JP2016208559A - Parallel operation method and parallel operation device for pwm power converter - Google Patents

Parallel operation method and parallel operation device for pwm power converter Download PDF

Info

Publication number
JP2016208559A
JP2016208559A JP2015082956A JP2015082956A JP2016208559A JP 2016208559 A JP2016208559 A JP 2016208559A JP 2015082956 A JP2015082956 A JP 2015082956A JP 2015082956 A JP2015082956 A JP 2015082956A JP 2016208559 A JP2016208559 A JP 2016208559A
Authority
JP
Japan
Prior art keywords
limit value
cross current
value
carrier wave
triangular carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015082956A
Other languages
Japanese (ja)
Other versions
JP6468046B2 (en
Inventor
信貴 毛塚
Nobutaka Kezuka
信貴 毛塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2015082956A priority Critical patent/JP6468046B2/en
Publication of JP2016208559A publication Critical patent/JP2016208559A/en
Application granted granted Critical
Publication of JP6468046B2 publication Critical patent/JP6468046B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress a cross flow caused by a difference in switching properties in rise and fall of a switching element.SOLUTION: In an up cross flow control part 9a, an up cross flow compensation value Vccc_up is calculated based on a detection value of a cross current Ic during a period in which a triangular carrier Carrier increases from a lower limit value to an upper limit value. In a down cross current control part 9b, a down cross current compensation value Vccc_down is calculated based on a detection value of the cross current Ic during a period in which the triangular carrier Carrier decreases from the upper limit value to the lower limit value. During the period in which the triangular carrier Carrier decreases from the upper limit value to the lower limit value, the up cross current compensation value Vccc_up is superposed on a voltage command Vcmd' of each of PWM power converters. During the period in which the triangular carrier Carrier increases from the lower limit value to the upper limit value, the down cross current compensation value Vccc_down is superposed on the voltage command Vcmd' of each of PWM converters.SELECTED DRAWING: Figure 2

Description

本発明は、 PWM電力変換器の並列運転方法および並列運転装置に係り、特に横流を抑制する制御に関する。   The present invention relates to a parallel operation method and a parallel operation apparatus for PWM power converters, and more particularly to control for suppressing cross current.

図7に特許文献1のPWM電力変換器(図7では3相のインバータ)を並列した並列運転装置を示す。図7は、インバータに横流補償とデッドタイム補償を付加した構成であり、説明のために単線図で表記する。   FIG. 7 shows a parallel operation device in which PWM power converters (three-phase inverters in FIG. 7) of Patent Document 1 are arranged in parallel. FIG. 7 shows a configuration in which a cross current compensation and a dead time compensation are added to the inverter, and is represented by a single line diagram for the sake of explanation.

インバータINV1、インバータINV2の入力は直流電圧源PNであり、これを並列に接続する。インバータINV1,INV2の出力は相間リアクトルL_mutで接続し、相間リアクトルL_mutの中間タップから負荷に接続する。   The inputs of the inverters INV1 and INV2 are DC voltage sources PN, which are connected in parallel. The outputs of the inverters INV1 and INV2 are connected by an interphase reactor L_mut, and are connected to a load from an intermediate tap of the interphase reactor L_mut.

インバータINV1,INV2それぞれの出力電流をI1,I2とすると、負荷に供給される出力電流はIoである。ここで、電流制御に使用する検出電流をIdetとする。また、横流Icは出力電流I1と出力電流I2の偏差で表される。以下の(1)式,(2)式に出力電流I1,I2,Io,検出電流Idet,横流Icの関係を示す。   If the output currents of the inverters INV1 and INV2 are I1 and I2, the output current supplied to the load is Io. Here, the detection current used for current control is Idet. The cross current Ic is represented by the deviation between the output current I1 and the output current I2. The following equations (1) and (2) show the relationship among the output currents I1, I2, Io, the detection current Idet, and the cross current Ic.

Figure 2016208559
Figure 2016208559

電流制御部ACR(Automatic Current Regulator) において、検出電流Idetが電流指令Icmdに追従するように電流制御を行い、電圧指令Vcmdを生成する。   In a current controller ACR (Automatic Current Regulator), current control is performed so that the detected current Idet follows the current command Icmd, and a voltage command Vcmd is generated.

加算器5において、電圧指令Vcmdと後述のデッドタイム補償量Vdtcを加算して、デッドタイム補償後の電圧指令Vcmd’を生成する。加算器6aにおいて、デッドタイム補償後の電圧指令Vcmd’と後述の横流補償分の電圧指令(以下、横流補償値と称する)Vcccを加算して、インバータINV1の電圧指令Vcmd1’を出力する。また、減算器6bにおいて、デッドタイム補償後の電圧指令Vcmd’から横流補償値Vcccを減算して、インバータINV2の電圧指令Vcmd2’を出力する。   The adder 5 adds a voltage command Vcmd and a dead time compensation amount Vdtc described later to generate a voltage command Vcmd 'after dead time compensation. The adder 6a adds a voltage command Vcmd 'after dead time compensation and a voltage command Vccc for cross current compensation (hereinafter referred to as a cross current compensation value) Vccc, which will be described later, and outputs a voltage command Vcmd1' for the inverter INV1. Further, the subtractor 6b subtracts the cross current compensation value Vccc from the voltage command Vcmd 'after the dead time compensation, and outputs the voltage command Vcmd2' of the inverter INV2.

PWM制御器PWM1(Pulse Width Modulation),PWM2でそれぞれ、インバータINV1の電圧指令Vcmd1’、インバータINV2の電圧指令Vcmd2’と三角搬送波Carrierを比較し、ゲート指令Gate1,Gate2を生成する。ゲート指令Gate1,Gate2はデッドタイム補償部DTC(Dead Time Compensation)によって補償される。   The PWM controllers PWM1 (Pulse Width Modulation) and PWM2 respectively compare the voltage command Vcmd1 'of the inverter INV1 and the voltage command Vcmd2' of the inverter INV2 with the triangular carrier wave carrier to generate gate commands Gate1 and Gate2. The gate commands Gate1 and Gate2 are compensated by a dead time compensation unit DTC (Dead Time Compensation).

Vce検出部1は、インバータINV1、インバータINV2の相電圧V1,V2を検出し、絶縁された検出相電圧Vce1,Vce2を出力する。デッドタイム補償部DTCはゲート指令Gate1,Gate2と検出相電圧Vce1とVce2とのオンタイム及びオフタイムの誤差を検出して補償を行い、デッドタイム補償量Vdtcを出力する。インバータが2台あるので検出する誤差も2種類存在する。デッドタイム補償に使用するデッドタイム補償量Vdtcは2つのインバータINV1,INV2の検出誤差の平均をとる。   The Vce detection unit 1 detects the phase voltages V1 and V2 of the inverter INV1 and the inverter INV2, and outputs insulated detection phase voltages Vce1 and Vce2. The dead time compensation unit DTC detects an on-time and off-time error between the gate commands Gate1 and Gate2 and the detection phase voltages Vce1 and Vce2, performs compensation, and outputs a dead time compensation amount Vdtc. Since there are two inverters, there are two types of errors to detect. The dead time compensation amount Vdtc used for dead time compensation is the average of detection errors of the two inverters INV1 and INV2.

また、横流制御部(Balance ACR)4のPI制御によって横流制御時間Tcccを算出し、この横流制御時間Tcccに基づいて電圧指令Vcmdと同じ単位の横流補償値Vcccを出力する。   Further, the cross current control time Tccc is calculated by the PI control of the cross current control unit (Balance ACR) 4, and the cross current compensation value Vccc in the same unit as the voltage command Vcmd is output based on the cross current control time Tccc.

デッドタイム生成部DT1、DT2はゲート指令Gate1およびGate2を入力とし、あらかじめ定められたデッドタイム時間Tdを有したスイッチング指令G1_U,G1_L,G2_U,G2_Lを出力する。スイッチング指令G1_U,G1_L,G2_U,G2_LはインバータINV1およびインバータINV2のスイッチング指令であり、この指令によりインバータINV1,INV2内のスイッチング素子をオンオフさせることによって、インバータINV1,INV2を動作させる。   The dead time generation units DT1 and DT2 receive the gate commands Gate1 and Gate2, and output switching commands G1_U, G1_L, G2_U, and G2_L having a predetermined dead time Td. The switching commands G1_U, G1_L, G2_U, and G2_L are switching commands for the inverter INV1 and the inverter INV2, and the inverters INV1 and INV2 are operated by turning on and off the switching elements in the inverters INV1 and INV2 according to the commands.

特開2012−244674号公報JP 2012-244673 A 特開2012−016232号公報JP 2012-016232 A

特許文献1では、横流制御部4において、各PWM電力変換器INV1,INV2間の横流Icに基づいて、各PWM電力変換器INV1,INV2の共通の電圧指令Vcmdと同じ単位の横流補償値Vcccを求め、この横流補償値Vcccを横流Icの値に応じて一方の電圧指令Vcmd1’に加算し、他方の電圧指令Vcmd2’から減算するものである。   In Patent Document 1, in the cross current control unit 4, based on the cross current Ic between the PWM power converters INV 1 and INV 2, the cross current compensation value Vccc in the same unit as the voltage command Vcmd common to the PWM power converters INV 1 and INV 2 is obtained. This cross current compensation value Vccc is added to one voltage command Vcmd1 ′ according to the value of the cross current Ic, and subtracted from the other voltage command Vcmd2 ′.

しかし、IGBT等のスイッチング素子は立ち上がり時と立ち下がり時でスイッチング特性が異なる。このスイッチング特性とは、ゲート指令Gate1,Gate2に対するスイッチング素子のターンオンおよびターンオフに関わる諸特性(ターンオン、ターンオフに要する遅れ時間や電圧傾きなど)である。   However, a switching element such as an IGBT has different switching characteristics at the time of rising and at the time of falling. The switching characteristics are various characteristics related to turn-on and turn-off of the switching element with respect to the gate commands Gate1 and Gate2 (delay time required for turn-on and turn-off, voltage gradient, etc.).

ゲート指令Gate1,Gate2の立ち上がりとはゲート指令Gate1,Gate2がOFFからONに切り替わることを示し、ゲート指令Gate1,Gate2の立ち下がりとはゲート指令Gate1,Gate2がONからOFFに切り替わることを示す。ゲート指令Gate1,Gate2がONの時はゲート指令Gate1,Gate2の値を1とし、OFFの時は値を0と定義する。   The rise of the gate commands Gate1 and Gate2 indicates that the gate commands Gate1 and Gate2 are switched from OFF to ON, and the fall of the gate commands Gate1 and Gate2 indicates that the gate commands Gate1 and Gate2 are switched from ON to OFF. The values of the gate commands Gate1 and Gate2 are defined as 1 when the gate commands Gate1 and Gate2 are ON, and the value is defined as 0 when the gate commands Gate1 and Gate2 are OFF.

したがって、PWM制御のオン/オフの極性に応じた横流補償制御を行っていないため、ゲート指令Gate1,Gate2に対するスイッチング素子のターンオン時のスイッチング特性とターンオフ時のスイッチング特性との差異が原因となって、横流補償値Vcccを最適値に制御できないという問題があった。   Therefore, since the cross current compensation control according to the polarity of on / off of the PWM control is not performed, the difference between the switching characteristics at the turn-on time of the switching element and the switching characteristics at the turn-off time with respect to the gate commands Gate1 and Gate2 is caused. There is a problem that the cross current compensation value Vccc cannot be controlled to an optimum value.

図8に従来方式における横流制御時のゲート指令Gate1,Gate2と横流Icのタイムチャートを示す。本来はデッドタイムが付加されるが本願発明は横流制御に関することであるため、デッドタイムは省略し簡略化して説明する。横流はインバータINV1からインバータINV2に流れる向きを正とする。   FIG. 8 shows a time chart of the gate commands Gate1 and Gate2 and the cross current Ic during the cross current control in the conventional method. Although dead time is originally added, the present invention relates to cross current control, and therefore the dead time will be omitted and described in a simplified manner. In the cross current, the direction from the inverter INV1 to the inverter INV2 is positive.

図8に示すように、大部分において横流を補償できているがスイッチング素子のターンオン時、ターンオフ時はスイッチング特性が異なる為、横流補償値Vcccを最適値に制御できない。これにより、インバータINV1の電圧指令Vcmd1’およびインバータINV2の電圧指令Vcmd2’が最適値でなくなり、結果としてインバータINV1のゲート指令Gate1とインバータINV2のゲート指令Gate2の立ち上がりのタイミングと立下りのタイミングのそれぞれに差異が生じてしまい、横流抑制の効果が低減するという問題があった。   As shown in FIG. 8, the cross current can be compensated for most of the time, but since the switching characteristics are different when the switching element is turned on and off, the cross current compensation value Vccc cannot be controlled to the optimum value. As a result, the voltage command Vcmd1 ′ of the inverter INV1 and the voltage command Vcmd2 ′ of the inverter INV2 are not optimum values, and as a result, the rise timing and fall timing of the gate command Gate1 of the inverter INV1 and the gate command Gate2 of the inverter INV2, respectively. There is a problem that a difference occurs in that the effect of suppressing cross current is reduced.

以上示したようなことから、PWM電力変換器の並列運転方法および並列運転装置において、スイッチング素子の立ち上がり時(ターンオン時)と立ち下がり時(ターンオフ時)のスイッチング特性の差異が起因で発生する横流を抑制することが課題となる。   As described above, in the parallel operation method and parallel operation apparatus of the PWM power converter, the cross current generated due to the difference in switching characteristics at the time of rising (turn-on) and falling (at turn-off) of the switching element. It becomes a problem to suppress this.

本発明は、前記従来の問題に鑑み、案出されたもので、その一態様は、2つのPWM電力変換器を並列接続し、2つのPWM電力変換器の出力を相間リアクトルで接続したPWM電力変換器の並列運転装置であって、ゲート指令を生成するための三角搬送波を出力するキャリア生成部と、三角搬送波が、上限値から下限値に減少している期間か、下限値から上限値に上昇している期間か、を判定する三角搬送波判定部と、三角搬送波が上限値から下限値に減少している期間に横流の検出値を立ち下がり横流制御部に入力し、三角搬送波が下限値から上限値に上昇している期間に横流の検出値を立ち上がり横流制御部に入力する第1選択部と、三角搬送波が下限値から上限値に上昇している期間の横流の検出値に基づいて、立ち上がり横流補償値を演算する立ち上がり横流制御部と、三角搬送波が上限値から下限値に減少している期間の横流の検出値に基づいて、立ち下がり横流補償値を演算する立ち下がり横流制御部と、三角搬送波が上限値から下限値に減少している期間に立ち上がり横流制御部が演算した立ち上がり横流補償値を出力し、三角搬送波が下限値から上限値に増加している期間に立ち下がり横流制御部が演算した立ち下がり横流補償値を出力する第2選択部と、一方のPWM電力変換器の電圧指令に第2選択部が出力した値を加算する加算器と、他方のPWM電力変換器の電圧指令から第2選択部が出力した値を減算する減算器と、を備えたことを特徴とする。   The present invention has been devised in view of the above-described conventional problems, and one aspect thereof is PWM power in which two PWM power converters are connected in parallel and the outputs of the two PWM power converters are connected by an interphase reactor. A parallel operation device for a converter, which outputs a triangular carrier wave for generating a gate command, and a period during which the triangular carrier wave is decreasing from an upper limit value to a lower limit value, or from a lower limit value to an upper limit value. Triangular carrier determination unit that determines whether the period is rising, and the detected value of the cross current is input to the falling current control unit while the triangular carrier is decreasing from the upper limit value to the lower limit value, and the triangular carrier wave is the lower limit value. Based on the first selection unit that rises the detected value of the cross current during the period rising from the upper limit to the upper limit value and inputs it to the cross current control unit, and the detected value of the cross current during the period when the triangular carrier wave increases from the lower limit value to the upper limit value , Rising cross current compensation A rising cross current control unit that calculates a falling cross current compensation value based on a detected value of the cross current during a period when the triangular carrier wave is decreasing from the upper limit value to the lower limit value, and a triangular carrier wave The rising cross current compensation value calculated by the rising cross current control unit is output during the period when the upper limit value is decreasing to the lower limit value, and the falling cross current control unit is calculated when the triangular carrier wave is increasing from the lower limit value to the upper limit value. The second selection unit that outputs the falling cross current compensation value, the adder that adds the value output by the second selection unit to the voltage command of one PWM power converter, and the voltage command of the other PWM power converter And a subtractor for subtracting a value output from the two selection unit.

本発明によれば、PWM電力変換器の並列運転方法および並列運転装置において、スイッチング素子の立ち上がり時(ターンオン時)と立ち下がり時(ターンオフ時)のスイッチング特性の差異が起因で発生する横流を抑制することが可能となる。   According to the present invention, in a parallel operation method and a parallel operation device of a PWM power converter, a cross current generated due to a difference in switching characteristics at the time of rising (turn-on) and falling (at turn-off) of a switching element is suppressed. It becomes possible to do.

実施形態1におけるPWM電力変換器の並列運転装置を示すブロック図。The block diagram which shows the parallel operation apparatus of the PWM power converter in Embodiment 1. FIG. 実施形態1における横流制御部を示すブロック図。FIG. 3 is a block diagram illustrating a cross current control unit according to the first embodiment. 三角搬送波、ゲート立ち上がり信号、ゲート立ち下がり信号を示すタイムチャート。The time chart which shows a triangular carrier wave, a gate rising signal, and a gate falling signal. ゲート指令と横流を示すタイムチャート。Time chart showing gate command and cross current. 実施形態2における横流制御部を示すブロック図。FIG. 5 is a block diagram illustrating a cross current control unit according to a second embodiment. 実施形態3における横流制御部を示すブロック図。FIG. 9 is a block diagram illustrating a cross current control unit according to a third embodiment. 従来のPWM電力変換器の並列運転装置を示すブロック図。The block diagram which shows the parallel operation apparatus of the conventional PWM power converter. 従来のゲート指令と横流を示すタイムチャート。The time chart which shows the conventional gate command and cross current.

以下、本願発明におけるPWM電力変換器の並列運転方法および並列運転装置の実施形態1〜3を図1〜図6に基づいて詳述する。   Embodiments 1 to 3 of the PWM power converter parallel operation method and parallel operation device according to the present invention will be described below in detail with reference to FIGS.

[実施形態1]
従来方式ではゲート指令Gate1,Gate2の立ち上がり時と立ち下がり時を区別していないため、横流補償値Vcccを最適値に制御できない。よって、本実施形態1では、ゲート指令Gate1,Gate2の立ち上がり時と立ち下がり時を区別して補償制御を行う。
[Embodiment 1]
In the conventional method, since the rising time and falling time of the gate commands Gate1 and Gate2 are not distinguished, the cross current compensation value Vccc cannot be controlled to the optimum value. Therefore, in the first embodiment, the compensation control is performed by distinguishing between the rising time and the falling time of the gate commands Gate1 and Gate2.

本実施形態1におけるPWM電力変換器の並列運転装置を図1に示す。本実施形態1におけるPWM電力変換器の並列運転装置は、三角搬送波判定部3、横流制御部4a以外は図7と同様である。キャリア生成部2から出力されるゲート指令Gate1,Gate2を生成するための三角搬送波Carrierが三角搬送波判定部3に入力される。三角搬送波判定部3では、三角搬送波Carrierが上限値から下限値に減少している期間か下限値から上限値に上昇している期間かを判定して、ゲート立ち上がり信号Gate_up_signalとゲート立ち下がり信号Gate_down_signalを生成し、これを横流制御部4aに入力する。本実施形態1の横流制御部4aは、ゲート立ち上がり信号Gate_up_signalとゲート立ち下がり信号Gate_down_signalを使用してゲートの立ち上がり時と立ち下がり時を区別して横流制御を行う。   FIG. 1 shows a parallel operation apparatus for PWM power converters according to the first embodiment. The parallel operation apparatus of the PWM power converter in the first embodiment is the same as that of FIG. 7 except for the triangular carrier wave determination unit 3 and the cross current control unit 4a. A triangular carrier Carrier for generating gate commands Gate 1 and Gate 2 output from the carrier generation unit 2 is input to the triangular carrier determination unit 3. The triangular carrier wave determination unit 3 determines whether the triangular carrier wave carrier is decreasing from the upper limit value to the lower limit value or rising from the lower limit value to the upper limit value, and the gate rising signal Gate_up_signal and the gate falling signal Gate_down_signal. Is generated and input to the cross current control unit 4a. The cross current control unit 4a according to the first embodiment performs the cross current control by using the gate rising signal Gate_up_signal and the gate falling signal Gate_down_signal to distinguish the rising time and the falling time of the gate.

図2に本実施形態1における横流制御部4aのブロック図を示す。図2に示すように、 横流制御部4aは、ゲート立ち上がり時用の横流制御部(以下、立ち上がり横流制御部と称する)9aとゲート立ち下がり時用の横流補償制御部(以下、立ち下がり横流制御部と称する)9bをそれぞれ専用に備える。   FIG. 2 shows a block diagram of the cross current control unit 4a in the first embodiment. As shown in FIG. 2, the cross current control unit 4a includes a cross current control unit for gate rising (hereinafter referred to as a rising cross current control unit) 9a and a cross current compensation control unit for gate falling (hereinafter referred to as falling cross current control). 9b) are provided for exclusive use.

ゲート立ち上がり信号Gate_up_signalまたはゲート立ち下がり信号Gate_down_signalに基づいて、横流Icの検出値を立ち上がり横流制御部9aと立ち下がり横流制御部9bのどちらに入力するか判定する。   Based on the gate rising signal Gate_up_signal or the gate falling signal Gate_down_signal, it is determined whether the detected value of the cross current Ic is input to the rising cross current control unit 9a or the falling cross current control unit 9b.

図3は、ゲート立ち上がり信号Gate_up signalおよびゲート立ち下がり信号Gate down signalを示すタイムチャートである。ゲート指令Gate1,Gate2は電圧指令(図1におけるインバータINV1の電圧指令Vcmd1’もしくはインバータINV2の電圧指令Vcmd2’)が三角搬送波Carrierよりも大きい場合にON信号1を出力し、三角搬送波Carrierよりも小さい場合にはOFF信号0を出力する。   FIG. 3 is a time chart showing the gate rising signal Gate_up signal and the gate falling signal Gate down signal. The gate commands Gate1 and Gate2 output the ON signal 1 when the voltage command (the voltage command Vcmd1 ′ of the inverter INV1 in FIG. 1 or the voltage command Vcmd2 ′ of the inverter INV2 in FIG. 1) is larger than the triangular carrier wave carrier, and is smaller than the triangular carrier carrier. In this case, an OFF signal 0 is output.

三角搬送波Carrierが下限値から上限値に上昇する期間中にゲート指令Gate1,Gate2が1→0に変化する。逆に、三角搬送波Carrierが上限値から下限値に減少する期間中にゲート指令Gate1,Gate2が0→1に変化する。   The gate commands Gate1 and Gate2 change from 1 to 0 during the period in which the triangular carrier wave carrier rises from the lower limit value to the upper limit value. Conversely, the gate commands Gate1 and Gate2 change from 0 to 1 during the period in which the triangular carrier wave carrier decreases from the upper limit value to the lower limit value.

三角搬送波判定部3は、三角搬送波Carrierが上限値に達した時から下限値に達するまでの期間、ゲート立ち上がり信号Gate_up_signalを出力する。この期間では、図2のスイッチ(第1選択部)SW1とスイッチ(第2選択部)SW2はそれぞれ「1」側に接続される。ゲート立ち上がり信号Gate_up_signalが出力されている期間に検出される横流Icは、前回のゲート更新のタイミング(ゲート指令Gate1,Gate2が1→0に変化するタイミング)に起因して発生する横流Icの検出値である。そこで、この期間は、スイッチSW1を「1」側に接続し、立ち下がり横流制御部9bにおいて、横流Icの検出値に基づいて、立ち下がり横流補償値Vccc_downを演算する。   The triangular carrier wave determination unit 3 outputs a gate rising signal Gate_up_signal during a period from when the triangular carrier wave carrier reaches the upper limit value until it reaches the lower limit value. In this period, the switch (first selection unit) SW1 and the switch (second selection unit) SW2 in FIG. 2 are each connected to the “1” side. The cross current Ic detected during the period when the gate rising signal Gate_up_signal is output is the detected value of the cross current Ic generated due to the previous gate update timing (the timing at which the gate commands Gate1 and Gate2 change from 1 to 0). It is. Therefore, during this period, the switch SW1 is connected to the “1” side, and the falling cross current control unit 9b calculates the falling cross current compensation value Vccc_down based on the detected value of the cross current Ic.

一方、スイッチSW2が「1」側に接続されることにより、ゲート立ち下がり信号Gate_down_signalが出力されているときに立ち上がり横流制御部9aで演算をしておいた立ち上がり横流補償値Vccc_upが、図2の横流制御部4aの最終出力である横流補償値Vcccとなる。この横流補償値Vcccをデッドタイム補償後の電圧指令Vcmd’に重畳する。   On the other hand, when the switch SW2 is connected to the “1” side, the rising cross current compensation value Vccc_up calculated by the rising cross current control unit 9a when the gate falling signal Gate_down_signal is output is shown in FIG. The cross current compensation value Vccc is the final output of the cross flow control unit 4a. This cross current compensation value Vccc is superimposed on the voltage command Vcmd 'after dead time compensation.

ゲート立ち下がり信号Gate_down_signalを出力している期間(すなわち、ゲート立ち上がり信号Gate_up_signalを出力していない期間)はスイッチSW1,SW2が「0」側に接続されて、立ち上がり横流制御部9aにおいて、横流Icの検出値に基づいて、立ち上がり横流補償値Vccc_upを演算する。一方、スイッチSW2が「0」側に接続されていることにより、ゲート立ち下がり信号Gate_up_signalが出力されている時に立ち下がり横流制御部9bで演算しておいた立ち下がり横流補償値Vccc_downを横流補償値Vcccとして出力する。   During the period in which the gate falling signal Gate_down_signal is output (that is, the period in which the gate rising signal Gate_up_signal is not output), the switches SW1 and SW2 are connected to the “0” side, and the rising lateral current control unit 9a Based on the detected value, the rising cross current compensation value Vccc_up is calculated. On the other hand, since the switch SW2 is connected to the “0” side, the falling cross current compensation value Vccc_down calculated by the falling cross current control unit 9b when the gate falling signal Gate_up_signal is output is used as the cross current compensation value. Output as Vccc.

このように、三角搬送波Carrierの状態に応じて、2種類の立ち上がり横流補償値Vccc_up,立ち下がり横流補償値Vccc_downを演算し、立ち上がり横流補償値Vccc_upまたは立ち下がり横流補償値Vccc_downのどちらかを選択して、デッドタイム補償後の電圧指令Vcmd’に重畳する。   Thus, according to the state of the triangular carrier wave carrier, two types of rising cross current compensation value Vccc_up and falling cross current compensation value Vccc_down are calculated, and either the rising cross current compensation value Vccc_up or the falling cross current compensation value Vccc_down is selected. And superimposed on the voltage command Vcmd ′ after the dead time compensation.

上記のように処理を行うことにより、ゲート指令Gate1,Gate2の立ち上がりと立ち下がりを考慮して横流Icの補償ができるため、補償量にずれが生じることはない。   By performing the processing as described above, since the cross current Ic can be compensated in consideration of the rise and fall of the gate commands Gate1 and Gate2, there is no deviation in the compensation amount.

図4は、本実施形態1におけるゲート指令Gate1,Gate2と横流Icを示すタイムチャートである。   FIG. 4 is a time chart showing the gate commands Gate1 and Gate2 and the cross current Ic in the first embodiment.

三角搬送波Carrierが減少している期間(ゲート立ち上がり信号Gate_up_signalを出力している期間)と三角搬送波Carrierが増加している期間(ゲート立ち上がり信号Gate_up_signalを出力していない間)とでは、横流補償値Vcccの値が異なっているため、両期間のインバータINV1,INV2の電圧指令Vcmd1’、Vcmd2’の値は異なっている。   In the period in which the triangular carrier wave carrier is decreasing (period in which the gate rising signal Gate_up_signal is output) and in the period in which the triangular carrier wave carrier is increasing (while the gate rising signal Gate_up_signal is not output), the cross current compensation value Vccc Therefore, the values of the voltage commands Vcmd1 ′ and Vcmd2 ′ of the inverters INV1 and INV2 in both periods are different.

この動作によって、図4に示すようにゲート指令Gate1とGate2の立ち上がりおよび立下りのタイミングが一致するように制御され、横流が抑制される。   By this operation, as shown in FIG. 4, control is performed so that the rising and falling timings of the gate commands Gate1 and Gate2 coincide with each other, and the cross current is suppressed.

以上示したように、本実施形態1によれば、スイッチング素子の立ち上がり時(ターンオン時)と立ち下がり時(ターンオフ時)のスイッチング特性の差異が起因で発生する横流を抑制することが可能となる。   As described above, according to the first embodiment, it is possible to suppress the cross current generated due to the difference in switching characteristics between the rising time (turn-on time) and the falling time (turn-off time) of the switching element. .

[実施形態2]
図5は、本実施形態2における横流制御部4bを示すブロック図である。本実施形態2は、スイッチSW1,SW2の切り替えを、ゲート立ち下がり信号Gate_down_signalを用いて行うものである。ゲート立ち下がり信号Gate_down_signalが出力されている期間では、図5のスイッチSW1とスイッチSW2はそれぞれ「1」側に接続される。その他は実施形態1と同様である。
[Embodiment 2]
FIG. 5 is a block diagram showing the cross current control unit 4b in the second embodiment. In the second embodiment, the switches SW1 and SW2 are switched using a gate falling signal Gate_down_signal. In a period in which the gate falling signal Gate_down_signal is output, the switch SW1 and the switch SW2 in FIG. 5 are each connected to the “1” side. Others are the same as in the first embodiment.

この期間で検出される横流Icは前回のゲート更新のタイミングに起因して発生する横流Icの検出値である。そこで、このゲート立ち下がり信号Gate_down_signalが出力される期間スイッチSW1を「1」側に接続することにより、横流Icの検出値は、立ち上がり横流制御部9aに入力される。立ち上がり横流制御部9aは横流Icの検出値に基づいて立ち上がり横流補償値Vccc_upを演算する。   The cross current Ic detected during this period is a detected value of the cross current Ic generated due to the timing of the previous gate update. Therefore, the detection value of the cross current Ic is input to the rising cross current control section 9a by connecting the switch SW1 to the “1” side during the period when the gate falling signal Gate_down_signal is output. The rising cross current control unit 9a calculates the rising cross current compensation value Vccc_up based on the detected value of the cross current Ic.

一方、スイッチSW2を「1」側に接続することにより、ゲート立ち上がり信号Gate_up_signalが出力されているときに立ち下がり横流制御部9bで演算をしておいた立ち下がり横流補償値Vccc_downが横流補償値Vcccとなる。この横流補償値Vcccをデッドタイム補償後の電圧指令Vcmd’に重畳する。   On the other hand, by connecting the switch SW2 to the “1” side, when the gate rising signal Gate_up_signal is output, the falling cross current compensation value Vccc_down calculated by the falling cross current control unit 9b becomes the cross current compensation value Vccc. It becomes. This cross current compensation value Vccc is superimposed on the voltage command Vcmd 'after dead time compensation.

ゲート立ち上がり信号Gate_up_signalを出力している期間(すなわち、ゲート立ち下がり信号Gate_down_signalを出力していない期間)の動作も同様である。   The operation during the period when the gate rising signal Gate_up_signal is output (that is, the period when the gate falling signal Gate_down_signal is not output) is the same.

以上示したように、本実施形態2によれば、実施形態1と同様の作用効果を奏する。   As described above, according to the second embodiment, the same operational effects as those of the first embodiment can be obtained.

[実施形態3]
図6は、本実施形態3における横流制御部4cを示すブロック図である。本実施形態3は、スイッチSW1の判定信号にゲート立ち下がり信号Gate_down_signalを、スイッチSW2の判定信号にゲート立ち上がり信号Gate_up_signalを用いたものである。その他は、実施形態1と実施形態2と同様である。
[Embodiment 3]
FIG. 6 is a block diagram showing the cross current control unit 4c in the third embodiment. In the third embodiment, the gate falling signal Gate_down_signal is used as the determination signal for the switch SW1, and the gate rising signal Gate_up_signal is used as the determination signal for the switch SW2. Others are the same as those in the first and second embodiments.

なお、スイッチSW1とスイッチSW2の判定信号を逆にしても、同様に実施することができる。 これにより、実施形態1,2と同様の作用効果を奏する。   Even if the determination signals of the switch SW1 and the switch SW2 are reversed, the same can be implemented. Thereby, there exists an effect similar to Embodiment 1,2.

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。   Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical idea of the present invention. Such variations and modifications are naturally within the scope of the claims.

3…三角搬送波判定部
4a,4b,4c…横流制御部
9a…立ち上がり横流制御部
9b…立ち下がり横流制御部
INV1,INV2…PWM電力変換器(インバータ)
Ic…横流
Vcmd…電圧指令
Vcmd’…デッドタイム補償後の電圧指令
Vcmd1’…インバータINV1の電圧指令
Vcmd2’…インバータINV2の電圧指令
Vccc…横流補償値(横流補償分の電圧指令)
Vccc_up…立ち上がり横流補償値
Vccc_down…立ち上がり横流補償値
Carrier…三角搬送波
3 ... Triangular carrier wave determination unit 4a, 4b, 4c ... Cross current control unit 9a ... Rising cross current control unit 9b ... Falling cross current control unit INV1, INV2 ... PWM power converter (inverter)
Ic: Cross current Vcmd: Voltage command Vcmd ': Voltage command after dead time compensation Vcmd1': Voltage command for inverter INV1 Vcmd2 ': Voltage command for inverter INV2 Vccc: Cross current compensation value (voltage command for cross current compensation)
Vccc_up: rising cross current compensation value Vccc_down: rising cross current compensation value Carrier: triangular carrier wave

Claims (2)

2つのPWM電力変換器を並列接続し、2つのPWM電力変換器の出力を相間リアクトルで接続したPWM電力変換器の並列運転装置であって、
ゲート指令を生成するための三角搬送波を出力するキャリア生成部と、
三角搬送波が、上限値から下限値に減少している期間か、下限値から上限値に上昇している期間か、を判定する三角搬送波判定部と、
三角搬送波が上限値から下限値に減少している期間に横流の検出値を立ち下がり横流制御部に入力し、三角搬送波が下限値から上限値に上昇している期間に横流の検出値を立ち上がり横流制御部に入力する第1選択部と、
三角搬送波が下限値から上限値に上昇している期間の横流の検出値に基づいて、立ち上がり横流補償値を演算する立ち上がり横流制御部と、
三角搬送波が上限値から下限値に減少している期間の横流の検出値に基づいて、立ち下がり横流補償値を演算する立ち下がり横流制御部と、
三角搬送波が上限値から下限値に減少している期間に立ち上がり横流制御部が演算した立ち上がり横流補償値を出力し、三角搬送波が下限値から上限値に増加している期間に立ち下がり横流制御部が演算した立ち下がり横流補償値を出力する第2選択部と、
一方のPWM電力変換器の電圧指令に第2選択部が出力した値を加算する加算器と、
他方のPWM電力変換器の電圧指令から第2選択部が出力した値を減算する減算器と、
を備えたことを特徴とするPWM電力変換器の並列運転装置。
A PWM power converter parallel operation device in which two PWM power converters are connected in parallel and the outputs of the two PWM power converters are connected by an interphase reactor,
A carrier generation unit that outputs a triangular carrier wave for generating a gate command;
A triangular carrier wave determination unit that determines whether the triangular carrier wave is decreasing from the upper limit value to the lower limit value or is rising from the lower limit value to the upper limit value;
When the triangular carrier wave decreases from the upper limit value to the lower limit value, the cross current detection value falls and is input to the cross current control unit, and when the triangular carrier wave rises from the lower limit value to the upper limit value, the cross current detection value rises. A first selection unit that inputs to the cross current control unit;
A rising cross current control unit that calculates a rising cross current compensation value based on the detected value of the cross current during the period when the triangular carrier wave is rising from the lower limit value to the upper limit value;
A falling cross current control unit that calculates a falling cross current compensation value based on a detected value of the cross current during a period in which the triangular carrier wave decreases from the upper limit value to the lower limit value;
Outputs the rising cross current compensation value calculated by the rising cross current control unit during the period when the triangular carrier wave decreases from the upper limit value to the lower limit value, and falls during the period when the triangular carrier wave increases from the lower limit value to the upper limit value. A second selection unit for outputting the falling cross current compensation value calculated by:
An adder for adding the value output by the second selection unit to the voltage command of one PWM power converter;
A subtractor for subtracting the value output from the second selection unit from the voltage command of the other PWM power converter;
A parallel operation apparatus for PWM power converters.
2つのPWM電力変換器を並列接続し、2つのPWM電力変換器の出力を相間リアクトルで接続したPWM電力変換器の並列運転装置の並列運転方法であって、
キャリア生成部において、ゲート指令を生成するための三角搬送波を出力する三角搬送波出力処理と、
三角搬送波判定部において、三角搬送波が、上限値から下限値に減少している期間か、下限値から上限値に上昇している期間か、を判定する三角搬送波判定処理と、
第1選択部が、三角搬送波が上限値から下限値に減少している期間に横流の検出値を立ち下がり横流制御部に入力し、三角搬送波が下限値から上限値に上昇している期間に横流の検出値を立ち上がり横流制御部に入力する第1選択処理と、
立ち上がり横流制御部が、三角搬送波が下限値から上限値に増加している期間の横流の検出値に基づいて、立ち上がり横流補償値を演算する立ち上がり横流補償処理と、
立ち下がり横流補償部が、三角搬送波が上限値から下限値に減少している期間の横流の検出値に基づいて、立ち下がり横流補償値を演算する立ち下がり横流補償処理と、
第2選択部が、三角搬送波が上限値から下限値に減少している期間に立ち上がり横流制御部が演算した立ち上がり横流補償値を出力し、三角搬送波が下限値から上限値に増加している期間に立ち下がり横流制御部が演算した立ち下がり横流補償値を出力する第2選択処理と、
加算器が、一方のPWM電力変換器の電圧指令に第2選択部が出力した値を加算する加算処理と、
減算器が、他方のPWM電力変換器の電圧指令から第2選択部が出力した値を減算する減算処理と、
を行うことを特徴とするPWM電力変換器の並列運転方法。
A parallel operation method of a parallel operation device for PWM power converters in which two PWM power converters are connected in parallel and the outputs of the two PWM power converters are connected by an interphase reactor,
In the carrier generation unit, a triangular carrier wave output process for outputting a triangular carrier wave for generating a gate command,
In the triangular carrier wave determination unit, a triangular carrier wave determination process for determining whether the triangular carrier wave is decreasing from the upper limit value to the lower limit value or a period rising from the lower limit value to the upper limit value;
The first selection unit inputs the detected value of the cross current into the cross current control unit while the triangular carrier wave is decreasing from the upper limit value to the lower limit value, and during the period when the triangular carrier wave rises from the lower limit value to the upper limit value. A first selection process in which the detected value of the cross current is risen and input to the cross current control unit;
The rising cross current control unit calculates the rising cross current compensation value based on the detected value of the cross current during the period in which the triangular carrier wave increases from the lower limit value to the upper limit value, and
A falling cross current compensation unit that calculates a falling cross current compensation value based on a detected value of the cross current during a period in which the triangular carrier wave decreases from an upper limit value to a lower limit value;
The second selection unit outputs the rising cross current compensation value calculated by the rising cross current control unit while the triangular carrier wave is decreasing from the upper limit value to the lower limit value, and the triangular carrier wave is increasing from the lower limit value to the upper limit value. A second selection process for outputting a falling cross-current compensation value calculated by the falling cross-flow control unit;
An addition process in which the adder adds the value output by the second selection unit to the voltage command of one of the PWM power converters;
A subtraction process in which the subtracter subtracts the value output from the second selection unit from the voltage command of the other PWM power converter;
A method for parallel operation of PWM power converters.
JP2015082956A 2015-04-15 2015-04-15 Parallel operation method and parallel operation apparatus for PWM power converter Expired - Fee Related JP6468046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015082956A JP6468046B2 (en) 2015-04-15 2015-04-15 Parallel operation method and parallel operation apparatus for PWM power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015082956A JP6468046B2 (en) 2015-04-15 2015-04-15 Parallel operation method and parallel operation apparatus for PWM power converter

Publications (2)

Publication Number Publication Date
JP2016208559A true JP2016208559A (en) 2016-12-08
JP6468046B2 JP6468046B2 (en) 2019-02-13

Family

ID=57490832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015082956A Expired - Fee Related JP6468046B2 (en) 2015-04-15 2015-04-15 Parallel operation method and parallel operation apparatus for PWM power converter

Country Status (1)

Country Link
JP (1) JP6468046B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079229A1 (en) 2016-10-25 2018-05-03 株式会社タンガロイ Coated cutting tool

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03261375A (en) * 1990-03-08 1991-11-21 Mitsubishi Electric Corp Sine-wave approximation pwm inverter
JPH0530661A (en) * 1991-07-23 1993-02-05 Meidensha Corp Parallel operation apparatus for power converting equipment
JP2009252408A (en) * 2008-04-02 2009-10-29 Sanken Electric Co Ltd Frequency synchronization method of discharge tube lighting device, discharge tube lighting device, and semiconductor integrated circuit
JP2012016232A (en) * 2010-07-05 2012-01-19 Meidensha Corp Dead time compensation system of pwm power conversion apparatus
JP2012244674A (en) * 2011-05-17 2012-12-10 Meidensha Corp Parallel operation device and parallel operation method of pwm power converter
JP2013143880A (en) * 2012-01-12 2013-07-22 Meidensha Corp Parallel operation device of pwm power converter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03261375A (en) * 1990-03-08 1991-11-21 Mitsubishi Electric Corp Sine-wave approximation pwm inverter
JPH0530661A (en) * 1991-07-23 1993-02-05 Meidensha Corp Parallel operation apparatus for power converting equipment
JP2009252408A (en) * 2008-04-02 2009-10-29 Sanken Electric Co Ltd Frequency synchronization method of discharge tube lighting device, discharge tube lighting device, and semiconductor integrated circuit
JP2012016232A (en) * 2010-07-05 2012-01-19 Meidensha Corp Dead time compensation system of pwm power conversion apparatus
JP2012244674A (en) * 2011-05-17 2012-12-10 Meidensha Corp Parallel operation device and parallel operation method of pwm power converter
JP2013143880A (en) * 2012-01-12 2013-07-22 Meidensha Corp Parallel operation device of pwm power converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079229A1 (en) 2016-10-25 2018-05-03 株式会社タンガロイ Coated cutting tool

Also Published As

Publication number Publication date
JP6468046B2 (en) 2019-02-13

Similar Documents

Publication Publication Date Title
JP6206502B2 (en) Power conversion device and power conversion method
JP6747569B1 (en) Power conversion device, control method, and control program
US8283880B2 (en) Motor drive device with function of switching to power regenerative operation mode
JP6185860B2 (en) Bidirectional converter
JP2016067132A (en) Power conversion device
EP2793382A2 (en) Power transforming apparatus
US10826411B2 (en) Device for controlling power conversion circuit
US20170310219A1 (en) Dc/dc converter
JP6468046B2 (en) Parallel operation method and parallel operation apparatus for PWM power converter
JP2009303461A (en) Current control type power converter and output current waveform improving method of current control type power converter
JP2017034737A (en) Power conversion device controller, control method, and control program, and power conversion system
JP5737268B2 (en) Power converter
JP2017042016A (en) Motor drive device with function for suppressing specular change of regenerative current
JP6540315B2 (en) Power converter
JP6150946B2 (en) Electric vehicle control device
JP6758178B2 (en) Power converter
KR20220026590A (en) power converter
JP4448294B2 (en) Power converter
JP5223521B2 (en) Power converter
JP2006081350A (en) Power converter
JP5937373B2 (en) Power converter
JP2008109790A (en) Power conversion apparatus
JP2006141090A (en) Semiconductor power converter
JP2018088763A (en) Power converter
JP7356212B2 (en) Control device for power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181231

R150 Certificate of patent or registration of utility model

Ref document number: 6468046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees