JP2018160353A - Plasma processing device and plasma processing method - Google Patents

Plasma processing device and plasma processing method Download PDF

Info

Publication number
JP2018160353A
JP2018160353A JP2017056383A JP2017056383A JP2018160353A JP 2018160353 A JP2018160353 A JP 2018160353A JP 2017056383 A JP2017056383 A JP 2017056383A JP 2017056383 A JP2017056383 A JP 2017056383A JP 2018160353 A JP2018160353 A JP 2018160353A
Authority
JP
Japan
Prior art keywords
plasma processing
processing apparatus
discharge space
electrode
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017056383A
Other languages
Japanese (ja)
Other versions
JP6974678B2 (en
Inventor
準席 呉
Zhuoxi Wu
準席 呉
昌文 伊藤
Masafumi Ito
昌文 伊藤
壮則 早川
Takenori Hayakawa
壮則 早川
芹澤 和泉
Izumi Serizawa
和泉 芹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orc Manufacturing Co Ltd
Meijo University
Original Assignee
Orc Manufacturing Co Ltd
Meijo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orc Manufacturing Co Ltd, Meijo University filed Critical Orc Manufacturing Co Ltd
Priority to JP2017056383A priority Critical patent/JP6974678B2/en
Publication of JP2018160353A publication Critical patent/JP2018160353A/en
Application granted granted Critical
Publication of JP6974678B2 publication Critical patent/JP6974678B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To obtain a plasma processing device capable of performing high-purity plasma processing while preventing impurities from being mixed into an object to be processed during the plasma processing.SOLUTION: A plasma processing device includes a plasma processing vessel (10, 20) having a discharge space (14, 24) at the inside thereof, and a pair of electrodes (13a and 15, 13a' and 15, 23 and 23, or 23' and 23'') facing to each other with the plasma processing vessel interposed therebetween, and subjects an object to be processed provided in the discharge space to plasma processing. In the plasma processing device, the discharge space is covered with the plasma processing vessel such that a pair of electrodes are not exposed in the discharge space.SELECTED DRAWING: Figure 1

Description

本発明は、プラズマ処理装置及びプラズマ処理方法に関する。   The present invention relates to a plasma processing apparatus and a plasma processing method.

従来、プラズマ処理装置として、プラズマ処理容器の外表面とプラズマ処理容器内に一対の電極を配設し、これらの電極間で生じたプラズマを被処理物に放射することでプラズマ処理を行う装置(特許文献1)が知られている。また、放電空間を画成する中心電極と周辺電極との間に誘電体を介在させ、この電極の間の放電空間に被処理物を導入してプラズマ処理を行う装置(特許文献2)が知られている。   Conventionally, as a plasma processing apparatus, a pair of electrodes are disposed on the outer surface of a plasma processing container and the plasma processing container, and plasma processing is performed by radiating plasma generated between these electrodes to an object to be processed ( Patent Document 1) is known. Also, an apparatus (Patent Document 2) is known in which a dielectric is interposed between a central electrode and a peripheral electrode that define a discharge space, and an object to be processed is introduced into the discharge space between the electrodes to perform plasma processing. It has been.

特開2014−212839号公報JP 2014-212839 A 特開2010−029830号公報JP 2010-029830 A

しかし、特許文献1のようなプラズマ処理装置において、プラズマ(放電)が生じる放電空間内に被処理物を配置してプラズマ処理を行うと、被処理物が導入される放電空間と放電空間内の電極とが接することで、プラズマ処理時に電極から放出される不純物が被処理物に混入してしまい、純度の高いプラズマ処理をおこなうことができなかった。つまり、プラズマ発生時の電極は、プラズマに曝されたり、通電による抵抗やプラズマの温度により加熱されたりすることで、不純物を放出する。また、電極が被処理物や放電用ガス(プラズマ処理用ガス)に反応しやすい材質であったり、放電用ガスが電極と反応しやすいガス(反応ガス)を含んだガス(以下、単に放電用ガス)であったりすると、電極が被処理物や放電用ガス(反応ガス)と反応することよって不純物が生じやすく、これらの不純物が被処理物に混ざることで純度が低下する。また、特許文献2の装置は構造が複雑であり、小型のプラズマ処理装置を提供することはできなかった。さらに、このような装置では、放電空間内に被処理物が偏って配置されることや、放電空間内の放電用ガスの状態(例えば圧力、濃度、流速)が不均一になることが生じやすい。そのため、絶縁破壊に必要な電圧であるプラズマ発生開始電圧(放電開始電圧)が不安定になり、プラズマの発生、すなわちプラズマ処理が不安定になるおそれがあった。   However, in a plasma processing apparatus such as that disclosed in Patent Document 1, if a processing object is disposed in a discharge space where plasma (discharge) is generated and plasma processing is performed, the discharge space into which the processing object is introduced and the discharge space Due to the contact with the electrode, impurities released from the electrode during the plasma processing are mixed into the object to be processed, and the high-purity plasma processing cannot be performed. That is, the electrode at the time of plasma generation is exposed to plasma or heated by resistance due to energization or plasma temperature, thereby releasing impurities. In addition, the electrode is made of a material that easily reacts to the object to be processed and discharge gas (plasma gas for processing), or a gas containing a gas (reaction gas) that easily reacts with the electrode (reaction gas) (hereinafter simply referred to as discharge) Gas), the electrode easily reacts with the object to be processed and the discharge gas (reactive gas), and impurities are easily generated, and the purity is lowered by mixing these impurities with the object to be processed. In addition, the apparatus of Patent Document 2 has a complicated structure, and a small plasma processing apparatus cannot be provided. Furthermore, in such an apparatus, it is likely that the object to be processed is unevenly arranged in the discharge space, and the state (for example, pressure, concentration, flow rate) of the discharge gas in the discharge space is not uniform. . For this reason, the plasma generation start voltage (discharge start voltage), which is a voltage necessary for dielectric breakdown, becomes unstable, and there is a risk that plasma generation, that is, plasma processing, becomes unstable.

本発明は、プラズマ処理時に被処理物に不純物が混入することが無く、高純度なプラズマ処理を行なうことができるプラズマ処理装置及びプラズマ処理方法を提供することを目的とする。   It is an object of the present invention to provide a plasma processing apparatus and a plasma processing method capable of performing high-purity plasma processing without impurities being mixed into an object to be processed during plasma processing.

本発明のプラズマ処理装置は、内部に放電空間を備えるプラズマ処理容器と、上記プラズマ処理容器を介在させて対向した一対の電極とを有し、上記放電空間に設けられた被処理物をプラズマ処理するプラズマ処理装置において、上記放電空間に一対の電極が露出しないように、上記放電空間は上記プラズマ処理容器によって覆われていること、を特徴とする。   The plasma processing apparatus of the present invention includes a plasma processing container having a discharge space therein and a pair of electrodes facing each other with the plasma processing container interposed therebetween, and plasma processing is performed on an object to be processed provided in the discharge space. In the plasma processing apparatus, the discharge space is covered with the plasma processing container so that the pair of electrodes are not exposed to the discharge space.

上記プラズマ処理容器は、少なくとも1つの開口部を有し、上記開口部から上記被処理物が上記放電空間内に配置されるのが実際的である。   The plasma processing container has at least one opening, and it is practical that the object to be processed is disposed in the discharge space from the opening.

上記プラズマ処理容器は、上記放電空間の内側を覆う内側誘電体と、上記放電空間の外側を覆う外側誘電体とを有し、上記内側誘電体と上記外側誘電体は上記プラズマ処理容器と一体として加熱成形することができる。   The plasma processing container includes an inner dielectric covering the inside of the discharge space and an outer dielectric covering the outside of the discharge space. The inner dielectric and the outer dielectric are integrated with the plasma processing container. It can be thermoformed.

上記内側誘電体と上記外側誘電体は、上記外側誘電体の一端で、一体に形成することが実際的である。   It is practical that the inner dielectric and the outer dielectric are integrally formed at one end of the outer dielectric.

上記一対の電極の間の電界強度は、上記プラズマ処理容器の周方向に沿って不均一であってもよい。   The electric field strength between the pair of electrodes may be non-uniform along the circumferential direction of the plasma processing container.

上記内側誘電体には上記一対の電極の一方の電極が埋設されており、上記内側誘電体の厚さは、上記プラズマ処理容器の周方向に沿って不均一であってもよい。   One electrode of the pair of electrodes is embedded in the inner dielectric, and the thickness of the inner dielectric may be non-uniform along the circumferential direction of the plasma processing vessel.

上記内側誘電体に埋設された電極は帯状電極であり、上記内側誘電体の厚さは、上記帯状電極の幅方向の外側の厚さが最も薄くてもよい。   The electrode embedded in the inner dielectric is a strip electrode, and the inner dielectric may have the smallest thickness on the outer side in the width direction of the strip electrode.

上記帯状電極の幅方向の両縁部の少なくとも一方の厚さが、上記帯状電極の中央部の厚さよりも薄くてもよい。   The thickness of at least one of the edges in the width direction of the strip electrode may be smaller than the thickness of the central portion of the strip electrode.

上記帯状電極は、その幅方向の両縁部が、ナイフエッジ形状であってもよい。   The band-shaped electrode may have a knife edge shape at both edges in the width direction.

上記プラズマ処理容器には、上記一対の電極の少なくとも一方の電極が埋設されていてもよい。   In the plasma processing container, at least one electrode of the pair of electrodes may be embedded.

上記被処理物は、上記放電空間内に配置される開口部と同一の開口部または異なる開口部から放電用ガスとともに上記放電空間内に供給できる。   The object to be processed can be supplied into the discharge space together with the discharge gas from the same opening as the opening disposed in the discharge space or a different opening.

本発明のプラズマ処理方法は、以上のプラズマ処理装置を用いて、上記プラズマ処理容器内に、上記開口部から被処理物を導入するステップ、上記開口部と同一の開口部または異なる開口部から放電用ガスを供給するステップ、上記一対の電極の間に電圧を印加し上記プラズマ処理容器内でプラズマを生成して上記被処理物をプラズマ処理するステップ、上記一対の電極間への電圧印加を停止するステップ、及び上記被処理物を上記いずれかの開口部または異なる開口部から取り出すステップ、を有することを特徴とする。   The plasma processing method of the present invention uses the above-described plasma processing apparatus to introduce an object to be processed into the plasma processing vessel from the opening, and discharge from the same opening or a different opening. Supplying a working gas, applying a voltage between the pair of electrodes to generate plasma in the plasma processing vessel to plasma the object to be processed, and stopping the voltage application between the pair of electrodes And a step of taking out the object to be processed from any one of the openings or different openings.

本発明は、プラズマ処理容器内で被処理物にプラズマ処理を行なうプラズマ処理装置において、プラズマ処理が行なわれる放電空間に電極が露出しないようにしたことで、プラズマ処理に伴う不純物が発生するおそれがなく、被処理物に不純物が混入することなく、プラズマ処理を行うことができる。また、放電空間の電界強度をプラズマ処理容器周方向に沿って不均一とすることで、電界強度が局所的に高い部分を放電空間に有し、低い電圧でもプラズマ(放電)を発生させることができる。このため、確実に被処理物にプラズマ処理することができる。   According to the present invention, in a plasma processing apparatus for performing plasma processing on an object to be processed in a plasma processing container, there is a possibility that impurities accompanying the plasma processing may be generated by preventing the electrodes from being exposed in the discharge space where the plasma processing is performed. In addition, plasma treatment can be performed without impurities being mixed into the object to be processed. In addition, by making the electric field strength in the discharge space nonuniform along the circumferential direction of the plasma processing vessel, the discharge space has a portion where the electric field strength is locally high, and plasma (discharge) can be generated even at a low voltage. it can. For this reason, it is possible to reliably plasma-treat the workpiece.

本発明による大気圧プラズマ処理装置の第1の実施形態を示す縦断面図である。1 is a longitudinal sectional view showing a first embodiment of an atmospheric pressure plasma processing apparatus according to the present invention. 図1のII−II線に沿う断面図である。It is sectional drawing which follows the II-II line | wire of FIG. 本発明の第1の実施形態の変形例を示す、図2に対応する断面図である。It is sectional drawing corresponding to FIG. 2 which shows the modification of the 1st Embodiment of this invention. 本発明による大気圧プラズマ処理装置の第2の実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 2nd Embodiment of the atmospheric pressure plasma processing apparatus by this invention. 図4のV−V線に沿う断面図である。It is sectional drawing which follows the VV line of FIG. 本発明の第2の実施形態の変形例を示す、図5に対応する断面図である。It is sectional drawing corresponding to FIG. 5 which shows the modification of the 2nd Embodiment of this invention.

以下図面について本発明に係る大気圧プラズマ処理装置100の実施形態を説明する。図1及び図2は本発明による大気圧プラズマ処理装置の第1の実施形態を示している。図1、図2に示すように、本大気圧プラズマ処理装置100は、プラズマ処理容器10(放電容器)を備えている。このプラズマ処理容器10は、誘電体(例えば石英)からなるものであり、図示例では断面が真円である円筒状に形成されている。このプラズマ処理容器10の軸方向の一端には、プラズマ処理容器10の径方向に向けて開口部11が形成され、他端部にはプラズマ処理容器10の軸方向に向けて開口部12が形成されている。開口部11は、プラズマ処理容器10の管壁10aに穿設したものであって、プラズマ処理容器10の径方向に延びる接続管11aと連通している。管壁10aの一端部は、管壁10aと一体の端部壁10bによって塞がれている。   Hereinafter, an embodiment of an atmospheric pressure plasma processing apparatus 100 according to the present invention will be described with reference to the drawings. 1 and 2 show a first embodiment of an atmospheric pressure plasma processing apparatus according to the present invention. As shown in FIGS. 1 and 2, the atmospheric pressure plasma processing apparatus 100 includes a plasma processing vessel 10 (discharge vessel). The plasma processing vessel 10 is made of a dielectric (for example, quartz), and is formed in a cylindrical shape having a perfect cross section in the illustrated example. An opening 11 is formed at one end of the plasma processing container 10 in the axial direction toward the radial direction of the plasma processing container 10, and an opening 12 is formed at the other end in the axial direction of the plasma processing container 10. Has been. The opening 11 is formed in the tube wall 10 a of the plasma processing container 10 and communicates with a connecting tube 11 a extending in the radial direction of the plasma processing container 10. One end of the tube wall 10a is closed by an end wall 10b integral with the tube wall 10a.

一方、プラズマ処理容器10の内部には、プラズマ処理容器10の軸心に沿って一対の電極の一方の電極となる内側電極13aと該内側電極13aを埋設した(被覆した)内側管(内側誘電体)13bとが配設されている。内側電極13aを埋設した内側管13bは誘電体(例えば石英)から構成されるものであり、管状の誘電体内に内側電極13aを挿入した状態で、溶融軟化(加熱溶着)させることで形成される。また、内側管13bは、プラズマ処理容器10の開口部11側の端部壁10bにおいて、加熱溶着(加熱成形)によりプラズマ処理容器10と一体となり、プラズマ処理容器10の一部を構成している。この内側管(内側誘電体)13bとプラズマ処理容器10(管壁10aと外側誘電体)の間の筒状空間が放電空間(プラズマ処理空間)14を構成する。なお管壁10aが外側誘電体であってもよい。   On the other hand, inside the plasma processing vessel 10, an inner electrode 13 a that is one electrode of a pair of electrodes along the axis of the plasma processing vessel 10 and an inner tube (inner dielectric) in which the inner electrode 13 a is embedded (coated). Body) 13b. The inner tube 13b in which the inner electrode 13a is embedded is made of a dielectric (for example, quartz), and is formed by melting and softening (heating welding) with the inner electrode 13a inserted in a tubular dielectric. . Further, the inner tube 13 b is integrated with the plasma processing container 10 by heat welding (heat forming) on the end wall 10 b on the opening 11 side of the plasma processing container 10, and constitutes a part of the plasma processing container 10. . A cylindrical space between the inner tube (inner dielectric) 13b and the plasma processing vessel 10 (tube wall 10a and outer dielectric) constitutes a discharge space (plasma processing space). The tube wall 10a may be an outer dielectric.

内側電極13aは、図示実施形態では、図2に示すように、長手方向(プラズマ処理容器10の軸方向、容器内の放電用ガスの流れ方向)に一様断面の帯状(箔状、板状)に形成された帯状電極であり、その幅方向の中央部13a1の厚さは両縁部13a2の厚さより厚く、かつ両縁部13a2(幅方向に沿った両端部)に向けて先鋭化し、その厚さは中央部13a1に比べて薄くなり、両縁部13a2は先細く尖ったナイフエッジ形状をなしている。内側電極13aを埋設した内側管13bのプラズマ処理容器10の径方向の厚さは周方向に沿って不均一であり、埋設された内側電極13aの幅方向(幅方向に沿って両縁部13a2を延長した方向)の外側の厚さdが最も薄くなっている。   In the illustrated embodiment, as shown in FIG. 2, the inner electrode 13a has a strip shape (foil shape, plate shape) having a uniform cross section in the longitudinal direction (the axial direction of the plasma processing vessel 10 and the flow direction of the discharge gas in the vessel). The thickness of the central portion 13a1 in the width direction is thicker than the thickness of both edge portions 13a2, and sharpens toward both edge portions 13a2 (both end portions along the width direction). Its thickness is thinner than that of the central portion 13a1, and both edge portions 13a2 have a sharp and sharp knife edge shape. The radial thickness of the plasma processing vessel 10 of the inner tube 13b in which the inner electrode 13a is embedded is nonuniform along the circumferential direction, and the width direction (both edges 13a2 along the width direction) of the embedded inner electrode 13a. The thickness d on the outer side in the direction in which is extended is the smallest.

一方、プラズマ処理容器10(管壁10a)の外周面には、一対の電極の他方の電極となる外側電極15が配設されている。外側電極15は、図示実施形態では、金属膜状(箔状)電極として描いているが、螺旋状に巻回された金属線材であってもよい。外側電極15と内側電極13aが対向する軸方向長さは放電空間14に対応している。   On the other hand, an outer electrode 15 serving as the other electrode of the pair of electrodes is disposed on the outer peripheral surface of the plasma processing vessel 10 (tube wall 10a). In the illustrated embodiment, the outer electrode 15 is depicted as a metal film-like (foil-like) electrode, but may be a metal wire wound spirally. The axial length of the outer electrode 15 and the inner electrode 13a facing each other corresponds to the discharge space 14.

以上の内側電極13aと外側電極15は、内側管13b、放電空間14及びプラズマ処理容器10の管壁10aを介して対向する一対の電極であり、図示しない電源部に電気的に接続されている。また内側電極13aは高圧側電極であり、外側電極15は接地側電極であるが、この逆であってもよい。   The inner electrode 13a and the outer electrode 15 described above are a pair of electrodes facing each other through the inner tube 13b, the discharge space 14, and the tube wall 10a of the plasma processing vessel 10, and are electrically connected to a power supply unit (not shown). . The inner electrode 13a is a high-voltage side electrode, and the outer electrode 15 is a ground-side electrode.

上記構成の本大気圧プラズマ処理装置100を用いて被処理物をプラズマ処理する手順の一例を説明する。   An example of a procedure for plasma processing an object to be processed using the atmospheric pressure plasma processing apparatus 100 having the above configuration will be described.

「被処理物Sの導入」
プラズマ処理容器10の一対の開口部11と12の一方(例えば開口部11)から放電空間14に被処理物S(図1ないし図6に模式的に示した)を導入する。被処理物Sは、気体、固体、液体のいずれでもよい。
"Introduction of workpiece S"
An object to be processed S (schematically shown in FIGS. 1 to 6) is introduced into the discharge space 14 from one of the pair of openings 11 and 12 (for example, the opening 11) of the plasma processing container 10. The workpiece S may be any of gas, solid, and liquid.

「放電用ガスの供給」
プラズマ処理容器10の放電空間14内の流路に沿って、一対の開口部11と開口部12の一方(例えば開口部11)から放電用ガスを供給し、放電空間14内の流路に沿って放電用ガスを流動させる。放電空間14を流動した放電用ガスはプラズマ処理容器10の他方の開口部(例えば開口部12)から放出される。放電用ガスは酸素などの反応性の高いガスだけでなく、ヘリウム、アルゴン、窒素などの不活性なガス、さらには反応性の高いガスと不活性なガスの混合ガスでもよい。このように、予め放電空間14に被処理物Sを配設した状態で放電用ガスを流してもよいが、放電用ガスが流れた状態で放電空間14に被処理物を設置(混入)してもよいし、被処理物Sが混入された放電用ガスとして放電空間14に流してもよい。
"Supply gas for discharge"
A discharge gas is supplied from one of the pair of openings 11 and 12 (for example, the opening 11) along the flow path in the discharge space 14 of the plasma processing container 10, and along the flow path in the discharge space 14. To flow the discharge gas. The discharge gas flowing in the discharge space 14 is discharged from the other opening (for example, the opening 12) of the plasma processing container 10. The discharge gas is not limited to a highly reactive gas such as oxygen, but may be an inert gas such as helium, argon or nitrogen, or a mixed gas of a highly reactive gas and an inert gas. As described above, the discharge gas may be allowed to flow in a state where the object to be processed S is disposed in the discharge space 14 in advance, but the object to be processed is installed (mixed) in the discharge space 14 while the discharge gas is flowing. Alternatively, it may flow through the discharge space 14 as a discharge gas mixed with the workpiece S.

「プラズマ発生及びプラズマ処理」
電源部によって内側電極13aと外側電極15との間に放電開始(絶縁破壊)に必要な高電圧を印加すると、プラズマ処理容器10の放電空間14内において、内側電極13aと外側電極15との間で電界強度が高い両縁部13a2付近からの絶縁破壊が起点になって、放電空間14内の全体でプラズマ(放電)が発生する。このプラズマによって、放電空間14内の被処理物Sに表面改質などのプラズマ処理を行う。このように両縁部13a2付近の電界強度が局所的に高いことを以下に説明する。内側電極13aの厚さは幅方向の中央部13a1から両縁部13a2に向かって薄くなり、両縁部13a2が尖ったナイフエッジ形状をなしているので、例えば円柱状の電極と比較して、電界集中が生じやすい。その結果、内側電極13aの幅方向に沿った放電空間14(両縁部13a2と外側電極15との間で放電距離が最短となる領域)の電界強度が局所的に高くなる。
"Plasma generation and plasma processing"
When a high voltage necessary for the start of discharge (dielectric breakdown) is applied between the inner electrode 13 a and the outer electrode 15 by the power supply unit, the inner space between the inner electrode 13 a and the outer electrode 15 in the discharge space 14 of the plasma processing vessel 10. Thus, dielectric breakdown from the vicinity of both edge portions 13a2 where the electric field strength is high starts, and plasma (discharge) is generated in the entire discharge space 14. Plasma treatment such as surface modification is performed on the workpiece S in the discharge space 14 by this plasma. The fact that the electric field intensity in the vicinity of both edge portions 13a2 is locally high will be described below. The thickness of the inner electrode 13a is reduced from the central portion 13a1 in the width direction toward both edge portions 13a2, and the both edge portions 13a2 have a sharp knife edge shape. Electric field concentration is likely to occur. As a result, the electric field strength in the discharge space 14 along the width direction of the inner electrode 13a (the region where the discharge distance is shortest between the both edges 13a2 and the outer electrode 15) is locally increased.

加えて、図示実施形態では、内側電極13aを覆う内側管13bの厚さが周方向において不均一であり、内側電極13aの両縁部13a2(ナイフエッジ形状の先端)において厚さが最小になっている。電界強度は、誘電体の厚さが薄い部分ほど高くなることが知られているから、放電空間14において、内側電極13aの幅方向の2箇所の空間Xの少なくともいずれか一方において確実にプラズマ(放電)を発生させることができる。   In addition, in the illustrated embodiment, the thickness of the inner tube 13b covering the inner electrode 13a is not uniform in the circumferential direction, and the thickness is minimized at both edges 13a2 (knife edge-shaped tips) of the inner electrode 13a. ing. It is known that the electric field strength becomes higher as the thickness of the dielectric becomes thinner. Therefore, in the discharge space 14, the plasma (in the at least one of the two spaces X in the width direction of the inner electrode 13 a is surely plasma ( Discharge) can be generated.

別言すれば、一対の電極間の距離をプラズマ処理容器(放電管)の周方向に沿って不均一とする観点で、内側電極13aの両縁部13a2のどちらか一方を中央部の厚さよりも薄くする(ナイフエッジ形状とする)ことで、内側電極13aの幅をプラズマ処理容器の周方向に沿って不均一とするか、一対の電極間の誘電体の厚さをプラズマ処理容器の周方向に沿って不均一とする観点で、内側管13bに厚さが薄くなる部分(薄肉部)を設けることで、内側管13bの厚さ(外径)をプラズマ処理容器の周方向に沿って不均一とするかのいずれかによって、プラズマ処理容器内の電界強度を局所的に高くすることができ、プラズマ処理容器の周方向に沿って電界強度が不均一となる。これらの方法の少なくとも一つを適用することで、比較的低い放電開始電圧でもプラズマを生じさせることができる。   In other words, from the viewpoint of making the distance between the pair of electrodes non-uniform along the circumferential direction of the plasma processing vessel (discharge tube), either one of the two edge portions 13a2 of the inner electrode 13a is made larger than the thickness of the central portion. Also, the inner electrode 13a has a non-uniform width along the circumferential direction of the plasma processing container, or the thickness of the dielectric between the pair of electrodes is reduced around the circumference of the plasma processing container. From the viewpoint of non-uniformity along the direction, the inner tube 13b is provided with a thin portion (thin wall portion) so that the thickness (outer diameter) of the inner tube 13b is increased along the circumferential direction of the plasma processing vessel. By making it non-uniform, the electric field strength in the plasma processing chamber can be locally increased, and the electric field strength becomes non-uniform along the circumferential direction of the plasma processing chamber. By applying at least one of these methods, plasma can be generated even at a relatively low discharge start voltage.

放電空間14に被処理物Sが存在すると、放電開始電圧に影響を与える。特に、被処理物Sが放電空間14内に偏って配置されると、放電開始電圧が不安定になる。また、放電空間内の放電用ガスの状態(例えば圧力、濃度、流速)が不均一になることでも放電開始電圧が不安定になる。しかし、本実施形態のように、放電空間14に局所的に電界強度が高い部分を生じさせることで、低い電圧でもプラズマ(放電)を生じさせることができるようになり、被処理物Sの配置や放電ガスの状態に関わらず、確実に被処理物Sをプラズマ処理することができる。なお、内側管13bの薄肉部を、ナイフエッジ形状の両縁部13a2の外側に設けることで、相乗効果によって、プラズマ処理容器内の電界強度を局所的により高くすることができ、放電空間14内の被処理物Sの偏りが大きい場合でも、放電開始電圧を増加させることなく確実にプラズマ処理を行うことができる。   When the workpiece S is present in the discharge space 14, the discharge start voltage is affected. In particular, when the object to be processed S is arranged in the discharge space 14, the discharge start voltage becomes unstable. Further, the discharge start voltage becomes unstable even when the state (for example, pressure, concentration, flow rate) of the discharge gas in the discharge space becomes non-uniform. However, as in the present embodiment, by locally generating a portion having a high electric field strength in the discharge space 14, plasma (discharge) can be generated even at a low voltage, and the arrangement of the workpiece S Regardless of the state of the discharge gas or the discharge gas, it is possible to reliably plasma-treat the workpiece S. In addition, by providing the thin wall portion of the inner tube 13b outside the both edge portions 13a2 having a knife edge shape, the electric field strength in the plasma processing vessel can be locally increased by a synergistic effect, and the discharge space 14 can be increased. Even when the unevenness of the workpiece S is large, the plasma treatment can be reliably performed without increasing the discharge start voltage.

「プラズマ処理の終了、及び被処理物の取り出し」
内側電極13aと外側電極15間への電力供給と、放電空間14内への放電用ガスの供給とを停止し、プラズマ処理容器10の一方の開口部(例えば開口部12)から、プラズマ処理容器10内のプラズマ処理された被処理物Sを取り出す。なお、被処理物Sは放電用ガスと共にプラズマ処理容器10外へ放出されるようにしてもよい。
"End of plasma treatment and removal of workpiece"
The power supply between the inner electrode 13a and the outer electrode 15 and the supply of the discharge gas into the discharge space 14 are stopped, and the plasma processing container 10 is opened from one opening (for example, the opening 12) of the plasma processing container 10. The workpiece S subjected to plasma treatment in 10 is taken out. In addition, you may make it the to-be-processed object S discharge | released out of the plasma processing container 10 with the gas for discharge.

以上のプラズマ処理装置において、内側電極13aと外側電極15は、内側管(内側誘電体)13bとプラズマ処理容器10によって覆われており、いずれも放電空間14には露出していない。このため、電極部材などから生じた不純物(たとえば、電極から放出される不純ガスや、被処理物と電極との反応物)が、放電空間14内の被処理物Sや放電用ガスに混入することが無い。   In the above plasma processing apparatus, the inner electrode 13 a and the outer electrode 15 are covered with the inner tube (inner dielectric) 13 b and the plasma processing container 10, and neither is exposed to the discharge space 14. For this reason, impurities (for example, impure gas discharged from the electrode or a reaction product between the object to be processed and the electrode) generated from the electrode member or the like are mixed into the object to be processed S and the discharge gas in the discharge space 14. There is nothing.

さらに、以上の第1の実施形態では、内側電極13aが内側管13b内に埋設されているために、プラズマ放電の際に内側電極13aが損傷することが無い。すなわち、プラズマ処理容器10内の内側電極13aが内側管(誘電体)13bに覆われることで、放電用ガス(放電用ガスに含まれる反応性の高いガス)と内側電極13aが接することがなく、内側電極13aが放電用ガスによって劣化することが無い。さらに、内側電極13aを覆う内側管(内側誘電体)13bと、プラズマ処理容器10とが一体として構成されていることによって、より確実に電極の劣化を防いで、不純物の混入を防止できる。また、帯状の内側電極13aの幅方向の両縁部13a2はナイフエッジ形状であるため、内側管13bとの間に隙間が生じない。これにより、隙間に入り込んだ酸素(大気)と内側電極13aとが反応(酸化)し、内側電極13aが劣化することを防止できる。   Furthermore, in the above first embodiment, since the inner electrode 13a is embedded in the inner tube 13b, the inner electrode 13a is not damaged during plasma discharge. That is, the inner electrode 13a in the plasma processing vessel 10 is covered with the inner tube (dielectric) 13b, so that the discharge gas (the highly reactive gas contained in the discharge gas) and the inner electrode 13a do not come into contact with each other. The inner electrode 13a is not deteriorated by the discharge gas. Furthermore, the inner tube (inner dielectric) 13b that covers the inner electrode 13a and the plasma processing container 10 are integrally configured, so that the deterioration of the electrode can be prevented more reliably and the contamination of impurities can be prevented. In addition, since both edge portions 13a2 in the width direction of the strip-shaped inner electrode 13a have a knife edge shape, no gap is generated between the inner tube 13b and the inner edge 13a2. Accordingly, it is possible to prevent oxygen (atmosphere) entering the gap from reacting (oxidizing) with the inner electrode 13a and deteriorating the inner electrode 13a.

また、図3は、第1の実施形態の変形例を示すもので、内側電極13a’を円形断面とし、内側管13b’を楕円(長円)状断面とすることで、誘電体の厚さが周方向において不均一になっている。この変形例においても、誘電体である内側管13b’の厚さがプラズマ処理容器10の周方向に沿って不均一となって、放電空間14において、内側管13b’の厚さが最も薄くなる部分に接する内側電極13a’付近の空間Xの電界強度を局所的に高くすることができる。内側電極13a’が内側管13b’内に埋設されているために、内側電極13a’が損傷することが無く、長期間にわたって、確実にプラズマを発生させることができる。さらに、電極部材などから生じた不純物(たとえば、電極から放出される不純ガスや、被処理物と電極との反応物)が、放電空間14内に配置される被処理物Sや放電用ガスに混入することも無い。   FIG. 3 shows a modification of the first embodiment. The inner electrode 13a ′ has a circular cross section, and the inner tube 13b ′ has an elliptical (oval) cross section. Is uneven in the circumferential direction. Also in this modification, the thickness of the inner tube 13b ′, which is a dielectric, becomes non-uniform along the circumferential direction of the plasma processing vessel 10, and the thickness of the inner tube 13b ′ is the smallest in the discharge space 14. The electric field strength in the space X in the vicinity of the inner electrode 13a ′ in contact with the portion can be locally increased. Since the inner electrode 13a 'is embedded in the inner tube 13b', the inner electrode 13a 'is not damaged and plasma can be reliably generated over a long period of time. Further, impurities generated from the electrode member or the like (for example, an impure gas released from the electrode or a reaction product between the object to be processed and the electrode) are processed into the object to be processed S and the discharge gas disposed in the discharge space 14 There is no mixing.

図4及び図5は、本発明による大気圧プラズマ処理装置の第2の実施形態を示している。この第2の実施形態は、第1の実施形態に比して、一対の電極の配置態様と、開口部の配置形態が異なっている。プラズマ処理容器20は、誘電体(例えば石英)からなる筒状の管壁20aと、プラズマ処理容器20の一方の端部を塞ぐ端部壁20bと、この端部壁20bの略中央に管壁20aと同軸に形成された開口部21と、管壁20aの他方の端部に管壁20aと同軸に形成された開口部22とを備えている。端部壁20bの外面には、開口部21に連通する接続管21aが一体に形成され、プラズマ処理容器20の一部を構成している。この管壁20a内の筒状空間が放電空間(プラズマ処理空間)24を構成する。   4 and 5 show a second embodiment of the atmospheric pressure plasma processing apparatus according to the present invention. The second embodiment is different from the first embodiment in the arrangement of the pair of electrodes and the arrangement of the openings. The plasma processing container 20 includes a cylindrical tube wall 20a made of a dielectric material (for example, quartz), an end wall 20b that closes one end of the plasma processing container 20, and a tube wall substantially at the center of the end wall 20b. An opening 21 is formed coaxially with 20a, and an opening 22 is formed coaxially with the tube wall 20a at the other end of the tube wall 20a. A connecting pipe 21 a communicating with the opening 21 is integrally formed on the outer surface of the end wall 20 b and constitutes a part of the plasma processing vessel 20. The cylindrical space in the tube wall 20a constitutes a discharge space (plasma processing space) 24.

この実施形態では、一対の電極23は、図5に示すように、プラズマ処理容器10の軸方向に沿って一様断面の帯状(板状)に形成された帯状電極であり、管壁20a及び放電空間24を介して対向するように、プラズマ処理容器20の管壁20a内に埋設されている。一対の電極23は、プラズマ処理容器20の中心軸を通る対称軸を中心に対称形状をなすものであって、プラズマ処理容器20の管壁20aの曲率に対応する曲率で曲げられており、かつ、周方向に沿って、中央部231の厚さが最も厚く、両縁部232に向けて徐々に厚さを減じて薄くなるナイフエッジ形状をなしている。この一対の電極23はそれぞれ長手方向の一端に接続される給電部材23aによって、電源装置と電気的に接続される。   In this embodiment, as shown in FIG. 5, the pair of electrodes 23 are band-shaped electrodes formed in a band shape (plate shape) with a uniform cross section along the axial direction of the plasma processing container 10. It is embedded in the tube wall 20a of the plasma processing container 20 so as to face each other via the discharge space 24. The pair of electrodes 23 are symmetrical with respect to the axis of symmetry passing through the central axis of the plasma processing chamber 20, are bent at a curvature corresponding to the curvature of the tube wall 20 a of the plasma processing chamber 20, and Along the circumferential direction, the central portion 231 is thickest, and has a knife edge shape in which the thickness is gradually reduced toward both edge portions 232 to become thin. The pair of electrodes 23 are electrically connected to the power supply device by a power supply member 23a connected to one end in the longitudinal direction.

一対の電極23をプラズマ処理容器20の管壁20a内に加熱成形により埋設する方法としては、小径管(石英管)と大径管(石英管)との間に一対の電極23を挿入した状態において、小径管と大径管の間の空気を吸引し、小径管と大径管を加熱溶着させて一体とさせる製造方法を適用できる。   As a method of embedding the pair of electrodes 23 in the tube wall 20a of the plasma processing vessel 20 by thermoforming, a state in which the pair of electrodes 23 is inserted between a small diameter tube (quartz tube) and a large diameter tube (quartz tube). In the manufacturing method, the air between the small diameter pipe and the large diameter pipe is sucked, and the small diameter pipe and the large diameter pipe are integrated by heating and welding.

以上の大気圧プラズマ処理装置100は、プラズマ処理容器20の一対の電極23の両縁部232が、尖ったナイフエッジ形状をなしており、放電空間24とプラズマ処理容器20の筒状壁面(誘電体)を挟んで対向している。このため、プラズマ処理容器20の径方向断面において、一対の電極23間の距離や誘電体の厚さが、一対の電極23の対称軸(プラズマ処理容器の径方向)に沿って不均一になるので、放電空間24内の電界強度は、一対の電極23の両縁部232付近において局所的に高くなって、プラズマ処理容器20の周方向に沿って不均一となる。   In the atmospheric pressure plasma processing apparatus 100 described above, both edge portions 232 of the pair of electrodes 23 of the plasma processing container 20 have a sharp knife edge shape, and the discharge space 24 and the cylindrical wall surface (dielectric) of the plasma processing container 20. Body). For this reason, in the radial cross section of the plasma processing container 20, the distance between the pair of electrodes 23 and the thickness of the dielectric are not uniform along the symmetry axis of the pair of electrodes 23 (the radial direction of the plasma processing container). Therefore, the electric field strength in the discharge space 24 locally increases in the vicinity of both edge portions 232 of the pair of electrodes 23 and becomes non-uniform along the circumferential direction of the plasma processing container 20.

従って、第1の実施形態と同様に、電源部によって一対の電極23の間に放電開始(絶縁破壊)に必要な高電圧を印加すると、プラズマ処理容器20内の両縁部232付近における絶縁破壊を起点として、放電空間24全体でプラズマが発生し、一対の開口部21、22の一方から放電空間24内に導入された被処理物Sにプラズマ処理を行う。このとき、電極部材などから生じた不純物(たとえば、電極から放出される不純ガスや、被処理物と電極との反応物)が被処理物Sに混入することが無い。   Therefore, as in the first embodiment, when a high voltage necessary for the start of discharge (dielectric breakdown) is applied between the pair of electrodes 23 by the power supply unit, dielectric breakdown in the vicinity of both edge portions 232 in the plasma processing vessel 20 is performed. As a starting point, plasma is generated in the entire discharge space 24, and plasma processing is performed on the workpiece S introduced into the discharge space 24 from one of the pair of openings 21 and 22. At this time, impurities generated from the electrode member or the like (for example, impure gas released from the electrode or a reaction product between the object to be processed and the electrode) are not mixed into the object to be processed S.

本実施形態では帯状の電極23がプラズマ処理容器20の管壁20aの内部に埋設され、管壁20aの外表面に露出していない。そのため、プラズマ処理容器20の管壁20aの外表面で沿面放電が生じることがないので、沿面放電によって放電空間24でのプラズマ発生が阻害されることがなく、かつ高電圧が印加される電極23がプラズマ処理容器20の外表面に露出しない安全なプラズマ処理装置を提供できる。   In the present embodiment, the belt-like electrode 23 is embedded in the tube wall 20a of the plasma processing container 20, and is not exposed on the outer surface of the tube wall 20a. Therefore, creeping discharge does not occur on the outer surface of the tube wall 20a of the plasma processing vessel 20, so that the generation of plasma in the discharge space 24 is not hindered by the creeping discharge and a high voltage is applied to the electrode 23. However, it is possible to provide a safe plasma processing apparatus that is not exposed to the outer surface of the plasma processing container 20.

図6は、第2の実施形態の変形例を示している。この変形例は、第2の実施形態の一対の電極のうち、電極23’’をプラズマ処理容器20の管壁20a内に埋設し、電極23’を管壁20aの外表面に沿わせて配設したものである。この変形例の一対の電極23’、23’’は、対称軸を中心に対称形状をなすものであって、周方向に沿って、中央部231’、231’’の厚さが最も厚く、周方向の両縁部232’、232’’に向けて徐々に厚さを減じて薄くなるナイフエッジ形状をなしている。したがってこの変形例においても、プラズマ処理容器20の径方向断面において、一対の電極23’、23’’間の距離や誘電体の厚さが、一対の電極23’、23’’の対称軸(プラズマ処理容器20の径方向)に沿って不均一となるので、一対の電極23’、23’’の間の電界強度は、両縁部232’と232’’付近で局所的に高くなり、プラズマ処理容器20の周方向に沿って不均一になる。第1の実施形態と同様に、電源部によって一対の電極23’、23’’の間に放電開始(絶縁破壊)に必要な高電圧を印加すると、プラズマ処理容器20内の両縁部232’と232’’付近における絶縁破壊を起点として放電空間24全域でプラズマが発生し、被処理物Sをプラズマ処理する。このとき、開口部21と22の一方から放電空間24内に導入される被処理物Sに、電極部材などから生じた不純物(たとえば、電極から放出される不純ガスや、被処理物と電極との反応物)が混入することが無い。この変形例においても、一方の電極23’’がプラズマ処理容器20の管壁20a内部に埋設され、管壁20aの外表面に露出していないので管壁20a外表面で沿面放電が生じることがない。これにより、沿面放電によって放電空間24でのプラズマ発生が阻害されることがなく、かつ高電圧が印加される電極23’’がプラズマ処理容器20の外表面に露出しない安全なプラズマ処理装置を提供できる。   FIG. 6 shows a modification of the second embodiment. In this modification, of the pair of electrodes of the second embodiment, the electrode 23 ″ is embedded in the tube wall 20a of the plasma processing vessel 20, and the electrode 23 ′ is arranged along the outer surface of the tube wall 20a. It is set. The pair of electrodes 23 ′ and 23 ″ of this modification form a symmetrical shape with the symmetry axis as the center, and the thickness of the central portions 231 ′ and 231 ″ is the largest along the circumferential direction. It has a knife edge shape that gradually decreases in thickness toward both edges 232 ′, 232 ″ in the circumferential direction. Therefore, also in this modification, in the radial cross section of the plasma processing container 20, the distance between the pair of electrodes 23 ′ and 23 ″ and the thickness of the dielectric are the symmetry axes of the pair of electrodes 23 ′ and 23 ″ ( The electric field strength between the pair of electrodes 23 ′ and 23 ″ is locally high in the vicinity of both edges 232 ′ and 232 ″. It becomes non-uniform along the circumferential direction of the plasma processing container 20. Similarly to the first embodiment, when a high voltage necessary for the start of discharge (dielectric breakdown) is applied between the pair of electrodes 23 ′ and 23 ″ by the power supply unit, both edge portions 232 ′ in the plasma processing container 20 are applied. Then, plasma is generated in the entire discharge space 24 starting from dielectric breakdown in the vicinity of 232 ″, and the workpiece S is subjected to plasma processing. At this time, impurities generated from the electrode member or the like (for example, impure gas discharged from the electrode, or the object to be processed and the electrode, are introduced into the object to be processed S introduced into the discharge space 24 from one of the openings 21 and 22. Reaction product) is not mixed. Also in this modified example, since one electrode 23 ″ is embedded in the tube wall 20a of the plasma processing vessel 20 and is not exposed on the outer surface of the tube wall 20a, creeping discharge may occur on the outer surface of the tube wall 20a. Absent. This provides a safe plasma processing apparatus in which plasma generation in the discharge space 24 is not hindered by creeping discharge, and the electrode 23 ″ to which a high voltage is applied is not exposed to the outer surface of the plasma processing container 20. it can.

以上の実施形態では、プラズマ処理容器10(20)に形成した一対の開口部11(21)、12(22)の一方と他方をそれぞれ被処理物Sの供給口と排出口、あるいは放電ガスの導入口と取出口としたが、これらを別々に設けてもよい。例えば、被処理物S用、放電ガス用にそれぞれ独立させて設けてもよい。   In the above embodiment, one and the other of the pair of openings 11 (21) and 12 (22) formed in the plasma processing vessel 10 (20) are respectively connected to the supply port and the discharge port of the workpiece S, or the discharge gas. Although the inlet and the outlet are used, these may be provided separately. For example, you may provide independently for the to-be-processed object S and discharge gas, respectively.

10 プラズマ処理容器(放電容器、放電管)
10a 管壁(外側誘電体)
10b 端部壁
11 開口部
11a 接続管
12 開口部
13a、13a’ 内側電極(一方の電極、帯状電極)
13a1 中央部
13a2 縁部(両縁部)
13b、13b’ 内側管(内側誘電体)
14 放電空間(プラズマ処理空間)
15 外側電極(他方の電極、帯状電極)
20 プラズマ処理容器(放電容器、放電管)
20a 管壁
20b 端部壁
21 開口部
22 開口部
23、23’、23’’ 電極(帯状電極)
231、231’、231’’ 中央部
232、232’、232’’ 縁部(両縁部)
24 放電空間(プラズマ処理空間)
100 大気圧プラズマ処理装置
10 Plasma processing vessel (discharge vessel, discharge tube)
10a Tube wall (outer dielectric)
10b end wall 11 opening 11a connecting pipe 12 opening 13a, 13a ′ inner electrode (one electrode, strip electrode)
13a1 center part 13a2 edge (both edges)
13b, 13b 'inner tube (inner dielectric)
14 Discharge space (plasma treatment space)
15 Outer electrode (the other electrode, strip electrode)
20 Plasma processing vessel (discharge vessel, discharge tube)
20a pipe wall 20b end wall 21 opening 22 opening 23, 23 ', 23''electrode (band electrode)
231, 231 ′, 231 ″ center 232, 232 ′, 232 ″ edge (both edges)
24 Discharge space (plasma treatment space)
100 atmospheric pressure plasma processing equipment

Claims (12)

内部に放電空間を備えるプラズマ処理容器と、上記プラズマ処理容器を介在させて対向した一対の電極とを有し、上記放電空間に設けられた被処理物をプラズマ処理するプラズマ処理装置において、
上記放電空間に一対の電極が露出しないように、上記放電空間は上記プラズマ処理容器によって覆われていること、を特徴とするプラズマ処理装置。
In a plasma processing apparatus having a plasma processing container having a discharge space therein and a pair of electrodes facing each other with the plasma processing container interposed therebetween, and plasma-treating an object to be processed provided in the discharge space,
The plasma processing apparatus, wherein the discharge space is covered with the plasma processing vessel so that the pair of electrodes are not exposed to the discharge space.
請求項1記載のプラズマ処理装置において、上記プラズマ処理容器は少なくとも1つの開口部を有し、上記開口部から上記被処理物が上記放電空間内に配置されるプラズマ処理装置。   2. The plasma processing apparatus according to claim 1, wherein the plasma processing container has at least one opening, and the workpiece is disposed in the discharge space from the opening. 請求項1または2に記載のプラズマ処理装置において、上記プラズマ処理容器は、上記放電空間の内側を覆う内側誘電体と、上記放電空間の外側を覆う外側誘電体とを有し、上記内側誘電体と上記外側誘電体は上記プラズマ処理容器と一体として加熱成形されているプラズマ処理装置。   3. The plasma processing apparatus according to claim 1, wherein the plasma processing container includes an inner dielectric covering the inside of the discharge space and an outer dielectric covering the outside of the discharge space, and the inner dielectric. And a plasma processing apparatus in which the outer dielectric is thermoformed integrally with the plasma processing vessel. 請求項3記載のプラズマ処理装置において、上記外側誘電体の一端で、上記内側誘電体と上記外側誘電体とが一体となっているプラズマ処理装置。   4. The plasma processing apparatus according to claim 3, wherein the inner dielectric and the outer dielectric are integrated at one end of the outer dielectric. 請求項3または4に記載のプラズマ処理装置において、上記一対の電極の間の電界強度が上記プラズマ処理容器の周方向に沿って不均一であるプラズマ処理装置。   5. The plasma processing apparatus according to claim 3, wherein an electric field strength between the pair of electrodes is not uniform along a circumferential direction of the plasma processing container. 請求項3ないし5のいずれか1項記載のプラズマ処理装置において、上記内側誘電体には上記一対の電極の一方の電極が埋設されており、上記内側誘電体の厚さは、上記プラズマ処理容器の周方向に沿って不均一であるプラズマ処理装置。   6. The plasma processing apparatus according to claim 3, wherein one of the pair of electrodes is embedded in the inner dielectric, and the thickness of the inner dielectric is determined by the plasma processing container. A plasma processing apparatus that is non-uniform along the circumferential direction. 請求項3ないし6のいずれか1項記載のプラズマ処理装置において、上記内側誘電体に埋設された電極は帯状電極であり、上記内側誘電体の厚さは、上記帯状電極の幅方向の外側の厚さが最も薄いプラズマ処理装置。   7. The plasma processing apparatus according to claim 3, wherein the electrode embedded in the inner dielectric is a strip electrode, and the thickness of the inner dielectric is formed on the outer side in the width direction of the strip electrode. The thinnest plasma processing equipment. 請求項7記載のプラズマ処理装置において、上記帯状電極の幅方向の両縁部の少なくとも一方の厚さが、上記帯状電極の中央部の厚さよりも薄いプラズマ処理装置。   8. The plasma processing apparatus according to claim 7, wherein the thickness of at least one of both edges in the width direction of the strip electrode is thinner than the thickness of the central portion of the strip electrode. 請求項7または8に記載のプラズマ処理装置において、上記帯状電極の幅方向の両縁部が、ナイフエッジ形状であるプラズマ処理装置。   9. The plasma processing apparatus according to claim 7, wherein both edge portions in the width direction of the belt-like electrode have a knife edge shape. 請求項1記載のプラズマ処理装置において、上記プラズマ処理容器には上記一対の電極の少なくとも一方の電極が埋設されているプラズマ処理装置。   The plasma processing apparatus according to claim 1, wherein at least one of the pair of electrodes is embedded in the plasma processing container. 請求項2記載のプラズマ処理装置において、上記被処理物が上記放電空間内に配置される開口部と同一の開口部または異なる開口部から放電用ガスとともに上記放電空間内に供給されるプラズマ処理装置。   3. The plasma processing apparatus according to claim 2, wherein the object to be processed is supplied into the discharge space together with a discharge gas from the same opening or a different opening as the opening disposed in the discharge space. . 請求項1ないし11のいずれか1項記載のプラズマ処理装置を用いたプラズマ処理方法であって、
上記プラズマ処理容器内に、上記開口部から被処理物を導入するステップ、
上記開口部と同一の開口部または異なる開口部から放電用ガスを供給するステップ、
上記一対の電極の間に電圧を印加し上記プラズマ処理容器内でプラズマを生成して上記被処理物をプラズマ処理するステップ、
上記一対の電極間への電圧印加を停止するステップ、及び
上記被処理物を上記いずれかの開口部または異なる開口部から取り出すステップ、を有することを特徴とするプラズマ処理方法。
A plasma processing method using the plasma processing apparatus according to any one of claims 1 to 11,
Introducing the object to be processed into the plasma processing container from the opening;
Supplying a discharge gas from the same opening as the opening or from a different opening;
Applying a voltage between the pair of electrodes to generate plasma in the plasma processing vessel to plasma-treat the object to be processed;
A plasma processing method comprising: stopping voltage application between the pair of electrodes; and taking out the object to be processed from any one of the openings or different openings.
JP2017056383A 2017-03-22 2017-03-22 Plasma processing equipment and plasma processing method Active JP6974678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017056383A JP6974678B2 (en) 2017-03-22 2017-03-22 Plasma processing equipment and plasma processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017056383A JP6974678B2 (en) 2017-03-22 2017-03-22 Plasma processing equipment and plasma processing method

Publications (2)

Publication Number Publication Date
JP2018160353A true JP2018160353A (en) 2018-10-11
JP6974678B2 JP6974678B2 (en) 2021-12-01

Family

ID=63795659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017056383A Active JP6974678B2 (en) 2017-03-22 2017-03-22 Plasma processing equipment and plasma processing method

Country Status (1)

Country Link
JP (1) JP6974678B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010029830A (en) * 2008-07-31 2010-02-12 Nakamura Sangyo Gakuen Plasma treatment device
JP2012009184A (en) * 2010-06-23 2012-01-12 E Square:Kk Plasma surface treatment equipment and electrode structure thereof
JP2012038658A (en) * 2010-08-10 2012-02-23 Orc Mfg Co Ltd Discharge lamp
JP2014002937A (en) * 2012-06-19 2014-01-09 Air Water Inc Atmospheric pressure plasma treatment device, method for manufacturing atmospheric pressure plasma treatment device, and atmospheric pressure plasma treatment method
JP2015064966A (en) * 2013-09-24 2015-04-09 日本碍子株式会社 Structure and electrode structure
JP6006393B1 (en) * 2015-10-09 2016-10-12 アルファ株式会社 Plasma processing equipment
WO2017099011A1 (en) * 2015-12-09 2017-06-15 日本特殊陶業株式会社 Plasma reactor and plasma electrode plate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010029830A (en) * 2008-07-31 2010-02-12 Nakamura Sangyo Gakuen Plasma treatment device
JP2012009184A (en) * 2010-06-23 2012-01-12 E Square:Kk Plasma surface treatment equipment and electrode structure thereof
JP2012038658A (en) * 2010-08-10 2012-02-23 Orc Mfg Co Ltd Discharge lamp
JP2014002937A (en) * 2012-06-19 2014-01-09 Air Water Inc Atmospheric pressure plasma treatment device, method for manufacturing atmospheric pressure plasma treatment device, and atmospheric pressure plasma treatment method
JP2015064966A (en) * 2013-09-24 2015-04-09 日本碍子株式会社 Structure and electrode structure
JP6006393B1 (en) * 2015-10-09 2016-10-12 アルファ株式会社 Plasma processing equipment
WO2017099011A1 (en) * 2015-12-09 2017-06-15 日本特殊陶業株式会社 Plasma reactor and plasma electrode plate

Also Published As

Publication number Publication date
JP6974678B2 (en) 2021-12-01

Similar Documents

Publication Publication Date Title
KR101880622B1 (en) plasma jet assembly and plasma brush including the same
EP3609417B1 (en) Device for human medical and veterinary treatment
JP6289859B2 (en) Trap apparatus and substrate processing apparatus
JP2014182916A (en) Fluorescent excimer lamp and fluid treatment device
JP2015084290A (en) Atmospheric pressure plasma generator
US6770165B2 (en) Apparatus for plasma treatment
US7713377B2 (en) Apparatus and method for plasma treating a substrate
JP2010103188A (en) Atmospheric pressure plasma processing apparatus
JP2018160353A (en) Plasma processing device and plasma processing method
JP4871343B2 (en) Plasma processing equipment
JP6618772B2 (en) Atmospheric pressure plasma processing equipment
JP2009021492A (en) Plasma reaction vessel
EP2105948B1 (en) Filament lamp
JP3662621B2 (en) Induction plasma generation method and apparatus
JP7014612B2 (en) Plasma generator and plasma generation method
JP2007294210A (en) Treatment gas discharging device and surface treatment device equipped with it
JP2018160352A (en) Plasma generator and plasma generating method
CN106460173A (en) Plasma CVD film-forming device
EP3085807A1 (en) Plasma nitriding apparatus
JPH09298189A (en) Plasma treatment method and plasma treatment apparatus
JP6888996B2 (en) Atmospheric pressure plasma generator
JP4086612B2 (en) Substrate processing equipment
JPH06328256A (en) Welding head and welding equipment
JP4604591B2 (en) Plasma processing method
JPH06142932A (en) Weld head and welding equipment

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20170523

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210922

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210930

R150 Certificate of patent or registration of utility model

Ref document number: 6974678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150