

Description

本発明は、プラズマ発生装置及びプラズマ発生方法に関する。   The present invention relates to a plasma generation apparatus and a plasma generation method.

従来のプラズマ発生装置では、例えば放電容器内でプラズマを発生している(特許文献1、2)。また、誘電体材料を介在させて対向させた一対の電極の間に、放電用ガスを流過させて電極間にプラズマを発生させる装置も知られている(特許文献3)。   In a conventional plasma generator, for example, plasma is generated in a discharge vessel (Patent Documents 1 and 2). There is also known an apparatus that generates a plasma between electrodes by flowing a discharge gas between a pair of electrodes facing each other with a dielectric material interposed therebetween (Patent Document 3).

特開2014−212839号公報JP 2014-212839 A 特開2007−207475号公報JP 2007-207475 A 特開2009−187862号公報JP 2009-187862 A

しかし、特許文献1の装置では、一対の電極の一方の内側電極を放電空間内に直接配置しているため、放電空間を流動する放電用ガスが、電極と反応するガス(例えば酸素やフッ素)を含んだ反応性の高い放電ガス(以下単に放電用ガス)であると、電極の劣化(例えば酸化)が生じる。その結果、プラズマが生じ難くなるおそれがある。また、特許文献2に記載の装置は、放電空間と内側電極との間に誘電体が配置されているが、放電空間以外の放電用ガスが流動する領域では、内側電極は誘電体に覆われずに露出している。このため、特許文献1と同様に、内側電極が劣化してプラズマが生じ難くなるおそれがある。また、特許文献2の装置では、放電空間内の放電用ガスの状態(例えば圧力、濃度、流速)が不均一になりやすい。これにより、絶縁破壊に必要な電圧、すなわちプラズマ発生開始電圧(放電開始電圧)が不安定になり、プラズマの発生そのものが不安定になるおそれがあった。さらに、特許文献3の誘電体材料(ガラス体)は筒状であり、筒状ガラス体の外表面に、対向する一対の外側電極を配置しているため、一対の電極間に高周波電圧を印加した際に、筒状ガラス体の外表面を伝わって沿面放電(放電容器外表面上のプラズマ)が発生する場合がある。その結果、放電空間の電界強度が低下し、プラズマが発生しない場合があった。   However, in the apparatus of Patent Document 1, since one inner electrode of the pair of electrodes is directly arranged in the discharge space, the gas for discharge flowing in the discharge space reacts with the electrode (for example, oxygen or fluorine). If the discharge gas contains a highly reactive discharge gas (hereinafter simply referred to as a discharge gas), electrode deterioration (for example, oxidation) occurs. As a result, there is a possibility that plasma is hardly generated. In the device described in Patent Document 2, a dielectric is disposed between the discharge space and the inner electrode, but the inner electrode is covered with the dielectric in a region where the discharge gas other than the discharge space flows. Is exposed. For this reason, similarly to Patent Document 1, there is a possibility that the inner electrode deteriorates and plasma is hardly generated. Moreover, in the apparatus of Patent Document 2, the state (for example, pressure, concentration, flow rate) of the discharge gas in the discharge space is likely to be non-uniform. As a result, the voltage required for dielectric breakdown, that is, the plasma generation start voltage (discharge start voltage) becomes unstable, and the plasma generation itself may become unstable. Furthermore, the dielectric material (glass body) of Patent Document 3 is cylindrical, and a pair of opposed outer electrodes are arranged on the outer surface of the cylindrical glass body, so that a high frequency voltage is applied between the pair of electrodes. When this occurs, creeping discharge (plasma on the outer surface of the discharge vessel) may occur along the outer surface of the cylindrical glass body. As a result, the electric field strength in the discharge space is reduced, and plasma may not be generated.

本発明は、以上の問題意識に基づき、放電容器内の電極の劣化及び沿面放電を防止しながら、確実にプラズマを発生させることができるプラズマ発生装置及びプラズマ発生方法を得ることを目的とする。   An object of the present invention is to provide a plasma generation apparatus and a plasma generation method capable of reliably generating plasma while preventing electrode deterioration and creeping discharge in the discharge vessel based on the above problem awareness.

本発明のプラズマ発生装置は、放電容器を介在させて対向配設された一対の電極を有するプラズマ発生装置において、上記一対の電極が、上記放電容器内の放電用ガスに露出しないように、上記放電容器の一部を構成する誘電体によって覆われていること、を特徴とする。   The plasma generator of the present invention is a plasma generator having a pair of electrodes arranged opposite to each other with a discharge vessel interposed therebetween, so that the pair of electrodes are not exposed to the discharge gas in the discharge vessel. It is characterized by being covered with a dielectric that constitutes a part of the discharge vessel.

プラズマ発生装置は、その一態様では、上記放電容器が、放電用ガスの流入口と、放電用ガスにより生成したプラズマの流出口とを有している。   In one embodiment of the plasma generator, the discharge vessel has a discharge gas inlet and a plasma outlet generated by the discharge gas.

上記一対の電極の一方の電極は、上記放電容器の内側に配設された内側電極であり、該内側電極が上記誘電体に埋設されていてもよい。   One electrode of the pair of electrodes may be an inner electrode disposed inside the discharge vessel, and the inner electrode may be embedded in the dielectric.

上記誘電体は、上記放電容器の一部を一体として構成してもよい。   The dielectric may constitute a part of the discharge vessel.

上記一対の電極の間の電界強度は、上記放電容器の周方向に沿って不均一であってもよい。   The electric field strength between the pair of electrodes may be non-uniform along the circumferential direction of the discharge vessel.

上記誘電体の径方向の厚さは、周方向に沿って不均一であってもよい。   The radial thickness of the dielectric may be non-uniform along the circumferential direction.

上記内側電極は帯状電極であり、上記誘電体の厚さは、上記帯状電極の幅方向の外側が最も薄くてもよい。   The inner electrode may be a strip electrode, and the dielectric may be thinnest on the outer side in the width direction of the strip electrode.

上記帯状電極は、幅方向の両縁部の少なくとも一方の厚さが、上記帯状電極の中央部の厚さよりも薄くてもよい。   In the strip electrode, the thickness of at least one of both edges in the width direction may be smaller than the thickness of the central portion of the strip electrode.

上記帯状電極は、上記帯状電極の幅方向の両縁部が、ナイフエッジ形状であってもよい。   The strip electrode may have a knife edge shape at both edges in the width direction of the strip electrode.

本発明のプラズマ発生装置は、その一態様では、上記一対の電極の少なくとも一方の電極が、上記放電容器の管壁内部に埋設されていてもよい。   In one embodiment of the plasma generator of the present invention, at least one of the pair of electrodes may be embedded in the tube wall of the discharge vessel.

本発明のプラズマ発生方法は、上記のプラズマ発生装置を用い、上記放電容器内に放電用ガスを導入し、上記一対の電極の間にプラズマを発生させて、同プラズマを上記放電容器外へ放出すること、を特徴とする。   The plasma generation method of the present invention uses the plasma generation apparatus described above, introduces a discharge gas into the discharge vessel, generates plasma between the pair of electrodes, and discharges the plasma out of the discharge vessel. It is characterized by doing.

本発明のプラズマ発生装置は、放電用ガスが流動する放電容器内において、放電容器内の電極が誘電体に覆われる。これにより、放電用ガスに電極と反応性の高いガスが含まれても、放電用ガスと電極とが反応することが無くなり、放電用ガスの種類に関わらず、長期間にわたって確実にプラズマを発生できる。また、放電空間の電界強度を放電容器周方向に沿って不均一とすることで、電界強度が局所的に高い部分を放電空間に有し、低い電圧でも放電(プラズマ)を発生させることができる。このため、確実にプラズマを発生させることができ、プラズマ発生の始動性を向上させることができる。また、少なくとも一方の電極が放電容器内に設けられる、または誘電体で覆われることで、放電容器外表面での沿面放電が生じない。   In the plasma generator of the present invention, the electrode in the discharge vessel is covered with a dielectric in the discharge vessel in which the discharge gas flows. This eliminates the reaction between the discharge gas and the electrode even if the discharge gas contains a highly reactive gas with the electrode, and reliably generates plasma over a long period of time regardless of the type of discharge gas. it can. Further, by making the electric field strength in the discharge space nonuniform along the discharge vessel circumferential direction, the discharge space has a portion where the electric field strength is locally high, and discharge (plasma) can be generated even at a low voltage. . For this reason, plasma can be reliably generated, and startability of plasma generation can be improved. Moreover, creeping discharge does not occur on the outer surface of the discharge vessel by providing at least one electrode in the discharge vessel or being covered with a dielectric.

本発明による大気圧プラズマ発生装置の第1の実施形態を示す縦断面図である。1 is a longitudinal sectional view showing a first embodiment of an atmospheric pressure plasma generator according to the present invention. 図1のII−II線に沿う断面図である。It is sectional drawing which follows the II-II line | wire of FIG. 本発明の第1の実施形態の変形例を示す、図2に対応する断面図である。It is sectional drawing corresponding to FIG. 2 which shows the modification of the 1st Embodiment of this invention. 本発明による大気圧プラズマ発生装置の第2の実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 2nd Embodiment of the atmospheric pressure plasma generator by this invention. 図4のV−V線に沿う断面図である。It is sectional drawing which follows the VV line of FIG. 本発明の第2の実施形態の変形例を示す、図5に対応する断面図である。It is sectional drawing corresponding to FIG. 5 which shows the modification of the 2nd Embodiment of this invention.

以下図面について本発明に係る大気圧プラズマ発生装置100の実施形態を説明する。図1及び図2は本発明による大気圧プラズマ発生装置の第1の実施形態を示している。図1、図2に示すように、本大気圧プラズマ発生装置100は、放電容器(放電管)10を備えている。この放電容器10は、誘電体(例えば石英)からなるものであり、図示例では断面が真円である円筒状に形成されている。この放電容器10の軸方向の一端には、放電容器10の径方向に向けて反応性放電用ガス(以下単に放電用ガス)の流入口11が形成され、他端部には放電容器10の軸方向に向けて放電用ガスやプラズマ(ラジカル)を流出する流出口12が形成されている。流入口11は、放電容器10の管壁10aに穿設したものであって、放電容器10の径方向に延びる接続管11aと連通している。管壁10aの一端部は、管壁10aと一体の端部壁10bによって塞がれている。なお、同様の構成により流入口と流出口を入れ替えて、放電用ガスを放電容器内で逆に流動させてもよい(図中の矢印の向きが逆になる)。   Hereinafter, an embodiment of an atmospheric pressure plasma generator 100 according to the present invention will be described with reference to the drawings. 1 and 2 show a first embodiment of an atmospheric pressure plasma generator according to the present invention. As shown in FIGS. 1 and 2, the atmospheric pressure plasma generator 100 includes a discharge vessel (discharge tube) 10. The discharge vessel 10 is made of a dielectric material (for example, quartz), and is formed in a cylindrical shape having a perfect cross section in the illustrated example. At one end of the discharge vessel 10 in the axial direction, an inlet 11 for a reactive discharge gas (hereinafter simply referred to as discharge gas) is formed in the radial direction of the discharge vessel 10, and at the other end of the discharge vessel 10. An outlet 12 is formed through which discharge gas and plasma (radical) flow out in the axial direction. The inflow port 11 is formed in the tube wall 10 a of the discharge vessel 10 and communicates with a connection tube 11 a extending in the radial direction of the discharge vessel 10. One end of the tube wall 10a is closed by an end wall 10b integral with the tube wall 10a. Note that the inflow port and the outflow port may be exchanged with the same configuration to cause the discharge gas to flow in the reverse direction in the discharge vessel (the direction of the arrow in the figure is reversed).

一方、放電容器10の内部には、放電容器10の軸心に沿って一対の電極の一方の電極となる内側電極13aと該内側電極13aを埋設した(被覆した)内側管13bとが配設されている。内側電極13aを埋設した内側管13bは、誘電体(例えば石英)から構成されるものであり、管状の誘電体内に内側電極13aを挿入した状態で、溶融軟化(加熱溶着)させることで形成される。また、内側管13bは、放電容器10の流入口11側の端部壁10bにおいて、加熱溶着(加熱成形)により放電容器10と一体となり、放電容器10の一部を構成している。この内側管13bと放電容器10(管壁10a)の間の筒状空間が放電空間(プラズマ発生空間)14を構成する。   On the other hand, inside the discharge vessel 10, an inner electrode 13 a that is one of a pair of electrodes and an inner tube 13 b in which the inner electrode 13 a is embedded (covered) are disposed along the axial center of the discharge vessel 10. Has been. The inner tube 13b in which the inner electrode 13a is embedded is made of a dielectric (for example, quartz), and is formed by melting and softening (heating welding) in a state where the inner electrode 13a is inserted into a tubular dielectric. The Further, the inner tube 13 b is integrated with the discharge vessel 10 by heat welding (heat forming) on the end wall 10 b on the inlet 11 side of the discharge vessel 10 and constitutes a part of the discharge vessel 10. A cylindrical space between the inner tube 13b and the discharge vessel 10 (tube wall 10a) constitutes a discharge space (plasma generation space) 14.

内側電極13aは、図示実施形態では、図2に示すように、長手方向(放電容器10の軸方向、放電容器内の放電用ガスの流れ方向)に一様断面の帯状(箔状、板状)に形成された帯状電極であり、その幅方向の中央部13a1の厚さは両縁部13a2の厚さより厚く、かつ両縁部13a2(幅方向に沿った両端部)に向けて先鋭化し、その厚さは中央部13a1に比べて薄くなり、両縁部13a2は先細く尖ったナイフエッジ形状をなしている。内側電極13aを埋設した内側管13bの放電容器10の径方向の厚さは周方向に沿って不均一であり、埋設された内側電極13aの幅方向(幅方向に沿って両縁部13a2を延長した方向)の外側の厚さdが最も薄くなっている。   In the illustrated embodiment, the inner electrode 13a has a strip shape (foil shape, plate shape) having a uniform cross section in the longitudinal direction (the axial direction of the discharge vessel 10, the flow direction of the discharge gas in the discharge vessel) as shown in FIG. The thickness of the central portion 13a1 in the width direction is thicker than the thickness of both edge portions 13a2, and sharpens toward both edge portions 13a2 (both end portions along the width direction). Its thickness is thinner than that of the central portion 13a1, and both edge portions 13a2 have a sharp and sharp knife edge shape. The radial thickness of the discharge vessel 10 of the inner tube 13b in which the inner electrode 13a is embedded is uneven along the circumferential direction, and the width direction (both edges 13a2 along the width direction of the embedded inner electrode 13a is The outer thickness d in the extended direction) is the thinnest.

一方、放電容器10(管壁10a)の外周面には、一対の電極の他方の電極となる外側電極15が配設されている。外側電極15は、図示実施形態では、金属膜状(箔状)電極として描いているが、螺旋状に巻回された金属線材であってもよい。外側電極15と内側電極13aが対向する軸方向長さは放電空間14に対応している。   On the other hand, an outer electrode 15 serving as the other electrode of the pair of electrodes is disposed on the outer peripheral surface of the discharge vessel 10 (tube wall 10a). In the illustrated embodiment, the outer electrode 15 is depicted as a metal film-like (foil-like) electrode, but may be a metal wire wound spirally. The axial length of the outer electrode 15 and the inner electrode 13a facing each other corresponds to the discharge space 14.

以上の内側電極13aと外側電極15は、内側管13b、放電空間14及び放電容器10の管壁10aを介して対向する一対の電極であり、図示しない電源部に電気的に接続されている。また内側電極13aは高圧側電極であり、外側電極15は接地側電極であるが、この逆であってもよい。   The inner electrode 13a and the outer electrode 15 described above are a pair of electrodes facing each other via the inner tube 13b, the discharge space 14, and the tube wall 10a of the discharge vessel 10, and are electrically connected to a power supply unit (not shown). The inner electrode 13a is a high-voltage side electrode, and the outer electrode 15 is a ground-side electrode.

上記構成の本大気圧プラズマ発生装置100を用いてプラズマ(ラジカル)を発生させるには、放電容器10の流入口11から放電容器10内に放電用ガス等を流入させ、放電空間14内を流動させた後、放電容器10の流出口12から大気である外部へ排出する。放電用ガスは、酸素などの反応性の高いガスだけでなく、ヘリウム、アルゴン、窒素などの不活性なガス、さらには反応性の高いガスと不活性なガスの混合ガスなどでもよい。   In order to generate plasma (radical) using the atmospheric pressure plasma generator 100 having the above-described configuration, a discharge gas or the like is caused to flow into the discharge vessel 10 from the inlet 11 of the discharge vessel 10 and flow in the discharge space 14. Then, it is discharged from the outlet 12 of the discharge vessel 10 to the outside which is the atmosphere. The discharge gas is not limited to a highly reactive gas such as oxygen, but may be an inert gas such as helium, argon, or nitrogen, or a mixed gas of a highly reactive gas and an inert gas.

このように、放電容器10の放電空間14内へ放電用ガスを供給した(流入させた)状態にし、電源部によって内側電極13aと外側電極15との間に放電開始(絶縁破壊)に必要な高電圧を印加すると、放電容器10の放電空間14内において、内側電極13aと外側電極15との間で電界強度が高い両縁部13a2付近からの絶縁破壊が起点になって、放電空間14内の全体でプラズマ(放電)が発生する。このように両縁部13a2付近の電界強度が局所的に高いことを以下に説明する。内側電極13aの厚さは幅方向の中央部13a1から両縁部13a2に向かって薄くなり、両縁部13a2が尖ったナイフエッジ形状をなしているので、例えば円柱状の電極と比較して、電界集中が生じやすい。その結果、内側電極13aの幅方向に沿った放電空間14(両縁部13a2と外側電極15との間で放電距離が最短となる領域)の電界強度が局所的に高くなる。   As described above, the discharge gas is supplied (inflowed) into the discharge space 14 of the discharge vessel 10 and is necessary for the start of discharge (dielectric breakdown) between the inner electrode 13a and the outer electrode 15 by the power supply unit. When a high voltage is applied, in the discharge space 14 of the discharge vessel 10, the dielectric breakdown from the vicinity of both edges 13 a 2 where the electric field strength is high between the inner electrode 13 a and the outer electrode 15 starts, and the discharge space 14 Plasma (discharge) is generated throughout. The fact that the electric field intensity in the vicinity of both edge portions 13a2 is locally high will be described below. Since the thickness of the inner electrode 13a becomes thinner from the central portion 13a1 in the width direction toward both edge portions 13a2, and the both edge portions 13a2 have a sharp knife edge shape, for example, compared with a cylindrical electrode, Electric field concentration is likely to occur. As a result, the electric field strength in the discharge space 14 along the width direction of the inner electrode 13a (the region where the discharge distance is shortest between the both edges 13a2 and the outer electrode 15) is locally increased.

加えて、図示実施形態では、内側電極13aを覆う内側管13bの厚さが周方向において不均一であり、内側電極13aの両縁部13a2(ナイフエッジ形状の先端)において厚さが最小になっている。電界強度は、誘電体の厚さが薄い部分ほど高くなることが知られているから、放電空間14において、内側電極13aの幅方向の2箇所の空間Xの少なくともいずれか一方において確実にプラズマ(放電)を発生させることができる。   In addition, in the illustrated embodiment, the thickness of the inner tube 13b covering the inner electrode 13a is not uniform in the circumferential direction, and the thickness is minimized at both edges 13a2 (knife edge-shaped tips) of the inner electrode 13a. ing. It is known that the electric field strength becomes higher as the thickness of the dielectric becomes thinner. Therefore, in the discharge space 14, the plasma (in the at least one of the two spaces X in the width direction of the inner electrode 13 a is surely plasma ( Discharge) can be generated.

別言すれば、一対の電極間の距離を放電容器(放電管)の周方向に沿って不均一とする観点で、内側電極13aの両縁部13a2のどちらか一方を中央部の厚さよりも薄くする(ナイフエッジ形状とする)ことで、内側電極13aの幅を放電容器の周方向に沿って不均一とするか、一対の電極間の誘電体の厚さを放電容器の周方向に沿って不均一とする観点で、内側管13bに厚さが薄くなる部分(薄肉部)を設けることで、内側管の厚さ(外径)を放電管の周方向に沿って不均一とするかのいずれかによって、放電容器内の電界強度を局所的に高くすることができ、放電容器(放電管)の周方向に沿って電界強度が不均一となる。これらの方法の少なくとも一つを適用することで、比較的低い放電開始電圧でもプラズマを生じさせることができるため、放電空間14の放電用ガスの状態(例えば圧力、濃度、流速)が不均一になっても、放電開始電圧を増加させることなく、確実にプラズマを発生させることができる。なお、内側管13bの薄肉部を、ナイフエッジ形状とした両縁部13a2の外側に設けることで、相乗効果によって、放電容器内の電界強度を局所的により高くすることができ、より確実にプラズマを発生させることができる。   In other words, from the viewpoint of making the distance between the pair of electrodes non-uniform along the circumferential direction of the discharge vessel (discharge tube), either one of the two edge portions 13a2 of the inner electrode 13a is made larger than the thickness of the central portion. By making it thinner (knife edge shape), the width of the inner electrode 13a is made nonuniform along the circumferential direction of the discharge vessel, or the thickness of the dielectric between the pair of electrodes is taken along the circumferential direction of the discharge vessel. From the viewpoint of making the inner tube 13b uneven, by providing the inner tube 13b with a thin portion (thin wall portion), the inner tube thickness (outer diameter) is made uneven along the circumferential direction of the discharge tube. As a result, the electric field strength in the discharge vessel can be locally increased, and the electric field strength becomes non-uniform along the circumferential direction of the discharge vessel (discharge tube). By applying at least one of these methods, plasma can be generated even at a relatively low discharge start voltage, so that the state (for example, pressure, concentration, flow rate) of the discharge gas in the discharge space 14 is not uniform. Even in such a case, plasma can be reliably generated without increasing the discharge start voltage. In addition, by providing the thin wall portion of the inner tube 13b outside the both edge portions 13a2 having a knife edge shape, the electric field strength in the discharge vessel can be locally increased by a synergistic effect, and the plasma can be more reliably generated. Can be generated.

従って、以上の大気圧プラズマ発生装置100によると、流入口11から放電容器10内の放電空間14に流入した(供給された)放電用ガスは、放電空間14を軸方向に沿って流動する過程でプラズマ(ラジカル)となる。   Therefore, according to the atmospheric pressure plasma generator 100 described above, the discharge gas flowing (supplied) from the inlet 11 into the discharge space 14 in the discharge vessel 10 flows in the discharge space 14 along the axial direction. It becomes plasma (radical).

また、以上の第1の実施形態では、内側電極13aが内側管13b内に埋設されているために、放電の際に内側電極13aが損傷することが無い。すなわち、放電容器10内の内側電極13aが内側管(誘電体)13bに覆われることで、放電用ガス(放電用ガスに含まれる反応性の高いガス)と内側電極13aが接することがなく、内側電極13aが放電用ガスによって劣化することがないので、長期間にわたって、確実にプラズマを発生させることができる。さらに、内側電極13aを覆う内側管(誘電体)13bと、放電容器10とが一体として構成されていることによって、より確実に電極全体の劣化を防止できる。また、帯状の内側電極13aの幅方向の両縁部13a2はナイフエッジ形状であるため、内側管13bとの間に隙間が生じない。これにより、隙間に入り込んだ酸素(大気)と内側電極13aとが反応(酸化)し、内側電極13aが劣化することを防止できる。   Moreover, in the above 1st Embodiment, since the inner side electrode 13a is embed | buried in the inner side pipe | tube 13b, the inner side electrode 13a is not damaged in the case of discharge. That is, the inner electrode 13a in the discharge vessel 10 is covered with the inner tube (dielectric) 13b, so that the discharge gas (the highly reactive gas contained in the discharge gas) and the inner electrode 13a are not in contact with each other. Since the inner electrode 13a is not deteriorated by the discharge gas, plasma can be reliably generated over a long period of time. Furthermore, since the inner tube (dielectric) 13b covering the inner electrode 13a and the discharge vessel 10 are integrally configured, deterioration of the entire electrode can be prevented more reliably. In addition, since both edge portions 13a2 in the width direction of the strip-shaped inner electrode 13a have a knife edge shape, no gap is generated between the inner tube 13b and the inner edge 13a2. Accordingly, it is possible to prevent oxygen (atmosphere) entering the gap from reacting (oxidizing) with the inner electrode 13a and deteriorating the inner electrode 13a.

なお、図3は、第1の実施形態の変形例を示すもので、内側電極13a’を円形断面とし、内側管13b’を楕円(長円)状断面とすることで、誘電体の厚さが周方向において不均一になっている。この変形例においても、誘電体である内側管13b’の厚さが放電容器10の周方向に沿って不均一となって、放電空間14において、内側管13b’の厚さが最も薄くなる部分に接する内側電極13a’付近の空間Xの電界強度を局所的に高くすることができる。内側電極13a’が内側管13b’内に埋設されているために、内側電極13a’が損傷することが無く、長期間にわたって、確実にプラズマを発生させることができる。   FIG. 3 shows a modification of the first embodiment. The inner electrode 13a ′ has a circular cross section, and the inner tube 13b ′ has an elliptical (oval) cross section. Is uneven in the circumferential direction. Also in this modified example, the thickness of the inner tube 13b ′, which is a dielectric, becomes uneven along the circumferential direction of the discharge vessel 10, and the portion of the discharge space 14 where the thickness of the inner tube 13b ′ is the thinnest. It is possible to locally increase the electric field strength in the space X in the vicinity of the inner electrode 13a ′ in contact with the electrode. Since the inner electrode 13a 'is embedded in the inner tube 13b', the inner electrode 13a 'is not damaged and plasma can be reliably generated over a long period of time.

図4及び図5は、本発明による大気圧プラズマ発生装置の第2の実施形態を示している。この第2の実施形態は、第1の実施形態に比して、一対の電極の配置態様と、放電用ガスの流入口の配置形態が異なっている。放電容器20は、誘電体(例えば石英)からなる筒状の管壁20aと、放電容器20の一方の端部を塞ぐ端部壁20bと、この端部壁20bの略中央に管壁20aと同軸に形成された放電用ガスの流入口21と、管壁20aの他方の端部に管壁20aと同軸に形成された流出口22とを備えている。端部壁20bの外面には、流入口21に連通する接続管21aが一体に形成されて、放電容器20の一部を構成している。この管壁20a内の筒状空間が放電空間(プラズマ発生空間)24を構成する。   4 and 5 show a second embodiment of the atmospheric pressure plasma generator according to the present invention. The second embodiment differs from the first embodiment in the arrangement of the pair of electrodes and the arrangement of the discharge gas inlet. The discharge vessel 20 includes a cylindrical tube wall 20a made of a dielectric material (for example, quartz), an end wall 20b that closes one end of the discharge vessel 20, and a tube wall 20a at the approximate center of the end wall 20b. A discharge gas inlet 21 is formed coaxially, and an outlet 22 is formed coaxially with the tube wall 20a at the other end of the tube wall 20a. A connecting tube 21 a communicating with the inflow port 21 is integrally formed on the outer surface of the end wall 20 b to constitute a part of the discharge vessel 20. The cylindrical space in the tube wall 20a constitutes a discharge space (plasma generation space) 24.

この実施形態では、一対の電極23は、図5に示すように、放電容器20の軸方向に沿って一様断面の帯状(板状)に形成された帯状電極であり、管壁20a及び放電空間24を介して対向するように、放電容器20の管壁20a内に埋設されている。一対の電極23は、放電容器20の中心軸を通る対称軸を中心に対称形状をなすものであって、放電容器20の管壁20aの曲率に対応する曲率で曲げられており、かつ、周方向に沿って、中央部231の厚さが最も厚く、両縁部232に向けて徐々に厚さを減じて薄くなるナイフエッジ形状をなしている。この一対の電極23はそれぞれ長手方向の一端に接続される給電部材23aによって、電源装置と電気的に接続される。   In this embodiment, as shown in FIG. 5, the pair of electrodes 23 are band-shaped electrodes formed in a band shape (plate shape) with a uniform cross section along the axial direction of the discharge vessel 20, and the tube wall 20a and the discharge electrode It is embed | buried in the tube wall 20a of the discharge vessel 20 so that it may oppose through the space 24. FIG. The pair of electrodes 23 are symmetrical with respect to an axis of symmetry passing through the central axis of the discharge vessel 20, and are bent with a curvature corresponding to the curvature of the tube wall 20a of the discharge vessel 20, Along the direction, the thickness of the central portion 231 is the largest, and a knife edge shape is formed in which the thickness is gradually reduced toward both edge portions 232 and becomes thinner. The pair of electrodes 23 are electrically connected to the power supply device by a power supply member 23a connected to one end in the longitudinal direction.

一対の電極23を放電容器20の管壁20a内に加熱成形により埋設する方法としては、小径管(石英管)と大径管(石英管)との間に一対の電極23を挿入した状態において、小径管と大径管の間の空気を吸引し、小径管と大径管を加熱溶着させて一体とさせる製造方法を適用できる。   As a method of embedding the pair of electrodes 23 in the tube wall 20a of the discharge vessel 20 by thermoforming, the pair of electrodes 23 is inserted between a small diameter tube (quartz tube) and a large diameter tube (quartz tube). A manufacturing method in which air between a small diameter tube and a large diameter tube is sucked and the small diameter tube and the large diameter tube are heat-welded and integrated can be applied.

以上の大気圧プラズマ発生装置100は、放電容器20の一対の電極23の両縁部232が、尖ったナイフエッジ形状をなしており、放電空間24と放電容器20の筒状壁面(誘電体)を直径方向に挟んで対向している。このため、放電容器20の径方向断面において、一対の電極23間の距離や誘電体の厚さが、一対の電極23の対称軸(放電管の径方向)に沿って不均一になるので、放電空間24内の電界強度は、一対の電極23の両縁部232付近において局所的に高くなって、放電容器20の周方向に沿って不均一となる。従って、第1の実施形態と同様に、電源部によって一対の電極23の間に放電開始(絶縁破壊)に必要な高電圧を印加すると、放電容器20内の両縁部232付近における絶縁破壊を起点として、放電空間24全体でプラズマ(放電)が発生することになる。   In the atmospheric pressure plasma generator 100 described above, both edges 232 of the pair of electrodes 23 of the discharge vessel 20 have a sharp knife-edge shape, and the discharge space 24 and the cylindrical wall surface (dielectric) of the discharge vessel 20. Are opposed to each other in the diameter direction. For this reason, in the radial cross section of the discharge vessel 20, the distance between the pair of electrodes 23 and the thickness of the dielectric become nonuniform along the symmetry axis (the radial direction of the discharge tube) of the pair of electrodes 23. The electric field strength in the discharge space 24 increases locally in the vicinity of both edge portions 232 of the pair of electrodes 23 and becomes nonuniform along the circumferential direction of the discharge vessel 20. Therefore, as in the first embodiment, when a high voltage necessary for the start of discharge (dielectric breakdown) is applied between the pair of electrodes 23 by the power supply unit, the dielectric breakdown in the vicinity of both edges 232 in the discharge vessel 20 is caused. As a starting point, plasma (discharge) is generated in the entire discharge space 24.

本実施形態では帯状の電極23が管壁20aの内部に埋設され、管壁20aの外表面に露出していない。そのため、放電容器20内の放電用ガスが電極23に接することが無いので、電極23が放電用ガスによって劣化されず、長期間にわたって、確実にプラズマを発生させることができる。さらに、放電容器20の管壁20aの外表面で沿面放電が生じることがないので、沿面放電によって放電空間24でのプラズマ発生が阻害されることがなく、かつ高電圧が印加される電極23が放電容器20の外表面に露出しない安全なプラズマ発生装置を提供できる。   In the present embodiment, the strip-shaped electrode 23 is embedded in the tube wall 20a and is not exposed on the outer surface of the tube wall 20a. Therefore, since the discharge gas in the discharge vessel 20 does not contact the electrode 23, the electrode 23 is not deteriorated by the discharge gas, and plasma can be reliably generated over a long period of time. Further, since creeping discharge does not occur on the outer surface of the tube wall 20a of the discharge vessel 20, plasma generation in the discharge space 24 is not hindered by creeping discharge, and the electrode 23 to which a high voltage is applied is provided. A safe plasma generator that is not exposed on the outer surface of the discharge vessel 20 can be provided.

図6は、第2の実施形態の変形例を示している。この変形例は、第2の実施形態の一対の電極のうち、電極23’’を放電容器20の管壁20a内に埋設し、電極23’を管壁20aの外表面に沿わせて配設したものである。この変形例の一対の電極23’、23’’は、対称軸を中心に対称形状をなすものであって、周方向に沿って、中央部231’、231’’の厚さが最も厚く、周方向の両縁部232’、232’’に向けて徐々に厚さを減じて薄くなるナイフエッジ形状をなしている。したがってこの変形例においても、放電容器20の径方向断面において、一対の電極23’、23’’間の距離や誘電体の厚さが、一対の電極23’、23’’の対称軸(放電容器20の径方向)に沿って不均一となるので、一対の電極23’、23’’の間の電界強度は、両縁部232’と232’’付近において局所的に高くなり、放電容器20の周方向に沿って不均一になる。第1の実施形態と同様に、電源部によって一対の電極23’、23’’の間に放電開始(絶縁破壊)に必要な高電圧を印加すると、放電容器20内の両縁部232’と232’’付近における絶縁破壊を起点として、放電空間24全域でプラズマが発生する。   FIG. 6 shows a modification of the second embodiment. In this modification, of the pair of electrodes of the second embodiment, the electrode 23 ″ is embedded in the tube wall 20a of the discharge vessel 20, and the electrode 23 ′ is disposed along the outer surface of the tube wall 20a. It is a thing. The pair of electrodes 23 ′ and 23 ″ of this modification form a symmetrical shape with the symmetry axis as the center, and the thickness of the central portions 231 ′ and 231 ″ is the largest along the circumferential direction. It has a knife edge shape that gradually decreases in thickness toward both edges 232 ′, 232 ″ in the circumferential direction. Therefore, also in this modification, in the radial cross section of the discharge vessel 20, the distance between the pair of electrodes 23 ′ and 23 ″ and the thickness of the dielectric are the symmetry axes (discharges) of the pair of electrodes 23 ′ and 23 ″. The electric field strength between the pair of electrodes 23 ′ and 23 ″ locally increases in the vicinity of both edge portions 232 ′ and 232 ″, and the discharge vessel becomes uneven. 20 becomes non-uniform along the circumferential direction. Similarly to the first embodiment, when a high voltage required for the start of discharge (dielectric breakdown) is applied between the pair of electrodes 23 ′ and 23 ″ by the power supply unit, both edges 232 ′ in the discharge vessel 20 and Plasma is generated in the entire discharge space 24 starting from dielectric breakdown in the vicinity of 232 ″.

この変形例においても、一対の電極23’、23’’が放電空間24に露出することなく、放電空間24の全域が誘電体からなる管壁20aに覆われている。そのため、放電容器20内の放電用ガスが一対の電極23’、23’’に接することがないので、一対の電極23’、23’’が放電用ガスによって劣化されず、長期間にわたって、確実にプラズマを発生させることができる。またこの変形例は、一方の電極23’’が放電容器20の管壁20a内部に埋設され、管壁20aの外表面に露出していない。そのため、管壁20a外表面で沿面放電が生じることがないので、沿面放電によって放電空間24でのプラズマ発生が阻害されることがなく、かつ高電圧が印加される電極23’’が放電容器20の外表面に露出しない安全なプラズマ発生装置を提供できる。   Also in this modified example, the entire region of the discharge space 24 is covered with the tube wall 20 a made of a dielectric without exposing the pair of electrodes 23 ′ and 23 ″ to the discharge space 24. Therefore, the discharge gas in the discharge vessel 20 does not come into contact with the pair of electrodes 23 ′ and 23 ″, so that the pair of electrodes 23 ′ and 23 ″ is not deteriorated by the discharge gas and can be reliably obtained over a long period of time. Plasma can be generated. In this modification, one electrode 23 ″ is embedded in the tube wall 20 a of the discharge vessel 20 and is not exposed on the outer surface of the tube wall 20 a. For this reason, creeping discharge does not occur on the outer surface of the tube wall 20a. Therefore, the generation of plasma in the discharge space 24 is not hindered by the creeping discharge, and the electrode 23 ″ to which a high voltage is applied is provided in the discharge vessel 20. It is possible to provide a safe plasma generator that is not exposed to the outer surface of the plasma.

10 放電容器(放電管)
10a 管壁
10b 端部壁
11 流入口(放電用ガス流入部)
11a 接続管
12 流出口
13a、13a’ 内側電極(一方の電極、帯状電極)
13a1 中央部
13a2 縁部(両縁部)
13b、13b’ 内側管
14 放電空間
15 外側電極(他方の電極、帯状電極)
20 放電容器(放電管)
20a 管壁
20b 端部壁
21 流入口
22 流出口
23、23’、23’’ 電極(帯状電極)
231、231’、231’’ 中央部
232、232’、232’’ 縁部(両縁部)
24 放電空間
100 大気圧プラズマ発生装置
10 Discharge vessel (discharge tube)
10a Tube wall 10b End wall 11 Inlet (discharge gas inlet)
11a Connection pipe 12 Outflow port 13a, 13a 'Inner electrode (one electrode, strip electrode)
13a1 center part 13a2 edge (both edges)
13b, 13b ′ inner tube 14 discharge space 15 outer electrode (the other electrode, strip electrode)
20 Discharge vessel (discharge tube)
20a Pipe wall 20b End wall 21 Inlet 22 Outlet 23, 23 ', 23''electrode (band electrode)
231, 231 ′, 231 ″ center 232, 232 ′, 232 ″ edge (both edges)
24 discharge space 100 atmospheric pressure plasma generator

Claims (11)

放電容器を介在させて対向配設された一対の電極を有するプラズマ発生装置において、
上記一対の電極は、上記放電容器内の放電用ガスに露出しないように、上記放電容器の一部を構成する誘電体によって覆われていること、
を特徴とするプラズマ発生装置。
In the plasma generator having a pair of electrodes disposed opposite to each other with a discharge vessel interposed therebetween,
The pair of electrodes are covered with a dielectric that constitutes a part of the discharge vessel so as not to be exposed to the discharge gas in the discharge vessel;
A plasma generator characterized by the above.
請求項1記載のプラズマ発生装置において、上記放電容器は、放電用ガスの流入口と、放電用ガスにより生成したプラズマの流出口とを有するプラズマ発生装置。   2. The plasma generator according to claim 1, wherein the discharge vessel has a discharge gas inlet and a plasma outlet generated by the discharge gas. 請求項1または2に記載のプラズマ発生装置において、上記一対の電極の一方の電極は、上記放電容器の内側に配設された内側電極であり、該内側電極が上記誘電体に埋設されているプラズマ発生装置。   3. The plasma generator according to claim 1, wherein one electrode of the pair of electrodes is an inner electrode disposed inside the discharge vessel, and the inner electrode is embedded in the dielectric. Plasma generator. 請求項3記載のプラズマ発生装置において、上記誘電体は、上記放電容器の一部を一体として構成しているプラズマ発生装置。   4. The plasma generating apparatus according to claim 3, wherein the dielectric is formed by integrating a part of the discharge vessel. 請求項1ないし4のいずれか1項記載のプラズマ発生装置において、上記一対の電極の間の電界強度が上記放電容器の周方向に沿って不均一であるプラズマ発生装置。   The plasma generator according to any one of claims 1 to 4, wherein the electric field strength between the pair of electrodes is non-uniform along the circumferential direction of the discharge vessel. 請求項3ないし5のいずれか1項記載のプラズマ発生装置において、上記誘電体の径方向の厚さが周方向に沿って不均一であるプラズマ発生装置。   The plasma generator according to any one of claims 3 to 5, wherein a radial thickness of the dielectric is non-uniform along a circumferential direction. 請求項6記載のプラズマ発生装置において、上記内側電極は帯状電極であり、上記誘電体の厚さは、上記帯状電極の幅方向の外側の厚さが最も薄いプラズマ発生装置。   7. The plasma generator according to claim 6, wherein the inner electrode is a strip electrode, and the thickness of the dielectric is the smallest on the outer side in the width direction of the strip electrode. 請求項7記載のプラズマ発生装置において、上記帯状電極の幅方向の両縁部の少なくとも一方の厚さが、上記帯状電極の中央部の厚さよりも薄いプラズマ発生装置。   8. The plasma generator according to claim 7, wherein the thickness of at least one of both edges in the width direction of the strip electrode is thinner than the thickness of the central portion of the strip electrode. 請求項7または8に記載のプラズマ発生装置において、上記帯状電極の幅方向の両縁部が、ナイフエッジ形状であるプラズマ発生装置。   9. The plasma generator according to claim 7, wherein both edges in the width direction of the belt-like electrode have a knife edge shape. 請求項1または2に記載のプラズマ発生装置において、上記一対の電極の少なくとも一方の電極は、上記放電容器の管壁内部に埋設されているプラズマ発生装置。   3. The plasma generator according to claim 1, wherein at least one of the pair of electrodes is embedded in a tube wall of the discharge vessel. 請求項1ないし10のいずれか1項記載のプラズマ発生装置を用い、上記放電容器内に放電用ガスを導入し、上記一対の電極の間にプラズマを発生させて、同プラズマを上記放電容器外へ放出するプラズマ発生方法。   A plasma generator according to any one of claims 1 to 10, wherein a discharge gas is introduced into the discharge vessel, plasma is generated between the pair of electrodes, and the plasma is discharged from the discharge vessel. Method of generating plasma to be released.
JP2017056382A 2017-03-22 2017-03-22 Plasma generator and plasma generation method Active JP6974677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017056382A JP6974677B2 (en) 2017-03-22 2017-03-22 Plasma generator and plasma generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017056382A JP6974677B2 (en) 2017-03-22 2017-03-22 Plasma generator and plasma generation method

Publications (2)

Publication Number Publication Date
JP2018160352A true JP2018160352A (en) 2018-10-11
JP6974677B2 JP6974677B2 (en) 2021-12-01

Family

ID=63795649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017056382A Active JP6974677B2 (en) 2017-03-22 2017-03-22 Plasma generator and plasma generation method

Country Status (1)

Country Link
JP (1) JP6974677B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109799A (en) * 2001-09-27 2003-04-11 Sakamoto Fujio Plasma treatment apparatus
JP2007294210A (en) * 2006-04-25 2007-11-08 Sumitomo Precision Prod Co Ltd Treatment gas discharging device and surface treatment device equipped with it
JP2008016222A (en) * 2006-07-03 2008-01-24 Toshiba Corp Airflow generator
JP2012009184A (en) * 2010-06-23 2012-01-12 E Square:Kk Plasma surface treatment equipment and electrode structure thereof
WO2012005132A1 (en) * 2010-07-07 2012-01-12 独立行政法人産業技術総合研究所 Plasma irradiation treatment device
JP2012038658A (en) * 2010-08-10 2012-02-23 Orc Mfg Co Ltd Discharge lamp
JP2014002937A (en) * 2012-06-19 2014-01-09 Air Water Inc Atmospheric pressure plasma treatment device, method for manufacturing atmospheric pressure plasma treatment device, and atmospheric pressure plasma treatment method
US20140162338A1 (en) * 2011-05-31 2014-06-12 Leibniz-Institut Fuer Plasmaforschung Und Technologie E.V. Device and method for producing a cold, homogeneous plasma under atmospheric pressure conditions
JP2015064966A (en) * 2013-09-24 2015-04-09 日本碍子株式会社 Structure and electrode structure
JP6006393B1 (en) * 2015-10-09 2016-10-12 アルファ株式会社 Plasma processing equipment

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109799A (en) * 2001-09-27 2003-04-11 Sakamoto Fujio Plasma treatment apparatus
JP2007294210A (en) * 2006-04-25 2007-11-08 Sumitomo Precision Prod Co Ltd Treatment gas discharging device and surface treatment device equipped with it
JP2008016222A (en) * 2006-07-03 2008-01-24 Toshiba Corp Airflow generator
JP2012009184A (en) * 2010-06-23 2012-01-12 E Square:Kk Plasma surface treatment equipment and electrode structure thereof
WO2012005132A1 (en) * 2010-07-07 2012-01-12 独立行政法人産業技術総合研究所 Plasma irradiation treatment device
US20130204244A1 (en) * 2010-07-07 2013-08-08 Hajime Sakakita Plasma treatment equipment
JP2012038658A (en) * 2010-08-10 2012-02-23 Orc Mfg Co Ltd Discharge lamp
US20140162338A1 (en) * 2011-05-31 2014-06-12 Leibniz-Institut Fuer Plasmaforschung Und Technologie E.V. Device and method for producing a cold, homogeneous plasma under atmospheric pressure conditions
JP2014002937A (en) * 2012-06-19 2014-01-09 Air Water Inc Atmospheric pressure plasma treatment device, method for manufacturing atmospheric pressure plasma treatment device, and atmospheric pressure plasma treatment method
JP2015064966A (en) * 2013-09-24 2015-04-09 日本碍子株式会社 Structure and electrode structure
JP6006393B1 (en) * 2015-10-09 2016-10-12 アルファ株式会社 Plasma processing equipment

Also Published As

Publication number Publication date
JP6974677B2 (en) 2021-12-01

Similar Documents

Publication Publication Date Title
KR100822583B1 (en) High pressure discharge lamp
JP5504095B2 (en) Discharge lamp
JP2018040721A5 (en)
JP2018040718A5 (en)
WO2014148325A1 (en) Fluorescent excimer lamp and fluid treatment apparatus
KR102110637B1 (en) Plasma irradiation method and plasma irradiation device
JP7014612B2 (en) Plasma generator and plasma generation method
JP2022168265A5 (en)
JP2018160352A (en) Plasma generator and plasma generating method
JP2018160354A (en) Atmospheric pressure plasma generating device
JP6974678B2 (en) Plasma processing equipment and plasma processing method
JP2018166028A (en) Discharge lamp, ozone generating device, and ozone generating method
KR102415353B1 (en) Discharge Tube For Double Ozone Generation
KR20200038574A (en) Plasma generating device having double structure of dielectric pipe
WO2018150618A1 (en) Ozone generator
KR101692218B1 (en) Dielectric barrier plasma generation device for removing volatile organic compounds and method for removing them using same
JP6623062B2 (en) Short arc type discharge lamp
JP2014078460A (en) Excimer lamp
JP5669685B2 (en) Ozone generator and method for manufacturing ozone generator
JP2016184514A (en) Discharge lamp and water treatment apparatus
JP2021103622A (en) Excimer lamp and installation method of excimer lamp in pipe
JP4261324B2 (en) Ozonizer
JP7203289B1 (en) Water treatment device and water treatment method
JP5258476B2 (en) Discharge lamp with sealing structure
JPWO2023148845A5 (en)

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20170523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170523

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210922

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210922

R150 Certificate of patent or registration of utility model

Ref document number: 6974677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150