JP2018160354A - Atmospheric pressure plasma generating device - Google Patents

Atmospheric pressure plasma generating device Download PDF

Info

Publication number
JP2018160354A
JP2018160354A JP2017056387A JP2017056387A JP2018160354A JP 2018160354 A JP2018160354 A JP 2018160354A JP 2017056387 A JP2017056387 A JP 2017056387A JP 2017056387 A JP2017056387 A JP 2017056387A JP 2018160354 A JP2018160354 A JP 2018160354A
Authority
JP
Japan
Prior art keywords
tube
discharge tube
atmospheric pressure
discharge
pressure plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017056387A
Other languages
Japanese (ja)
Other versions
JP6888996B2 (en
Inventor
壮則 早川
Takenori Hayakawa
壮則 早川
小林 剛
Takeshi Kobayashi
剛 小林
芹澤 和泉
Izumi Serizawa
和泉 芹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orc Manufacturing Co Ltd
Original Assignee
Orc Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orc Manufacturing Co Ltd filed Critical Orc Manufacturing Co Ltd
Priority to JP2017056387A priority Critical patent/JP6888996B2/en
Publication of JP2018160354A publication Critical patent/JP2018160354A/en
Application granted granted Critical
Publication of JP6888996B2 publication Critical patent/JP6888996B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a compact atmospheric pressure plasma generating device, which reliably generates plasma and is improved in startability of plasma generation, without increasing a voltage applied between electrodes.SOLUTION: An atmospheric pressure plasma generating device includes a discharge tube (10, 20) where discharge gas flows in and out, and a pair of electrodes (13a and 15, 13a' and 15, 23 and 23, or 23' and 23'') disposed to face each other with the discharge tube interposed therebetween, the discharge gas flowing at the inside of the discharge tube. In the plasma generating device, the electric field intensity between the pair of electrodes is non-uniform along the circumferential direction of the discharge tube.SELECTED DRAWING: Figure 1

Description

本発明は、プラズマを発生させる大気圧プラズマ発生装置に関する。   The present invention relates to an atmospheric pressure plasma generator for generating plasma.

従来のプラズマ発生装置では、一対の電極の一方の電極を放電管の外表面に備え、他方の電極を放電管内に配置している。この放電管の放電空間に放電用ガスを流入し、一対の電極間に電圧を印加させることによって、プラズマを生じさせている(特許文献1)。   In the conventional plasma generator, one electrode of the pair of electrodes is provided on the outer surface of the discharge tube, and the other electrode is disposed in the discharge tube. Plasma is generated by flowing a discharge gas into the discharge space of the discharge tube and applying a voltage between the pair of electrodes (Patent Document 1).

特開2007−207475号公報JP 2007-207475 A

このような外部から流入された放電用ガスが放電空間を流動し、外部(大気)に流出する装置では、絶縁破壊に必要な電圧、すなわちプラズマ発生開始電圧(放電開始電圧)が高くなってしまうため、このような装置でプラズマを発生させるためには、非常に大きな電圧を印加する必要があった。さらに、このような装置では、放電空間内の放電用ガスの状態(例えば圧力、濃度、流速)が不均一になりやすく、プラズマ発生開始電圧が不安定となり、プラズマの発生そのものが不安定になるおそれがあった。これにより、確実にプラズマを発生させるために電極間に印加する電圧を高くする必要があり、プラズマ発生の始動性が悪く、かつ高い電圧を電極間に印加することにより電源装置が大型化するという問題があった。   In such an apparatus in which discharge gas flowing in from the outside flows in the discharge space and flows out to the outside (atmosphere), a voltage necessary for dielectric breakdown, that is, a plasma generation start voltage (discharge start voltage) becomes high. Therefore, in order to generate plasma with such an apparatus, it is necessary to apply a very large voltage. Further, in such an apparatus, the state of the discharge gas in the discharge space (eg, pressure, concentration, flow rate) tends to be non-uniform, the plasma generation start voltage becomes unstable, and the plasma generation itself becomes unstable. There was a fear. As a result, it is necessary to increase the voltage applied between the electrodes in order to reliably generate plasma, the startability of plasma generation is poor, and the application of a high voltage between the electrodes increases the size of the power supply device. There was a problem.

本発明は、従来の大気圧プラズマ発生装置についての以上の問題意識に基づき、電極間の印加電圧を大きくすることなく、確実にプラズマを発生でき、かつプラズマ発生の始動性を向上させた小型の大気圧プラズマ発生装置を得ることを目的とする。   The present invention is based on the above-mentioned problem awareness of the conventional atmospheric pressure plasma generator, and can be reliably generated without increasing the applied voltage between the electrodes, and is a compact type that improves the startability of plasma generation. An object is to obtain an atmospheric pressure plasma generator.

本発明は、放電空間内に電界強度が高い部分と低い部分を発生させる(放電管の周方向に沿って不均一である)と、電界強度が高い部分では、低い電圧でも放電(プラズマ)を生じさせることができるため、確実にプラズマを生じさせることができるという着眼に基づきなされたものである。   According to the present invention, when a high electric field strength portion and a low electric field strength portion are generated in the discharge space (nonuniform along the circumferential direction of the discharge tube), the discharge (plasma) is generated even at a low voltage in the high electric field strength portion. Since it can be generated, it is based on the viewpoint that plasma can be generated reliably.

本発明の大気圧プラズマ発生装置は、放電用ガスが流入し流出する放電管と、上記放電管を介在させて対向配置された一対の電極とを備え、上記放電用ガスが上記放電管の内部を流動する大気圧プラズマ発生装置において、上記一対の電極間の電界強度が上記放電管の周方向に沿って不均一であることを特徴とする。   An atmospheric pressure plasma generator of the present invention includes a discharge tube into which discharge gas flows in and out, and a pair of electrodes arranged to face each other with the discharge tube interposed therebetween, and the discharge gas is disposed inside the discharge tube. In the atmospheric pressure plasma generating apparatus that flows, the electric field strength between the pair of electrodes is non-uniform along the circumferential direction of the discharge tube.

上記一対の電極間の距離または誘電体の厚さを、上記放電管の周方向または径方向に沿って不均一とすることにより、上記放電管内に電界強度が局所的に高い領域を形成してもよい。   By making the distance between the pair of electrodes or the thickness of the dielectric non-uniform along the circumferential direction or radial direction of the discharge tube, a region having a locally high electric field strength is formed in the discharge tube. Also good.

上記一対の電極の少なくとも一方の電極は、上記放電管の内側に配設された内側電極であって、上記内側電極の幅が上記放電管の周方向に沿って不均一であってもよい。すなわち、上記内側電極は断面が真円である円柱状でなくてもよい。   At least one electrode of the pair of electrodes may be an inner electrode disposed inside the discharge tube, and the width of the inner electrode may be non-uniform along the circumferential direction of the discharge tube. That is, the inner electrode does not have to be a cylinder having a perfect cross section.

上記内側電極は、上記放電管の軸方向に沿って配設された帯状電極であって、上記帯状電極の幅方向の(長手方向に沿った)両縁部の少なくとも一方の厚さが、上記帯状電極の中央部の厚さよりも薄くてもよい。   The inner electrode is a strip electrode disposed along the axial direction of the discharge tube, and the thickness of at least one of both edge portions (along the longitudinal direction) of the strip electrode in the width direction is It may be thinner than the thickness of the central portion of the strip electrode.

本発明の大気圧プラズマ発生装置は、上記内側電極を埋設する内側管を有し、該内側管は、上記内側電極の最大幅方向の厚さが最も薄くてもよい。   The atmospheric pressure plasma generator of the present invention may have an inner tube in which the inner electrode is embedded, and the inner tube may have the smallest thickness in the maximum width direction of the inner electrode.

上記一対の電極の一方の電極は、上記放電管の内側に配設された内側電極であって、上記放電管の内側に配設された内側管により埋設されており、上記内側管の上記放電管の径方向の厚さは、上記放電管の周方向に沿って不均一であってもよい。   One electrode of the pair of electrodes is an inner electrode disposed on the inner side of the discharge tube, and is embedded by an inner tube disposed on the inner side of the discharge tube. The radial thickness of the tube may be non-uniform along the circumferential direction of the discharge tube.

上記内側管は、上記放電管と一体として加熱成形するのが実際的である。   It is practical to heat mold the inner tube integrally with the discharge tube.

上記一対の電極の少なくとも一方は、上記放電管の管壁に沿う帯状電極であって、上記放電管の管壁内に埋設してもよい。   At least one of the pair of electrodes is a strip electrode along the tube wall of the discharge tube, and may be embedded in the tube wall of the discharge tube.

上記帯状電極は、上記放電管を構成する小径管と大径管との間での加熱溶着により埋設してもよい。   The strip electrode may be embedded by heat welding between a small diameter tube and a large diameter tube constituting the discharge tube.

上記帯状電極は、上記帯状電極の幅方向の(長手方向に沿った)両縁部が、ナイフエッジ形状であってもよい。   The band-shaped electrode may have a knife edge shape at both edges in the width direction (along the longitudinal direction) of the band-shaped electrode.

本発明の大気圧プラズマ発生装置は、一対の電極間の電界強度を放電管周方向に沿って不均一とし、電界強度が局所的に高い部分を放電管内に生じさせることで、低い電圧でも放電(プラズマ)を発生させることができる。これにより、確実にプラズマを発生させることができ、かつプラズマ発生の始動性が良い小型の装置を得ることができる。   The atmospheric pressure plasma generator according to the present invention makes the electric field strength between a pair of electrodes non-uniform along the circumferential direction of the discharge tube, and generates a portion in the discharge tube where the electric field strength is locally high. (Plasma) can be generated. As a result, it is possible to obtain a small apparatus that can reliably generate plasma and has good startability for generating plasma.

本発明による大気圧プラズマ発生装置の第1の実施形態を示す縦断面図である。1 is a longitudinal sectional view showing a first embodiment of an atmospheric pressure plasma generator according to the present invention. 図1のII−II線に沿う断面図である。It is sectional drawing which follows the II-II line | wire of FIG. 本発明の第1の実施形態の変形例を示す、図2に対応する断面図である。It is sectional drawing corresponding to FIG. 2 which shows the modification of the 1st Embodiment of this invention. 本発明の第1の実施形態のさらに別の変形例を示す、図2に対応する断面図である。It is sectional drawing corresponding to FIG. 2 which shows another modification of the 1st Embodiment of this invention. 本発明による大気圧プラズマ発生装置の第2の実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 2nd Embodiment of the atmospheric pressure plasma generator by this invention. 図5のVI−VI線に沿う断面図である。It is sectional drawing which follows the VI-VI line of FIG. 本発明の第2の実施形態の変形例を示す、図6に対応する断面図である。It is sectional drawing corresponding to FIG. 6 which shows the modification of the 2nd Embodiment of this invention.

以下図面について本発明に係る大気圧プラズマ発生装置100の実施形態を説明する。図1及び図2は本発明による大気圧プラズマ発生装置の第1の実施形態を示している。図1、図2に示すように、本大気圧プラズマ発生装置100は、放電容器として放電管10を備えている。この放電管10は、誘電体(例えば石英)からなるものであり、図示例では断面が真円である円筒状に形成されている。放電管10の一端には、放電管内に放電用ガスを流入する流入口11を備え、他端には放電管内から外部(大気)に放電用ガスを流出する流出口(大気開放口)12を備える。流入口11は、放電管10の管壁10aに穿設したものであって、放電管10の径方向に延びる接続管11aと連通している。管壁10aの一端部は、管壁10aと一体の端部壁10bによって塞がれている。なお、同様の構成により流入口と流出口を入れ替えて、放電用ガスを放電管内で逆に流動させてもよい(図中の矢印の向きが逆になる)。   Hereinafter, an embodiment of an atmospheric pressure plasma generator 100 according to the present invention will be described with reference to the drawings. 1 and 2 show a first embodiment of an atmospheric pressure plasma generator according to the present invention. As shown in FIGS. 1 and 2, the atmospheric pressure plasma generator 100 includes a discharge tube 10 as a discharge vessel. The discharge tube 10 is made of a dielectric (for example, quartz), and is formed in a cylindrical shape having a perfect cross section in the illustrated example. One end of the discharge tube 10 is provided with an inlet 11 through which discharge gas flows into the discharge tube, and the other end has an outlet (atmosphere release port) 12 through which discharge gas flows out from the discharge tube to the outside (atmosphere). Prepare. The inflow port 11 is formed in the tube wall 10 a of the discharge tube 10 and communicates with a connection tube 11 a extending in the radial direction of the discharge tube 10. One end of the tube wall 10a is closed by an end wall 10b integral with the tube wall 10a. It should be noted that the inlet and outlet may be interchanged with the same configuration to cause the discharge gas to flow reversely in the discharge tube (the direction of the arrow in the figure is reversed).

一方、放電管10の内部には、放電管10の軸心に沿って一対の電極の一方の電極となる内側電極13aと該内側電極13aを埋設した(被覆した)内側管(内側誘電体)13bとが配設されている。内側電極13aを埋設した内側管13bは誘電体(例えば石英)から構成されるものであり、管状の誘電体内に内側電極13aを挿入した状態で、溶融軟化(加熱溶着)させることで形成される。また、内側管13bは、放電管10の流入口11側の端部壁10bにおいて、加熱溶着(加熱成形)によって放電管10と一体となり、放電管(放電容器)10の一部を構成している。この内側管13bと放電管10(管壁10a)の間の筒状空間が放電空間(プラズマ発生空間)14を構成する。   On the other hand, inside the discharge tube 10, an inner electrode 13 a that is one of a pair of electrodes along the axis of the discharge tube 10 and an inner tube (inner dielectric) in which the inner electrode 13 a is embedded (covered). 13b. The inner tube 13b in which the inner electrode 13a is embedded is made of a dielectric (for example, quartz), and is formed by melting and softening (heating welding) with the inner electrode 13a inserted in a tubular dielectric. . Further, the inner tube 13b is integrated with the discharge tube 10 by heat welding (heating molding) on the end wall 10b on the inlet 11 side of the discharge tube 10 and constitutes a part of the discharge tube (discharge vessel) 10. Yes. A cylindrical space between the inner tube 13b and the discharge tube 10 (tube wall 10a) constitutes a discharge space (plasma generation space) 14.

内側電極13aは、図示実施形態では、図2に示すように、長手方向(放電管10の軸方向、放電管内の放電用ガスの流れ方向)に一様断面の帯状(箔状、板状)に形成された帯状電極であり、その幅方向の中央部13a1の厚さは両縁部13a2の厚さより厚く、かつ両縁部13a2(幅方向に沿った両端部)に向けて先鋭化し、その厚さは中央部13a1に比べて薄くなり、両縁部13a2は先細く尖ったナイフエッジ形状をなしている。内側電極13aを埋設した内側管13bの放電管10の径方向の厚さは周方向に沿って不均一であり、埋設された内側電極13aの幅方向(幅方向に沿って両縁部13a2を延長した方向)の外側の厚さdが最も薄くなっている。   In the illustrated embodiment, the inner electrode 13a has a strip shape (foil shape, plate shape) having a uniform cross section in the longitudinal direction (the axial direction of the discharge tube 10, the flow direction of the discharge gas in the discharge tube) as shown in FIG. The thickness of the central portion 13a1 in the width direction is thicker than the thickness of both edge portions 13a2, and sharpens toward both edge portions 13a2 (both end portions along the width direction). The thickness is smaller than that of the central portion 13a1, and both edge portions 13a2 have a sharp and sharp knife edge shape. The radial thickness of the discharge tube 10 of the inner tube 13b in which the inner electrode 13a is embedded is uneven along the circumferential direction, and the width direction (both edges 13a2 along the width direction of the embedded inner electrode 13a is The outer thickness d in the extended direction) is the thinnest.

一方、放電管10(管壁10a)の外周面には、一対の電極の他方の電極となる外側電極15が配設されている。外側電極15は、図示実施形態では、金属膜状(箔状)電極として描いているが、螺旋状に巻回された金属線材であってもよい。外側電極15と内側電極13aが対向する軸方向長さは放電空間14に対応している。   On the other hand, an outer electrode 15 serving as the other electrode of the pair of electrodes is disposed on the outer peripheral surface of the discharge tube 10 (tube wall 10a). In the illustrated embodiment, the outer electrode 15 is depicted as a metal film-like (foil-like) electrode, but may be a metal wire wound spirally. The axial length of the outer electrode 15 and the inner electrode 13a facing each other corresponds to the discharge space 14.

以上の内側電極13aと外側電極15は、内側管13b、放電空間14及び放電管10の管壁10aを介して対向する一対の電極であり、図示しない電源部に電気的に接続されている。また内側電極13aは高圧側電極であり、外側電極15は接地側電極であるが、この逆であってもよい。   The inner electrode 13a and the outer electrode 15 described above are a pair of electrodes facing each other through the inner tube 13b, the discharge space 14, and the tube wall 10a of the discharge tube 10, and are electrically connected to a power supply unit (not shown). The inner electrode 13a is a high-voltage side electrode, and the outer electrode 15 is a ground-side electrode.

上記構成の本大気圧プラズマ発生装置100を用いて放電(プラズマ)を発生させるには、放電管10の流入口11から放電管10内に放電用ガス等(以下、単に放電用ガス)を流入させ、放電空間14内を流動させた後、流出口12から大気である外部へ排出する。放電用ガスは、例えば、周知の希ガスや、希ガスとその他のガスとの混合ガスである。   In order to generate discharge (plasma) using the atmospheric pressure plasma generator 100 having the above-described configuration, a discharge gas or the like (hereinafter simply referred to as discharge gas) flows into the discharge tube 10 from the inlet 11 of the discharge tube 10. Then, after flowing in the discharge space 14, it is discharged from the outlet 12 to the outside which is the atmosphere. The discharge gas is, for example, a known rare gas or a mixed gas of a rare gas and another gas.

このように、放電管10の放電空間14内へ放電用ガスを供給した(流入させた)状態にし、電源部によって内側電極13aと外側電極15との間に放電開始(絶縁破壊)に必要な高電圧を印加すると、放電管10の放電空間14内において、内側電極13aと外側電極15との間で電界強度が高い両縁部13a2付近からの絶縁破壊が起点になって、放電空間14内の全体でプラズマ(放電)が発生する。このように両縁部13a2付近の電界強度が高いことを以下に説明する。内側電極13aの厚さは幅方向の中央部13a1から両縁部13a2に向かって薄くなり、両縁部13a2が尖ったナイフエッジ形状をなしているので、例えば円柱状の電極と比較して、電界集中が生じやすい。その結果、内側電極13aの幅方向に沿った放電空間14(両縁部13a2と外側電極15との間で放電距離が最短となる領域)の電界強度が局所的に高くなる。   In this manner, the discharge gas is supplied (inflowed) into the discharge space 14 of the discharge tube 10 and is necessary for the start of discharge (dielectric breakdown) between the inner electrode 13a and the outer electrode 15 by the power supply unit. When a high voltage is applied, in the discharge space 14 of the discharge tube 10, the dielectric breakdown from the vicinity of both edge portions 13 a 2 where the electric field strength is high between the inner electrode 13 a and the outer electrode 15 is the starting point. Plasma (discharge) is generated throughout. The fact that the electric field intensity in the vicinity of both edge portions 13a2 is high will be described below. Since the thickness of the inner electrode 13a becomes thinner from the central portion 13a1 in the width direction toward both edge portions 13a2, and the both edge portions 13a2 have a sharp knife edge shape, for example, compared with a cylindrical electrode, Electric field concentration is likely to occur. As a result, the electric field strength in the discharge space 14 along the width direction of the inner electrode 13a (the region where the discharge distance is shortest between the both edges 13a2 and the outer electrode 15) is locally increased.

加えて、図示実施形態では、内側電極13aを覆う内側管13bの厚さが周方向において不均一であり、内側電極13aの両縁部13a2(ナイフエッジ形状の先端、内側電極13aの最大幅方向)において厚さが最小になっている。電界強度は、誘電体の厚さが薄い部分ほど高くなることが知られているから、放電空間14において、内側電極13aの幅方向の2箇所の空間Xの少なくともいずれか一方において確実に放電(プラズマ)を発生させることができる。   In addition, in the illustrated embodiment, the thickness of the inner tube 13b covering the inner electrode 13a is not uniform in the circumferential direction, and both edges 13a2 of the inner electrode 13a (the tip of the knife edge shape, the maximum width direction of the inner electrode 13a) ) Has a minimum thickness. It is known that the electric field strength increases as the thickness of the dielectric decreases, so that in the discharge space 14, the electric field is reliably discharged in at least one of the two spaces X in the width direction of the inner electrode 13 a ( Plasma) can be generated.

別言すれば、一対の電極間の距離を放電管の周方向に沿って不均一とする観点で、内側電極13aの両縁部13a2のどちらか一方を中央部の厚さよりも薄くする(ナイフエッジ形状とする)ことで、内側電極13aの幅を放電管の周方向に沿って不均一とするか、一対の電極間の誘電体の厚さを放電管の周方向に沿って不均一とする観点で、内側管13bに厚さが薄くなる部分(薄肉部)を設けることで、内側管13bの厚さ(外径)を放電管の周方向に沿って不均一とするかのいずれかによって、放電管内の電界強度を局所的に高くすることができ、放電管の周方向に沿って電界強度が不均一となる。これらの方法の少なくとも一つを適用することで、比較的低い放電開始電圧でもプラズマを生じさせることができるため、放電空間14の放電用ガスの状態(例えば圧力、濃度、流速)が不均一になっても、放電開始電圧を増加させることなく確実にプラズマを発生させることができる。なお、内側管13bの薄肉部を、ナイフエッジ形状とした両縁部13a2の外側に設けることで、相乗効果によって、放電管内の電界強度を局所的により高くすることができ、より確実にプラズマを発生させることができる。   In other words, from the viewpoint of making the distance between the pair of electrodes non-uniform along the circumferential direction of the discharge tube, either one of both edge portions 13a2 of the inner electrode 13a is made thinner than the thickness of the central portion (knife The width of the inner electrode 13a is non-uniform along the circumferential direction of the discharge tube, or the thickness of the dielectric between the pair of electrodes is non-uniform along the circumferential direction of the discharge tube. In view of the above, any one of making the thickness (outer diameter) of the inner tube 13b non-uniform along the circumferential direction of the discharge tube by providing the inner tube 13b with a thin portion (thin wall portion). Thus, the electric field strength in the discharge tube can be locally increased, and the electric field strength becomes non-uniform along the circumferential direction of the discharge tube. By applying at least one of these methods, plasma can be generated even at a relatively low discharge start voltage, so that the state (for example, pressure, concentration, flow rate) of the discharge gas in the discharge space 14 is not uniform. Even in such a case, plasma can be reliably generated without increasing the discharge start voltage. In addition, by providing the thin wall portion of the inner tube 13b outside the both edge portions 13a2 having a knife edge shape, the electric field strength in the discharge tube can be locally increased by a synergistic effect, and the plasma can be more reliably generated. Can be generated.

従って、以上の大気圧プラズマ発生装置100によると、流入口11から放電管10内の放電空間14に流入した(供給された)放電用ガスは、放電空間14を軸方向に沿って流動する過程でプラズマとなる。   Therefore, according to the atmospheric pressure plasma generator 100 described above, the discharge gas flowing (supplied) from the inlet 11 into the discharge space 14 in the discharge tube 10 flows in the discharge space 14 along the axial direction. It becomes plasma.

また、以上の第1の実施形態では、内側電極13aが内側管13b内に埋設されているために、放電の際に内側電極13aが損傷することが無い。また、帯状の内側電極13aの幅方向の両縁部13a2はナイフエッジ形状であるため、内側管13bとの間に隙間が生じない。これにより、隙間に入り込んだ酸素(大気)と内側電極13aとが反応(酸化)し、内側電極13aが劣化することを防止できる。   Moreover, in the above 1st Embodiment, since the inner side electrode 13a is embed | buried in the inner side pipe | tube 13b, the inner side electrode 13a is not damaged in the case of discharge. In addition, since both edge portions 13a2 in the width direction of the strip-shaped inner electrode 13a have a knife edge shape, no gap is generated between the inner tube 13b and the inner edge 13a2. Accordingly, it is possible to prevent oxygen (atmosphere) entering the gap from reacting (oxidizing) with the inner electrode 13a and deteriorating the inner electrode 13a.

なお、図3は、第1の実施形態の変形例を示すもので、内側電極13aを内側管13b内に埋設すること無く、両端部13a2をナイフエッジ形状にした内側電極13aのみを放電管10内に配置している。この変形例によっても、内側電極の幅(帯状の内側電極の幅と厚さ)が放電管の周方向に沿って不均一であることで、一対の電極間の距離が放電管の周方向に沿って不均一となり、内側電極13aと外側電極15との間の電界強度(放電空間14内の電界強度)を、内側電極13aの幅方向の両縁部13a2付近において局所的に高くすることができる。この変形例では、帯状の内側電極を用いているが、楕円(長円、多角形)状断面の内側電極を用いて、その幅を円周方向において不均一とすることで、一対の電極間の距離を放電管の周方向に沿って不均一として、放電管内の電界強度を局所的に高くすることができる。   FIG. 3 shows a modification of the first embodiment. Only the inner electrode 13a in which both end portions 13a2 have a knife edge shape is formed in the discharge tube 10 without embedding the inner electrode 13a in the inner tube 13b. It is placed inside. Even in this modification, the width of the inner electrode (the width and thickness of the band-shaped inner electrode) is not uniform along the circumferential direction of the discharge tube, so that the distance between the pair of electrodes is increased in the circumferential direction of the discharge tube. The electric field strength between the inner electrode 13a and the outer electrode 15 (electric field strength in the discharge space 14) is locally increased in the vicinity of both edges 13a2 in the width direction of the inner electrode 13a. it can. In this modification, a band-shaped inner electrode is used. However, by using an inner electrode having an elliptical (oval, polygonal) cross section and making the width non-uniform in the circumferential direction, Can be made uneven along the circumferential direction of the discharge tube, and the electric field strength in the discharge tube can be locally increased.

また、図4は、第1の実施形態のさらに別の変形例を示すもので、内側電極13a’を円形断面とし、内側管13b’を楕円(長円)状断面とすることで、誘電体の厚さが周方向において不均一になっている。この変形例においても、誘電体である内側管13b’の厚さが放電管10の周方向に沿って不均一となって、放電空間14において、内側管13b’の厚さが最も薄くなる部分に接する内側電極13a’付近の空間Xの電界強度を局所的に高くすることができる。内側電極13a’が内側管13b’内に埋設されているために、内側電極13a’が損傷することがない。   FIG. 4 shows still another modification of the first embodiment. The inner electrode 13a ′ has a circular cross section, and the inner tube 13b ′ has an elliptical (oval) cross section. Is uneven in the circumferential direction. Also in this modified example, the thickness of the inner tube 13b ′, which is a dielectric, becomes nonuniform along the circumferential direction of the discharge tube 10, and the thickness of the inner tube 13b ′ is the smallest in the discharge space 14. It is possible to locally increase the electric field strength in the space X in the vicinity of the inner electrode 13a ′ in contact with the electrode. Since the inner electrode 13a 'is embedded in the inner tube 13b', the inner electrode 13a 'is not damaged.

図5及び図6は、本発明による大気圧プラズマ発生装置の第2の実施形態を示している。この第2の実施形態は、第1の実施形態に比して、一対の電極の配置態様と、放電用ガスの流入口の配置形態が異なっている。放電管20は、誘電体(例えば石英)からなる筒状の管壁20aと、放電管20の一方の端部を塞ぐ端部壁20bと、この端部壁20bの略中央に管壁20aと同軸に形成された放電ガス等の流入口21と、放電管20の他方の端部に管壁20aと同軸に形成された流出口22とを備えている。端部壁20bの外面には、流入口21に連通する接続管21aが一体に形成され、放電管20の一部を構成している。   5 and 6 show a second embodiment of the atmospheric pressure plasma generator according to the present invention. The second embodiment differs from the first embodiment in the arrangement of the pair of electrodes and the arrangement of the discharge gas inlet. The discharge tube 20 includes a cylindrical tube wall 20a made of a dielectric material (for example, quartz), an end wall 20b that closes one end of the discharge tube 20, and a tube wall 20a at the approximate center of the end wall 20b. An inflow port 21 for discharge gas or the like formed coaxially and an outflow port 22 formed coaxially with the tube wall 20 a at the other end of the discharge tube 20 are provided. A connecting tube 21 a communicating with the inflow port 21 is integrally formed on the outer surface of the end wall 20 b and constitutes a part of the discharge tube 20.

この実施形態では、一対の電極23は、図6に示すように、放電管10の軸方向に沿って一様断面の帯状(板状)に形成された帯状電極であり、管壁20a及び放電空間24を介して対向するように、放電管20の管壁20a内に埋設されている。一対の電極23は、放電管20の中心軸を通る対称軸を中心に対称形状をなすものであって、放電管20の管壁20aの曲率に対応する曲率で曲げられており、かつ、周方向に沿って、中央部231の厚さが最も厚く、両縁部232に向けて徐々に厚さを減じて薄くなるナイフエッジ形状をなしている。この一対の電極23はそれぞれ長手方向の一端に接続される給電部材23aによって、電源装置と電気的に接続される。   In this embodiment, as shown in FIG. 6, the pair of electrodes 23 are band-shaped electrodes formed in a band shape (plate shape) with a uniform cross section along the axial direction of the discharge tube 10, and the tube wall 20a and the discharge electrode It is embedded in the tube wall 20a of the discharge tube 20 so as to face each other through the space 24. The pair of electrodes 23 are symmetrical with respect to an axis of symmetry passing through the central axis of the discharge tube 20, are bent at a curvature corresponding to the curvature of the tube wall 20 a of the discharge tube 20, and Along the direction, the thickness of the central portion 231 is the largest, and a knife edge shape is formed in which the thickness is gradually reduced toward both edge portions 232 and becomes thinner. The pair of electrodes 23 are electrically connected to the power supply device by a power supply member 23a connected to one end in the longitudinal direction.

一対の電極23を放電管20の管壁20a内に加熱成形により埋設する方法としては、小径管(石英管)と大径管(石英管)との間に一対の電極23を挿入した状態において、小径管と大径管の間の空気を吸引し、小径管と大径管を加熱溶着させて一体とさせる製造方法を適用できる。   As a method for embedding the pair of electrodes 23 in the tube wall 20a of the discharge tube 20 by thermoforming, the pair of electrodes 23 is inserted between a small diameter tube (quartz tube) and a large diameter tube (quartz tube). A manufacturing method in which air between a small diameter tube and a large diameter tube is sucked and the small diameter tube and the large diameter tube are heat-welded and integrated can be applied.

以上の大気圧プラズマ発生装置100は、放電管20の一対の電極23の両縁部232が尖ったナイフエッジ形状をなしており、放電空間24と放電管20の筒状壁面(誘電体)を挟んで対向している。このため、放電管20の径方向断面において、一対の電極23間の距離や誘電体の厚さが、一対の電極23の対称軸(放電管の径方向)に沿って不均一になるので、放電空間24内の電界強度は、一対の電極23の両縁部232付近において局所的に高くなって、放電管20の周方向に沿って不均一となる。   The above atmospheric pressure plasma generator 100 has a knife-edge shape in which both edges 232 of the pair of electrodes 23 of the discharge tube 20 are pointed, and the discharge wall 24 and the cylindrical wall surface (dielectric) of the discharge tube 20 are formed. Opposite across. For this reason, in the radial cross section of the discharge tube 20, the distance between the pair of electrodes 23 and the thickness of the dielectric are not uniform along the symmetry axis (the radial direction of the discharge tube) of the pair of electrodes 23. The electric field strength in the discharge space 24 increases locally in the vicinity of both edge portions 232 of the pair of electrodes 23 and becomes non-uniform along the circumferential direction of the discharge tube 20.

従って、第1の実施形態と同様に、電源部によって一対の電極23の間に放電開始(絶縁破壊)に必要な高電圧を印加すると、放電管20内の両縁部232付近における絶縁破壊を起点として、放電空間24全体でプラズマ(放電)が発生することになる。   Therefore, as in the first embodiment, when a high voltage necessary for the start of discharge (dielectric breakdown) is applied between the pair of electrodes 23 by the power supply unit, the dielectric breakdown in the vicinity of both edges 232 in the discharge tube 20 is caused. As a starting point, plasma (discharge) is generated in the entire discharge space 24.

本実施形態では帯状の電極23が放電管20の管壁20a内部に埋設され、管壁20aの外表面に露出していない。そのため、放電管20の管壁20aの外表面で沿面放電が生じることがないので、沿面放電によって放電空間24でのプラズマ発生が阻害されることがなく、かつ高電圧が印加される電極23が放電管20の外表面に露出しない安全なプラズマ発生装置を提供できる。   In this embodiment, the strip-shaped electrode 23 is embedded in the tube wall 20a of the discharge tube 20 and is not exposed on the outer surface of the tube wall 20a. Therefore, creeping discharge does not occur on the outer surface of the tube wall 20a of the discharge tube 20, so that the generation of plasma in the discharge space 24 is not hindered by the creeping discharge, and the electrode 23 to which a high voltage is applied is provided. A safe plasma generator that is not exposed on the outer surface of the discharge tube 20 can be provided.

図7は、第2の実施形態の変形例を示している。この変形例は、第2の実施形態の一対の電極のうち、電極23’’を放電管20の管壁20a内に埋設し、電極23’を管壁20aの外表面に沿わせて配設したものである。この変形例の一対の電極23’、23’’は、対称軸を中心に対称形状をなすものであって、周方向に沿って、中央部231’、231’’の厚さが最も厚く、周方向の両縁部232’、232’’に向けて徐々に厚さを減じて薄くなるナイフエッジ形状をなしている。したがってこの変形例においても、放電管20の径方向断面において、一対の電極23’、23’’間の距離や誘電体の厚さが、一対の電極23’、23’’の対称軸(放電管20の径方向)に沿って不均一になるので、一対の電極23’、23’’の間の電界強度は、両縁部232’と232’’付近において局所的に高くなり、放電管20の周方向に沿って不均一となる。第1の実施形態と同様に、電源部によって一対の電極23’、23’’の間に放電開始(絶縁破壊)に必要な高電圧を印加すると、放電管20内の両縁部232’と232’’付近における絶縁破壊を起点として、放電空間24全域でプラズマ(放電)が発生する。   FIG. 7 shows a modification of the second embodiment. In this modified example, of the pair of electrodes of the second embodiment, the electrode 23 ″ is embedded in the tube wall 20a of the discharge tube 20, and the electrode 23 ′ is disposed along the outer surface of the tube wall 20a. It is a thing. The pair of electrodes 23 ′ and 23 ″ of this modification form a symmetrical shape with the symmetry axis as the center, and the thickness of the central portions 231 ′ and 231 ″ is the largest along the circumferential direction. It has a knife edge shape that gradually decreases in thickness toward both edges 232 ′, 232 ″ in the circumferential direction. Therefore, also in this modification, in the radial cross section of the discharge tube 20, the distance between the pair of electrodes 23 ′ and 23 ″ and the thickness of the dielectric are the symmetry axes (discharges) of the pair of electrodes 23 ′ and 23 ″. Therefore, the electric field strength between the pair of electrodes 23 ′ and 23 ″ locally increases in the vicinity of both edges 232 ′ and 232 ″, and the discharge tube It becomes non-uniform along the 20 circumferential direction. Similarly to the first embodiment, when a high voltage required for the start of discharge (dielectric breakdown) is applied between the pair of electrodes 23 ′ and 23 ″ by the power supply unit, both edges 232 ′ in the discharge tube 20 Plasma (discharge) is generated in the entire discharge space 24 starting from dielectric breakdown in the vicinity of 232 ″.

この変形例は、一方の電極23’’が放電管20の管壁20a内部に埋設され、管壁20aの外表面に露出していないので管壁20a外表面で沿面放電が生じることがないので、沿面放電によって放電空間24でのプラズマ発生が阻害されることがなく、かつ高電圧が印加される電極23’’が放電管20の外表面に露出しない安全な大気圧プラズマ発生装置を提供できる。   In this modification, since one electrode 23 ″ is embedded in the tube wall 20a of the discharge tube 20 and is not exposed on the outer surface of the tube wall 20a, creeping discharge does not occur on the outer surface of the tube wall 20a. Further, it is possible to provide a safe atmospheric pressure plasma generating apparatus in which plasma generation in the discharge space 24 is not hindered by creeping discharge, and the electrode 23 ″ to which a high voltage is applied is not exposed on the outer surface of the discharge tube 20. .

10 放電管(放電容器)
10a 管壁
10b 端部壁
11 流入口(放電用ガス流入部)
11a 接続管
12 流出口
13a、13a’ 内側電極(一方の電極、帯状電極)
13a1 中央部
13a2 縁部(両縁部)
13b、13b’ 内側管
14 放電空間(プラズマ発生空間)
15 外側電極(他方の電極、帯状電極)
20 放電管(放電容器)
20a 管壁
20b 端部壁
21 流入口
22 流出口
23、23’、23’’ 電極(帯状電極)
231、231’、231’’ 中央部
232、232’、232’’ 縁部(両縁部)
100 大気圧プラズマ発生装置
10 Discharge tube (discharge vessel)
10a Tube wall 10b End wall 11 Inlet (discharge gas inlet)
11a Connection pipe 12 Outflow port 13a, 13a 'Inner electrode (one electrode, strip electrode)
13a1 center part 13a2 edge (both edges)
13b, 13b ′ inner tube 14 discharge space (plasma generation space)
15 Outer electrode (the other electrode, strip electrode)
20 Discharge tube (discharge vessel)
20a Pipe wall 20b End wall 21 Inlet 22 Outlet 23, 23 ', 23''electrode (band electrode)
231, 231 ′, 231 ″ center 232, 232 ′, 232 ″ edge (both edges)
100 atmospheric pressure plasma generator

Claims (10)

放電用ガスが流入し流出する放電管と、上記放電管を介在させて対向配置された一対の電極とを備え、上記放電用ガスが上記放電管の内部を流動する大気圧プラズマ発生装置において、
上記一対の電極間の電界強度が上記放電管の周方向に沿って不均一であること、
を特徴とする大気圧プラズマ発生装置。
In an atmospheric pressure plasma generator comprising a discharge tube into which a discharge gas flows in and out, and a pair of electrodes arranged to face each other with the discharge tube interposed therebetween, the discharge gas flows inside the discharge tube.
The electric field strength between the pair of electrodes is non-uniform along the circumferential direction of the discharge tube;
An atmospheric pressure plasma generator characterized by.
請求項1記載の大気圧プラズマ発生装置において、上記一対の電極間の距離または誘電体の厚さを、上記放電管の周方向または径方向に沿って不均一とすることにより、上記放電管内に電界強度が局所的に高い領域を形成した大気圧プラズマ発生装置。   2. The atmospheric pressure plasma generator according to claim 1, wherein the distance between the pair of electrodes or the thickness of the dielectric is not uniform along the circumferential direction or the radial direction of the discharge tube. An atmospheric pressure plasma generator in which a region where the electric field strength is locally high is formed. 請求項1または2に記載の大気圧プラズマ発生装置において、上記一対の電極の少なくとも一方の電極は、上記放電管の内側に配設された内側電極であって、上記内側電極の幅が上記放電管の周方向に沿って不均一である大気圧プラズマ発生装置。   3. The atmospheric pressure plasma generator according to claim 1, wherein at least one of the pair of electrodes is an inner electrode disposed inside the discharge tube, and a width of the inner electrode is the discharge. An atmospheric pressure plasma generator that is non-uniform along the circumferential direction of the tube. 請求項3記載の大気圧プラズマ発生装置において、上記内側電極は、上記放電管の軸方向に沿って配設された帯状電極であって、上記帯状電極の幅方向の両縁部の少なくとも一方の厚さが、上記帯状電極の中央部の厚さよりも薄い大気圧プラズマ発生装置。   4. The atmospheric pressure plasma generator according to claim 3, wherein the inner electrode is a strip electrode disposed along the axial direction of the discharge tube, and at least one of both edges in the width direction of the strip electrode. An atmospheric pressure plasma generator whose thickness is thinner than the thickness of the central portion of the strip electrode. 請求項3または4に記載の大気圧プラズマ発生装置において、上記内側電極を埋設する内側管を有し、該内側管は、上記内側電極の最大幅方向の厚さが最も薄い大気圧プラズマ発生装置。   5. The atmospheric pressure plasma generator according to claim 3, further comprising an inner tube in which the inner electrode is embedded, wherein the inner tube has the smallest thickness in the maximum width direction of the inner electrode. . 請求項3記載の大気圧プラズマ発生装置において、上記一対の電極の一方の電極は、上記放電管の内側に配設された内側電極であって、上記放電管の内側に配設された内側管により埋設されており、上記内側管の上記放電管の径方向の厚さは、上記放電管の周方向に沿って不均一である大気圧プラズマ発生装置。   4. The atmospheric pressure plasma generator according to claim 3, wherein one electrode of the pair of electrodes is an inner electrode disposed inside the discharge tube, and is an inner tube disposed inside the discharge tube. The atmospheric pressure plasma generator according to claim 1, wherein the radial thickness of the discharge tube of the inner tube is non-uniform along the circumferential direction of the discharge tube. 請求項5または6に記載の大気圧プラズマ発生装置において、上記内側管は上記放電管と一体として加熱成形されている大気圧プラズマ発生装置。   The atmospheric pressure plasma generator according to claim 5 or 6, wherein the inner tube is thermoformed integrally with the discharge tube. 請求項1または2に記載の大気圧プラズマ発生装置において、上記一対の電極の少なくとも一方は、上記放電管の管壁に沿う帯状電極であって、上記放電管の管壁内に埋設されている大気圧プラズマ発生装置。   3. The atmospheric pressure plasma generator according to claim 1, wherein at least one of the pair of electrodes is a strip electrode along a tube wall of the discharge tube and is embedded in the tube wall of the discharge tube. Atmospheric pressure plasma generator. 請求項8記載の大気圧プラズマ発生装置において、上記帯状電極は、上記放電管を構成する小径管と大径管との間での加熱溶着により埋設されている大気圧プラズマ発生装置。   9. The atmospheric pressure plasma generator according to claim 8, wherein the strip electrode is embedded by heat welding between a small diameter tube and a large diameter tube constituting the discharge tube. 請求項8または9に記載の大気圧プラズマ発生装置において、上記帯状電極の幅方向の両縁部が、ナイフエッジ形状である大気圧プラズマ発生装置。   10. The atmospheric pressure plasma generator according to claim 8, wherein both edges in the width direction of the belt-like electrode have a knife edge shape. 11.
JP2017056387A 2017-03-22 2017-03-22 Atmospheric pressure plasma generator Active JP6888996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017056387A JP6888996B2 (en) 2017-03-22 2017-03-22 Atmospheric pressure plasma generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017056387A JP6888996B2 (en) 2017-03-22 2017-03-22 Atmospheric pressure plasma generator

Publications (2)

Publication Number Publication Date
JP2018160354A true JP2018160354A (en) 2018-10-11
JP6888996B2 JP6888996B2 (en) 2021-06-18

Family

ID=63796746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017056387A Active JP6888996B2 (en) 2017-03-22 2017-03-22 Atmospheric pressure plasma generator

Country Status (1)

Country Link
JP (1) JP6888996B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020198235A (en) * 2019-06-04 2020-12-10 京セラ株式会社 Component for plasma generator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665739A (en) * 1991-08-20 1994-03-08 Bridgestone Corp Method for surface treatment and device therefor
JP2007207475A (en) * 2006-01-31 2007-08-16 Ibaraki Univ Portable type atmospheric pressure plasma generating device
JP2008218369A (en) * 2007-02-09 2008-09-18 Tokyo Institute Of Technology Surface treatment device
JP2010009890A (en) * 2008-06-25 2010-01-14 Panasonic Electric Works Co Ltd Plasma processing device
JP2013225421A (en) * 2012-04-20 2013-10-31 Tokyo Institute Of Technology Multiple gas plasma jet apparatus
JP2014179329A (en) * 2010-07-07 2014-09-25 National Institute Of Advanced Industrial & Technology Operation method of plasma irradiation treatment device
JP2017050267A (en) * 2015-08-31 2017-03-09 積水化学工業株式会社 Plasma device, method of using the same, nitrogen gas plasma and irradiation method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665739A (en) * 1991-08-20 1994-03-08 Bridgestone Corp Method for surface treatment and device therefor
JP2007207475A (en) * 2006-01-31 2007-08-16 Ibaraki Univ Portable type atmospheric pressure plasma generating device
JP2008218369A (en) * 2007-02-09 2008-09-18 Tokyo Institute Of Technology Surface treatment device
JP2010009890A (en) * 2008-06-25 2010-01-14 Panasonic Electric Works Co Ltd Plasma processing device
JP2014179329A (en) * 2010-07-07 2014-09-25 National Institute Of Advanced Industrial & Technology Operation method of plasma irradiation treatment device
JP2013225421A (en) * 2012-04-20 2013-10-31 Tokyo Institute Of Technology Multiple gas plasma jet apparatus
JP2017050267A (en) * 2015-08-31 2017-03-09 積水化学工業株式会社 Plasma device, method of using the same, nitrogen gas plasma and irradiation method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020198235A (en) * 2019-06-04 2020-12-10 京セラ株式会社 Component for plasma generator
JP7189086B2 (en) 2019-06-04 2022-12-13 京セラ株式会社 Plasma generator parts

Also Published As

Publication number Publication date
JP6888996B2 (en) 2021-06-18

Similar Documents

Publication Publication Date Title
JP4918628B2 (en) Ion generator and ion generator
JP2017513660A5 (en)
JP2018040722A5 (en)
JP2018040721A5 (en)
KR101727243B1 (en) plasma brush
JP2022168265A5 (en)
JP2018160354A (en) Atmospheric pressure plasma generating device
KR20170016322A (en) Plasma irradiation method and plasma irradiation device
JP2022168265A (en) Discharge lamp, and ozone generating method
AU2015283821B2 (en) Corona discharge cells
JP7014612B2 (en) Plasma generator and plasma generation method
JP6291276B2 (en) Tube type ozone generator
JP2018160352A (en) Plasma generator and plasma generating method
KR20210123559A (en) Discharge Tube For Double Ozone Generation
JP5828364B1 (en) Excimer discharge lamp
JP6921557B2 (en) Discharge lamp and its manufacturing method
JP7386074B2 (en) Excimer lamp and how to install it inside a pipe
JP2014078460A (en) Excimer lamp
JP5918811B2 (en) High pressure discharge lamp manufacturing method and high pressure discharge lamp sealing structure
JP6974678B2 (en) Plasma processing equipment and plasma processing method
JP2017117707A (en) Short arc type discharge lamp
JP2010073640A (en) Discharge lamp having sealing structure
KR102322233B1 (en) Underwater arc discharge device
JP2012069448A (en) Plasma processing apparatus
JP6423642B2 (en) Discharge lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200210

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210520

R150 Certificate of patent or registration of utility model

Ref document number: 6888996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250