WO2014148325A1 - Fluorescent excimer lamp and fluid treatment apparatus - Google Patents

Fluorescent excimer lamp and fluid treatment apparatus Download PDF

Info

Publication number
WO2014148325A1
WO2014148325A1 PCT/JP2014/056417 JP2014056417W WO2014148325A1 WO 2014148325 A1 WO2014148325 A1 WO 2014148325A1 JP 2014056417 W JP2014056417 W JP 2014056417W WO 2014148325 A1 WO2014148325 A1 WO 2014148325A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet light
tube
excimer lamp
discharge tube
gas
Prior art date
Application number
PCT/JP2014/056417
Other languages
French (fr)
Japanese (ja)
Inventor
賢二 谷野
典弘 千石
淳哉 朝山
菱沼 宣是
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2014148325A1 publication Critical patent/WO2014148325A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • H01J61/0732Main electrodes for high-pressure discharge lamps characterised by the construction of the electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/046Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/38Devices for influencing the colour or wavelength of the light
    • H01J61/42Devices for influencing the colour or wavelength of the light by transforming the wavelength of the light by luminescence

Definitions

  • the present invention relates to a fluorescent excimer lamp and a fluid treatment apparatus including the fluorescent excimer lamp.
  • ultraviolet light is suitably used for decomposing organic substances contained in water or sterilizing water.
  • an ultraviolet light source that emits such ultraviolet light a low-pressure mercury lamp has been used, but in recent years, a lamp using dielectric barrier discharge has been proposed.
  • Patent Document 1 discloses a fluid processing apparatus using a discharge lamp using dielectric barrier discharge as an ultraviolet light source.
  • a phosphor that converts vacuum ultraviolet light (for example, light having a wavelength of 172 nm) from the discharge lamp into ultraviolet light on the long wavelength side is provided on the outer periphery of the discharge lamp via a gap.
  • a flow path for circulating the fluid to be processed is provided so as to surround the body.
  • the discharge lamp and the phosphor are separated from each other, and at least a part of the arrangement space of the discharge lamp is opened so that the phosphor can be exchanged.
  • the present invention has been made based on the above circumstances, and an object of the present invention is to provide a fluorescent excimer lamp and a fluid processing apparatus in which ultraviolet light is radiated with high efficiency and phosphor deterioration is suppressed. There is.
  • a fluorescent excimer lamp includes a discharge tube made of a dielectric material in which a luminescent gas is sealed, and a pair of electrodes disposed so as to face each other through the luminescent gas and a dielectric material forming the discharge tube.
  • a vacuum ultraviolet light source In a fluorescent excimer lamp having a phosphor layer formed on the inner surface and disposed on the outer periphery of the vacuum ultraviolet light source via a gap, and an outer tube containing the vacuum ultraviolet light source, Both ends of the outer tube are hermetically sealed, and an inert gas is sealed in the gap in the outer tube.
  • the gas pressure of the inert gas is preferably higher than the gas pressure of the luminescent gas.
  • the discharge tube is cylindrical.
  • the pair of electrodes includes an internal electrode disposed inside the discharge tube so as to extend in a tube axis direction of the discharge tube, and a net-like or coil-shaped external electrode disposed so as to cover an outer surface of the discharge tube. It is preferable to consist of.
  • an internal lead electrically connected to the internal electrode is held at one end of the outer tube,
  • the other end of the outer tube holds an internal lead electrically connected to the external electrode,
  • the external electrode is made of a metal wire and is in contact with the outer surface of the discharge tube.
  • the fluid treatment apparatus of the present invention is characterized in that the fluorescent excimer lamp is arranged along the flow path in a flow path tube that forms a flow path through which a fluid to be treated flows.
  • the fluorescent excimer lamp of the present invention since an inert gas exists between the phosphor layer formed on the inner surface of the outer tube and the outer periphery of the vacuum ultraviolet light source, the vacuum ultraviolet light applied to the phosphor is oxygen. Therefore, a decrease in illuminance of vacuum ultraviolet light applied to the phosphor can be suppressed. Therefore, according to the fluorescent excimer lamp of the present invention, ultraviolet light can be emitted with high efficiency. Further, according to the fluorescent excimer lamp of the present invention, the phosphor layer is formed on the inner surface of the outer tube disposed on the outer periphery of the vacuum ultraviolet light source with a gap, so that the discharge plasma generated inside the vacuum ultraviolet light source is generated.
  • the phosphor Since the phosphor is not exposed, deterioration of the phosphor can be suppressed.
  • the outer tube and the vacuum ultraviolet light source are separated from each other through a gap, the phosphor is separated from the discharge tube even when the discharge tube is heated by discharge. Therefore, deterioration due to heat can also be suppressed.
  • the inert gas is discharged when the gas pressure of the inert gas sealed in the outer tube is higher than the gas pressure of the luminescent gas sealed in the discharge tube. It can suppress that it is provided to.
  • the discharge tube is cylindrical
  • the internal electrode is disposed inside the discharge tube so as to extend in the tube axis direction of the discharge tube
  • the external electrode covers the outer surface of the discharge tube.
  • an internal lead electrically connected to the internal electrode is held at one end of the outer tube, and an internal electrode electrically connected to the external electrode is held at the other end of the outer tube.
  • the lead is held and the external electrode made of a metal wire is in contact with the outer surface of the discharge tube, even if the internal lead expands when the lamp is lit, the external electrode is not formed on the outer surface of the discharge tube. Since the expansion can be allowed only by sliding contact, a change in the positional relationship between the phosphor layer and the discharge tube can be suppressed.
  • the fluorescent excimer lamp since the fluorescent excimer lamp is provided, the fluorescent excimer lamp can emit ultraviolet light with high efficiency, and the phosphor is deteriorated. Since it is suppressed, an ultraviolet light irradiation process can be performed with high efficiency with respect to a to-be-processed fluid.
  • FIG. 2 is a cross-sectional view of the fluorescent excimer lamp shown in FIG. 1 taken along line AA. It is sectional drawing for description which shows an example of a structure of the fluid processing apparatus of this invention.
  • the fluorescent excimer lamp of the present invention uses a dielectric barrier discharge. Specifically, a dielectric is interposed between a pair of electrodes to generate a discharge, whereby a luminescent gas is excited and a vacuum ultraviolet ray is excited. Light is emitted and the vacuum ultraviolet light is irradiated onto the phosphor, thereby exciting the phosphor and emitting ultraviolet light in a predetermined wavelength region.
  • FIG. 1 is a schematic view showing an example of the configuration of the fluorescent excimer lamp of the present invention
  • FIG. 2 is a cross-sectional view taken along line AA of the fluorescent excimer lamp shown in FIG.
  • This fluorescent excimer lamp 10 includes a vacuum ultraviolet light source 11 including a cylindrical discharge tube 12 and a pair of electrodes 13A and 13B, and a discharge tube 12 disposed on the outer periphery of the vacuum ultraviolet light source 11 with a gap D interposed therebetween. And a cylindrical outer tube 14 having an inner diameter larger than the outer diameter. Inside the discharge tube 12, a discharge space S in which a luminescent gas is enclosed is formed.
  • a sealing portion 12A is formed at one end (left end in FIG. 1) of the discharge tube 12, and the other end (right end in FIG. 1) of the discharge tube 12 is closed.
  • the sealing portion 12A has a foil seal structure in which, for example, a metal foil 17 made of molybdenum is embedded in an airtight manner.
  • the discharge tube 12 is made of a dielectric material that is transparent to vacuum ultraviolet light generated in the discharge tube 12.
  • a dielectric for example, synthetic quartz glass can be used.
  • a metal electrode formed by spirally winding a metal wire so as to extend along the tube axis (center axis) of the discharge tube 12.
  • an internal electrode. 13A is arranged inside the discharge tube 12.
  • Ring-shaped supporters 20 are attached to both ends of the internal electrode 13A.
  • the supporter 20 has a function of holding and fixing the internal electrode 13 ⁇ / b> A at a predetermined position in the discharge tube 12.
  • a metal material having electrical conductivity and heat resistance such as tungsten is used.
  • one end is embedded in the sealing portion 12A of the discharge tube 12 and is electrically connected to the metal foil 17, and the other end is electrically connected to the internal electrode 13A, for example, made of tungsten.
  • An internal lead 16A is provided so as to protrude from the sealing portion 12A of the discharge tube 12 and extend inward in the tube axis direction.
  • the other net-like electrode (hereinafter also referred to as "external electrode") formed by knitting metal strands in a lattice shape so as to cover the outer peripheral surface of the discharge tube 12. 13B is arranged.
  • the metal strand of the external electrode 13B is in contact with the outer surface of the discharge tube 12, that is, the metal strand is not fixed in close contact with the outer surface of the discharge tube 12 and is in sliding contact. Is retained.
  • a metal material having electrical conductivity and heat resistance such as a nickel alloy is used.
  • the external electrode 13B is provided so as to cover the entire region from the other end (tip; right end in FIG. 1) to the center of the discharge tube 12, and the internal electrode 13A is the external electrode 13B. It is provided so as to overlap with the position of the arranged area.
  • the internal electrode 13A and the external electrode 13B are arranged so as to face each other through the dielectric (discharge tube 12) and the luminescent gas.
  • a portion where the internal electrode 13A and the external electrode 13B are arranged to be opposed to each other is a light emitting unit 10X that emits vacuum ultraviolet light when a light emission gas is excited by discharge.
  • a rare gas having an action as a discharge medium for forming an excimer by dielectric barrier discharge is used.
  • xenon gas (Xe) argon gas (Ar) And krypton gas (Kr).
  • a halogen gas such as a fluorine gas (F), a chlorine gas (Cl), an iodine gas (I), or a bromine gas (Br) can be used as necessary together with a rare gas.
  • xenon gas when used as the luminescent gas, vacuum ultraviolet light with a wavelength of 172 nm is obtained, and when a mixed gas of argon gas and chlorine gas is used as the luminescent gas, vacuum ultraviolet light with a wavelength of 175 nm is obtained.
  • a mixed gas of krypton gas and iodine gas is used as the luminescent gas, vacuum ultraviolet light with a wavelength of 191 nm is obtained, and when a mixed gas of argon gas and fluorine gas is used as the luminescent gas, a wavelength of 193 nm is obtained.
  • vacuum ultraviolet light When vacuum ultraviolet light is obtained and a mixed gas of krypton gas and bromine gas is used as the luminescent gas, vacuum ultraviolet light having a wavelength of 207 nm is obtained, and a mixed gas of krypton gas and chlorine gas is used as the luminescent gas. In this case, vacuum ultraviolet light having a wavelength of 222 nm is obtained.
  • the gas pressure of the luminescent gas sealed in the discharge space S of the discharge tube 12 is preferably lower than the gas pressure of an inert gas described later, for example, 10 kPa to 45 kPa.
  • the outer tube 14 is hermetically sealed at both ends to form an airtight structure.
  • sealing portions 14A and 14B are formed at both ends of the outer tube 14, and the sealing portions 14A and 14B are foils in which, for example, metal foils 18A and 18B made of molybdenum are embedded in an airtight manner. It has a seal structure.
  • the outer tube 14 is not particularly limited as long as it has transparency to ultraviolet light emitted from the phosphor, and is formed of, for example, synthetic quartz glass.
  • An electrically connected internal lead 16C is provided so as to protrude from the sealing portion 14A of the outer tube 14 and extend inward in the tube axis direction. The internal lead 16C is electrically connected to the internal electrode 13A via the metal foil 17 in the sealing portion 12A of the discharge tube 12 and the internal lead 16A in the discharge tube 12.
  • the other end (the right end in FIG. 1) of the outer tube 14 holds an internal lead 16B made of, for example, tungsten, which is electrically connected to the external electrode 13B.
  • an internal lead 16B having one end embedded in the sealing portion 14B of the outer tube 14 and electrically connected to the metal foil 18B and the other end electrically connected to the external electrode 13B is provided on the outer tube. 14 is provided so as to protrude and extend inward in the tube axis direction from the 14 sealing portions 14B.
  • one end is embedded in the sealing portions 14 ⁇ / b> A and 14 ⁇ / b> B of the outer tube 14 and electrically connected to the metal foils 18 ⁇ / b> A and 18 ⁇ / b> B, and the other end is sealed with the outer tube 14.
  • External leads 19A and 19B made of, for example, molybdenum are provided so as to protrude from 14A and 14B and extend outward in the tube axis direction.
  • the external leads 19A and 19B are electrically connected to a power supply device (not shown).
  • the internal electrode 13A is a high voltage side electrode
  • the external electrode 13B is a low voltage side electrode.
  • the discharge tube 12 includes an internal lead 16C that connects the sealing portion 12A of the discharge tube 12 and one sealing portion 14A of the outer tube 14, an external electrode 13B that is disposed on the outer surface of the discharge tube 12, and an outer tube. 14 is supported with respect to the outer tube 14 by an internal lead 16B connecting the other sealing portion 14B.
  • a phosphor layer 15 containing a phosphor is formed over the entire region covering at least the light emitting portion 10X in which the internal electrode 13A and the external electrode 13B are arranged to face each other.
  • the phosphor layer 15 can be formed by applying a phosphor to the inner surface of the outer tube 14.
  • the phosphor is not particularly limited as long as it emits ultraviolet light in a predetermined wavelength region by receiving vacuum ultraviolet light as excitation light.
  • praseodymium-activated lanthanum phosphate neodymium-activated lanthanum phosphate
  • Neodymium activated yttrium phosphate Neodymium activated yttrium phosphate
  • praseodymium activated yttrium aluminum borate and the like are used.
  • praseodymium-activated lanthanum phosphate emits ultraviolet light in the region near the wavelength of 230 nm by excitation
  • neodymium activated lanthanum phosphate emits ultraviolet light in the region near the wavelength of 184 nm by excitation
  • the neodymium-activated yttrium phosphate emits ultraviolet light with a wavelength of around 190 nm upon excitation
  • the praseodymium-activated yttrium aluminum borate emits ultraviolet light with a wavelength of around 250 nm upon excitation.
  • the phosphor layer 15 is formed with the phosphor layer 15 in order to obtain a high adhesion to the outer tube 14.
  • a binder may be interposed between the outer tube 14 and the outer tube 14. Examples of the binder include soft glass powder and hard glass powder.
  • the layer thickness of the phosphor layer 15 is, for example, 10 to 40 ⁇ m.
  • the gap D in the outer tube 14 is formed by the space between the inner surface of the outer tube 14 or the phosphor layer 15 and the outer periphery of the vacuum ultraviolet light source 11, and the gap D is filled with an inert gas.
  • the size of the gap D for example, the distance in the tube radial direction between the phosphor layer 15 of the outer tube 14 and the outer periphery of the vacuum ultraviolet light source 11 is preferably, for example, 0 to 2 mm.
  • Examples of the inert gas sealed in the gap D include nitrogen gas (N 2 ) and argon gas (Ar).
  • the gas pressure of the inert gas sealed in the gap D in the outer tube 14 is preferably higher than the gas pressure of the luminescent gas sealed in the discharge space S of the discharge tube 12, specifically 50 kPa. -100 kPa.
  • reference numeral 22 denotes an exhaust pipe remaining portion formed in the outer pipe 14.
  • the discharge tube 12 has a total length of 170 mm, an outer diameter of 16 mm, and an inner diameter of 14 mm.
  • the internal electrode 13A has a total length of 100 mm, a metal wire diameter of 0.5 mm, an outer diameter (coil diameter) of 2 mm, and a coil pitch.
  • the external electrode 13B has a total length of 100 mm and a metal strand diameter of 0.2 mm.
  • the outer tube 14 has a total length of 300 mm, an outer diameter of 20 mm, and an inner diameter of 18 mm. The total length is 200 mm and the layer thickness is 0.02 mm.
  • the discharge space S of the discharge tube 12 is filled with xenon gas having a gas pressure of 15 kPa, and the gap D in the outer tube 14 is filled with nitrogen gas having a gas pressure of 80 kPa.
  • a high frequency high voltage is applied between the internal electrode 13A and the external electrode 13B under the conditions of a rated frequency of 70 kHz and a rated voltage of 3000 kVp-p.
  • the discharge tube 12 functions as a dielectric and discharge occurs.
  • the luminescent gas in the discharge space S is excited, and when the luminescent gas is, for example, xenon gas, vacuum ultraviolet light having a wavelength of 172 nm is emitted.
  • vacuum ultraviolet light is irradiated onto the phosphor layer 15, the phosphor constituting the phosphor layer 15 is excited and converted into light according to the characteristics of the phosphor, and ultraviolet light in a predetermined wavelength region is converted into the outer tube. 14 is emitted to the outside.
  • the phosphor layer 15 is formed on the inner surface of the outer tube 14 disposed on the outer periphery of the vacuum ultraviolet light source 11 via the gap D, and both ends of the outer tube 14 are arranged.
  • the sealing portions 14 ⁇ / b> A and 14 ⁇ / b> B are hermetically sealed by the sealing portions 14 ⁇ / b> A and 14 ⁇ / b> B, and an inert gas is sealed in the gap D in the outer tube 14. Therefore, since an inert gas exists between the phosphor layer 15 formed on the inner surface of the outer tube 14 and the outer periphery of the vacuum ultraviolet light source 11, the vacuum ultraviolet light applied to the phosphor is absorbed by oxygen. Therefore, it is possible to suppress a decrease in illuminance of the vacuum ultraviolet light applied to the phosphor.
  • the fluorescent excimer lamp 10 can emit ultraviolet light with high efficiency. Further, since the phosphor layer 15 is formed on the inner surface of the outer tube 14 disposed on the outer periphery of the vacuum ultraviolet light source 11 via the gap D, the phosphor is exposed to the discharge plasma generated inside the vacuum ultraviolet light source 11. Therefore, deterioration of the phosphor can be suppressed. In addition, since the outer tube 14 and the vacuum ultraviolet light source 11 are separated from each other through the gap D, the phosphor is separated from the discharge tube 12 even when the discharge tube 12 is heated by the discharge. Deterioration can also be suppressed.
  • the inert gas sealed in the outer tube 14 has a higher gas pressure than the luminescent gas sealed in the discharge tube 12. Can be suppressed from being discharged.
  • the reason why this effect is obtained is considered as follows. That is, in the fluorescent excimer lamp 10, the external electrode 13 ⁇ / b> B is heated when the lamp is lit, and the metal strand expands in the radial direction of the discharge tube 12, and a gap is formed between the external electrode 13 ⁇ / b> B and the outer surface of the discharge tube 12. It is conceivable that an inert gas enters the gap.
  • the excimer discharge is easier to discharge when the gas pressure is lower, there is a problem that the inert gas is discharged when the gas pressure of the inert gas is lower than the gas pressure of the luminescent gas.
  • the fluorescent excimer lamp 10 configured as described above, since the gas pressure of the inert gas is higher than the gas pressure of the luminescent gas, the luminescent gas is reliably supplied to the discharge, and the inert gas is supplied to the discharge. This can be suppressed.
  • the discharge tube 12 is cylindrical, the internal electrode 13A is disposed inside the discharge tube 12 so as to extend in the tube axis direction of the discharge tube 12, and the external electrode 13B is discharged.
  • the light distribution in the radial cross section of the discharge tube 12 becomes uniform, and the vacuum ultraviolet light irradiated to the phosphor becomes uniform.
  • the internal electrode 13A is connected to the internal lead 16C, one end of which is embedded in the sealing portion 14A of the outer tube 14, and the metal foil 17 in the sealing portion 12A of the discharge tube 12.
  • One end of the external electrode 13B is connected to an internal lead 16B embedded in the sealing portion 14B of the outer tube 14.
  • the entire discharge tube 12 is moved toward the other sealing portion 14B.
  • the internal lead 16B expands toward the one sealing portion 14A with the other sealing portion 14B of the outer tube 14 as a base point.
  • the external electrode 13B is fixed to the outer surface of the discharge tube 12
  • the internal leads 16C and 16B are pressed by expansion.
  • the discharge tube 12 is inclined to contact the outer tube 14, or the internal lead is deformed.
  • the external electrode 13B is in contact with the outer surface of the discharge tube 12, so that even if the internal lead expands when the lamp is lit, for example, on the outer surface of the discharge tube 12.
  • the external electrode 13B can be allowed to expand only by sliding contact, and the change in the positional relationship between the phosphor layer 15 and the discharge tube 12 can be suppressed.
  • the fluorescent excimer lamp of the present invention is, for example, an ultraviolet light source of a water treatment device for performing a decomposition treatment of organic matter contained in water or a water sterilization treatment, an air treatment device for performing an air sterilization treatment, for example, It can be suitably used as an ultraviolet light source for various devices such as a liquid crystal substrate light cleaning device and a photocuring device.
  • the external electrode is not limited to a net-like shape, and may be a coil-like shape in which a metal wire is formed by spirally winding the outer surface of a discharge tube.
  • FIG. 3 is an explanatory cross-sectional view showing an example of the configuration of the fluid treatment apparatus of the present invention.
  • a fluorescent excimer lamp 10 used as an ultraviolet light source of the fluid processing apparatus 100 has the same configuration as the fluorescent excimer lamp 10 shown in FIG.
  • the wavelength of ultraviolet light that is required to be radiated in the fluorescent excimer lamp 10 varies depending on the use application of the fluid treatment apparatus 100, but for example, the fluid treatment apparatus 100 is used to decompose organic substances contained in water.
  • the fluorescent excimer lamp 10 preferably emits ultraviolet light having a wavelength of 180 to 200 nm having a central wavelength at 190 nm. Further, when used for water sterilization, it is preferable to emit ultraviolet light having a wavelength of 240 to 280 nm having a central wavelength at a wavelength of 250 nm.
  • xenon gas is enclosed as a luminescent gas, and neodymium is attached as a phosphor constituting the phosphor layer 15. It is preferable to use activated lanthanum phosphate or neodymium activated yttrium phosphate.
  • xenon gas is enclosed as a luminescent gas, and as the phosphor constituting the phosphor layer 15, an active yttrium aluminum borate or praseodymium is added. It is preferable to use activated lanthanum phosphate.
  • the fluid processing apparatus 100 is a substantially cylindrical channel tube 101 that forms a channel R through which a fluid to be processed such as ultrapure water flows, and an approximately provided portion that closes the openings at both ends of the channel tube 101.
  • An annular lid member 102, 102 is provided, and the overall shape thereof is a substantially cylindrical shape.
  • an ultraviolet light source composed of the fluorescent excimer lamp 10 flows along the channel R, specifically, the tube axis (center axis) of the discharge tube 12 and the outer tube 14. It arrange
  • the channel tube 101 is made of, for example, stainless steel.
  • an inflow port 101A for allowing the fluid to be processed to flow into the flow channel R, and a fluid to be processed that has been irradiated with ultraviolet light in the flow channel R are allowed to flow out from the flow channel tube 101.
  • a flow pipe (not shown) for flowing the fluid to be processed through the flow path R is connected to the flow inlet 101A and the flow outlet 101B.
  • the inflow port 101A is provided above the outflow port 101B.
  • the lid member 102 is made of, for example, polytetrafluoroethylene.
  • the lid member 102 has a through hole 102H having a hole diameter that matches the outer diameter of the fluorescent excimer lamp 10 at the center.
  • the lid member 102 includes a flange portion 102a that protrudes radially outward, an inner step portion 102b that is formed on the inner peripheral edge of the through hole 102H, and an outer step portion 102c that is formed on the outer peripheral edge of the cover member 102. Is formed.
  • the fluorescent excimer lamp 10 has two O-rings 103 provided at both ends between the outer peripheral surfaces of both ends of the fluorescent excimer lamp 10 and the flat surfaces of the inner step portions 102b, 102b of the lid members 102, 102. It is inserted into the through holes 102H and 102H through 103, and is held and fixed to the lid members 102 and 102 in a liquid-tight manner.
  • the lid members 102, 102 have the flange portions 102 a, 102 a of the lid members 102, 102 locked to the end faces at both ends of the flow channel tube 101, respectively, and the outer step portions 102 c, 102 c of the lid members 102, 102 are flat.
  • the internal space (flow path R) of the flow path pipe 101 has a liquid-tight structure.
  • the flow rate of the fluid to be processed flowing through the flow path R varies depending on the use application of the fluid processing apparatus 100, but is 1 to 5 l / min, for example, and the temperature of the fluid to be processed is, for example, 0 to 30 ° C.
  • the channel tube 101 has an overall length of 250 mm, an outer diameter of 75 mm, and an inner diameter of 65 mm.
  • the lid member 102 has an outer diameter of the flange portion 102a of 90 mm and a hole diameter of the through hole 102H of 20 mm.
  • the fluorescent excimer lamp 10 has a total length of 300 mm and an outer diameter of 20 mm.
  • the fluorescent excimer lamp 10 is turned on and water to be processed is supplied to the flow path R of the flow path pipe 101 from the inflow port 101A.
  • ultraviolet light in a predetermined wavelength region from the fluorescent excimer lamp 10 is irradiated from the light emitting unit 10 ⁇ / b> X to the fluid to be processed, and ultraviolet light irradiation processing is performed.
  • the fluid to be processed is discharged from the outlet 101B to the outside of the channel tube 101.
  • the fluorescent excimer lamp 10 of the present invention is provided so that the fluorescent excimer lamp 10 can emit ultraviolet light with high efficiency. Since the deterioration of the phosphor is suppressed, the ultraviolet light irradiation process can be executed with high efficiency on the fluid to be processed.
  • the ultraviolet light was irradiated by the fluorescent excimer lamp (A), and the radiation intensity of the ultraviolet light having a wavelength of 230 nm was measured by an ultraviolet light measuring device disposed at a position facing the light emitting portion (10X). Further, the state of the phosphor layer (15) after 1000 hours of lighting was observed.
  • the radiant intensity of the ultraviolet light irradiated from the fluorescent excimer lamp (A) of Experimental Example 1 was 1.5 times the radiant intensity of the ultraviolet light irradiated from the fluorescent excimer lamp (B) of Comparative Experimental Example 1. It was. Further, the phosphor layer in the fluorescent excimer lamp (A) of Experimental Example 1 was less deteriorated than the fluorescent material layer of the fluorescent excimer lamp (C) of Comparative Experimental Example 2.
  • the fluorescent excimer lamp (A) according to the present invention there is no gap between the phosphor layer (15) disposed on the inner surface of the outer tube (14) and the outer periphery of the vacuum ultraviolet light source (11). Since nitrogen gas, which is an active gas, is present, the vacuum ultraviolet light emitted from the vacuum ultraviolet light source (11) does not absorb oxygen in the atmosphere, and therefore the illuminance reduction of the vacuum ultraviolet light applied to the phosphor is reduced. As a result, it was confirmed that ultraviolet light can be emitted with high efficiency. It was also confirmed that the phosphor could be prevented from being deteriorated because the phosphor was not exposed to the discharge plasma generated inside the vacuum ultraviolet light source (11).

Abstract

The present invention provides a fluorescent excimer lamp and a fluid treatment apparatus, the fluorescent excimer lamp radiating ultraviolet light at a high efficiency and suppressing the deterioration of a fluorescent body. A fluorescent excimer lamp (10) has a vacuum ultraviolet light source (11) and an outside tube (14). The vacuum ultraviolet light source (11) includes a discharge tube (12) and a pair of electrodes (13A, 13B). The discharge tube (12) is made of a dielectric body enclosing a light-emitting gas. The electrodes (13A, 13B) are disposed opposite each other across the light-emitting gas and the dielectric body forming the discharge tube (12). The outside tube (14) has a fluorescent body layer (15) formed on an inner surface, is disposed on the outer circumference of the vacuum ultraviolet light source (11) across a void, and houses the vacuum ultraviolet light source (11). The fluorescent excimer lamp (10) is characterized in that both ends of the outside tube (14) are hermetically sealed, and an inert gas is enclosed in the void (D) in the outside tube (14).

Description

蛍光エキシマランプおよび流体処理装置Fluorescent excimer lamp and fluid processing apparatus
 本発明は、蛍光エキシマランプおよびこの蛍光エキシマランプを備えた流体処理装置に関する。 The present invention relates to a fluorescent excimer lamp and a fluid treatment apparatus including the fluorescent excimer lamp.
 例えば水中に含まれる有機物の分解処理あるいは水の殺菌処理などに紫外光が好適に利用されている。このような紫外光を放射する紫外光源としては、低圧水銀ランプが使用されていたが、近年においては、誘電体バリア放電を利用したランプが提案されている。 For example, ultraviolet light is suitably used for decomposing organic substances contained in water or sterilizing water. As an ultraviolet light source that emits such ultraviolet light, a low-pressure mercury lamp has been used, but in recent years, a lamp using dielectric barrier discharge has been proposed.
 例えば特許文献1には、紫外光源として誘電体バリア放電を利用した放電ランプを用いる流体の処理装置が開示されている。この処理装置においては、放電ランプの外周に間隙を介して、放電ランプからの真空紫外光(例えば波長172nmの光)を長波長側の紫外光に変換する蛍光体が設けられており、この蛍光体を囲うように、被処理流体を流通させる流路が設けられている。また、この処理装置においては、蛍光体を交換可能とするため、放電ランプと蛍光体とが別体とされ、かつ、放電ランプの配置空間の少なくとも一部が開放されている。 For example, Patent Document 1 discloses a fluid processing apparatus using a discharge lamp using dielectric barrier discharge as an ultraviolet light source. In this processing apparatus, a phosphor that converts vacuum ultraviolet light (for example, light having a wavelength of 172 nm) from the discharge lamp into ultraviolet light on the long wavelength side is provided on the outer periphery of the discharge lamp via a gap. A flow path for circulating the fluid to be processed is provided so as to surround the body. In this processing apparatus, the discharge lamp and the phosphor are separated from each other, and at least a part of the arrangement space of the discharge lamp is opened so that the phosphor can be exchanged.
 このような処理装置においては、放電ランプと蛍光体との間に大気が存在するため、放電ランプからの真空紫外光が大気中の酸素に吸収される。その結果、蛍光体に照射される真空紫外光の照度が低下し、蛍光体から高い効率で紫外光を放射することができないという問題がある。 In such a processing apparatus, since the atmosphere exists between the discharge lamp and the phosphor, vacuum ultraviolet light from the discharge lamp is absorbed by oxygen in the atmosphere. As a result, there is a problem that the illuminance of vacuum ultraviolet light applied to the phosphor is lowered, and ultraviolet light cannot be emitted from the phosphor with high efficiency.
 一方、蛍光体に照射される真空紫外光が酸素に吸収されることを抑制するため、放電ランプを形成する放電管の内面に蛍光体を塗布した放電ランプも知られている(例えば特許文献2参照)。しかしながら、この種のランプは、蛍光体が放電プラズマに曝されるので、蛍光体が劣化しやすいという問題がある。 On the other hand, there is also known a discharge lamp in which a phosphor is coated on the inner surface of a discharge tube forming a discharge lamp in order to suppress absorption of oxygen by vacuum ultraviolet light applied to the phosphor (for example, Patent Document 2). reference). However, this type of lamp has a problem that the phosphor is easily deteriorated because the phosphor is exposed to the discharge plasma.
特表2011-522697号公報Special table 2011-522697 gazette 特開2011-175823号公報JP 2011-175823 A
 本発明は、以上のような事情に基づいてなされたものであって、その目的は、高い効率で紫外光が放射され、蛍光体の劣化が抑制される蛍光エキシマランプおよび流体処理装置を提供することにある。 The present invention has been made based on the above circumstances, and an object of the present invention is to provide a fluorescent excimer lamp and a fluid processing apparatus in which ultraviolet light is radiated with high efficiency and phosphor deterioration is suppressed. There is.
 本発明の蛍光エキシマランプは、発光ガスが封入された誘電体からなる放電管、および、前記発光ガスと前記放電管を形成する誘電体とを介して対向配置された一対の電極を備えてなる真空紫外光源と、
 内面に蛍光体層が形成され、前記真空紫外光源の外周に間隙を介して配置された、当該真空紫外光源を収容する外側管とを有する蛍光エキシマランプにおいて、
 前記外側管の両端が気密に封止され、当該外側管内の前記間隙に不活性ガスが封入されていることを特徴とする。
A fluorescent excimer lamp according to the present invention includes a discharge tube made of a dielectric material in which a luminescent gas is sealed, and a pair of electrodes disposed so as to face each other through the luminescent gas and a dielectric material forming the discharge tube. A vacuum ultraviolet light source,
In a fluorescent excimer lamp having a phosphor layer formed on the inner surface and disposed on the outer periphery of the vacuum ultraviolet light source via a gap, and an outer tube containing the vacuum ultraviolet light source,
Both ends of the outer tube are hermetically sealed, and an inert gas is sealed in the gap in the outer tube.
 本発明の蛍光エキシマランプにおいては、前記不活性ガスのガス圧が前記発光ガスのガス圧よりも高いことが好ましい。 In the fluorescent excimer lamp of the present invention, the gas pressure of the inert gas is preferably higher than the gas pressure of the luminescent gas.
 本発明の蛍光エキシマランプにおいては、前記放電管が円筒状であり、
 前記一対の電極は、前記放電管の内部に当該放電管の管軸方向に延びるように配置された内部電極と、前記放電管の外表面を覆うように配置された網状またはコイル状の外部電極とからなることが好ましい。
In the fluorescent excimer lamp of the present invention, the discharge tube is cylindrical.
The pair of electrodes includes an internal electrode disposed inside the discharge tube so as to extend in a tube axis direction of the discharge tube, and a net-like or coil-shaped external electrode disposed so as to cover an outer surface of the discharge tube. It is preferable to consist of.
 本発明の蛍光エキシマランプにおいては、前記外側管の一端には、前記内部電極と電気的に接続された内部リードが保持され、
 前記外側管の他端には、前記外部電極と電気的に接続された内部リードが保持され、
 前記外部電極が金属素線よりなり、前記放電管の外表面に当接されていることが好ましい。
In the fluorescent excimer lamp of the present invention, an internal lead electrically connected to the internal electrode is held at one end of the outer tube,
The other end of the outer tube holds an internal lead electrically connected to the external electrode,
It is preferable that the external electrode is made of a metal wire and is in contact with the outer surface of the discharge tube.
 本発明の流体処理装置は、被処理流体が流通する流路を形成する流路管内に、上記の蛍光エキシマランプが前記流路に沿って配置されていることを特徴とする。 The fluid treatment apparatus of the present invention is characterized in that the fluorescent excimer lamp is arranged along the flow path in a flow path tube that forms a flow path through which a fluid to be treated flows.
 本発明の蛍光エキシマランプにおいては、外側管の内面に形成された蛍光体層と真空紫外光源の外周との間には不活性ガスが存在するので、蛍光体に照射される真空紫外光が酸素に吸収されることがないため、蛍光体に照射される真空紫外光の照度低下を抑制することができる。従って、本発明の蛍光エキシマランプによれば、高い効率で紫外光を放射することができる。また、本発明の蛍光エキシマランプによれば、真空紫外光源の外周に間隙を介して配置された外側管の内面に蛍光体層が形成されているので、真空紫外光源の内部で生じる放電プラズマに蛍光体が曝されることがないため、蛍光体の劣化を抑制することができる。加えて、本発明の蛍光エキシマランプにおいては、外側管と真空紫外光源とが間隙を介して離間しているので、放電管が放電によって加熱されても、蛍光体は放電管から離隔しているため、熱による劣化も抑制することができる。 In the fluorescent excimer lamp of the present invention, since an inert gas exists between the phosphor layer formed on the inner surface of the outer tube and the outer periphery of the vacuum ultraviolet light source, the vacuum ultraviolet light applied to the phosphor is oxygen. Therefore, a decrease in illuminance of vacuum ultraviolet light applied to the phosphor can be suppressed. Therefore, according to the fluorescent excimer lamp of the present invention, ultraviolet light can be emitted with high efficiency. Further, according to the fluorescent excimer lamp of the present invention, the phosphor layer is formed on the inner surface of the outer tube disposed on the outer periphery of the vacuum ultraviolet light source with a gap, so that the discharge plasma generated inside the vacuum ultraviolet light source is generated. Since the phosphor is not exposed, deterioration of the phosphor can be suppressed. In addition, in the fluorescent excimer lamp of the present invention, since the outer tube and the vacuum ultraviolet light source are separated from each other through a gap, the phosphor is separated from the discharge tube even when the discharge tube is heated by discharge. Therefore, deterioration due to heat can also be suppressed.
 また、本発明の蛍光エキシマランプによれば、外側管内に封入される不活性ガスのガス圧が、放電管内に封入される発光ガスのガス圧より高い構成である場合に、不活性ガスが放電に供されることを抑制することができる。 Further, according to the fluorescent excimer lamp of the present invention, the inert gas is discharged when the gas pressure of the inert gas sealed in the outer tube is higher than the gas pressure of the luminescent gas sealed in the discharge tube. It can suppress that it is provided to.
 さらに、本発明の蛍光エキシマランプにおいては、放電管が円筒状であり、内部電極が放電管内部に当該放電管の管軸方向に延びるように配置され、外部電極が放電管の外表面を覆うように配置された網状またはコイル状の構成である場合に、放電管の径方向断面における配光分布が均一となり、蛍光体に照射される真空紫外光が均一なものとなる。 Furthermore, in the fluorescent excimer lamp of the present invention, the discharge tube is cylindrical, the internal electrode is disposed inside the discharge tube so as to extend in the tube axis direction of the discharge tube, and the external electrode covers the outer surface of the discharge tube. In the case of a net-like or coil-like configuration arranged in this way, the light distribution in the radial cross section of the discharge tube becomes uniform, and the vacuum ultraviolet light applied to the phosphor becomes uniform.
 さらにまた、上記構成の蛍光エキシマランプにおいては、外側管の一端に、内部電極と電気的に接続された内部リードが保持され、外側管の他端に、外部電極と電気的に接続された内部リードが保持され、金属素線よりなる外部電極が放電管の外表面に当接されている構成である場合に、ランプ点灯時に内部リードが膨張しても、放電管の外表面において外部電極が摺接するのみで、その膨張を許容することができため、蛍光体層と放電管との位置関係の変化を抑制することができる。 Furthermore, in the fluorescent excimer lamp having the above structure, an internal lead electrically connected to the internal electrode is held at one end of the outer tube, and an internal electrode electrically connected to the external electrode is held at the other end of the outer tube. When the lead is held and the external electrode made of a metal wire is in contact with the outer surface of the discharge tube, even if the internal lead expands when the lamp is lit, the external electrode is not formed on the outer surface of the discharge tube. Since the expansion can be allowed only by sliding contact, a change in the positional relationship between the phosphor layer and the discharge tube can be suppressed.
 本発明の流体処理装置によれば、上記蛍光エキシマランプが備えられていることにより、当該蛍光エキシマランプが、高い効率で紫外光を放射することができるものであり、また、蛍光体の劣化が抑制されたものであるため、被処理流体に対して高い効率で紫外光照射処理を実行することができる。 According to the fluid treatment apparatus of the present invention, since the fluorescent excimer lamp is provided, the fluorescent excimer lamp can emit ultraviolet light with high efficiency, and the phosphor is deteriorated. Since it is suppressed, an ultraviolet light irradiation process can be performed with high efficiency with respect to a to-be-processed fluid.
本発明の蛍光エキシマランプの構成の一例を示す概略図である。It is the schematic which shows an example of a structure of the fluorescence excimer lamp of this invention. 図1に示す蛍光エキシマランプのA-A線断面図である。FIG. 2 is a cross-sectional view of the fluorescent excimer lamp shown in FIG. 1 taken along line AA. 本発明の流体処理装置の構成の一例を示す説明用断面図である。It is sectional drawing for description which shows an example of a structure of the fluid processing apparatus of this invention.
 以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
〔蛍光エキシマランプ〕
 本発明の蛍光エキシマランプは、誘電体バリア放電を利用したものであり、具体的には、一対の電極間に誘電体を介在させて放電を生起させることにより、発光ガスが励起されて真空紫外光が放射され、この真空紫外光が蛍光体に照射されることにより、蛍光体が励起され、所定の波長領域の紫外光が放射されるものである。
[Fluorescent excimer lamp]
The fluorescent excimer lamp of the present invention uses a dielectric barrier discharge. Specifically, a dielectric is interposed between a pair of electrodes to generate a discharge, whereby a luminescent gas is excited and a vacuum ultraviolet ray is excited. Light is emitted and the vacuum ultraviolet light is irradiated onto the phosphor, thereby exciting the phosphor and emitting ultraviolet light in a predetermined wavelength region.
 図1は、本発明の蛍光エキシマランプの構成の一例を示す概略図であり、図2は、図1に示す蛍光エキシマランプのA-A線断面図である。
 この蛍光エキシマランプ10は、円筒状の放電管12および一対の電極13A,13Bを備えてなる真空紫外光源11と、真空紫外光源11の外周に間隙Dを介して配置された、放電管12の外径より大きい内径を有する円筒状の外側管14とを有する。放電管12の内部には、発光ガスが封入される放電空間Sが形成されている。
FIG. 1 is a schematic view showing an example of the configuration of the fluorescent excimer lamp of the present invention, and FIG. 2 is a cross-sectional view taken along line AA of the fluorescent excimer lamp shown in FIG.
This fluorescent excimer lamp 10 includes a vacuum ultraviolet light source 11 including a cylindrical discharge tube 12 and a pair of electrodes 13A and 13B, and a discharge tube 12 disposed on the outer periphery of the vacuum ultraviolet light source 11 with a gap D interposed therebetween. And a cylindrical outer tube 14 having an inner diameter larger than the outer diameter. Inside the discharge tube 12, a discharge space S in which a luminescent gas is enclosed is formed.
 放電管12においては、気密構造が形成されている。放電管12の一端(図1における左端)には封止部12Aが形成されており、放電管12の他端(図1における右端)は閉塞されている。封止部12Aは例えばモリブデンよりなる金属箔17が気密に埋設されてなる箔シール構造を有している。 In the discharge tube 12, an airtight structure is formed. A sealing portion 12A is formed at one end (left end in FIG. 1) of the discharge tube 12, and the other end (right end in FIG. 1) of the discharge tube 12 is closed. The sealing portion 12A has a foil seal structure in which, for example, a metal foil 17 made of molybdenum is embedded in an airtight manner.
 放電管12は、当該放電管12内において発生する真空紫外光に対して透過性を有する誘電体よりなるものである。このような誘電体としては、例えば合成石英ガラスなどを用いることができる。 The discharge tube 12 is made of a dielectric material that is transparent to vacuum ultraviolet light generated in the discharge tube 12. As such a dielectric, for example, synthetic quartz glass can be used.
 放電管12の内部には、放電管12の管軸(中心軸)に沿って延びるように、金属素線が螺旋状に巻回されて形成されてなるコイル状の一方の電極(以下、「内部電極」ともいう。)13Aが配置されている。
 内部電極13Aの両端には、リング状のサポーター20が取り付けられている。このサポーター20は、内部電極13Aを放電管12内の所期の位置に保持固定する機能を有する。
 内部電極13Aの金属素線としては、例えばタングステンなどの電気伝導性および耐熱性を有する金属材料が用いられる。
Inside the discharge tube 12, one coiled electrode (hereinafter referred to as “a metal electrode” formed by spirally winding a metal wire so as to extend along the tube axis (center axis) of the discharge tube 12. Also referred to as “internal electrode.”) 13A is arranged.
Ring-shaped supporters 20 are attached to both ends of the internal electrode 13A. The supporter 20 has a function of holding and fixing the internal electrode 13 </ b> A at a predetermined position in the discharge tube 12.
As the metal strand of the internal electrode 13A, for example, a metal material having electrical conductivity and heat resistance such as tungsten is used.
 放電管12内には、一端が放電管12の封止部12A内に埋設されて金属箔17と電気的に接続され、他端が内部電極13Aと電気的に接続された、例えばタングステンよりなる内部リード16Aが、放電管12の封止部12Aから管軸方向内方に突出して伸びるように設けられている。 In the discharge tube 12, one end is embedded in the sealing portion 12A of the discharge tube 12 and is electrically connected to the metal foil 17, and the other end is electrically connected to the internal electrode 13A, for example, made of tungsten. An internal lead 16A is provided so as to protrude from the sealing portion 12A of the discharge tube 12 and extend inward in the tube axis direction.
 放電管12の外表面には、放電管12の外周面を覆うように、金属素線が格子状に編まれて形成されてなる網状の他方の電極(以下、「外部電極」ともいう。)13Bが配置されている。この外部電極13Bの金属素線は、放電管12の外表面に当接された状態、すなわち金属素線が放電管12の外表面に密着して固定されておらず、摺接された状態で保持されている。
 外部電極13Bの金属素線としては、例えばニッケル合金などの電気伝導性および耐熱性を有する金属材料が用いられる。
On the outer surface of the discharge tube 12, the other net-like electrode (hereinafter also referred to as "external electrode") formed by knitting metal strands in a lattice shape so as to cover the outer peripheral surface of the discharge tube 12. 13B is arranged. The metal strand of the external electrode 13B is in contact with the outer surface of the discharge tube 12, that is, the metal strand is not fixed in close contact with the outer surface of the discharge tube 12 and is in sliding contact. Is retained.
As the metal strand of the external electrode 13B, a metal material having electrical conductivity and heat resistance such as a nickel alloy is used.
 真空紫外光源11においては、外部電極13Bは、放電管12の他端(先端;図1における右端)から中央部までの領域全域を覆うように設けられており、内部電極13Aは外部電極13Bが配置された領域の位置と重複するように設けられている。これにより、内部電極13Aと外部電極13Bとが誘電体(放電管12)および発光ガスを介して互いに対向するよう配置されている。
 内部電極13Aと外部電極13Bとが対向配置された部分が、放電によって発光ガスが励起されて真空紫外光を放射する発光部10Xとされる。
In the vacuum ultraviolet light source 11, the external electrode 13B is provided so as to cover the entire region from the other end (tip; right end in FIG. 1) to the center of the discharge tube 12, and the internal electrode 13A is the external electrode 13B. It is provided so as to overlap with the position of the arranged area. Thus, the internal electrode 13A and the external electrode 13B are arranged so as to face each other through the dielectric (discharge tube 12) and the luminescent gas.
A portion where the internal electrode 13A and the external electrode 13B are arranged to be opposed to each other is a light emitting unit 10X that emits vacuum ultraviolet light when a light emission gas is excited by discharge.
 放電管12の放電空間Sに封入される発光ガスは、誘電体バリア放電によってエキシマを形成する放電媒体としての作用を有する希ガスが用いられ、例えば、キセノンガス(Xe)、アルゴンガス(Ar)、クリプトンガス(Kr)などが挙げられる。また、発光ガスは、希ガスと共に必要に応じて、フッ素ガス(F)、塩素ガス(Cl)、ヨウ素ガス(I)、臭素ガス(Br)などのハロゲンガスを用いることもできる。
 例えば、発光ガスとしてキセノンガスを用いた場合には波長172nmの真空紫外光が得られ、発光ガスとしてアルゴンガスと塩素ガスとの混合ガスを用いた場合には波長175nmの真空紫外光が得られ、発光ガスとしてクリプトンガスとヨウ素ガスとの混合ガスを用いた場合には波長191nmの真空紫外光が得られ、発光ガスとしてアルゴンガスとフッ素ガスとの混合ガスを用いた場合には波長193nmの真空紫外光が得られ、発光ガスとしてクリプトンガスと臭素ガスとの混合ガスを用いた場合には波長207nmの真空紫外光が得られ、発光ガスとしてクリプトンガスと塩素ガスとの混合ガスを用いた場合には波長222nmの真空紫外光が得られる。
As the luminescent gas sealed in the discharge space S of the discharge tube 12, a rare gas having an action as a discharge medium for forming an excimer by dielectric barrier discharge is used. For example, xenon gas (Xe), argon gas (Ar) And krypton gas (Kr). Further, as the luminescent gas, a halogen gas such as a fluorine gas (F), a chlorine gas (Cl), an iodine gas (I), or a bromine gas (Br) can be used as necessary together with a rare gas.
For example, when xenon gas is used as the luminescent gas, vacuum ultraviolet light with a wavelength of 172 nm is obtained, and when a mixed gas of argon gas and chlorine gas is used as the luminescent gas, vacuum ultraviolet light with a wavelength of 175 nm is obtained. When a mixed gas of krypton gas and iodine gas is used as the luminescent gas, vacuum ultraviolet light with a wavelength of 191 nm is obtained, and when a mixed gas of argon gas and fluorine gas is used as the luminescent gas, a wavelength of 193 nm is obtained. When vacuum ultraviolet light is obtained and a mixed gas of krypton gas and bromine gas is used as the luminescent gas, vacuum ultraviolet light having a wavelength of 207 nm is obtained, and a mixed gas of krypton gas and chlorine gas is used as the luminescent gas. In this case, vacuum ultraviolet light having a wavelength of 222 nm is obtained.
 放電管12の放電空間Sに封入される発光ガスのガス圧は、後述する不活性ガスのガス圧より低圧であることが好ましく、例えば10kPa~45kPaとされる。 The gas pressure of the luminescent gas sealed in the discharge space S of the discharge tube 12 is preferably lower than the gas pressure of an inert gas described later, for example, 10 kPa to 45 kPa.
 外側管14は、両端が気密に封止されて気密構造が形成されている。具体的には、外側管14の両端には封止部14A,14Bが形成されており、この封止部14A,14Bは、例えばモリブデンよりなる金属箔18A,18Bが気密に埋設されてなる箔シール構造を有している。 The outer tube 14 is hermetically sealed at both ends to form an airtight structure. Specifically, sealing portions 14A and 14B are formed at both ends of the outer tube 14, and the sealing portions 14A and 14B are foils in which, for example, metal foils 18A and 18B made of molybdenum are embedded in an airtight manner. It has a seal structure.
 外側管14は、蛍光体から放射される紫外光に対して透過性を有するものであれば特に限定されず、例えば合成石英ガラスなどにより形成される。 The outer tube 14 is not particularly limited as long as it has transparency to ultraviolet light emitted from the phosphor, and is formed of, for example, synthetic quartz glass.
 外側管14の一端(図1における左端)には、内部電極13Aと電気的に接続された、例えばモリブデンよりなる内部リード16Cが保持されている。具体的には、一端が外側管14の封止部14A内に埋設されて金属箔18Aと電気的に接続され、他端が放電管12の封止部12A内に埋設されて金属箔17と電気的に接続された内部リード16Cが、外側管14の封止部14Aから管軸方向内方に突出して伸びるように設けられている。この内部リード16Cは、放電管12の封止部12A内の金属箔17および放電管12内の内部リード16Aを介して、内部電極13Aと電気的に接続されている。
 外側管14の他端(図1における右端)には、外部電極13Bと電気的に接続された、例えばタングステンよりなる内部リード16Bが保持されている。具体的には、一端が外側管14の封止部14B内に埋設されて金属箔18Bと電気的に接続され、他端が外部電極13Bと電気的に接続された内部リード16Bが、外側管14の封止部14Bから管軸方向内方に突出して伸びるように設けられている。
An inner lead 16C made of, for example, molybdenum, which is electrically connected to the inner electrode 13A, is held at one end of the outer tube 14 (left end in FIG. 1). Specifically, one end is embedded in the sealing portion 14A of the outer tube 14 and is electrically connected to the metal foil 18A, and the other end is embedded in the sealing portion 12A of the discharge tube 12 and the metal foil 17 is connected. An electrically connected internal lead 16C is provided so as to protrude from the sealing portion 14A of the outer tube 14 and extend inward in the tube axis direction. The internal lead 16C is electrically connected to the internal electrode 13A via the metal foil 17 in the sealing portion 12A of the discharge tube 12 and the internal lead 16A in the discharge tube 12.
The other end (the right end in FIG. 1) of the outer tube 14 holds an internal lead 16B made of, for example, tungsten, which is electrically connected to the external electrode 13B. Specifically, an internal lead 16B having one end embedded in the sealing portion 14B of the outer tube 14 and electrically connected to the metal foil 18B and the other end electrically connected to the external electrode 13B is provided on the outer tube. 14 is provided so as to protrude and extend inward in the tube axis direction from the 14 sealing portions 14B.
 外側管14の両端の外端には、一端が外側管14の封止部14A,14B内に埋設されて金属箔18A,18Bと電気的に接続され、他端が外側管14の封止部14A,14Bから管軸方向外方に突出して伸びる例えばモリブデンよりなる外部リード19A,19Bがそれぞれ設けられている。この外部リード19A,19Bは、それぞれ、図示しない電源装置と電気的に接続されている。
 この実施形態においては、内部電極13Aが高圧側電極であり、外部電極13Bが低圧側電極とされる。
At the outer ends of both ends of the outer tube 14, one end is embedded in the sealing portions 14 </ b> A and 14 </ b> B of the outer tube 14 and electrically connected to the metal foils 18 </ b> A and 18 </ b> B, and the other end is sealed with the outer tube 14. External leads 19A and 19B made of, for example, molybdenum are provided so as to protrude from 14A and 14B and extend outward in the tube axis direction. The external leads 19A and 19B are electrically connected to a power supply device (not shown).
In this embodiment, the internal electrode 13A is a high voltage side electrode, and the external electrode 13B is a low voltage side electrode.
 放電管12は、当該放電管12の封止部12Aと外側管14の一方の封止部14Aとを接続する内部リード16Cと、放電管12の外表面に配置された外部電極13Bと外側管14の他方の封止部14Bとを接続する内部リード16Bとによって外側管14に対して支持されている。 The discharge tube 12 includes an internal lead 16C that connects the sealing portion 12A of the discharge tube 12 and one sealing portion 14A of the outer tube 14, an external electrode 13B that is disposed on the outer surface of the discharge tube 12, and an outer tube. 14 is supported with respect to the outer tube 14 by an internal lead 16B connecting the other sealing portion 14B.
 外側管14の内面には、少なくとも内部電極13Aと外部電極13Bとが対向配置されている発光部10Xを覆う領域全域に、蛍光体を含有する蛍光体層15が形成されている。 On the inner surface of the outer tube 14, a phosphor layer 15 containing a phosphor is formed over the entire region covering at least the light emitting portion 10X in which the internal electrode 13A and the external electrode 13B are arranged to face each other.
 蛍光体層15は、蛍光体を外側管14の内面に塗布することにより形成することができる。
 蛍光体としては、真空紫外光を励起光として受けることにより所定の波長領域の紫外光を放射するものであれば特に限定されず、例えば、プラセオジム付活リン酸ランタン、ネオジウム付活リン酸ランタン、ネオジウム付活リン酸イットリウムおよびプラセオジウム付活イットリウムアルミニウムホウ酸塩などが用いられる。
 ここに、プラセオジム付活リン酸ランタンは、励起によって波長230nm付近の領域の紫外光を放射するものであり、ネオジウム付活リン酸ランタンは、励起によって波長184nm付近の領域の紫外光を放射するものであり、ネオジウム付活リン酸イットリウムは、励起によって波長190nm付近の紫外光を放射するものであり、プラセオジウム付活イットリウムアルミニウムホウ酸塩は、励起によって波長250nm付近の紫外光を放射するものである。
The phosphor layer 15 can be formed by applying a phosphor to the inner surface of the outer tube 14.
The phosphor is not particularly limited as long as it emits ultraviolet light in a predetermined wavelength region by receiving vacuum ultraviolet light as excitation light. For example, praseodymium-activated lanthanum phosphate, neodymium-activated lanthanum phosphate, Neodymium activated yttrium phosphate, praseodymium activated yttrium aluminum borate and the like are used.
Here, praseodymium-activated lanthanum phosphate emits ultraviolet light in the region near the wavelength of 230 nm by excitation, and neodymium activated lanthanum phosphate emits ultraviolet light in the region near the wavelength of 184 nm by excitation. The neodymium-activated yttrium phosphate emits ultraviolet light with a wavelength of around 190 nm upon excitation, and the praseodymium-activated yttrium aluminum borate emits ultraviolet light with a wavelength of around 250 nm upon excitation. .
 蛍光体が、外側管14を構成する例えば合成石英ガラスなどとの接着性が小さいものである場合に、蛍光体層15は、外側管14に対する高い接着性を得るために、蛍光体層15と外側管14との間に、結着剤を介在させて形成してもよい。
 結着剤としては、例えば、軟質ガラス粉末、硬質ガラス粉末などが挙げられる。
When the phosphor has a low adhesiveness with, for example, synthetic quartz glass constituting the outer tube 14, the phosphor layer 15 is formed with the phosphor layer 15 in order to obtain a high adhesion to the outer tube 14. A binder may be interposed between the outer tube 14 and the outer tube 14.
Examples of the binder include soft glass powder and hard glass powder.
 蛍光体層15の層厚は、例えば10~40μmとされる。 The layer thickness of the phosphor layer 15 is, for example, 10 to 40 μm.
 外側管14内の間隙Dは、外側管14の内面または蛍光体層15と真空紫外光源11の外周との間の空間により形成され、この間隙Dには不活性ガスが封入されている。
 間隙Dの大きさ、例えば、外側管14の蛍光体層15と真空紫外光源11の外周との間の管径方向の離間距離は、例えば0~2mmであることが好ましい。
The gap D in the outer tube 14 is formed by the space between the inner surface of the outer tube 14 or the phosphor layer 15 and the outer periphery of the vacuum ultraviolet light source 11, and the gap D is filled with an inert gas.
The size of the gap D, for example, the distance in the tube radial direction between the phosphor layer 15 of the outer tube 14 and the outer periphery of the vacuum ultraviolet light source 11 is preferably, for example, 0 to 2 mm.
 間隙Dに封入される不活性ガスとしては、例えば、窒素ガス(N)、アルゴンガス(Ar)などが挙げられる。
 外側管14内の間隙Dに封入される不活性ガスのガス圧は、放電管12の放電空間Sに封入される発光ガスのガス圧よりも高圧であることが好ましく、具体的には、50kPa~100kPaとされる。
Examples of the inert gas sealed in the gap D include nitrogen gas (N 2 ) and argon gas (Ar).
The gas pressure of the inert gas sealed in the gap D in the outer tube 14 is preferably higher than the gas pressure of the luminescent gas sealed in the discharge space S of the discharge tube 12, specifically 50 kPa. -100 kPa.
 図1および図2中、符号22は、外側管14に形成された排気管残部である。 1 and 2, reference numeral 22 denotes an exhaust pipe remaining portion formed in the outer pipe 14.
 以上のような蛍光エキシマランプ10の仕様の一例を以下に示す。
 放電管12は、全長が170mm、外径が16mm、内径が14mmであり、内部電極13Aは、全長が100mm、金属素線径が0.5mm、外径(コイル径)が2mm、コイルピッチが2mmであり、外部電極13Bは、全長が100mm、金属素線径が0.2mmであり、外側管14は、全長が300mm、外径が20mm、内径が18mmであり、蛍光体層15は、全長が200mm、層厚が0.02mmである。
 放電管12の放電空間Sには、ガス圧が15kPaのキセノンガスが封入され、外側管14内の間隙Dには、ガス圧が80kPaの窒素ガスが封入される。
 内部電極13Aおよび外部電極13Bとの間には、定格周波数70kHz、定格電圧3000kVp-pの条件で高周波高電圧が印加される。
An example of the specifications of the fluorescent excimer lamp 10 as described above is shown below.
The discharge tube 12 has a total length of 170 mm, an outer diameter of 16 mm, and an inner diameter of 14 mm. The internal electrode 13A has a total length of 100 mm, a metal wire diameter of 0.5 mm, an outer diameter (coil diameter) of 2 mm, and a coil pitch. The external electrode 13B has a total length of 100 mm and a metal strand diameter of 0.2 mm. The outer tube 14 has a total length of 300 mm, an outer diameter of 20 mm, and an inner diameter of 18 mm. The total length is 200 mm and the layer thickness is 0.02 mm.
The discharge space S of the discharge tube 12 is filled with xenon gas having a gas pressure of 15 kPa, and the gap D in the outer tube 14 is filled with nitrogen gas having a gas pressure of 80 kPa.
A high frequency high voltage is applied between the internal electrode 13A and the external electrode 13B under the conditions of a rated frequency of 70 kHz and a rated voltage of 3000 kVp-p.
 このような蛍光エキシマランプ10においては、電源装置(図示せず)によって内部電極13Aおよび外部電極13Bに対して高周波高電圧が印加されると、放電管12が誘電体として機能し放電が生じる。この放電によって、放電空間S内の発光ガスが励起され、発光ガスが例えばキセノンガスである場合には、波長172nmの真空紫外光が放射される。この真空紫外光が蛍光体層15に照射されると、蛍光体層15を構成する蛍光体が励起され、蛍光体の特性に応じた光に変換され、所定の波長領域の紫外光が外側管14を透過して外部へ放射される。 In such a fluorescent excimer lamp 10, when a high frequency high voltage is applied to the internal electrode 13A and the external electrode 13B by a power supply device (not shown), the discharge tube 12 functions as a dielectric and discharge occurs. By this discharge, the luminescent gas in the discharge space S is excited, and when the luminescent gas is, for example, xenon gas, vacuum ultraviolet light having a wavelength of 172 nm is emitted. When this vacuum ultraviolet light is irradiated onto the phosphor layer 15, the phosphor constituting the phosphor layer 15 is excited and converted into light according to the characteristics of the phosphor, and ultraviolet light in a predetermined wavelength region is converted into the outer tube. 14 is emitted to the outside.
 上記構成の蛍光エキシマランプ10においては、蛍光体層15が、真空紫外光源11の外周に間隙Dを介して配置された外側管14の内面に形成されており、また、この外側管14の両端が封止部14A,14Bによって気密に封止され、外側管14内の間隙Dに不活性ガスが封入されている。従って、外側管14の内面に形成された蛍光体層15と真空紫外光源11の外周との間には不活性ガスが存在するので、蛍光体に照射される真空紫外光が酸素に吸収されることがないため、蛍光体に照射される真空紫外光の照度低下を抑制することができる。その結果、蛍光エキシマランプ10によれば、高い効率で紫外光を放射することができる。また、真空紫外光源11の外周に間隙Dを介して配置された外側管14の内面に蛍光体層15が形成されているので、真空紫外光源11の内部で生じる放電プラズマに蛍光体が曝されることがないため、蛍光体の劣化を抑制することができる。加えて、外側管14と真空紫外光源11とが間隙Dを介して離間しているので、放電管12が放電によって加熱されても、蛍光体は放電管12から離隔しているため、熱による劣化も抑制することができる。 In the fluorescent excimer lamp 10 having the above configuration, the phosphor layer 15 is formed on the inner surface of the outer tube 14 disposed on the outer periphery of the vacuum ultraviolet light source 11 via the gap D, and both ends of the outer tube 14 are arranged. Are hermetically sealed by the sealing portions 14 </ b> A and 14 </ b> B, and an inert gas is sealed in the gap D in the outer tube 14. Therefore, since an inert gas exists between the phosphor layer 15 formed on the inner surface of the outer tube 14 and the outer periphery of the vacuum ultraviolet light source 11, the vacuum ultraviolet light applied to the phosphor is absorbed by oxygen. Therefore, it is possible to suppress a decrease in illuminance of the vacuum ultraviolet light applied to the phosphor. As a result, the fluorescent excimer lamp 10 can emit ultraviolet light with high efficiency. Further, since the phosphor layer 15 is formed on the inner surface of the outer tube 14 disposed on the outer periphery of the vacuum ultraviolet light source 11 via the gap D, the phosphor is exposed to the discharge plasma generated inside the vacuum ultraviolet light source 11. Therefore, deterioration of the phosphor can be suppressed. In addition, since the outer tube 14 and the vacuum ultraviolet light source 11 are separated from each other through the gap D, the phosphor is separated from the discharge tube 12 even when the discharge tube 12 is heated by the discharge. Deterioration can also be suppressed.
 また、上記構成の蛍光エキシマランプ10によれば、外側管14内に封入される不活性ガスのガス圧が、放電管12内に封入される発光ガスのガス圧より高いことにより、不活性ガスが放電に供されることを抑制することができる。この効果が得られる理由は以下のように考えられる。
 すなわち、蛍光エキシマランプ10においては、ランプ点灯時に外部電極13Bが加熱されて金属素線が放電管12の径方向に向かって膨張し、外部電極13Bと放電管12の外表面との間に空隙が形成され、その空隙に不活性ガスが侵入することが考えられる。この場合、エキシマ放電は、ガス圧が低い方が放電しやすいため、不活性ガスのガス圧が発光ガスのガス圧より低圧であると、不活性ガスが放電されてしまうという問題が発生するが、上記構成の蛍光エキシマランプ10によれば、不活性ガスのガス圧が発光ガスのガス圧より高圧であることにより、発光ガスが確実に放電に供され、不活性ガスが放電に供されることを抑制することができる。
Further, according to the fluorescent excimer lamp 10 having the above-described configuration, the inert gas sealed in the outer tube 14 has a higher gas pressure than the luminescent gas sealed in the discharge tube 12. Can be suppressed from being discharged. The reason why this effect is obtained is considered as follows.
That is, in the fluorescent excimer lamp 10, the external electrode 13 </ b> B is heated when the lamp is lit, and the metal strand expands in the radial direction of the discharge tube 12, and a gap is formed between the external electrode 13 </ b> B and the outer surface of the discharge tube 12. It is conceivable that an inert gas enters the gap. In this case, since the excimer discharge is easier to discharge when the gas pressure is lower, there is a problem that the inert gas is discharged when the gas pressure of the inert gas is lower than the gas pressure of the luminescent gas. According to the fluorescent excimer lamp 10 configured as described above, since the gas pressure of the inert gas is higher than the gas pressure of the luminescent gas, the luminescent gas is reliably supplied to the discharge, and the inert gas is supplied to the discharge. This can be suppressed.
 さらに、上記構成の蛍光エキシマランプ10によれば、放電管12が円筒状であり、内部電極13Aが放電管12内部に放電管12の管軸方向に延びるように配置され、外部電極13Bが放電管12の外表面を覆うように配置された網状のものであることにより、放電管12の径方向断面における配光分布が均一となり、蛍光体へ照射される真空紫外光が均一なものとなる。 Furthermore, according to the fluorescent excimer lamp 10 configured as described above, the discharge tube 12 is cylindrical, the internal electrode 13A is disposed inside the discharge tube 12 so as to extend in the tube axis direction of the discharge tube 12, and the external electrode 13B is discharged. By being a net-like material disposed so as to cover the outer surface of the tube 12, the light distribution in the radial cross section of the discharge tube 12 becomes uniform, and the vacuum ultraviolet light irradiated to the phosphor becomes uniform. .
 さらに、上記構成の蛍光エキシマランプ10においては、内部電極13Aは、一端が外側管14の封止部14A内に埋設された内部リード16Cに、放電管12の封止部12A内の金属箔17および放電管12内の内部リード16Aを介して接続されている。また、外部電極13Bは、一端が外側管14の封止部14B内に埋設された内部リード16Bに接続されている。ランプ点灯時において、内部リードは加熱されることにより膨張することがあり、内部リード16Cは、外側管14の一方の封止部14Aを基点として、他方の封止部14Bに向かって膨張する。そして、内部リード16Cの他端は放電管12の封止部12A内に埋設されているので、放電管12全体を他方の封止部14Bに向かって移動させる。一方、内部リード16Bは、外側管14の他方の封止部14Bを基点として、一方の封止部14Aに向かって膨張する。このとき、外部電極13Bは放電管12の外表面に固定されていると、各々の内部リード16C,16Bには、膨張による押圧がかかることとなる。このため、放電管12が外側管14に対して傾斜して接触してしまったり、内部リードが変形してしまう。そして、ランプの点灯を繰り返すと、蛍光体層15と放電管12との位置関係が変化するという問題が生じる場合がある。しかしながら、上記構成の蛍光エキシマランプ10においては、外部電極13Bが放電管12の外表面に当接されていることにより、ランプ点灯時に内部リードが膨張しても、例えば放電管12の外表面において外部電極13Bが摺接するのみで、その膨張を許容することができ、蛍光体層15と放電管12との位置関係の変化を抑制することができる。 Furthermore, in the fluorescent excimer lamp 10 having the above-described configuration, the internal electrode 13A is connected to the internal lead 16C, one end of which is embedded in the sealing portion 14A of the outer tube 14, and the metal foil 17 in the sealing portion 12A of the discharge tube 12. And an internal lead 16 </ b> A in the discharge tube 12. One end of the external electrode 13B is connected to an internal lead 16B embedded in the sealing portion 14B of the outer tube 14. When the lamp is turned on, the internal lead may expand when heated, and the internal lead 16C expands toward the other sealing portion 14B with the one sealing portion 14A of the outer tube 14 as a base point. Since the other end of the internal lead 16C is embedded in the sealing portion 12A of the discharge tube 12, the entire discharge tube 12 is moved toward the other sealing portion 14B. On the other hand, the internal lead 16B expands toward the one sealing portion 14A with the other sealing portion 14B of the outer tube 14 as a base point. At this time, if the external electrode 13B is fixed to the outer surface of the discharge tube 12, the internal leads 16C and 16B are pressed by expansion. For this reason, the discharge tube 12 is inclined to contact the outer tube 14, or the internal lead is deformed. When the lamp is repeatedly lit, there may be a problem that the positional relationship between the phosphor layer 15 and the discharge tube 12 changes. However, in the fluorescent excimer lamp 10 configured as described above, the external electrode 13B is in contact with the outer surface of the discharge tube 12, so that even if the internal lead expands when the lamp is lit, for example, on the outer surface of the discharge tube 12. The external electrode 13B can be allowed to expand only by sliding contact, and the change in the positional relationship between the phosphor layer 15 and the discharge tube 12 can be suppressed.
 本発明の蛍光エキシマランプは、例えば水中に含まれる有機物の分解処理、あるいは水の殺菌処理などを行うための水処理装置の紫外光源、また、例えば空気殺菌処理などを行うための空気処理装置、液晶基板用光洗浄装置、および光硬化装置などの種々の装置の紫外光源として好適に用いることができる。 The fluorescent excimer lamp of the present invention is, for example, an ultraviolet light source of a water treatment device for performing a decomposition treatment of organic matter contained in water or a water sterilization treatment, an air treatment device for performing an air sterilization treatment, for example, It can be suitably used as an ultraviolet light source for various devices such as a liquid crystal substrate light cleaning device and a photocuring device.
 以上、本発明の実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、種々の変更を加えることができる。
 例えば、外部電極は網状のものに限られず、金属素線が放電管の外表面を螺旋状に巻回されて形成されてなるコイル状のものであってもよい。
As mentioned above, although embodiment of this invention was described, this invention is not limited to said embodiment, A various change can be added.
For example, the external electrode is not limited to a net-like shape, and may be a coil-like shape in which a metal wire is formed by spirally winding the outer surface of a discharge tube.
〔流体処理装置〕
 本発明の蛍光エキシマランプを水処理装置などの流体処理装置の紫外光源として用いる場合について、以下、具体的に説明する。
 図3は、本発明の流体処理装置の構成の一例を示す説明用断面図である。
 この流体処理装置100の紫外光源として用いられている蛍光エキシマランプ10は、図1に示す蛍光エキシマランプ10と同様の構成を有するものである。
 また、蛍光エキシマランプ10において放射させることが必要とされる紫外光の波長は、流体処理装置100の使用用途などによっても異なるが、例えば流体処理装置100を水中に含まれる有機物の分解を行うために用いる場合には、蛍光エキシマランプ10は波長190nmに中心波長を有する波長180~200nmの紫外光を放射するものであることが好ましい。また、水の殺菌用に用いる場合には、波長250nmに中心波長を有する波長240~280nmの紫外光を放射するものであることが好ましい。
[Fluid treatment equipment]
The case where the fluorescent excimer lamp of the present invention is used as an ultraviolet light source of a fluid treatment apparatus such as a water treatment apparatus will be specifically described below.
FIG. 3 is an explanatory cross-sectional view showing an example of the configuration of the fluid treatment apparatus of the present invention.
A fluorescent excimer lamp 10 used as an ultraviolet light source of the fluid processing apparatus 100 has the same configuration as the fluorescent excimer lamp 10 shown in FIG.
In addition, the wavelength of ultraviolet light that is required to be radiated in the fluorescent excimer lamp 10 varies depending on the use application of the fluid treatment apparatus 100, but for example, the fluid treatment apparatus 100 is used to decompose organic substances contained in water. When used in the above, the fluorescent excimer lamp 10 preferably emits ultraviolet light having a wavelength of 180 to 200 nm having a central wavelength at 190 nm. Further, when used for water sterilization, it is preferable to emit ultraviolet light having a wavelength of 240 to 280 nm having a central wavelength at a wavelength of 250 nm.
 ここに、蛍光エキシマランプ10を水中に含まれる有機物の分解を行うために好適な光源とするためには、発光ガスとしてキセノンガスを封入すると共に、蛍光体層15を構成する蛍光体としてネオジウム付活リン酸ランタンまたはネオジウム付活リン酸イットリウムを用いることが好ましい。また、蛍光エキシマランプ10を水の殺菌用の光源とするためには、発光ガスとしてキセノンガスを封入すると共に、蛍光体層15を構成する蛍光体としてプラセオジウム付活イットリウムアルミニウムホウ酸塩またはプラセオジウム付活リン酸ランタンを用いることが好ましい。 Here, in order to use the fluorescent excimer lamp 10 as a light source suitable for decomposing organic substances contained in water, xenon gas is enclosed as a luminescent gas, and neodymium is attached as a phosphor constituting the phosphor layer 15. It is preferable to use activated lanthanum phosphate or neodymium activated yttrium phosphate. In addition, in order to use the fluorescent excimer lamp 10 as a light source for sterilizing water, xenon gas is enclosed as a luminescent gas, and as the phosphor constituting the phosphor layer 15, an active yttrium aluminum borate or praseodymium is added. It is preferable to use activated lanthanum phosphate.
 流体処理装置100は、例えば超純水などの被処理流体が流通する流路Rを形成する略円筒状の流路管101と、流路管101の両端の開口を塞ぐように設けられた略円環状の蓋部材102,102とを備え、その全体形状が略円柱形状のものである。そして、流路管101の内部空間には、蛍光エキシマランプ10よりなる紫外光源が、流路Rに沿って、具体的には、放電管12および外側管14の管軸(中心軸)と流路管101の管軸(中心軸)が一致した状態で配置されている。 The fluid processing apparatus 100 is a substantially cylindrical channel tube 101 that forms a channel R through which a fluid to be processed such as ultrapure water flows, and an approximately provided portion that closes the openings at both ends of the channel tube 101. An annular lid member 102, 102 is provided, and the overall shape thereof is a substantially cylindrical shape. In the internal space of the channel tube 101, an ultraviolet light source composed of the fluorescent excimer lamp 10 flows along the channel R, specifically, the tube axis (center axis) of the discharge tube 12 and the outer tube 14. It arrange | positions in the state in which the pipe axis (center axis) of the path pipe 101 corresponded.
 流路管101は、例えばステンレスなどにより形成される。
 流路管101の外周面には、被処理流体を流路Rに流入させるための流入口101Aと、流路Rにおいて紫外光照射処理された被処理流体を当該流路管101から流出させるための流出口101Bとが形成されており、当該流入口101Aおよび流出口101Bには、各々、被処理流体を流路Rに流通させるための流通管(図示せず)が接続されている。
 図の例においては、流入口101Aが流出口101Bより上方に位置するように設けられている。
The channel tube 101 is made of, for example, stainless steel.
On the outer peripheral surface of the flow channel tube 101, an inflow port 101A for allowing the fluid to be processed to flow into the flow channel R, and a fluid to be processed that has been irradiated with ultraviolet light in the flow channel R are allowed to flow out from the flow channel tube 101. A flow pipe (not shown) for flowing the fluid to be processed through the flow path R is connected to the flow inlet 101A and the flow outlet 101B.
In the illustrated example, the inflow port 101A is provided above the outflow port 101B.
 蓋部材102は、例えばポリテトラフルオロエチレンなどにより形成される。
 蓋部材102は、中心部に蛍光エキシマランプ10の外径に適合する孔径の貫通孔102Hを有している。
 蓋部材102には、径方向外方に突出するフランジ部102aと、貫通孔102Hの内周縁に形成される内側段部102bと、当該蓋部材102の外周縁に形成される外側段部102cとが形成されている。
The lid member 102 is made of, for example, polytetrafluoroethylene.
The lid member 102 has a through hole 102H having a hole diameter that matches the outer diameter of the fluorescent excimer lamp 10 at the center.
The lid member 102 includes a flange portion 102a that protrudes radially outward, an inner step portion 102b that is formed on the inner peripheral edge of the through hole 102H, and an outer step portion 102c that is formed on the outer peripheral edge of the cover member 102. Is formed.
 蛍光エキシマランプ10は、その両端が、当該蛍光エキシマランプ10の両端部の外周面と蓋部材102,102の内側段部102b,102bの平坦面との間に設けられた2つのOリング103,103を介して、貫通孔102H,102Hに挿通されて液密に蓋部材102,102に対して保持固定されている。蓋部材102,102は、当該蓋部材102,102のフランジ部102a,102aが流路管101の両端の端面にそれぞれ係止されると共に、蓋部材102,102の外側段部102c,102cの平坦面と流路管101の内周面との間に設けられた2つのOリング104,104を介して液密に流路管101に対して保持固定されている。以上のような構成により、流路管101の内部空間(流路R)が液密構造とされている。 The fluorescent excimer lamp 10 has two O-rings 103 provided at both ends between the outer peripheral surfaces of both ends of the fluorescent excimer lamp 10 and the flat surfaces of the inner step portions 102b, 102b of the lid members 102, 102. It is inserted into the through holes 102H and 102H through 103, and is held and fixed to the lid members 102 and 102 in a liquid-tight manner. The lid members 102, 102 have the flange portions 102 a, 102 a of the lid members 102, 102 locked to the end faces at both ends of the flow channel tube 101, respectively, and the outer step portions 102 c, 102 c of the lid members 102, 102 are flat. It is fixed and fixed to the flow channel tube 101 in a liquid-tight manner via two O- rings 104 and 104 provided between the surface and the inner peripheral surface of the flow channel tube 101. With the configuration as described above, the internal space (flow path R) of the flow path pipe 101 has a liquid-tight structure.
 流体処理装置100において、流路Rに流通される被処理流体の流量は、流体処理装置100の使用用途などによっても異なるが、例えば1~5l/分とされ、被処理流体の温度は、例えば0~30℃とされる。 In the fluid processing apparatus 100, the flow rate of the fluid to be processed flowing through the flow path R varies depending on the use application of the fluid processing apparatus 100, but is 1 to 5 l / min, for example, and the temperature of the fluid to be processed is, for example, 0 to 30 ° C.
 以上のような流体処理装置100の仕様の一例を以下に示す。
 流路管101は、全長が250mm、外径が75mm、内径が65mmであり、蓋部材102は、フランジ部102aの外径が90mm、貫通孔102Hの孔径が20mmである。蛍光エキシマランプ10は、全長が300mm、外径が20mmである。
An example of the specifications of the fluid processing apparatus 100 as described above is shown below.
The channel tube 101 has an overall length of 250 mm, an outer diameter of 75 mm, and an inner diameter of 65 mm. The lid member 102 has an outer diameter of the flange portion 102a of 90 mm and a hole diameter of the through hole 102H of 20 mm. The fluorescent excimer lamp 10 has a total length of 300 mm and an outer diameter of 20 mm.
 上記構成の流体処理装置100においては、蛍光エキシマランプ10が点灯状態とされると共に、流路管101の流路Rに、流入口101Aから被処理流体である水が供給されることにより、当該流路管101の流路Rにおいて被処理流体に対して蛍光エキシマランプ10からの所定の波長領域の紫外光が発光部10Xから照射されて紫外光照射処理が行われ、紫外光照射処理された被処理流体が流出口101Bから流路管101の外部に排出される。 In the fluid processing apparatus 100 having the above-described configuration, the fluorescent excimer lamp 10 is turned on and water to be processed is supplied to the flow path R of the flow path pipe 101 from the inflow port 101A. In the flow path R of the flow path pipe 101, ultraviolet light in a predetermined wavelength region from the fluorescent excimer lamp 10 is irradiated from the light emitting unit 10 </ b> X to the fluid to be processed, and ultraviolet light irradiation processing is performed. The fluid to be processed is discharged from the outlet 101B to the outside of the channel tube 101.
 以上の構成の流体処理装置100によれば、本発明の蛍光エキシマランプ10が備えられていることにより、蛍光エキシマランプ10が、高い効率で紫外光を放射することができるものであり、また、蛍光体の劣化が抑制されたものであるため、被処理流体に対して高い効率で紫外光照射処理を実行することができる。 According to the fluid processing apparatus 100 having the above-described configuration, the fluorescent excimer lamp 10 of the present invention is provided so that the fluorescent excimer lamp 10 can emit ultraviolet light with high efficiency. Since the deterioration of the phosphor is suppressed, the ultraviolet light irradiation process can be executed with high efficiency on the fluid to be processed.
 以下、本発明の効果を確認するために行った実験例を示す。
<実験例1>
 図1および図2に示す構成に従い、下記の仕様の蛍光エキシマランプ(A)を作製した。
・真空紫外光源(11)
放電管(12);材質:合成石英ガラス,寸法:全長=170mm,外径=16mm,内径=14mm
内部電極(13A);材質:タングステン,形状:コイル状,寸法:全長=100mm,金属素線径=0.5mm,外径(コイル径)=2mm,コイルピッチ=2mm
外部電極(13B);材質=ニッケル合金,  形状:網状,寸法:全長=100mm,金属素線径=0.2mm
金属箔(17);材質:モリブデン
内部リード(16A,16B);材質:タングステン
発光ガス;種類:キセノンガス,ガス圧:15kPa
・外側管(14);材質:合成石英ガラス,寸法:全長=300mm,外径=20mm,内径=18mm
金属箔(18A,18B)材質:モリブデン
蛍光体層(15);蛍光体:プラセオジム付活リン酸ランタン,寸法:全長=200mm,層厚=20μm
内部リード(16C);材質:モリブデン
外部リード(19A,19B);材質:モリブデン
不活性ガス;種類:窒素ガス,ガス圧:80kPa
・定格周波数;70kHz
・定格電圧;3000kVp-p
Hereinafter, experimental examples performed for confirming the effects of the present invention will be described.
<Experimental example 1>
According to the configuration shown in FIGS. 1 and 2, a fluorescent excimer lamp (A) having the following specifications was produced.
・ Vacuum ultraviolet light source (11)
Discharge tube (12); material: synthetic quartz glass, dimensions: total length = 170 mm, outer diameter = 16 mm, inner diameter = 14 mm
Internal electrode (13A); Material: Tungsten, Shape: Coiled, Dimensions: Total length = 100mm, Metal wire diameter = 0.5mm, Outer diameter (coil diameter) = 2mm, Coil pitch = 2mm
External electrode (13B); material = nickel alloy, shape: mesh, dimension: overall length = 100 mm, metal wire diameter = 0.2 mm
Metal foil (17); Material: Molybdenum internal lead (16A, 16B); Material: Tungsten luminescent gas; Type: Xenon gas, Gas pressure: 15kPa
Outer tube (14); Material: Synthetic quartz glass, Dimensions: Overall length = 300mm, Outer diameter = 20mm, Inner diameter = 18mm
Metal foil (18A, 18B) material: molybdenum phosphor layer (15); phosphor: praseodymium activated lanthanum phosphate, dimensions: total length = 200 mm, layer thickness = 20 μm
Internal lead (16C); Material: Molybdenum external lead (19A, 19B); Material: Molybdenum inert gas; Type: Nitrogen gas, Gas pressure: 80kPa
・ Rated frequency: 70 kHz
・ Rated voltage: 3000kVp-p
 上記蛍光エキシマランプ(A)によって紫外光を照射し、発光部(10X)に対向する位置に配置した紫外光測定器によって、波長230nmの紫外光の放射強度を測定した。また、1000時間点灯後の蛍光体層(15)の状態を観察した。 The ultraviolet light was irradiated by the fluorescent excimer lamp (A), and the radiation intensity of the ultraviolet light having a wavelength of 230 nm was measured by an ultraviolet light measuring device disposed at a position facing the light emitting portion (10X). Further, the state of the phosphor layer (15) after 1000 hours of lighting was observed.
<比較実験例1>
 実験例1の蛍光エキシマランプにおいて、外側管(14)の両端による気密構造を形成せず、蛍光層(15)が大気中に露出される状態としたことの他は同様にして蛍光エキシマランプ(B)を作製し、実験例1と同様の紫外光の放射強度の測定を行った。
<Comparative Experimental Example 1>
In the fluorescent excimer lamp of Experimental Example 1, the fluorescent excimer lamp (except that the airtight structure formed by both ends of the outer tube (14) is not formed and the fluorescent layer (15) is exposed to the atmosphere). B) was prepared, and the radiation intensity of ultraviolet light was measured as in Experimental Example 1.
<比較実験例2>
 実験例1の蛍光エキシマランプにおいて、外側管(14)の内面に形成された蛍光層(15)を放電管(12)の内面に形成したことの他は同様にして蛍光エキシマランプ(C)を作製し、実験例1と同様に蛍光体層の観察を行った。
<Comparative Experiment Example 2>
In the fluorescent excimer lamp of Experimental Example 1, the fluorescent excimer lamp (C) was similarly formed except that the fluorescent layer (15) formed on the inner surface of the outer tube (14) was formed on the inner surface of the discharge tube (12). The phosphor layer was fabricated and the phosphor layer was observed in the same manner as in Experimental Example 1.
 実験例1の蛍光エキシマランプ(A)から照射される紫外光の放射強度は、比較実験例1の蛍光エキシマランプ(B)から照射される紫外光の放射強度に対して1.5倍であった。
 また、実験例1の蛍光エキシマランプ(A)における蛍光体層は、比較実験例2の蛍光エキシマランプ(C)の蛍光体層に比べて劣化の程度が小さかった。
The radiant intensity of the ultraviolet light irradiated from the fluorescent excimer lamp (A) of Experimental Example 1 was 1.5 times the radiant intensity of the ultraviolet light irradiated from the fluorescent excimer lamp (B) of Comparative Experimental Example 1. It was.
Further, the phosphor layer in the fluorescent excimer lamp (A) of Experimental Example 1 was less deteriorated than the fluorescent material layer of the fluorescent excimer lamp (C) of Comparative Experimental Example 2.
 以上の結果より、本発明に係る蛍光エキシマランプ(A)においては、外側管(14)の内面に配置された蛍光体層(15)と真空紫外光源(11)の外周との間には不活性ガスである窒素ガスが存在するので、真空紫外光源(11)から放射される真空紫外光が大気中の酸素を吸収することなく、従って、蛍光体に照射される真空紫外光の照度低下を抑制することができ、その結果、高い効率で紫外光を放射することができることが確認された。また、真空紫外光源(11)の内部で生じる放電プラズマに蛍光体が曝されることがないので、蛍光体の劣化を抑制することができることが確認された。 From the above results, in the fluorescent excimer lamp (A) according to the present invention, there is no gap between the phosphor layer (15) disposed on the inner surface of the outer tube (14) and the outer periphery of the vacuum ultraviolet light source (11). Since nitrogen gas, which is an active gas, is present, the vacuum ultraviolet light emitted from the vacuum ultraviolet light source (11) does not absorb oxygen in the atmosphere, and therefore the illuminance reduction of the vacuum ultraviolet light applied to the phosphor is reduced. As a result, it was confirmed that ultraviolet light can be emitted with high efficiency. It was also confirmed that the phosphor could be prevented from being deteriorated because the phosphor was not exposed to the discharge plasma generated inside the vacuum ultraviolet light source (11).
10  蛍光エキシマランプ
10X 発光部
11  真空紫外光源
12  放電管
12A  封止部
13A 内部電極
13B 外部電極
14  外側管
14A,14B 封止部
15  蛍光体層
16A、16B,16C 内部リード
17  金属箔
18A,18B 金属箔
19A,19B 外部リード
20  サポーター
22  排気管残部
100 流体処理装置
101 流路管
101A 流入口
101B 流出口
102 蓋部材
102a フランジ部
102b 内側段部
102c 外側段部
102H 貫通孔
103,104 Oリング
D    間隙
S    放電空間
R    流路
DESCRIPTION OF SYMBOLS 10 Fluorescent excimer lamp 10X Light emission part 11 Vacuum ultraviolet light source 12 Discharge tube 12A Sealing part 13A Internal electrode 13B External electrode 14 Outer tube 14A, 14B Sealing part 15 Phosphor layer 16A, 16B, 16C Internal lead 17 Metal foil 18A, 18B Metal foil 19A, 19B External lead 20 Supporter 22 Exhaust pipe remaining part 100 Fluid treatment device 101 Channel pipe 101A Inlet 101B Outlet 102 Cover member 102a Flange part 102b Inner step part 102c Outer step part 102H Through hole 103, 104 O-ring D Gap S Discharge space R Flow path

Claims (5)

  1.  発光ガスが封入された誘電体からなる放電管、および、前記発光ガスと前記放電管を形成する誘電体とを介して対向配置された一対の電極を備えてなる真空紫外光源と、
     内面に蛍光体層が形成され、前記真空紫外光源の外周に間隙を介して配置された、当該真空紫外光源を収容する外側管とを有する蛍光エキシマランプにおいて、
     前記外側管の両端が気密に封止され、当該外側管内の前記間隙に不活性ガスが封入されていることを特徴とする蛍光エキシマランプ。
    A vacuum ultraviolet light source comprising a discharge tube made of a dielectric material in which a luminescent gas is sealed, and a pair of electrodes arranged to face each other through the luminescent gas and a dielectric material forming the discharge tube;
    In a fluorescent excimer lamp having a phosphor layer formed on the inner surface and disposed on the outer periphery of the vacuum ultraviolet light source via a gap, and an outer tube containing the vacuum ultraviolet light source,
    A fluorescent excimer lamp, wherein both ends of the outer tube are hermetically sealed, and an inert gas is sealed in the gap in the outer tube.
  2.  前記不活性ガスのガス圧が前記発光ガスのガス圧よりも高いことを特徴とする請求項1に記載の蛍光エキシマランプ。 The fluorescent excimer lamp according to claim 1, wherein a gas pressure of the inert gas is higher than a gas pressure of the luminescent gas.
  3.  前記放電管が円筒状であり、
     前記一対の電極は、前記放電管の内部に当該放電管の管軸方向に延びるように配置された内部電極と、前記放電管の外表面を覆うように配置された網状またはコイル状の外部電極とからなることを特徴とする請求項1または請求項2に記載の蛍光エキシマランプ。
    The discharge tube is cylindrical;
    The pair of electrodes includes an internal electrode disposed inside the discharge tube so as to extend in a tube axis direction of the discharge tube, and a net-like or coil-shaped external electrode disposed so as to cover an outer surface of the discharge tube. The fluorescent excimer lamp according to claim 1 or 2, characterized by comprising:
  4.  前記外側管の一端には、前記内部電極と電気的に接続された内部リードが保持され、
     前記外側管の他端には、前記外部電極と電気的に接続された内部リードが保持され、
     前記外部電極が金属素線よりなり、前記放電管の外表面に当接されていることを特徴とする請求項3に記載の蛍光エキシマランプ。
    One end of the outer tube holds an internal lead electrically connected to the internal electrode,
    The other end of the outer tube holds an internal lead electrically connected to the external electrode,
    The fluorescent excimer lamp according to claim 3, wherein the external electrode is made of a metal wire and is in contact with an outer surface of the discharge tube.
  5.  被処理流体が流通する流路を形成する流路管内に、請求項1~請求項4のいずれかに記載の蛍光エキシマランプが前記流路に沿って配置されていることを特徴とする流体処理装置。 5. A fluid treatment characterized in that the fluorescent excimer lamp according to claim 1 is disposed along the flow path in a flow path tube forming a flow path through which a fluid to be treated flows. apparatus.
PCT/JP2014/056417 2013-03-19 2014-03-12 Fluorescent excimer lamp and fluid treatment apparatus WO2014148325A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-056242 2013-03-19
JP2013056242A JP2014182916A (en) 2013-03-19 2013-03-19 Fluorescent excimer lamp and fluid treatment device

Publications (1)

Publication Number Publication Date
WO2014148325A1 true WO2014148325A1 (en) 2014-09-25

Family

ID=51580012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056417 WO2014148325A1 (en) 2013-03-19 2014-03-12 Fluorescent excimer lamp and fluid treatment apparatus

Country Status (2)

Country Link
JP (1) JP2014182916A (en)
WO (1) WO2014148325A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017082380A1 (en) * 2015-11-13 2017-05-18 ウシオ電機株式会社 Deodorizing method and deodorizing device
WO2018153827A1 (en) 2017-02-23 2018-08-30 Merck Patent Gmbh Flow-through fluid purification device and means for accommodating a radiation source
WO2018153823A1 (en) 2017-02-23 2018-08-30 Merck Patent Gmbh Flow-through fluid purification device
WO2019193922A1 (en) * 2018-04-02 2019-10-10 ウシオ電機株式会社 Ozone generator, air conditioner, and vehicle
JP2019182670A (en) * 2018-04-02 2019-10-24 ウシオ電機株式会社 Ozone generator, air conditioner, and, vehicle
JP2019182669A (en) * 2018-04-02 2019-10-24 ウシオ電機株式会社 Ozone generator, air conditioner, and vehicle
CN112043972A (en) * 2020-10-10 2020-12-08 罗璐 Double-layered tubulose excimer lamp of wall and beauty instrument
CN114373671A (en) * 2021-11-30 2022-04-19 南京林业大学 Double-size microcavity plasma ultraviolet light generating device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6728962B2 (en) * 2016-05-18 2020-07-22 ウシオ電機株式会社 Water treatment equipment
JP6748680B2 (en) * 2018-08-31 2020-09-02 大電株式会社 Lighting equipment
EP3648144A1 (en) * 2018-11-05 2020-05-06 Xylem Europe GmbH Vacuum ultraviolet excimer lamp with uv fluorescent coating
JP7386074B2 (en) * 2019-12-25 2023-11-24 株式会社オーク製作所 Excimer lamp and how to install it inside a pipe

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000285854A (en) * 1999-03-30 2000-10-13 Toshiba Lighting & Technology Corp Double tube electric discharge lamp and lighting system
JP2002319371A (en) * 2001-04-23 2002-10-31 Toshiba Lighting & Technology Corp Dielectric barrier discharge lamp, device for lighting dielectric barrier discharge lamp, and ultraviolet irradiation device
JP2008506233A (en) * 2004-07-09 2008-02-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Dielectric barrier discharge lamp with integrated multi-functional means

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000285854A (en) * 1999-03-30 2000-10-13 Toshiba Lighting & Technology Corp Double tube electric discharge lamp and lighting system
JP2002319371A (en) * 2001-04-23 2002-10-31 Toshiba Lighting & Technology Corp Dielectric barrier discharge lamp, device for lighting dielectric barrier discharge lamp, and ultraviolet irradiation device
JP2008506233A (en) * 2004-07-09 2008-02-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Dielectric barrier discharge lamp with integrated multi-functional means

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017082380A1 (en) * 2015-11-13 2017-05-18 ウシオ電機株式会社 Deodorizing method and deodorizing device
JPWO2017082380A1 (en) * 2015-11-13 2017-11-16 ウシオ電機株式会社 Deodorizing method and deodorizing apparatus
WO2018153827A1 (en) 2017-02-23 2018-08-30 Merck Patent Gmbh Flow-through fluid purification device and means for accommodating a radiation source
WO2018153823A1 (en) 2017-02-23 2018-08-30 Merck Patent Gmbh Flow-through fluid purification device
US11286179B2 (en) 2017-02-23 2022-03-29 Merck Patent Gmbh Flow-through fluid purification device and means for accommodating a radiation source
US11565949B2 (en) 2017-02-23 2023-01-31 Merck Patent Gmbh Flow-through fluid purification device
WO2019193922A1 (en) * 2018-04-02 2019-10-10 ウシオ電機株式会社 Ozone generator, air conditioner, and vehicle
JP2019182670A (en) * 2018-04-02 2019-10-24 ウシオ電機株式会社 Ozone generator, air conditioner, and, vehicle
JP2019182669A (en) * 2018-04-02 2019-10-24 ウシオ電機株式会社 Ozone generator, air conditioner, and vehicle
CN112043972A (en) * 2020-10-10 2020-12-08 罗璐 Double-layered tubulose excimer lamp of wall and beauty instrument
CN114373671A (en) * 2021-11-30 2022-04-19 南京林业大学 Double-size microcavity plasma ultraviolet light generating device

Also Published As

Publication number Publication date
JP2014182916A (en) 2014-09-29

Similar Documents

Publication Publication Date Title
WO2014148325A1 (en) Fluorescent excimer lamp and fluid treatment apparatus
KR100238642B1 (en) Dielectric barrier discharge lamp
JP4647745B2 (en) Water sterilizer
JP6564663B2 (en) Excimer lamp device
US9159545B2 (en) Excimer lamp
JP6365096B2 (en) UV irradiation type ozone generator
JP5074248B2 (en) Excimer lamp
JP6544524B2 (en) UV light irradiation device
JP6561881B2 (en) UV radiation device
JP2005519438A (en) Ultraviolet radiation generator
TWI497560B (en) Ultraviolet ray irradiation apparatus, ultraviolet irradiation method, and ultraviolet ray irradiation apparatus
JP5861989B2 (en) UV radiation fluorescent lamp
JP2016036772A (en) Ultraviolet irradiation type water purifier
KR102106293B1 (en) Excimer light source
JP2013118072A (en) Ultraviolet discharge lamp
JP2014135406A (en) Low dielectric constant material cure treatment method
JP6921557B2 (en) Discharge lamp and its manufacturing method
EP3799109A1 (en) Light transmissive material and lamp, and gas treating device and gas treating method
KR20160037056A (en) Ultraviolet lamp
JP2021051937A (en) Barrier discharge lamp and UV irradiation unit
TW200535902A (en) Dielctric shielded discharging lamp and ultraviolet radiating device
JP4203651B2 (en) Electrodeless discharge lamp and electrodeless discharge lamp light source device
JP5640998B2 (en) Excimer lamp
JP2011204434A (en) Metal halide lamp and ultraviolet irradiation device
TWI474370B (en) Ultraviolet radiation method and metal halogen lamp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14768326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14768326

Country of ref document: EP

Kind code of ref document: A1