JP2012016232A - Dead time compensation system of pwm power conversion apparatus - Google Patents

Dead time compensation system of pwm power conversion apparatus Download PDF

Info

Publication number
JP2012016232A
JP2012016232A JP2010152745A JP2010152745A JP2012016232A JP 2012016232 A JP2012016232 A JP 2012016232A JP 2010152745 A JP2010152745 A JP 2010152745A JP 2010152745 A JP2010152745 A JP 2010152745A JP 2012016232 A JP2012016232 A JP 2012016232A
Authority
JP
Japan
Prior art keywords
pwm
time
dead time
error
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010152745A
Other languages
Japanese (ja)
Other versions
JP5736678B2 (en
Inventor
Shizunori Hamada
鎮教 濱田
Toshimichi Takahashi
利道 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2010152745A priority Critical patent/JP5736678B2/en
Publication of JP2012016232A publication Critical patent/JP2012016232A/en
Application granted granted Critical
Publication of JP5736678B2 publication Critical patent/JP5736678B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To shorten a delay error TDLY by reducing an error (phase difference) between a PWM gate command before dead time compensation and a phase voltage output after dead time compensation.SOLUTION: A dead time compensation unit 30 increases or reduces the voltage value of a PWM voltage command Vcmd_U by an amount equal to a dead time compensation Vcmp_U which is determined depending on a phase difference between PWM gate command Gate_U and PWM output Vce_U. A compensated PWM voltage command, Vcmd_U', is then converted into a PWM gate command by a PWM waveform generation unit 20, whereby an error (phase difference) between the PWM gate command before dead time compensation and a phase voltage output after dead time compensation is reduced.

Description

本発明は、PWM電力変換装置の主回路スイッチング素子のドライブ信号に挿入するデッドタイム(短絡防止期間)補償装置に係り、特にデッドタイムの挿入によるスイッチング遅れで発生する出力電圧誤差の補償に関する。   The present invention relates to a dead time (short-circuit prevention period) compensation device that is inserted into a drive signal of a main circuit switching element of a PWM power converter, and more particularly to compensation of an output voltage error caused by a switching delay due to insertion of a dead time.

トランジスタやIGBTなどの電力用スイッチング素子を用いたインバータ、コンバータ等の電力変換装置は、主回路は直流電源(主回路電源)に対して2つのスイッチング素子(直流リンク電圧のP側アームとN側アーム)を直列に接続し、これらの2つのスイッチング素子を交互にON(閉路)させる制御を行う。この際、スイッチング指令に対し実際のスイッチング動作には時間遅れがあり、P側アームがONしたときにN側アームが未だON状態にあると、両スイッチング素子を通して主回路直流リンク部の電源のP側とN側が短絡状態になってしまい、スイッチング素子の破損を起こすおそれがある。   In power converters such as inverters and converters using power switching elements such as transistors and IGBTs, the main circuit has two switching elements for the DC power supply (main circuit power supply) (the P side arm and the N side of the DC link voltage). Arms) are connected in series, and control is performed to alternately turn on (close) these two switching elements. At this time, there is a time delay in the actual switching operation with respect to the switching command, and if the N-side arm is still in the ON state when the P-side arm is turned on, the power supply P of the main circuit DC link unit is passed through both switching elements. The side and the N side are short-circuited, and the switching element may be damaged.

この短絡発生を回避するため、スイッチング素子のON/OFF制御信号(ドライブ信号)にデッドタイム(短絡防止期間)を挿入するデッドタイム生成回路が設けられる。このデッドタイム期間中は直列接続された2個のスイッチング素子を両方ともOFFさせる。これにより、2個のスイッチング素子のスイッチング動作に時間遅れが存在しても、電源短絡を防止できる。   In order to avoid the occurrence of this short circuit, a dead time generation circuit is provided that inserts a dead time (short circuit prevention period) into the ON / OFF control signal (drive signal) of the switching element. During this dead time period, both of the two switching elements connected in series are turned off. Thereby, even if there is a time delay in the switching operation of the two switching elements, a power supply short circuit can be prevented.

ここで、2個のスイッチング素子のドライブ信号に挿入するデッドタイムに起因してスイッチング遅れが発生し、このスイッチング遅れによる出力電圧指令と出力電圧との間に電圧誤差が発生するため、これを補償するデッドタイム補償回路も付加する。   Here, a switching delay occurs due to the dead time inserted in the drive signals of the two switching elements, and a voltage error is generated between the output voltage command and the output voltage due to the switching delay. A dead time compensation circuit is also added.

図6はデッドタイム補償回路を付加したPWMインバータの構成例を示す。直流電圧源PNを入力とするPWMインバータ10は、各相をIGBTなどの2つのスイッチング素子を直列に接続した3相ブリッジ回路に構成され、各スイッチング素子U〜Zはゲート信号GU、GX、GV、GY、GW、GZによりオンオフ制御され、電圧および周波数が制御された3相出力を得て、負荷に供給される。   FIG. 6 shows a configuration example of a PWM inverter to which a dead time compensation circuit is added. The PWM inverter 10 having the DC voltage source PN as an input is configured as a three-phase bridge circuit in which two switching elements such as IGBTs are connected in series with each phase, and the switching elements U to Z are gate signals GU, GX, GV. , GY, GW, and GZ are controlled to be turned on and off to obtain a three-phase output in which the voltage and frequency are controlled and supplied to the load.

ここで、インバータ10はPWM方式によって制御されている。三相電圧指令Vcmd_U,Vcmd_V,Vcmd_WはPWM波形発生部20にて搬送波Carrierと比較し、PWM波形の三相ゲート指令Gate_U,Gate_V,Gate_Wに変換する。さらに、デッドタイム生成部40は、インバータの上下アーム(例えば、U、X相の場合)のオンオフ間に一定の短絡防止期間を介挿できるよう、デッドタイムを付加したゲート信号GU、GX、GV、GY、GW、GZを生成出力する。   Here, the inverter 10 is controlled by the PWM method. The three-phase voltage commands Vcmd_U, Vcmd_V, and Vcmd_W are compared with the carrier wave carrier by the PWM waveform generator 20 and converted into three-phase gate commands Gate_U, Gate_V, and Gate_W of the PWM waveform. Further, the dead time generation unit 40 adds gate signals GU, GX, GV with dead time so that a certain short-circuit prevention period can be inserted between the on and off of the upper and lower arms of the inverter (for example, in the case of U and X phases). , GY, GW, and GZ are generated and output.

このようなデッドタイムを付加したインバータにおいて、図5(a)のようにデッドタイムの存在が出力電流波形を歪ませる原因になる。この影響を防止するために、デッドタイム補償部30を追加し、出力電流波形の改善を行う。デッドタイム補償部30はPWM出力指令とPWM出力電圧検出信号との間の電圧誤差を補償するデッドタイム補償出力信号を得る。   In an inverter to which such a dead time is added, the presence of the dead time causes the output current waveform to be distorted as shown in FIG. In order to prevent this influence, a dead time compensation unit 30 is added to improve the output current waveform. The dead time compensation unit 30 obtains a dead time compensation output signal that compensates for a voltage error between the PWM output command and the PWM output voltage detection signal.

特許文献1または特許文献2では、Vce(出力電圧)検出部50によってインバータの各相電圧Vce_U,Vce_V,Vce_Wの位相を検出し、三相ゲート指令Gate_U,Gate_V,Gate_Wとのオンタイムおよびオフタイムの誤差Vce_DLYをそれぞれ検出し、誤差がある区間だけカウンタ値を加算したゲート信号Gate_U’,Gate_V’,Gate_W’(デッドタイム補償後のゲート信号)を得る。   In Patent Document 1 or Patent Document 2, the phase of each phase voltage Vce_U, Vce_V, Vce_W of the inverter is detected by the Vce (output voltage) detection unit 50, and the on-time and off-time with the three-phase gate commands Gate_U, Gate_V, Gate_W. Error Vce_DLY is detected, and gate signals Gate_U ′, Gate_V ′, and Gate_W ′ (gate signals after dead time compensation) are obtained by adding the counter value only in a section where there is an error.

これらのブロック図を図7に、タイムチャートを図8に示す。なお、図7、図8では例としてU相のみの場合を示している。他相もU相と同様の図なのでここでは省略する。   These block diagrams are shown in FIG. 7, and the time chart is shown in FIG. 7 and 8 show the case of only the U phase as an example. Since the other phase is the same as the U phase, it is omitted here.

図7において、オンタイムの誤差を測るカウンタをON_COUNTとし、オフタイムの誤差を測るカウンタをOFF_COUNTとする。ON_COUNTおよびOFF_COUNTは、図示では1ビットのカウンタ(1つのフルアダー回路FAと1つの一時記憶用のフリップフロップで構成)を示すが、実際には1ビットカウンタをN段従属接続したNビットカウンタ構成とする。このときの各カウンタの動作は下式で表される。   In FIG. 7, a counter that measures an on-time error is ON_COUNT, and a counter that measures an off-time error is OFF_COUNT. ON_COUNT and OFF_COUNT indicate a 1-bit counter (configured by one full adder circuit FA and one flip-flop for temporary storage) in the figure, but in actuality, an N-bit counter configuration in which 1-bit counters are connected in N stages cascaded. To do. The operation of each counter at this time is expressed by the following equation.

Figure 2012016232
Figure 2012016232

ON_COUNTがある一定値を越えた時のフラグをMax_ON、OFF_COUNTがある一定値を超えたときのフラグをMax_OFFとする。デッドタイム補償後のゲート指令Gate_U’はそのセット、リセット信号をそれぞれMax_ON、Max_OFFと設定し、SRフリップフロップF/Fを用いて生成する。   A flag when ON_COUNT exceeds a certain value is Max_ON, and a flag when OFF_COUNT exceeds a certain value is Max_OFF. The gate command Gate_U ′ after the dead time compensation is generated by using the SR flip-flop F / F with the set and reset signals set to Max_ON and Max_OFF, respectively.

特開平7−95773号公報JP 7-95773 A 特開平8−140362号公報JP-A-8-14362

図8に示すように、特許文献1、2では、ゲート指令Gate_Uとオンタイムおよびオフタイムの位相遅れVce_DLYはデッドタイム補償回路によって小さくなっているが、デッドタイム補償後のゲート指令Gate_U’と相出力電圧Vce_Uとの間には遅延誤差TDLYが残る。これは、ゲート指令Gate_Uを基準に相出力電圧Vce_Uの誤差を測定しているため、原理的に必ず存在する。   As shown in FIG. 8, in Patent Documents 1 and 2, the gate command Gate_U and the on-time and off-time phase delay Vce_DLY are reduced by the dead time compensation circuit, but in phase with the gate command Gate_U ′ after the dead time compensation. A delay error TDLY remains between the output voltage Vce_U and the output voltage Vce_U. This is always in principle because the error of the phase output voltage Vce_U is measured with reference to the gate command Gate_U.

上記の遅延誤差TDLYの発生は、PWMパルスの最小オン時間の制限時間を長くする要因となり、細いPWMパルスが出力できなくなり、結果的に出力電圧の上限が低下する。   The occurrence of the delay error TDLY becomes a factor that increases the limit time of the minimum on-time of the PWM pulse, so that a thin PWM pulse cannot be output, and as a result, the upper limit of the output voltage is lowered.

また、遅延誤差TDLYは、インバータの電流制御において無駄時間となるため、インバータを高応答用途で使用する場合、この遅延誤差TDLYは無いことが望ましい。   Further, since the delay error TDLY is a dead time in the current control of the inverter, it is desirable that the delay error TDLY is not present when the inverter is used for a high-response application.

本発明の目的は、デッドタイム補償前のPWMゲート指令とデッドタイム補償後の相電圧出力との誤差(位相差)を低減することで遅延誤差TDLYを短縮する電力変換装置のデッドタイム補償装置を提供することにある。   An object of the present invention is to provide a dead time compensation device for a power converter that shortens a delay error TDLY by reducing an error (phase difference) between a PWM gate command before dead time compensation and a phase voltage output after dead time compensation. It is to provide.

本発明は、前記の課題を解決するため、PWMゲート指令と各相PWM出力との位相差に応じて求めるデッドタイム補償分でPWM電圧指令の電圧値を増減し、この補償後のPWM電圧指令をPWMゲート指令に変換することで、デッドタイム補償前のPWMゲート指令とデッドタイム補償後の相電圧出力との誤差(位相差)を低減するようにしたもので、以下の構成を特徴とする。   In order to solve the above-described problem, the present invention increases or decreases the voltage value of the PWM voltage command by a dead time compensation amount obtained according to the phase difference between the PWM gate command and each phase PWM output, and the PWM voltage command after this compensation Is converted into a PWM gate command to reduce the error (phase difference) between the PWM gate command before dead time compensation and the phase voltage output after dead time compensation. .

(1)PWM電力変換装置の主回路スイッチング素子の三相ドライブ信号に所定時間のデッドタイムを挿入し、このデッドタイム挿入による主回路スイッチング素子のスイッチング遅れで発生するPWMゲート指令に対するPWM出力電圧の誤差をデッドタイム補償回路によって補償するPWM電力変換装置のデッドタイム補償装置であって、
前記デッドタイム補償回路は、PWMゲート指令と各相PWM出力との位相差に応じて求めるデッドタイム補償分でPWM電圧指令の電圧値を増減し、この補償後のPWM電圧指令をPWMゲート指令に変換することで、デッドタイム補償前のPWMゲート指令とデッドタイム補償後の相電圧出力との誤差(位相差)を低減する手段を備えたことを特徴とする。
(1) A dead time of a predetermined time is inserted into the three-phase drive signal of the main circuit switching element of the PWM power converter, and the PWM output voltage corresponding to the PWM gate command generated by the switching delay of the main circuit switching element due to the dead time insertion A PWM power conversion device dead time compensation device that compensates for errors by a dead time compensation circuit,
The dead time compensation circuit increases or decreases the voltage value of the PWM voltage command by the amount of dead time compensation determined according to the phase difference between the PWM gate command and each phase PWM output, and the compensated PWM voltage command is used as the PWM gate command. It is characterized by comprising means for reducing an error (phase difference) between the PWM gate command before dead time compensation and the phase voltage output after dead time compensation by conversion.

(2)前記デッドタイム補償回路は、
PWM電圧指令を基に生成するPWMゲート指令とPWM相出力の位相差をオンタイム誤差時間およびオフタイム誤差時間としてそれぞれ計測する回路と、
前記オンタイム誤差時間およびオフタイム誤差時間の計測値をPWM電圧指令と同じ単位に変換する回路と、
PWM波形の次回のオン/オフの極性に応じて、前記変換したオンタイム誤差時間およびオフタイム誤差時間の計測値を前記PWM電圧指令に加減算する回路と、
を備えたことを特徴とする。
(2) The dead time compensation circuit is:
A circuit for measuring a phase difference between a PWM gate command generated based on a PWM voltage command and a PWM phase output as an on-time error time and an off-time error time,
A circuit for converting the measured values of the on-time error time and the off-time error time into the same units as the PWM voltage command;
A circuit for adding / subtracting the measured values of the converted on-time error time and off-time error time to / from the PWM voltage command according to the next on / off polarity of the PWM waveform;
It is provided with.

以上のとおり、本発明によれば、PWMゲート指令と各相PWM出力との位相差に応じて求めるデッドタイム補償分でPWM電圧指令の電圧値を増減し、この補償後のPWM電圧指令をPWMゲート指令に変換することで、デッドタイム補償前のPWMゲート指令とデッドタイム補償後の相電圧出力との誤差(位相差)を低減するようにしたため、遅延誤差TDLYを短縮できる。この遅延誤差TDLYの短縮によって 細いPWMパルスが出力可能となるし、PWMインバータの制御無駄時間が小さくなるなどの効果がある。   As described above, according to the present invention, the voltage value of the PWM voltage command is increased / decreased by the dead time compensation amount determined according to the phase difference between the PWM gate command and each phase PWM output. By converting to the gate command, the error (phase difference) between the PWM gate command before the dead time compensation and the phase voltage output after the dead time compensation is reduced, so that the delay error TDLY can be shortened. By shortening the delay error TDLY, it is possible to output a thin PWM pulse, and there is an effect that the control dead time of the PWM inverter is reduced.

デッドタイム補償回路を付加したPWMインバータの構成図(実施形態)。The block diagram of PWM inverter which added the dead time compensation circuit (embodiment). デッドタイム補償部30の回路構成図(実施形態)。The circuit block diagram of the dead time compensation part 30 (embodiment). デッドタイム補償による各部タイムチャート(実施形態)。Each part time chart by dead time compensation (embodiment). デッドタイム補償前と補償後の各部波形図(実施形態)。The waveform diagram of each part before and after compensation for dead time (embodiment). デッドタイム補償前と補償後の電流波形図。Current waveform diagram before and after dead time compensation. デッドタイム補償回路を付加したPWMインバータの構成図(従来)。The block diagram of the PWM inverter which added the dead time compensation circuit (conventional). デッドタイム補償部30の回路構成図(従来)。The circuit block diagram of the dead time compensation part 30 (conventional). デッドタイム補償による各部タイムチャート(従来)。Time chart of each part by dead time compensation (conventional).

(1)構成
図1は、デッドタイム補償回路を付加したPWMインバータの構成図である。同図が図6と異なる部分は、PWMゲート指令と各相PWM出力との位相差に応じて求めるデッドタイム補償分でPWM電圧指令Vcmd_U、Vcmd_V、Vcmd_Wの電圧値を増減し、この補償後のPWM電圧指令をPWMゲート指令Gate_U,Gate_V,Gate_Wに変換することで、デッドタイム補償前のPWMゲート指令とデッドタイム補償後の相電圧出力との誤差(位相差)を低減する点にある。
(1) Configuration FIG. 1 is a configuration diagram of a PWM inverter to which a dead time compensation circuit is added. 6 differs from FIG. 6 in that the voltage values of the PWM voltage commands Vcmd_U, Vcmd_V, and Vcmd_W are increased or decreased by a dead time compensation amount determined according to the phase difference between the PWM gate command and each phase PWM output. By converting the PWM voltage command into PWM gate commands Gate_U, Gate_V, and Gate_W, an error (phase difference) between the PWM gate command before dead time compensation and the phase voltage output after dead time compensation is reduced.

図1において、キャリア生成部60は周波数Fc[Hz]、片振幅Acの三角搬送波Carrierを出力するものであり、同時にCarrierの最大値、最小値時のフラグCarrier_top、Carrier_btmを出力する(図3参照)。PWM波形発生部20は三角搬送波Carrierとデッドタイム補償後の電圧指令V_cmd_U’、V_cmd_V’、Vcmd_W’を大小比較し、ゲート指令Gate_U、Gate_V、Gate_Wを生成する。デッドタイム補償部30によるデッドタイム補償については後に説明する。   In FIG. 1, the carrier generation unit 60 outputs a triangular carrier wave Carrier having a frequency Fc [Hz] and a single amplitude Ac, and simultaneously outputs Carrier maximum and minimum flags Carrier_top and Carrier_btm (see FIG. 3). ). The PWM waveform generation unit 20 compares the triangular carrier wave carrier and the voltage commands V_cmd_U ′, V_cmd_V ′, and Vcmd_W ′ after the dead time compensation, and generates gate commands Gate_U, Gate_V, and Gate_W. The dead time compensation by the dead time compensation unit 30 will be described later.

デッドタイム生成部40は、インバータ10の上下アーム短絡防止のためにゲート指令Gate_U、Gate_V、Gate_Wに所定のデッドタイムを付加し、最終的なゲート指令GU、GXなどを生成する。デッドタイム補償部30による電圧指令の補償は下式のようになる。   The dead time generation unit 40 adds a predetermined dead time to the gate commands Gate_U, Gate_V, and Gate_W to prevent a short circuit between the upper and lower arms of the inverter 10 and generates final gate commands GU, GX, and the like. Compensation of the voltage command by the dead time compensation unit 30 is expressed by the following equation.

Figure 2012016232
Figure 2012016232

ここで、Vcmd_U、Vcmd_V、Vcmd_Wをデッドタイム補償前の三相電圧指令、Vcmp_U、Vcmp_V、Vcmp_Wをデッドタイム補償電圧指令とする。   Here, Vcmd_U, Vcmd_V, and Vcmd_W are three-phase voltage commands before dead time compensation, and Vcmp_U, Vcmp_V, and Vcmp_W are dead time compensation voltage commands.

(2)作用・動作
従来の技術では、PWM比較結果後のゲート指令を使用してデッドタイム補償を行っていた。しかし、先に述べたようにこの方法では必ず遅延誤差が発生する。本実施形態では、PWM波形生成前のPWM電圧指令に対してPWMゲート指令が補償前と比較して遅延が生じないように補償することで、遅延誤差を無くす。以下の説明では、U相についてのみ言及するが、他の相もU相と同様になるためその説明を省略する。
(2) Action / Operation In the conventional technique, the dead time compensation is performed using the gate command after the PWM comparison result. However, as described above, this method always causes a delay error. In the present embodiment, the delay error is eliminated by compensating the PWM voltage command before generating the PWM waveform so that the PWM gate command is not delayed compared to before the compensation. In the following description, only the U phase will be described, but the other phases are also the same as the U phase, and thus the description thereof is omitted.

図2はデッドタイム補償部30の回路構成を示し、図3に各部タイムチャートを示す。デッドタイム補償部30は、まず、PWM波形発生部20により生成するPWMゲート指令Gate_Uと、Vce検出部50で検出したU相出力電圧Vce_Uの位相を比較する。この比較により、PWMゲート指令Gate_UとU相出力電圧Vce_Uの位相差をオンタイム誤差時間Vce_DLY1およびオフタイム誤差時間Vce_DLY2としてそれぞれ計測する。このときのオンタイム誤差時間だけ動作するカウンタをON_COUNT、オフタイム誤差時間だけを動作するカウンタをOFF_COUNTとする。これらカウンタは図6と同様に、Nビットのフルアダ―回路FAとフリップフロップで構成される。   FIG. 2 shows a circuit configuration of the dead time compensator 30, and FIG. 3 shows a time chart of each part. First, the dead time compensator 30 compares the phase of the PWM gate command Gate_U generated by the PWM waveform generator 20 with the phase of the U-phase output voltage Vce_U detected by the Vce detector 50. By this comparison, the phase difference between the PWM gate command Gate_U and the U-phase output voltage Vce_U is measured as an on-time error time Vce_DLY1 and an off-time error time Vce_DLY2. A counter that operates only for the on-time error time at this time is ON_COUNT, and a counter that operates only for the off-time error time is OFF_COUNT. As in FIG. 6, these counters are composed of an N-bit full adder circuit FA and a flip-flop.

これらのオンタイム誤差時間、オフタイム誤差時間の計測値は、デッドタイム補償に使用するため、電圧指令Vcmd_Uと同じ単位に変換する必要がある。誤差発生時に加算する値を変換ゲインclk_pwmとすれば、これらのカウンタは時間Tclk[s]当たりに加算されるため、誤差時間を計測しながらPWMの単位に変換可能である。下式にフルアダー回路FAの一方の入力とするclk_pwmの定義を示す。   These measured values of the on-time error time and off-time error time need to be converted to the same unit as the voltage command Vcmd_U in order to be used for dead time compensation. If the value to be added at the time of error generation is the conversion gain clk_pwm, these counters are added per time Tclk [s], and therefore can be converted into PWM units while measuring the error time. The following formula shows the definition of clk_pwm as one input of the full adder circuit FA.

Figure 2012016232
Figure 2012016232

ON_COUNTはCarrier_topの後にリセット、OFF_COUNTはCarreir_btmの後にリセットされる。ON_COUNTとOFF_COUNTはNビットのカウンタであり、カウンタ内の加算器はNビットのフルアダー回路FAで構成し、下式のように動作する。   ON_COUNT is reset after Carrier_top, and OFF_COUNT is reset after Carrier_btm. ON_COUNT and OFF_COUNT are N-bit counters, and the adder in the counter is composed of an N-bit full adder circuit FA and operates as shown in the following equation.

Figure 2012016232
Figure 2012016232

オンタイムおよびオフタイム遅延誤差計測時の動作は図3のタイムチャートに示すようになる。   The operation when measuring the on-time and off-time delay errors is as shown in the time chart of FIG.

デッドタイム補償回路30は、デッドタイムを補償するために、計測したカウンタの値を電圧指令に重畳し補償をする。オンタイムの誤差とオフタイムの誤差はIGBTの特性や電流極性による通流路により相違があるため、それぞれ個別に補償を行う。Vce検出はPWM指令に対して遅れて検出される。オンタイムを補償するためにはゲート指令Gate_Uの立ち上がりを進めればよい。ゲート指令の立ち上がりを進めるためには、キャリアCarrierの下降中に電圧指令が増加すればよい。また、オフタイムを補償するためにはゲート指令Gate_Uの立ち下がりを進めればよい。ゲート指令の立下りを進めるためには、キャリアCarrierの上昇中に電圧指令が減少すればよい。   The dead time compensation circuit 30 superimposes the measured counter value on the voltage command to compensate for the dead time. Since there is a difference between the on-time error and the off-time error depending on the characteristics of the IGBT and the flow path depending on the current polarity, compensation is performed individually. Vce detection is detected with a delay relative to the PWM command. In order to compensate for the on-time, the rise of the gate command Gate_U may be advanced. In order to advance the rise of the gate command, the voltage command may be increased while the carrier carrier is descending. Further, in order to compensate for the off time, the fall of the gate command Gate_U may be advanced. In order to advance the fall of the gate command, the voltage command may be decreased while the carrier carrier is rising.

よって、PWM波形の次回のオン/オフの極性に応じて、前記変換したオンタイム誤差時間およびオフタイム誤差時間の計測値を前記PWM電圧指令に加減算する。例えば、オンタイムの補償を行うにはCarrier_topでON_COUNTの値をVcmd_Uに対して加算、オフタイムの補償を行うにはCarrier_btmでOFF_COUNTをVcmd_Uに対して減算すればよい。この補償関係を図4に示す。これより電圧補償値V_cmp_Uは下式になる。   Therefore, the measured values of the converted on-time error time and off-time error time are added to or subtracted from the PWM voltage command in accordance with the next on / off polarity of the PWM waveform. For example, the ON_COUNT value is added to Vcmd_U at Carrier_top to compensate for on-time, and OFF_COUNT is subtracted from Vcmd_U at Carrier_btm to compensate for off-time. This compensation relationship is shown in FIG. Accordingly, the voltage compensation value V_cmp_U is expressed by the following equation.

Figure 2012016232
Figure 2012016232

図4に示す補償の前後におけるゲート指令を説明する。Gate_Uの波形が理想的な出力電圧波形である。キャリア周期毎にオンタイム、オフタイムの誤差が変化無ければ、補償前のゲート指令Gate_Uと補償後の検出相電圧Vce_Uは完全に一致するため、補償による遅延誤差は発生せず、理想的なデッドタイム補償が可能である。たとえ、変化があったとしても従来の技術より格段に遅延誤差が小さくなる。   The gate command before and after the compensation shown in FIG. 4 will be described. The waveform of Gate_U is an ideal output voltage waveform. If there is no change in the on-time and off-time errors for each carrier cycle, the gate command Gate_U before compensation and the detected phase voltage Vce_U after compensation completely coincide with each other. Time compensation is possible. Even if there is a change, the delay error is much smaller than in the conventional technique.

図5に実際に実施形態のインバータに誘導性負荷を接続し、補償を適用した場合の電流波形を示す。実施形態に示したデッドタイム補償によって、従来の図5(a)と比較して、本実施形態では図5(b)のように電流のひずみ(6f成分)が低減していることが確認できた。   FIG. 5 shows current waveforms when an inductive load is actually connected to the inverter of the embodiment and compensation is applied. By the dead time compensation shown in the embodiment, it can be confirmed that the current distortion (6f component) is reduced in the present embodiment as shown in FIG. 5B, compared to the conventional FIG. It was.

(3)効果
本実施携帯によるデッドタイム補償によれば、以下の効果がある。
(3) Effects According to the dead time compensation by the present mobile phone, there are the following effects.

・補償前のPWM指令Gate_Uと補償後の検出相電圧Vce_Uの誤差をほぼ零にすることができる。   The error between the PWM command Gate_U before compensation and the detected phase voltage Vce_U after compensation can be made substantially zero.

・デッドタイム補償による無駄時間TDLYがなくなるため、最小オンパルス時間の制限が小さくなる。この最小オンパルス時間の制限が小さくなることにより、より細いPWMパルスが出力可能になる。このより細いPWMパルスが出力可能であれば、電力変換装置の最大出力電圧が大きくなる。   Since the dead time TDLY due to dead time compensation is eliminated, the limit of the minimum on-pulse time is reduced. By reducing the limitation on the minimum on-pulse time, a narrower PWM pulse can be output. If this narrower PWM pulse can be output, the maximum output voltage of the power converter increases.

・デッドタイム補償による無駄時間TDLYがなくなるのでPWMインバータの制御無駄時間が小さくなる。このPWMインバータの無駄時間が小さくなることで、電流制御および周波数制御の応答が向上する。   -Since the dead time TDLY due to dead time compensation is eliminated, the control dead time of the PWM inverter is reduced. By reducing the dead time of the PWM inverter, the current control and frequency control responses are improved.

・デッドタイム補償により、出力電流の6f成分(電流歪み)が小さくなる。   -The dead time compensation reduces the 6f component (current distortion) of the output current.

10 PWMインバータ
20 PWM波形発生部
30 デッドタイム補償部
40 デッドタイム生成部
50 Vce(出力電圧)検出部
60 キャリア生成部
DESCRIPTION OF SYMBOLS 10 PWM inverter 20 PWM waveform generation part 30 Dead time compensation part 40 Dead time generation part 50 Vce (output voltage) detection part 60 Carrier generation part

Claims (2)

PWM電力変換装置の主回路スイッチング素子の三相ドライブ信号に所定時間のデッドタイムを挿入し、このデッドタイム挿入による主回路スイッチング素子のスイッチング遅れで発生するPWMゲート指令に対するPWM出力電圧の誤差をデッドタイム補償回路によって補償するPWM電力変換装置のデッドタイム補償装置であって、
前記デッドタイム補償回路は、PWMゲート指令と各相PWM出力との位相差に応じて求めるデッドタイム補償分でPWM電圧指令の電圧値を増減し、この補償後のPWM電圧指令をPWMゲート指令に変換することで、デッドタイム補償前のPWMゲート指令とデッドタイム補償後の相電圧出力との誤差(位相差)を低減する手段を備えたことを特徴とするPWM電力変換装置のデッドタイム補償装置。
A dead time of a predetermined time is inserted into the three-phase drive signal of the main circuit switching element of the PWM power converter, and the error of the PWM output voltage with respect to the PWM gate command generated by the switching delay of the main circuit switching element due to this dead time insertion A dead time compensator for a PWM power converter that compensates with a time compensator,
The dead time compensation circuit increases or decreases the voltage value of the PWM voltage command by the amount of dead time compensation determined according to the phase difference between the PWM gate command and each phase PWM output, and the compensated PWM voltage command is used as the PWM gate command. A dead time compensation device for a PWM power converter characterized by comprising means for reducing an error (phase difference) between a PWM gate command before dead time compensation and a phase voltage output after dead time compensation by conversion .
前記デッドタイム補償回路は、
PWM電圧指令を基に生成するPWMゲート指令とPWM相出力の位相差をオンタイム誤差時間およびオフタイム誤差時間としてそれぞれ計測する回路と、
前記オンタイム誤差時間およびオフタイム誤差時間の計測値をPWM電圧指令と同じ単位に変換する回路と、
PWM波形の次回のオン/オフの極性に応じて、前記変換したオンタイム誤差時間およびオフタイム誤差時間の計測値を前記PWM電圧指令に加減算する回路と、
を備えたことを特徴とする請求項1に記載のPWM電力変換装置のデッドタイム補償装置。
The dead time compensation circuit is:
A circuit for measuring a phase difference between a PWM gate command generated based on a PWM voltage command and a PWM phase output as an on-time error time and an off-time error time,
A circuit for converting the measured values of the on-time error time and the off-time error time into the same units as the PWM voltage command;
A circuit for adding / subtracting the measured values of the converted on-time error time and off-time error time to / from the PWM voltage command according to the next on / off polarity of the PWM waveform;
The dead time compensator for a PWM power converter according to claim 1, comprising:
JP2010152745A 2010-07-05 2010-07-05 PWM power converter dead time compensation device Active JP5736678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010152745A JP5736678B2 (en) 2010-07-05 2010-07-05 PWM power converter dead time compensation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010152745A JP5736678B2 (en) 2010-07-05 2010-07-05 PWM power converter dead time compensation device

Publications (2)

Publication Number Publication Date
JP2012016232A true JP2012016232A (en) 2012-01-19
JP5736678B2 JP5736678B2 (en) 2015-06-17

Family

ID=45601989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010152745A Active JP5736678B2 (en) 2010-07-05 2010-07-05 PWM power converter dead time compensation device

Country Status (1)

Country Link
JP (1) JP5736678B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105577062A (en) * 2015-12-31 2016-05-11 美的集团武汉制冷设备有限公司 Single current sensor based three-phase current reconstruction method and device
JP2016208559A (en) * 2015-04-15 2016-12-08 株式会社明電舎 Parallel operation method and parallel operation device for pwm power converter
JP6376239B1 (en) * 2017-04-12 2018-08-22 株式会社明電舎 Control device for power conversion circuit
CN110504854A (en) * 2019-09-06 2019-11-26 浙江日风电气股份有限公司 A kind of dead-zone compensation method suitable for the modulation of double modulation wave carrier signal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6481665A (en) * 1987-09-21 1989-03-27 Nissin Electric Co Ltd Voltage type pwm inverter device
JPH05103473A (en) * 1991-10-03 1993-04-23 Toshiba Corp Inverter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6481665A (en) * 1987-09-21 1989-03-27 Nissin Electric Co Ltd Voltage type pwm inverter device
JPH05103473A (en) * 1991-10-03 1993-04-23 Toshiba Corp Inverter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016208559A (en) * 2015-04-15 2016-12-08 株式会社明電舎 Parallel operation method and parallel operation device for pwm power converter
CN105577062A (en) * 2015-12-31 2016-05-11 美的集团武汉制冷设备有限公司 Single current sensor based three-phase current reconstruction method and device
CN105577062B (en) * 2015-12-31 2018-08-17 美的集团武汉制冷设备有限公司 Three-phase current reconstructing method based on single current sensor and device
JP6376239B1 (en) * 2017-04-12 2018-08-22 株式会社明電舎 Control device for power conversion circuit
JP2018182886A (en) * 2017-04-12 2018-11-15 株式会社明電舎 Controller of power conversion circuit
US10826411B2 (en) 2017-04-12 2020-11-03 Meidensha Corporation Device for controlling power conversion circuit
CN110504854A (en) * 2019-09-06 2019-11-26 浙江日风电气股份有限公司 A kind of dead-zone compensation method suitable for the modulation of double modulation wave carrier signal
CN110504854B (en) * 2019-09-06 2023-05-23 浙江日风电气股份有限公司 Dead zone compensation method suitable for dual-modulation wave carrier modulation

Also Published As

Publication number Publication date
JP5736678B2 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
JP5122505B2 (en) Power conversion apparatus and control method thereof
JP6081718B2 (en) Current compensation method for pulse width modulation converter for environmentally friendly vehicles
EP3203626B1 (en) Power conversion device
KR101266278B1 (en) Method of controlling power conversion device
EP1921740A2 (en) Power converter control
JPWO2015056571A1 (en) Power conversion device and power conversion method
JP5733015B2 (en) Parallel operation apparatus and parallel operation method for PWM power converter
JP5736678B2 (en) PWM power converter dead time compensation device
JPWO2012026535A1 (en) Power converter
JP6750508B2 (en) Power converter and harmonic suppression method thereof
JP2015159687A (en) power converter
Bede et al. Optimal interleaving angle determination in multi paralleled converters considering the DC current ripple and grid Current THD
Weerakoon et al. A novel dead-time compensation scheme for PWM VSI drives
JP2007221920A (en) Converter controller and converter control method
JP5410551B2 (en) Power converter
US10666131B2 (en) Dead-time voltage compensation apparatus and dead-time voltage compensation method
JP2008141937A (en) Power converter and power conversion method
Rajkumar et al. Performance investigation of transformerless DVR based on T-type multilevel inverter with reduced switch count
JP2016165201A (en) Inverter device and vehicle
US11929689B2 (en) Power conversion device
JP5428744B2 (en) Power converter control method
JP5910001B2 (en) Power converter
JP2017153277A (en) Self-excited reactive power compensation apparatus
JP2016063688A (en) Power conversion device
JP6265372B2 (en) Power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141006

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150406

R150 Certificate of patent or registration of utility model

Ref document number: 5736678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150