JP6974678B2 - Plasma processing equipment and plasma processing method - Google Patents

Plasma processing equipment and plasma processing method Download PDF

Info

Publication number
JP6974678B2
JP6974678B2 JP2017056383A JP2017056383A JP6974678B2 JP 6974678 B2 JP6974678 B2 JP 6974678B2 JP 2017056383 A JP2017056383 A JP 2017056383A JP 2017056383 A JP2017056383 A JP 2017056383A JP 6974678 B2 JP6974678 B2 JP 6974678B2
Authority
JP
Japan
Prior art keywords
plasma processing
pair
plasma
strip
tube wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017056383A
Other languages
Japanese (ja)
Other versions
JP2018160353A (en
Inventor
準席 呉
昌文 伊藤
壮則 早川
和泉 芹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orc Manufacturing Co Ltd
University Public Corporation Osaka
Original Assignee
Orc Manufacturing Co Ltd
University Public Corporation Osaka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orc Manufacturing Co Ltd, University Public Corporation Osaka filed Critical Orc Manufacturing Co Ltd
Priority to JP2017056383A priority Critical patent/JP6974678B2/en
Publication of JP2018160353A publication Critical patent/JP2018160353A/en
Application granted granted Critical
Publication of JP6974678B2 publication Critical patent/JP6974678B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)

Description

本発明は、プラズマ処理装置及びプラズマ処理方法に関する。 The present invention relates to a plasma processing apparatus and a plasma processing method.

従来、プラズマ処理装置として、プラズマ処理容器の外表面とプラズマ処理容器内に一対の電極を配設し、これらの電極間で生じたプラズマを被処理物に放射することでプラズマ処理を行う装置(特許文献1)が知られている。また、放電空間を画成する中心電極と周辺電極との間に誘電体を介在させ、この電極の間の放電空間に被処理物を導入してプラズマ処理を行う装置(特許文献2)が知られている。 Conventionally, as a plasma processing device, a device that performs plasma processing by arranging a pair of electrodes on the outer surface of the plasma processing container and inside the plasma processing container and radiating the plasma generated between these electrodes to the object to be processed. Patent Document 1) is known. Further, a device (Patent Document 2) is known in which a dielectric is interposed between a central electrode and a peripheral electrode that define a discharge space, and an object to be processed is introduced into the discharge space between the electrodes to perform plasma treatment. Has been done.

特開2014−212839号公報Japanese Unexamined Patent Publication No. 2014-21239 特開2010−029830号公報Japanese Unexamined Patent Publication No. 2010-029830

しかし、特許文献1のようなプラズマ処理装置において、プラズマ(放電)が生じる放電空間内に被処理物を配置してプラズマ処理を行うと、被処理物が導入される放電空間と放電空間内の電極とが接することで、プラズマ処理時に電極から放出される不純物が被処理物に混入してしまい、純度の高いプラズマ処理をおこなうことができなかった。つまり、プラズマ発生時の電極は、プラズマに曝されたり、通電による抵抗やプラズマの温度により加熱されたりすることで、不純物を放出する。また、電極が被処理物や放電用ガス(プラズマ処理用ガス)に反応しやすい材質であったり、放電用ガスが電極と反応しやすいガス(反応ガス)を含んだガス(以下、単に放電用ガス)であったりすると、電極が被処理物や放電用ガス(反応ガス)と反応することよって不純物が生じやすく、これらの不純物が被処理物に混ざることで純度が低下する。また、特許文献2の装置は構造が複雑であり、小型のプラズマ処理装置を提供することはできなかった。さらに、このような装置では、放電空間内に被処理物が偏って配置されることや、放電空間内の放電用ガスの状態(例えば圧力、濃度、流速)が不均一になることが生じやすい。そのため、絶縁破壊に必要な電圧であるプラズマ発生開始電圧(放電開始電圧)が不安定になり、プラズマの発生、すなわちプラズマ処理が不安定になるおそれがあった。 However, in a plasma processing apparatus as in Patent Document 1, when an object to be processed is placed in a discharge space where plasma (discharge) is generated and plasma processing is performed, the object to be processed is introduced into the discharge space and the discharge space. Due to the contact with the electrode, impurities discharged from the electrode during plasma treatment were mixed into the object to be treated, and high-purity plasma treatment could not be performed. That is, the electrode at the time of plasma generation releases impurities by being exposed to plasma or being heated by the resistance due to energization or the temperature of plasma. In addition, the electrode is made of a material that easily reacts with the object to be treated or the gas for discharge (gas for plasma treatment), or the gas for discharge contains a gas (reaction gas) that easily reacts with the electrode (hereinafter, simply for discharge). If it is a gas), impurities are likely to be generated because the electrode reacts with the object to be treated or the gas for discharge (reaction gas), and the purity is lowered by mixing these impurities with the object to be treated. Further, the apparatus of Patent Document 2 has a complicated structure, and it has not been possible to provide a small-sized plasma processing apparatus. Further, in such a device, the object to be processed is likely to be unevenly arranged in the discharge space, and the state of the discharge gas (for example, pressure, concentration, flow velocity) in the discharge space tends to be non-uniform. .. Therefore, the plasma generation start voltage (discharge start voltage), which is a voltage required for dielectric breakdown, becomes unstable, and there is a possibility that plasma generation, that is, plasma processing becomes unstable.

本発明は、プラズマ処理時に被処理物に不純物が混入することが無く、高純度なプラズマ処理を行なうことができるプラズマ処理装置及びプラズマ処理方法を提供することを目的とする。 An object of the present invention is to provide a plasma processing apparatus and a plasma processing method capable of performing high-purity plasma treatment without mixing impurities in the object to be treated during plasma treatment.

本発明のプラズマ処理装置は、誘電体を含んで軸方向に延びるとともに、内部に放電空間を構成する筒状管壁を有するプラズマ処理容器と、前記筒状管壁に軸方向に沿って帯状に形成されるとともに、前記放電空間を介して対向するように配置された一対の帯状電極と、を有し、前記放電空間に被処理物を導入した状態で前記一対の帯状電極に電圧を印加してプラズマを発生することにより、前記被処理物をプラズマ処理し、前記一対の帯状電極の少なくとも一方は、前記放電空間に露出しないように、前記筒状管壁に埋設されている、ことを特徴とする。 The plasma processing apparatus of the present invention includes a dielectric and extends in the axial direction, and has a plasma processing container having a tubular tube wall that constitutes a discharge space inside, and a strip of the tubular tube wall along the axial direction. It has a pair of strip-shaped electrodes that are formed and are arranged so as to face each other via the discharge space, and a voltage is applied to the pair of strip-shaped electrodes with an object to be treated introduced into the discharge space. The object to be treated is subjected to plasma treatment by generating plasma, and at least one of the pair of strip-shaped electrodes is embedded in the tubular tube wall so as not to be exposed to the discharge space. And.

前記一対の帯状電極は、ともに、前記放電空間に露出しないように、前記筒状管壁に埋設されていてもよい。Both of the pair of strip-shaped electrodes may be embedded in the tubular tube wall so as not to be exposed to the discharge space.

前記一対の帯状電極は、前記筒状管壁の中心軸を通る対称軸を中心に対称形状をなしていてもよい。The pair of strip-shaped electrodes may have a symmetrical shape about an axis of symmetry passing through the central axis of the tubular tube wall.

前記一対の帯状電極は、前記筒状管壁の曲率に対応する曲率で曲げられていてもよい。The pair of strip-shaped electrodes may be bent with a curvature corresponding to the curvature of the tubular tube wall.

前記一対の帯状電極は、前記筒状管壁の周方向に沿って、中央部の厚さが最も厚く、両端部に向けて徐々に厚さを減じて薄くなるナイフエッジ形状をなしていてもよい。The pair of strip-shaped electrodes has a knife edge shape in which the thickness of the central portion is the thickest along the circumferential direction of the tubular tube wall and the thickness is gradually reduced toward both ends to become thinner. good.

前記一対の帯状電極は、前記筒状管壁を形成する小径管と大径管の間に前記一対の帯状電極を挿入した状態において、前記小径管と前記大径管の間の空気を吸引して、前記小径管と前記大径管を加熱溶着して一体とすることにより、前記筒状管壁に埋設されていてもよい。The pair of band-shaped electrodes sucks air between the small-diameter tube and the large-diameter tube in a state where the pair of band-shaped electrodes are inserted between the small-diameter tube and the large-diameter tube forming the tubular tube wall. The small-diameter tube and the large-diameter tube may be heat-welded and integrated to be embedded in the tubular tube wall.

本発明のプラズマ処理方法は、上述したいずれかのプラズマ処理装置を用いたプラズマ処理方法であって、前記プラズマ処理容器内に、開口部から前記被処理物を導入するステップと、前記開口部と同一の開口部または異なる開口部から放電用ガスを供給するステップと、前記一対の帯状電極に電圧を印加することにより、前記プラズマ処理容器内で前記プラズマを生成して、前記被処理物をプラズマ処理するステップと、前記一対の帯状電極への電圧の印加を停止するステップと、前記被処理物を前記開口部と同一の開口部または異なる開口部から取り出すステップと、を有することを特徴とする。The plasma processing method of the present invention is a plasma processing method using any of the above-mentioned plasma processing devices, and includes a step of introducing the object to be processed from an opening into the plasma processing container, and the opening. By supplying a discharge gas from the same opening or different openings and applying a voltage to the pair of band-shaped electrodes, the plasma is generated in the plasma processing container, and the object to be processed is plasma. It is characterized by having a step of processing, a step of stopping application of a voltage to the pair of strip-shaped electrodes, and a step of taking out the object to be processed from the same opening as the opening or a different opening. ..

本発明は、プラズマ処理容器内で被処理物にプラズマ処理を行なうプラズマ処理装置において、プラズマ処理が行なわれる放電空間に電極が露出しないようにしたことで、プラズマ処理に伴う不純物が発生するおそれがなく、被処理物に不純物が混入することなく、プラズマ処理を行うことができる。また、放電空間の電界強度をプラズマ処理容器周方向に沿って不均一とすることで、電界強度が局所的に高い部分を放電空間に有し、低い電圧でもプラズマ(放電)を発生させることができる。このため、確実に被処理物にプラズマ処理することができる。 In the present invention, in a plasma processing apparatus that performs plasma processing on an object to be processed in a plasma processing container, impurities may be generated due to plasma processing by preventing the electrodes from being exposed in the discharge space where plasma processing is performed. Plasma treatment can be performed without impurities being mixed in the object to be treated. Further, by making the electric field strength of the discharge space non-uniform along the circumferential direction of the plasma processing container, it is possible to have a portion where the electric field strength is locally high in the discharge space and generate plasma (discharge) even at a low voltage. can. Therefore, the object to be processed can be reliably plasma-treated.

本発明による大気圧プラズマ処理装置の第1の実施形態を示す縦断面図である。It is a vertical sectional view which shows the 1st Embodiment of the atmospheric pressure plasma processing apparatus by this invention. 図1のII−II線に沿う断面図である。FIG. 3 is a cross-sectional view taken along the line II-II of FIG. 本発明の第1の実施形態の変形例を示す、図2に対応する断面図である。It is sectional drawing corresponding to FIG. 2 which shows the modification of 1st Embodiment of this invention. 本発明による大気圧プラズマ処理装置の第2の実施形態を示す縦断面図である。It is a vertical sectional view which shows the 2nd Embodiment of the atmospheric pressure plasma processing apparatus by this invention. 図4のV−V線に沿う断面図である。It is sectional drawing which follows the VV line of FIG. 本発明の第2の実施形態の変形例を示す、図5に対応する断面図である。It is sectional drawing corresponding to FIG. 5 which shows the modification of the 2nd Embodiment of this invention.

以下図面について本発明に係る大気圧プラズマ処理装置100の実施形態を説明する。図1及び図2は本発明による大気圧プラズマ処理装置の第1の実施形態を示している。図1、図2に示すように、本大気圧プラズマ処理装置100は、プラズマ処理容器10(放電容器)を備えている。このプラズマ処理容器10は、誘電体(例えば石英)からなるものであり、図示例では断面が真円である円筒状に形成されている。このプラズマ処理容器10の軸方向の一端には、プラズマ処理容器10の径方向に向けて開口部11が形成され、他端部にはプラズマ処理容器10の軸方向に向けて開口部12が形成されている。開口部11は、プラズマ処理容器10の管壁10aに穿設したものであって、プラズマ処理容器10の径方向に延びる接続管11aと連通している。管壁10aの一端部は、管壁10aと一体の端部壁10bによって塞がれている。 Hereinafter, embodiments of the atmospheric pressure plasma processing apparatus 100 according to the present invention will be described with reference to the drawings. 1 and 2 show a first embodiment of the atmospheric pressure plasma processing apparatus according to the present invention. As shown in FIGS. 1 and 2, the atmospheric pressure plasma processing apparatus 100 includes a plasma processing container 10 (discharge container). The plasma processing container 10 is made of a dielectric (for example, quartz), and is formed in a cylindrical shape having a perfect circular cross section in the illustrated example. An opening 11 is formed in the radial direction of the plasma processing container 10 at one end in the axial direction of the plasma processing container 10, and an opening 12 is formed in the axial direction of the plasma processing container 10 at the other end. Has been done. The opening 11 is formed in the tube wall 10a of the plasma processing container 10 and communicates with the connecting pipe 11a extending in the radial direction of the plasma processing container 10. One end of the pipe wall 10a is closed by the end wall 10b integral with the pipe wall 10a.

一方、プラズマ処理容器10の内部には、プラズマ処理容器10の軸心に沿って一対の電極の一方の電極となる内側電極13aと該内側電極13aを埋設した(被覆した)内側管(内側誘電体)13bとが配設されている。内側電極13aを埋設した内側管13bは誘電体(例えば石英)から構成されるものであり、管状の誘電体内に内側電極13aを挿入した状態で、溶融軟化(加熱溶着)させることで形成される。また、内側管13bは、プラズマ処理容器10の開口部11側の端部壁10bにおいて、加熱溶着(加熱成形)によりプラズマ処理容器10と一体となり、プラズマ処理容器10の一部を構成している。この内側管(内側誘電体)13bとプラズマ処理容器10(管壁10aと外側誘電体)の間の筒状空間が放電空間(プラズマ処理空間)14を構成する。なお管壁10aが外側誘電体であってもよい。 On the other hand, inside the plasma processing container 10, an inner electrode 13a, which is one of the pair of electrodes along the axis of the plasma processing container 10, and an inner tube (inner dielectric) in which the inner electrode 13a is embedded (covered). Body) 13b and 13b are arranged. The inner tube 13b in which the inner electrode 13a is embedded is composed of a dielectric (for example, quartz), and is formed by melt-softening (heat welding) with the inner electrode 13a inserted in the tubular dielectric. .. Further, the inner tube 13b is integrated with the plasma processing container 10 by heat welding (heat molding) at the end wall 10b on the opening 11 side of the plasma processing container 10 to form a part of the plasma processing container 10. .. The tubular space between the inner tube (inner dielectric) 13b and the plasma processing container 10 (tube wall 10a and outer dielectric) constitutes the discharge space (plasma processing space) 14. The tube wall 10a may be an outer dielectric.

内側電極13aは、図示実施形態では、図2に示すように、長手方向(プラズマ処理容器10の軸方向、容器内の放電用ガスの流れ方向)に一様断面の帯状(箔状、板状)に形成された帯状電極であり、その幅方向の中央部13a1の厚さは両縁部13a2の厚さより厚く、かつ両縁部13a2(幅方向に沿った両端部)に向けて先鋭化し、その厚さは中央部13a1に比べて薄くなり、両縁部13a2は先細く尖ったナイフエッジ形状をなしている。内側電極13aを埋設した内側管13bのプラズマ処理容器10の径方向の厚さは周方向に沿って不均一であり、埋設された内側電極13aの幅方向(幅方向に沿って両縁部13a2を延長した方向)の外側の厚さdが最も薄くなっている。 In the illustrated embodiment, the inner electrode 13a has a strip shape (foil shape, plate shape) having a uniform cross section in the longitudinal direction (axial direction of the plasma processing container 10, flow direction of the discharge gas in the container) as shown in FIG. ), The thickness of the central portion 13a1 in the width direction is thicker than the thickness of both edge portions 13a2, and the thickness is sharpened toward both edge portions 13a2 (both ends along the width direction). Its thickness is thinner than that of the central portion 13a1, and both edge portions 13a2 have a tapered and pointed knife edge shape. The radial thickness of the plasma processing container 10 of the inner tube 13b in which the inner electrode 13a is embedded is non-uniform along the circumferential direction, and the width direction of the embedded inner electrode 13a (both edges 13a2 along the width direction). The outer thickness d (in the direction of extension) is the thinnest.

一方、プラズマ処理容器10(管壁10a)の外周面には、一対の電極の他方の電極となる外側電極15が配設されている。外側電極15は、図示実施形態では、金属膜状(箔状)電極として描いているが、螺旋状に巻回された金属線材であってもよい。外側電極15と内側電極13aが対向する軸方向長さは放電空間14に対応している。 On the other hand, on the outer peripheral surface of the plasma processing container 10 (tube wall 10a), an outer electrode 15 serving as the other electrode of the pair of electrodes is disposed. Although the outer electrode 15 is drawn as a metal film-like (foil-like) electrode in the illustrated embodiment, it may be a metal wire wound spirally. The axial length of the outer electrode 15 and the inner electrode 13a facing each other corresponds to the discharge space 14.

以上の内側電極13aと外側電極15は、内側管13b、放電空間14及びプラズマ処理容器10の管壁10aを介して対向する一対の電極であり、図示しない電源部に電気的に接続されている。また内側電極13aは高圧側電極であり、外側電極15は接地側電極であるが、この逆であってもよい。 The inner electrode 13a and the outer electrode 15 are a pair of electrodes facing each other via the inner tube 13b, the discharge space 14, and the tube wall 10a of the plasma processing container 10, and are electrically connected to a power supply unit (not shown). .. Further, the inner electrode 13a is a high voltage side electrode and the outer electrode 15 is a ground side electrode, but vice versa.

上記構成の本大気圧プラズマ処理装置100を用いて被処理物をプラズマ処理する手順の一例を説明する。 An example of a procedure for plasma-treating an object to be processed by using the atmospheric pressure plasma processing apparatus 100 having the above configuration will be described.

「被処理物Sの導入」
プラズマ処理容器10の一対の開口部11と12の一方(例えば開口部11)から放電空間14に被処理物S(図1ないし図6に模式的に示した)を導入する。被処理物Sは、気体、固体、液体のいずれでもよい。
"Introduction of object S to be processed"
The object to be processed S (schematically shown in FIGS. 1 to 6) is introduced into the discharge space 14 from one of the pair of openings 11 and 12 (for example, the openings 11) of the plasma processing container 10. The object S to be processed may be a gas, a solid, or a liquid.

「放電用ガスの供給」
プラズマ処理容器10の放電空間14内の流路に沿って、一対の開口部11と開口部12の一方(例えば開口部11)から放電用ガスを供給し、放電空間14内の流路に沿って放電用ガスを流動させる。放電空間14を流動した放電用ガスはプラズマ処理容器10の他方の開口部(例えば開口部12)から放出される。放電用ガスは酸素などの反応性の高いガスだけでなく、ヘリウム、アルゴン、窒素などの不活性なガス、さらには反応性の高いガスと不活性なガスの混合ガスでもよい。このように、予め放電空間14に被処理物Sを配設した状態で放電用ガスを流してもよいが、放電用ガスが流れた状態で放電空間14に被処理物を設置(混入)してもよいし、被処理物Sが混入された放電用ガスとして放電空間14に流してもよい。
"Supply of gas for discharge"
Discharge gas is supplied from one of the pair of openings 11 and the opening 12 (for example, the opening 11) along the flow path in the discharge space 14 of the plasma processing container 10, and along the flow path in the discharge space 14. To flow the discharge gas. The discharge gas flowing through the discharge space 14 is discharged from the other opening (for example, the opening 12) of the plasma processing container 10. The discharge gas may be not only a highly reactive gas such as oxygen, but also an inert gas such as helium, argon or nitrogen, or a mixed gas of the highly reactive gas and the inert gas. In this way, the discharge gas may flow in the state where the object S to be processed is arranged in the discharge space 14 in advance, but the object to be processed is installed (mixed) in the discharge space 14 with the discharge gas flowing. Alternatively, it may flow into the discharge space 14 as a discharge gas mixed with the object S to be processed.

「プラズマ発生及びプラズマ処理」
電源部によって内側電極13aと外側電極15との間に放電開始(絶縁破壊)に必要な高電圧を印加すると、プラズマ処理容器10の放電空間14内において、内側電極13aと外側電極15との間で電界強度が高い両縁部13a2付近からの絶縁破壊が起点になって、放電空間14内の全体でプラズマ(放電)が発生する。このプラズマによって、放電空間14内の被処理物Sに表面改質などのプラズマ処理を行う。このように両縁部13a2付近の電界強度が局所的に高いことを以下に説明する。内側電極13aの厚さは幅方向の中央部13a1から両縁部13a2に向かって薄くなり、両縁部13a2が尖ったナイフエッジ形状をなしているので、例えば円柱状の電極と比較して、電界集中が生じやすい。その結果、内側電極13aの幅方向に沿った放電空間14(両縁部13a2と外側電極15との間で放電距離が最短となる領域)の電界強度が局所的に高くなる。
"Plasma generation and plasma processing"
When a high voltage required for discharge start (dielectric breakdown) is applied between the inner electrode 13a and the outer electrode 15 by the power supply unit, between the inner electrode 13a and the outer electrode 15 in the discharge space 14 of the plasma processing container 10. Dielectric breakdown from the vicinity of both edge portions 13a2 having high electric field strength is the starting point, and plasma (discharge) is generated in the entire discharge space 14. By this plasma, plasma treatment such as surface modification is performed on the object S to be processed in the discharge space 14. It will be described below that the electric field strength in the vicinity of both edge portions 13a2 is locally high as described above. The thickness of the inner electrode 13a decreases from the central portion 13a1 in the width direction toward both edge portions 13a2, and both edge portions 13a2 have a sharp knife edge shape. Electric field concentration is likely to occur. As a result, the electric field strength of the discharge space 14 (the region where the discharge distance is the shortest between the both edge portions 13a2 and the outer electrode 15) along the width direction of the inner electrode 13a is locally increased.

加えて、図示実施形態では、内側電極13aを覆う内側管13bの厚さが周方向において不均一であり、内側電極13aの両縁部13a2(ナイフエッジ形状の先端)において厚さが最小になっている。電界強度は、誘電体の厚さが薄い部分ほど高くなることが知られているから、放電空間14において、内側電極13aの幅方向の2箇所の空間Xの少なくともいずれか一方において確実にプラズマ(放電)を発生させることができる。 In addition, in the illustrated embodiment, the thickness of the inner tube 13b covering the inner electrode 13a is non-uniform in the circumferential direction, and the thickness is minimized at both edge portions 13a2 (tip of the knife edge shape) of the inner electrode 13a. ing. Since it is known that the electric field strength becomes higher as the thickness of the dielectric becomes thinner, the plasma (in the discharge space 14) is surely generated in at least one of the two spaces X in the width direction of the inner electrode 13a. Discharge) can be generated.

別言すれば、一対の電極間の距離をプラズマ処理容器(放電管)の周方向に沿って不均一とする観点で、内側電極13aの両縁部13a2のどちらか一方を中央部の厚さよりも薄くする(ナイフエッジ形状とする)ことで、内側電極13aの幅をプラズマ処理容器の周方向に沿って不均一とするか、一対の電極間の誘電体の厚さをプラズマ処理容器の周方向に沿って不均一とする観点で、内側管13bに厚さが薄くなる部分(薄肉部)を設けることで、内側管13bの厚さ(外径)をプラズマ処理容器の周方向に沿って不均一とするかのいずれかによって、プラズマ処理容器内の電界強度を局所的に高くすることができ、プラズマ処理容器の周方向に沿って電界強度が不均一となる。これらの方法の少なくとも一つを適用することで、比較的低い放電開始電圧でもプラズマを生じさせることができる。 In other words, from the viewpoint of making the distance between the pair of electrodes non-uniform along the circumferential direction of the plasma processing container (discharge tube), either one of the both edge portions 13a2 of the inner electrode 13a is more than the thickness of the central portion. The width of the inner electrode 13a is made non-uniform along the circumferential direction of the plasma processing container, or the thickness of the dielectric between the pair of electrodes is set to the circumference of the plasma processing container. From the viewpoint of making the inner tube 13b non-uniform along the direction, the inner tube 13b is provided with a thin portion (thin wall portion) so that the thickness (outer diameter) of the inner tube 13b can be increased along the circumferential direction of the plasma processing container. By either of the non-uniformity, the electric discharge strength in the plasma processing container can be locally increased, and the electric discharge strength becomes non-uniform along the circumferential direction of the plasma processing container. By applying at least one of these methods, plasma can be generated even at a relatively low discharge start voltage.

放電空間14に被処理物Sが存在すると、放電開始電圧に影響を与える。特に、被処理物Sが放電空間14内に偏って配置されると、放電開始電圧が不安定になる。また、放電空間内の放電用ガスの状態(例えば圧力、濃度、流速)が不均一になることでも放電開始電圧が不安定になる。しかし、本実施形態のように、放電空間14に局所的に電界強度が高い部分を生じさせることで、低い電圧でもプラズマ(放電)を生じさせることができるようになり、被処理物Sの配置や放電ガスの状態に関わらず、確実に被処理物Sをプラズマ処理することができる。なお、内側管13bの薄肉部を、ナイフエッジ形状の両縁部13a2の外側に設けることで、相乗効果によって、プラズマ処理容器内の電界強度を局所的により高くすることができ、放電空間14内の被処理物Sの偏りが大きい場合でも、放電開始電圧を増加させることなく確実にプラズマ処理を行うことができる。 The presence of the object S to be processed in the discharge space 14 affects the discharge start voltage. In particular, if the object S to be processed is unevenly arranged in the discharge space 14, the discharge start voltage becomes unstable. Further, the discharge start voltage becomes unstable due to the non-uniform state of the discharge gas (for example, pressure, concentration, flow velocity) in the discharge space. However, as in the present embodiment, by locally generating a portion having a high electric field strength in the discharge space 14, plasma (discharge) can be generated even at a low voltage, and the object S to be processed is arranged. The object S to be processed can be reliably plasma-treated regardless of the state of the discharge gas or the discharge gas. By providing the thin portion of the inner tube 13b on the outside of both edge portions 13a2 having a knife edge shape, the electric field strength in the plasma processing container can be locally increased by the synergistic effect, and the inside of the discharge space 14 can be increased. Even when the bias of the object S to be processed is large, plasma processing can be reliably performed without increasing the discharge start voltage.

「プラズマ処理の終了、及び被処理物の取り出し」
内側電極13aと外側電極15間への電力供給と、放電空間14内への放電用ガスの供給とを停止し、プラズマ処理容器10の一方の開口部(例えば開口部12)から、プラズマ処理容器10内のプラズマ処理された被処理物Sを取り出す。なお、被処理物Sは放電用ガスと共にプラズマ処理容器10外へ放出されるようにしてもよい。
"End of plasma treatment and removal of object to be treated"
The power supply between the inner electrode 13a and the outer electrode 15 and the supply of the discharge gas into the discharge space 14 are stopped, and the plasma processing container is stopped from one opening (for example, the opening 12) of the plasma processing container 10. The plasma-treated object S in 10 is taken out. The object S to be processed may be discharged to the outside of the plasma processing container 10 together with the discharge gas.

以上のプラズマ処理装置において、内側電極13aと外側電極15は、内側管(内側誘電体)13bとプラズマ処理容器10によって覆われており、いずれも放電空間14には露出していない。このため、電極部材などから生じた不純物(たとえば、電極から放出される不純ガスや、被処理物と電極との反応物)が、放電空間14内の被処理物Sや放電用ガスに混入することが無い。 In the above plasma processing apparatus, the inner electrode 13a and the outer electrode 15 are covered with the inner tube (inner dielectric) 13b and the plasma processing container 10, and neither of them is exposed to the discharge space 14. Therefore, impurities generated from the electrode member or the like (for example, an impure gas discharged from the electrode or a reaction product between the object to be processed and the electrode) are mixed in the object S to be processed or the discharge gas in the discharge space 14. There is no such thing.

さらに、以上の第1の実施形態では、内側電極13aが内側管13b内に埋設されているために、プラズマ放電の際に内側電極13aが損傷することが無い。すなわち、プラズマ処理容器10内の内側電極13aが内側管(誘電体)13bに覆われることで、放電用ガス(放電用ガスに含まれる反応性の高いガス)と内側電極13aが接することがなく、内側電極13aが放電用ガスによって劣化することが無い。さらに、内側電極13aを覆う内側管(内側誘電体)13bと、プラズマ処理容器10とが一体として構成されていることによって、より確実に電極の劣化を防いで、不純物の混入を防止できる。また、帯状の内側電極13aの幅方向の両縁部13a2はナイフエッジ形状であるため、内側管13bとの間に隙間が生じない。これにより、隙間に入り込んだ酸素(大気)と内側電極13aとが反応(酸化)し、内側電極13aが劣化することを防止できる。 Further, in the above first embodiment, since the inner electrode 13a is embedded in the inner tube 13b, the inner electrode 13a is not damaged during plasma discharge. That is, since the inner electrode 13a in the plasma processing container 10 is covered with the inner tube (dielectric) 13b, the discharge gas (the highly reactive gas contained in the discharge gas) does not come into contact with the inner electrode 13a. , The inner electrode 13a is not deteriorated by the discharge gas. Further, since the inner tube (inner dielectric) 13b covering the inner electrode 13a and the plasma processing container 10 are integrally configured, deterioration of the electrode can be prevented more reliably and impurities can be prevented from being mixed. Further, since both edge portions 13a2 of the band-shaped inner electrode 13a in the width direction have a knife edge shape, no gap is formed between the band-shaped inner electrode 13a and the inner tube 13b. As a result, it is possible to prevent the oxygen (atmosphere) that has entered the gap from reacting (oxidizing) with the inner electrode 13a and deteriorating the inner electrode 13a.

また、図3は、第1の実施形態の変形例を示すもので、内側電極13a’を円形断面とし、内側管13b’を楕円(長円)状断面とすることで、誘電体の厚さが周方向において不均一になっている。この変形例においても、誘電体である内側管13b’の厚さがプラズマ処理容器10の周方向に沿って不均一となって、放電空間14において、内側管13b’の厚さが最も薄くなる部分に接する内側電極13a’付近の空間Xの電界強度を局所的に高くすることができる。内側電極13a’が内側管13b’内に埋設されているために、内側電極13a’が損傷することが無く、長期間にわたって、確実にプラズマを発生させることができる。さらに、電極部材などから生じた不純物(たとえば、電極から放出される不純ガスや、被処理物と電極との反応物)が、放電空間14内に配置される被処理物Sや放電用ガスに混入することも無い。 Further, FIG. 3 shows a modified example of the first embodiment, in which the inner electrode 13a'has a circular cross section and the inner tube 13b' has an elliptical (elliptical) cross section, whereby the thickness of the dielectric is increased. Is non-uniform in the circumferential direction. Also in this modification, the thickness of the inner tube 13b'which is a dielectric becomes non-uniform along the circumferential direction of the plasma processing container 10, and the thickness of the inner tube 13b' becomes the thinnest in the discharge space 14. The electric field strength of the space X near the inner electrode 13a'that is in contact with the portion can be locally increased. Since the inner electrode 13a'is embedded in the inner tube 13b', the inner electrode 13a'is not damaged and plasma can be reliably generated for a long period of time. Further, impurities generated from the electrode member or the like (for example, an impure gas discharged from the electrode or a reaction product between the object to be processed and the electrode) become the object S to be processed or the gas for discharge arranged in the discharge space 14. It will not be mixed.

図4及び図5は、本発明による大気圧プラズマ処理装置の第2の実施形態を示している。この第2の実施形態は、第1の実施形態に比して、一対の電極の配置態様と、開口部の配置形態が異なっている。プラズマ処理容器20は、誘電体(例えば石英)からなる筒状の管壁20aと、プラズマ処理容器20の一方の端部を塞ぐ端部壁20bと、この端部壁20bの略中央に管壁20aと同軸に形成された開口部21と、管壁20aの他方の端部に管壁20aと同軸に形成された開口部22とを備えている。端部壁20bの外面には、開口部21に連通する接続管21aが一体に形成され、プラズマ処理容器20の一部を構成している。この管壁20a内の筒状空間が放電空間(プラズマ処理空間)24を構成する。 4 and 5 show a second embodiment of the atmospheric pressure plasma processing apparatus according to the present invention. In this second embodiment, the arrangement mode of the pair of electrodes and the arrangement mode of the opening are different from those in the first embodiment. The plasma processing container 20 has a tubular tube wall 20a made of a dielectric (for example, quartz), an end wall 20b that closes one end of the plasma processing container 20, and a tube wall substantially in the center of the end wall 20b. An opening 21 formed coaxially with the pipe wall 20a and an opening 22 formed coaxially with the pipe wall 20a at the other end of the pipe wall 20a are provided. A connecting pipe 21a communicating with the opening 21 is integrally formed on the outer surface of the end wall 20b, and forms a part of the plasma processing container 20. The tubular space in the tube wall 20a constitutes the discharge space (plasma processing space) 24.

この実施形態では、一対の電極23は、図5に示すように、プラズマ処理容器10の軸方向に沿って一様断面の帯状(板状)に形成された帯状電極であり、管壁20a及び放電空間24を介して対向するように、プラズマ処理容器20の管壁20a内に埋設されている。一対の電極23は、プラズマ処理容器20の中心軸を通る対称軸を中心に対称形状をなすものであって、プラズマ処理容器20の管壁20aの曲率に対応する曲率で曲げられており、かつ、周方向に沿って、中央部231の厚さが最も厚く、両縁部232に向けて徐々に厚さを減じて薄くなるナイフエッジ形状をなしている。この一対の電極23はそれぞれ長手方向の一端に接続される給電部材23aによって、電源装置と電気的に接続される。 In this embodiment, as shown in FIG. 5, the pair of electrodes 23 are band-shaped electrodes formed in a band shape (plate shape) having a uniform cross section along the axial direction of the plasma processing container 10, and the tube wall 20a and the tube wall 20a. It is embedded in the tube wall 20a of the plasma processing container 20 so as to face each other via the discharge space 24. The pair of electrodes 23 have a symmetrical shape about an axis of symmetry passing through the central axis of the plasma processing container 20, and are bent at a curvature corresponding to the curvature of the tube wall 20a of the plasma processing container 20. Along the circumferential direction, the central portion 231 has the thickest thickness, and has a knife edge shape that gradually decreases in thickness toward both edge portions 232 and becomes thinner. The pair of electrodes 23 are electrically connected to the power supply device by a feeding member 23a connected to one end in the longitudinal direction.

一対の電極23をプラズマ処理容器20の管壁20a内に加熱成形により埋設する方法としては、小径管(石英管)と大径管(石英管)との間に一対の電極23を挿入した状態において、小径管と大径管の間の空気を吸引し、小径管と大径管を加熱溶着させて一体とさせる製造方法を適用できる。 As a method of burying the pair of electrodes 23 in the tube wall 20a of the plasma processing container 20 by heat molding, a state in which the pair of electrodes 23 are inserted between the small diameter tube (quartz tube) and the large diameter tube (quartz tube). In the above, a manufacturing method in which air between a small diameter pipe and a large diameter pipe is sucked and the small diameter pipe and the large diameter pipe are heat-welded to be integrated can be applied.

以上の大気圧プラズマ処理装置100は、プラズマ処理容器20の一対の電極23の両縁部232が、尖ったナイフエッジ形状をなしており、放電空間24とプラズマ処理容器20の筒状壁面(誘電体)を挟んで対向している。このため、プラズマ処理容器20の径方向断面において、一対の電極23間の距離や誘電体の厚さが、一対の電極23の対称軸(プラズマ処理容器の径方向)に沿って不均一になるので、放電空間24内の電界強度は、一対の電極23の両縁部232付近において局所的に高くなって、プラズマ処理容器20の周方向に沿って不均一となる。 In the above-mentioned atmospheric pressure plasma processing apparatus 100, both edges 232 of the pair of electrodes 23 of the plasma processing container 20 have a sharp knife edge shape, and the discharge space 24 and the cylindrical wall surface (dielectric) of the plasma processing container 20 are formed. They are facing each other across the body). Therefore, in the radial cross section of the plasma processing container 20, the distance between the pair of electrodes 23 and the thickness of the dielectric become non-uniform along the axis of symmetry of the pair of electrodes 23 (radial direction of the plasma processing container). Therefore, the electric field strength in the discharge space 24 becomes locally high in the vicinity of both edge portions 232 of the pair of electrodes 23, and becomes non-uniform along the circumferential direction of the plasma processing container 20.

従って、第1の実施形態と同様に、電源部によって一対の電極23の間に放電開始(絶縁破壊)に必要な高電圧を印加すると、プラズマ処理容器20内の両縁部232付近における絶縁破壊を起点として、放電空間24全体でプラズマが発生し、一対の開口部21、22の一方から放電空間24内に導入された被処理物Sにプラズマ処理を行う。このとき、電極部材などから生じた不純物(たとえば、電極から放出される不純ガスや、被処理物と電極との反応物)が被処理物Sに混入することが無い。 Therefore, as in the first embodiment, when a high voltage required for discharge start (dielectric breakdown) is applied between the pair of electrodes 23 by the power supply unit, the insulation breakdown in the vicinity of both edge portions 232 in the plasma processing container 20 Plasma is generated in the entire discharge space 24, and plasma treatment is performed on the object S to be processed introduced into the discharge space 24 from one of the pair of openings 21 and 22. At this time, impurities generated from the electrode member or the like (for example, the impure gas released from the electrode or the reaction product between the object to be processed and the electrode) are not mixed in the object S to be processed.

本実施形態では帯状の電極23がプラズマ処理容器20の管壁20aの内部に埋設され、管壁20aの外表面に露出していない。そのため、プラズマ処理容器20の管壁20aの外表面で沿面放電が生じることがないので、沿面放電によって放電空間24でのプラズマ発生が阻害されることがなく、かつ高電圧が印加される電極23がプラズマ処理容器20の外表面に露出しない安全なプラズマ処理装置を提供できる。 In the present embodiment, the strip-shaped electrode 23 is embedded inside the tube wall 20a of the plasma processing container 20 and is not exposed on the outer surface of the tube wall 20a. Therefore, since creeping discharge does not occur on the outer surface of the tube wall 20a of the plasma processing container 20, plasma generation in the discharge space 24 is not hindered by the creeping discharge, and the electrode 23 to which a high voltage is applied is applied. Can provide a safe plasma processing apparatus that is not exposed to the outer surface of the plasma processing container 20.

図6は、第2の実施形態の変形例を示している。この変形例は、第2の実施形態の一対の電極のうち、電極23’’をプラズマ処理容器20の管壁20a内に埋設し、電極23’を管壁20aの外表面に沿わせて配設したものである。この変形例の一対の電極23’、23’’は、対称軸を中心に対称形状をなすものであって、周方向に沿って、中央部231’、231’’の厚さが最も厚く、周方向の両縁部232’、232’’に向けて徐々に厚さを減じて薄くなるナイフエッジ形状をなしている。したがってこの変形例においても、プラズマ処理容器20の径方向断面において、一対の電極23’、23’’間の距離や誘電体の厚さが、一対の電極23’、23’’の対称軸(プラズマ処理容器20の径方向)に沿って不均一となるので、一対の電極23’、23’’の間の電界強度は、両縁部232’と232’’付近で局所的に高くなり、プラズマ処理容器20の周方向に沿って不均一になる。第1の実施形態と同様に、電源部によって一対の電極23’、23’’の間に放電開始(絶縁破壊)に必要な高電圧を印加すると、プラズマ処理容器20内の両縁部232’と232’’付近における絶縁破壊を起点として放電空間24全域でプラズマが発生し、被処理物Sをプラズマ処理する。このとき、開口部21と22の一方から放電空間24内に導入される被処理物Sに、電極部材などから生じた不純物(たとえば、電極から放出される不純ガスや、被処理物と電極との反応物)が混入することが無い。この変形例においても、一方の電極23’’がプラズマ処理容器20の管壁20a内部に埋設され、管壁20aの外表面に露出していないので管壁20a外表面で沿面放電が生じることがない。これにより、沿面放電によって放電空間24でのプラズマ発生が阻害されることがなく、かつ高電圧が印加される電極23’’がプラズマ処理容器20の外表面に露出しない安全なプラズマ処理装置を提供できる。 FIG. 6 shows a modified example of the second embodiment. In this modification, of the pair of electrodes of the second embodiment, the electrode 23'' is embedded in the tube wall 20a of the plasma processing container 20, and the electrode 23'is arranged along the outer surface of the tube wall 20a. It was set up. The pair of electrodes 23'and 23'' in this modification have a symmetrical shape centered on the axis of symmetry, and the central portion 231', 231'' is the thickest along the circumferential direction. It has a knife edge shape that gradually decreases in thickness toward both edges 232', 232'' in the circumferential direction. Therefore, even in this modification, in the radial cross section of the plasma processing container 20, the distance between the pair of electrodes 23'and 23'' and the thickness of the dielectric are the axes of symmetry of the pair of electrodes 23'and 23''. Since it becomes non-uniform along the radial direction of the plasma processing container 20, the electric field strength between the pair of electrodes 23'and 23'is locally increased near both edges 232'and 232''. It becomes non-uniform along the circumferential direction of the plasma processing container 20. Similar to the first embodiment, when a high voltage required for starting discharge (dielectric breakdown) is applied between the pair of electrodes 23'and 23'' by the power supply unit, both edges 232'in the plasma processing container 20 are applied. Plasma is generated in the entire discharge space 24 starting from the dielectric breakdown in the vicinity of and 232'', and the object S to be processed is plasma-treated. At this time, impurities generated from the electrode member or the like (for example, the impure gas discharged from the electrode, or the object to be processed and the electrode) are introduced into the object S to be processed introduced into the discharge space 24 from one of the openings 21 and 22. (Reactant of) is not mixed. Also in this modification, since one of the electrodes 23'' is embedded inside the tube wall 20a of the plasma processing container 20 and is not exposed on the outer surface of the tube wall 20a, creeping discharge may occur on the outer surface of the tube wall 20a. No. This provides a safe plasma processing apparatus in which plasma generation in the discharge space 24 is not hindered by creeping discharge and the electrode 23'' to which a high voltage is applied is not exposed on the outer surface of the plasma processing container 20. can.

以上の実施形態では、プラズマ処理容器10(20)に形成した一対の開口部11(21)、12(22)の一方と他方をそれぞれ被処理物Sの供給口と排出口、あるいは放電ガスの導入口と取出口としたが、これらを別々に設けてもよい。例えば、被処理物S用、放電ガス用にそれぞれ独立させて設けてもよい。 In the above embodiment, one and the other of the pair of openings 11 (21) and 12 (22) formed in the plasma processing container 10 (20) are the supply port and the discharge port of the object S to be processed, or the discharge gas, respectively. The inlet and outlet are used, but these may be provided separately. For example, it may be provided independently for the object S to be processed and for the discharge gas.

10 プラズマ処理容器(放電容器、放電管)
10a 管壁(外側誘電体)
10b 端部壁
11 開口部
11a 接続管
12 開口部
13a、13a’ 内側電極(一方の電極、帯状電極)
13a1 中央部
13a2 縁部(両縁部)
13b、13b’ 内側管(内側誘電体)
14 放電空間(プラズマ処理空間)
15 外側電極(他方の電極、帯状電極)
20 プラズマ処理容器(放電容器、放電管)
20a 管壁
20b 端部壁
21 開口部
22 開口部
23、23’、23’’ 電極(帯状電極)
231、231’、231’’ 中央部
232、232’、232’’ 縁部(両縁部)
24 放電空間(プラズマ処理空間)
100 大気圧プラズマ処理装置
10 Plasma processing container (discharge container, discharge tube)
10a Tube wall (outer dielectric)
10b End wall 11 Opening 11a Connecting tube 12 Opening 13a, 13a'Inner electrode (one electrode, band-shaped electrode)
13a1 Central part 13a2 Edge part (both edges)
13b, 13b'Inner tube (inner dielectric)
14 Discharge space (plasma processing space)
15 Outer electrode (the other electrode, band-shaped electrode)
20 Plasma processing container (discharge container, discharge tube)
20a Tube wall 20b End wall 21 Opening 22 Opening 23, 23', 23'' Electrode (strip-shaped electrode)
231 231', 231'' Central part 232, 232', 232'' Edge part (both edges)
24 Discharge space (plasma processing space)
100 atmospheric pressure plasma processing equipment

Claims (7)

誘電体を含んで軸方向に延びるとともに、内部に放電空間を構成する筒状管壁を有するプラズマ処理容器と、A plasma processing container that contains a dielectric and extends in the axial direction and has a cylindrical tube wall that constitutes a discharge space inside.
前記筒状管壁に軸方向に沿って帯状に形成されるとともに、前記放電空間を介して対向するように配置された一対の帯状電極と、A pair of strip-shaped electrodes formed on the tubular tube wall in a strip shape along the axial direction and arranged so as to face each other via the discharge space.
を有し、Have,
前記放電空間に被処理物を導入した状態で前記一対の帯状電極に電圧を印加してプラズマを発生することにより、前記被処理物をプラズマ処理し、The object to be processed is plasma-treated by applying a voltage to the pair of strip-shaped electrodes to generate plasma with the object to be processed introduced into the discharge space.
前記一対の帯状電極の少なくとも一方は、前記放電空間に露出しないように、前記筒状管壁に埋設されている、At least one of the pair of strip electrodes is embedded in the tubular tube wall so as not to be exposed to the discharge space.
ことを特徴とするプラズマ処理装置。A plasma processing device characterized by this.
前記一対の帯状電極は、ともに、前記放電空間に露出しないように、前記筒状管壁に埋設されている、Both of the pair of strip-shaped electrodes are embedded in the tubular tube wall so as not to be exposed to the discharge space.
ことを特徴とする請求項1に記載のプラズマ処理装置。The plasma processing apparatus according to claim 1.
前記一対の帯状電極は、前記筒状管壁の中心軸を通る対称軸を中心に対称形状をなしている、The pair of strip-shaped electrodes have a symmetrical shape about an axis of symmetry passing through the central axis of the tubular tube wall.
ことを特徴とする請求項2に記載のプラズマ処理装置。The plasma processing apparatus according to claim 2.
前記一対の帯状電極は、前記筒状管壁の曲率に対応する曲率で曲げられている、The pair of strip electrodes are bent with a curvature corresponding to the curvature of the tubular tube wall.
ことを特徴とする請求項2又は請求項3に記載のプラズマ処理装置。The plasma processing apparatus according to claim 2 or 3, wherein the plasma processing apparatus is characterized in that.
前記一対の帯状電極は、前記筒状管壁の周方向に沿って、中央部の厚さが最も厚く、両端部に向けて徐々に厚さを減じて薄くなるナイフエッジ形状をなしている、The pair of strip-shaped electrodes have a knife edge shape in which the thickness of the central portion is the thickest and the thickness is gradually reduced toward both ends along the circumferential direction of the tubular tube wall.
ことを特徴とする請求項2から請求項4のいずれかに記載のプラズマ処理装置。The plasma processing apparatus according to any one of claims 2 to 4, wherein the plasma processing apparatus is characterized in that.
前記一対の帯状電極は、前記筒状管壁を形成する小径管と大径管の間に前記一対の帯状電極を挿入した状態において、前記小径管と前記大径管の間の空気を吸引して、前記小径管と前記大径管を加熱溶着して一体とすることにより、前記筒状管壁に埋設される、The pair of band-shaped electrodes sucks air between the small-diameter tube and the large-diameter tube in a state where the pair of band-shaped electrodes are inserted between the small-diameter tube and the large-diameter tube forming the tubular tube wall. The small-diameter tube and the large-diameter tube are heat-welded and integrated to be embedded in the tubular tube wall.
ことを特徴とする請求項2から請求項5のいずれかに記載のプラズマ処理装置。The plasma processing apparatus according to any one of claims 2 to 5.
請求項1から請求項6のいずれかに記載のプラズマ処理装置を用いたプラズマ処理方法であって、A plasma processing method using the plasma processing apparatus according to any one of claims 1 to 6.
前記プラズマ処理容器内に、開口部から前記被処理物を導入するステップと、The step of introducing the object to be processed into the plasma processing container from the opening, and
前記開口部と同一の開口部または異なる開口部から放電用ガスを供給するステップと、A step of supplying a discharge gas from the same opening as the opening or a different opening,
前記一対の帯状電極に電圧を印加することにより、前記プラズマ処理容器内で前記プラズマを生成して、前記被処理物をプラズマ処理するステップと、A step of generating the plasma in the plasma processing container by applying a voltage to the pair of strip-shaped electrodes and plasma-treating the object to be processed.
前記一対の帯状電極への電圧の印加を停止するステップと、A step of stopping the application of voltage to the pair of strip electrodes, and
前記被処理物を前記開口部と同一の開口部または異なる開口部から取り出すステップと、The step of taking out the object to be processed from the same opening as the opening or a different opening,
を有することを特徴とするプラズマ処理方法。A plasma processing method characterized by having.
JP2017056383A 2017-03-22 2017-03-22 Plasma processing equipment and plasma processing method Active JP6974678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017056383A JP6974678B2 (en) 2017-03-22 2017-03-22 Plasma processing equipment and plasma processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017056383A JP6974678B2 (en) 2017-03-22 2017-03-22 Plasma processing equipment and plasma processing method

Publications (2)

Publication Number Publication Date
JP2018160353A JP2018160353A (en) 2018-10-11
JP6974678B2 true JP6974678B2 (en) 2021-12-01

Family

ID=63795659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017056383A Active JP6974678B2 (en) 2017-03-22 2017-03-22 Plasma processing equipment and plasma processing method

Country Status (1)

Country Link
JP (1) JP6974678B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010029830A (en) * 2008-07-31 2010-02-12 Nakamura Sangyo Gakuen Plasma treatment device
JP5593138B2 (en) * 2010-06-23 2014-09-17 株式会社イー・スクエア Plasma surface treatment apparatus and electrode structure thereof
JP5504095B2 (en) * 2010-08-10 2014-05-28 株式会社オーク製作所 Discharge lamp
JP2014002937A (en) * 2012-06-19 2014-01-09 Air Water Inc Atmospheric pressure plasma treatment device, method for manufacturing atmospheric pressure plasma treatment device, and atmospheric pressure plasma treatment method
JP2015064966A (en) * 2013-09-24 2015-04-09 日本碍子株式会社 Structure and electrode structure
JP6006393B1 (en) * 2015-10-09 2016-10-12 アルファ株式会社 Plasma processing equipment
JP2017107717A (en) * 2015-12-09 2017-06-15 日本特殊陶業株式会社 Plasma reactor and plasma electrode plate

Also Published As

Publication number Publication date
JP2018160353A (en) 2018-10-11

Similar Documents

Publication Publication Date Title
KR101880622B1 (en) plasma jet assembly and plasma brush including the same
US20110022043A1 (en) Device for the treatment of surfaces with a plasma generated by an electrode over a solid dielectric via a dielectrically impeded gas discharge
WO2011006018A3 (en) Apparatus and method for plasma processing
KR101239315B1 (en) Plasma device
JP6974678B2 (en) Plasma processing equipment and plasma processing method
US20160348969A1 (en) Heat treatment device
JP4871343B2 (en) Plasma processing equipment
JP7014612B2 (en) Plasma generator and plasma generation method
JP6974677B2 (en) Plasma generator and plasma generation method
JP2017091708A (en) Ambient pressure plasma processing apparatus
KR102162219B1 (en) Plasma generating device having double structure of dielectric pipe
JP6888996B2 (en) Atmospheric pressure plasma generator
JPS6411055B2 (en)
JP5771466B2 (en) Die bonder and die bonder supply method
US20200086291A1 (en) Plasma treatment apparatus
CN106460173A (en) Plasma CVD film-forming device
JP2007294210A (en) Treatment gas discharging device and surface treatment device equipped with it
JP2007111677A (en) Method for plasma-treating linear object to be treated
US20220013367A1 (en) Plasma treatment apparatus, semiconductor manufacturing apparatus, and manufacturing method of semiconductor device
US20110001426A1 (en) Dielectric Barrier Discharge Lamp with a Retaining Disc
KR101692218B1 (en) Dielectric barrier plasma generation device for removing volatile organic compounds and method for removing them using same
JP2010251162A (en) Plasma treatment device
JP6392049B2 (en) Inner surface treatment method and inner surface treatment apparatus
JP2013214377A (en) Atmospheric pressure plasma generator
JP4086612B2 (en) Substrate processing equipment

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20170523

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210922

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210930

R150 Certificate of patent or registration of utility model

Ref document number: 6974678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250