JP2017034737A - Power conversion device controller, control method, and control program, and power conversion system - Google Patents

Power conversion device controller, control method, and control program, and power conversion system Download PDF

Info

Publication number
JP2017034737A
JP2017034737A JP2015148918A JP2015148918A JP2017034737A JP 2017034737 A JP2017034737 A JP 2017034737A JP 2015148918 A JP2015148918 A JP 2015148918A JP 2015148918 A JP2015148918 A JP 2015148918A JP 2017034737 A JP2017034737 A JP 2017034737A
Authority
JP
Japan
Prior art keywords
phase difference
output
inverters
pulse width
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015148918A
Other languages
Japanese (ja)
Inventor
大部 利春
Toshiharu Obe
利春 大部
翔 佐藤
Sho Sato
翔 佐藤
由紀久 飯島
Yukihisa Iijima
由紀久 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Corp
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Corp
Priority to JP2015148918A priority Critical patent/JP2017034737A/en
Publication of JP2017034737A publication Critical patent/JP2017034737A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To make it possible, even in a non-steady state at the time of excessive response caused by load fluctuations, to perform output control for handling the state.SOLUTION: A power conversion device controller includes: an output calculation unit 40 that calculates required output necessary for a power conversion device 100 including a plurality of stages of inverters 10, 20; a pulse width setting unit 41 that, on the basis of the required output, sets a pulse width of each of the inverters 10, 20; a phase difference setting unit 42 that sets a phase difference between output of the plurality of stages of inverters 10, 20; a switching control unit 43 that, on the basis of the set pulse width and phase difference, controls switching of switching elements 1 of the plurality of stages of inverters 10, 20; a determination unit 44 that, on the basis of the required output, determines a non-steady state; and a change unit 45 that, when the non-steady state has been determined, changes the phase difference between the output of the plurality of stages of inverters 10, 20 to make synthetic output of the plurality of stages of inverters 10, 20 be output depending on the non-steady state.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、複数のインバータを有する電力変換装置の制御装置、制御方法、制御プログラム及び電力変換システムに関する。   Embodiments described herein relate generally to a control device, a control method, a control program, and a power conversion system for a power conversion device having a plurality of inverters.

交流と直流との間で相互に電力の変換を行う電力変換装置は、種々の用途に使用されている。たとえば、直流を交流に変換して負荷に電力を供給するインバータとしては、4つのスイッチを基本構成とするブリッジ回路から成る装置が使用されてきた。   A power conversion device that converts power between alternating current and direct current is used in various applications. For example, as an inverter that converts direct current into alternating current and supplies power to a load, an apparatus including a bridge circuit having four switches as a basic configuration has been used.

このような電力変換装置において、オンオフの切り替えであるスイッチングを行うスイッチング素子としては、一般的には、GTO、IGBТなどのパワー半導体素子が用いられる。電力変換装置から出力される電圧は、このパワー半導体素子のスイッチングによる方形波の出力となる。   In such a power conversion device, power semiconductor elements such as GTO and IGBТ are generally used as switching elements that perform switching that is switched on and off. The voltage output from the power conversion device becomes a square wave output by switching of the power semiconductor element.

特開平9−205797号公報JP-A-9-205797

上記のように、スイッチング素子のスイッチングにより出力される電圧波形または電流波形は方形波であるため、ひずみ波を含むことになる。一般的にインバータの出力周波数をfHzとすると、その奇数倍の3fHz(第3次高調波)、5fHz(第5次高調波)・・・のように、基本波の奇数倍の高調波が含まれる。高周波を多く含んだ電流が負荷へ流れると、その周辺機器等にノイズが流れ込み、悪影響を及ぼす可能性がある。   As described above, the voltage waveform or current waveform output by switching of the switching element is a square wave, and therefore includes a distorted wave. In general, if the output frequency of the inverter is fHz, odd-numbered harmonics such as 3fHz (third harmonic), 5fHz (fifth harmonic), etc. are included. It is. If a current containing a large amount of high frequency flows to the load, noise may flow into the peripheral device and the like, which may have an adverse effect.

これに対処するため、インバータを多重化して数台の方形波インバータの出力を組み合わせる方法が知られている。これは、複数のインバータ出力の位相を変えることにより、高調波を低減するものである。但し、かかる方法では、インバータで出力できる電圧が制限されてしまう場合があるため、負荷変動による過渡応答時において、電流を制御装置からの指令値通りに制御できなくなる可能性がある。   In order to cope with this, a method of multiplexing inverters and combining the outputs of several square wave inverters is known. This is to reduce harmonics by changing the phase of the plurality of inverter outputs. However, in such a method, the voltage that can be output by the inverter may be limited, and thus there is a possibility that the current cannot be controlled in accordance with the command value from the control device during a transient response due to a load change.

本発明は、負荷変動による過度応答時などの非定常状態においても、これに対応する出力制御が可能な電力変換装置の制御装置、制御方法、制御プログラム及び電力変換システムを提供することを目的とする。   An object of the present invention is to provide a control device, a control method, a control program, and a power conversion system for a power conversion device capable of output control corresponding to an unsteady state such as an excessive response due to a load change. To do.

上記のような課題を解決するため、実施形態の電力変換装置の制御装置は、複数段のインバータを有する電力変換装置に必要な所要出力を演算する出力演算部と、前記出力演算部により演算された所要出力に基づいて、各インバータのパルス幅を設定するパルス幅設定部と、複数段のインバータの出力の位相差を設定する位相差設定部と、前記パルス幅設定部により設定されたパルス幅及び前記位相差設定部により設定された位相差に基づいて、複数段のインバータにおけるスイッチング素子のスイッチングを制御するスイッチング制御部と、前記出力演算部により演算される所要出力に基づいて、非定常状態であることを判定する判定部と、前記判定部が非定常状態と判定すると、複数段のインバータの出力の位相差を変更することにより、複数段のインバータの合成出力を非定常状態に応じた出力とする変更部と、を有することを特徴とする。   In order to solve the above-described problems, a control device for a power conversion device according to an embodiment is calculated by an output calculation unit that calculates a required output necessary for a power conversion device having a plurality of stages of inverters, and the output calculation unit. Based on the required output, a pulse width setting unit for setting the pulse width of each inverter, a phase difference setting unit for setting the phase difference between the outputs of the plurality of inverters, and the pulse width set by the pulse width setting unit And a switching control unit that controls switching of switching elements in a plurality of inverters based on the phase difference set by the phase difference setting unit, and an unsteady state based on a required output calculated by the output calculation unit When the determination unit that determines that the state is determined and the determination unit determines that it is in an unsteady state, the phase difference between the outputs of the plurality of inverters is changed. Characterized in that it has a changing unit to output corresponding synthetic output a plurality of stages of inverters in the non-steady state, the.

実施形態の電力変換システムの構成例を示すブロック図The block diagram which shows the structural example of the power conversion system of embodiment 定常状態における電力変換装置の各インバータ出力及び合成出力を示す波形図Waveform diagram showing each inverter output and combined output of power converter in steady state 非定常状態における電力変換装置の各インバータ出力及び合成出力を示す波形図Waveform diagram showing each inverter output and combined output of power converter in unsteady state 定常状態における電力変換装置の各インバータ出力及び合成出力を示す波形図Waveform diagram showing each inverter output and combined output of power converter in steady state 非定常状態における電力変換装置の各インバータ出力及び合成出力を示す波形図Waveform diagram showing each inverter output and combined output of power converter in unsteady state

本実施形態を、図1〜5を参照して説明する。図1は、電力変換システムSの構成例である。図2〜図5は、第1のインバータ10の出力P1、第2のインバータ20の出力P2、合成出力Psのパルス波を図示した説明図である。
[A.実施形態の構成]
図1に示すように、本実施形態の電力変換システムSは、電力変換装置100と制御装置400を有する。
This embodiment will be described with reference to FIGS. FIG. 1 is a configuration example of the power conversion system S. 2 to 5 are explanatory diagrams illustrating pulse waves of the output P1 of the first inverter 10, the output P2 of the second inverter 20, and the combined output Ps.
[A. Configuration of Embodiment]
As shown in FIG. 1, the power conversion system S of the present embodiment includes a power conversion device 100 and a control device 400.

[1.電力変換装置]
電力変換装置100は、複数段のインバータを有する。複数段のインバータを有するとは、複数のインバータが、各インバータの出力を合成した電力が得られるように接続されていることをいう。
[1. Power conversion device]
The power conversion device 100 includes a plurality of stages of inverters. Having a plurality of stages of inverters means that the plurality of inverters are connected so as to obtain electric power obtained by combining the outputs of the inverters.

このような電力変換装置100の一例を、図1を参照して説明する。図1の電力変換装置100は、電圧型の多重インバータの回路構成の一例である。電力変換装置100は、電源となる直流電圧源200に接続されている。また、電力変換装置100には、電力変換装置100から出力された交流電力を消費する負荷300が接続されている。電力変換装置100の出力は、負荷300で消費されるエネルギーを供給するという観点からは電力であるが、電圧型のインバータの出力及びその波形の比較においては電圧である。   An example of such a power conversion device 100 will be described with reference to FIG. The power conversion apparatus 100 of FIG. 1 is an example of a circuit configuration of a voltage type multiple inverter. The power conversion apparatus 100 is connected to a DC voltage source 200 serving as a power source. The power converter 100 is connected to a load 300 that consumes AC power output from the power converter 100. The output of the power converter 100 is electric power from the viewpoint of supplying energy consumed by the load 300, but is a voltage in the comparison of the output of the voltage type inverter and its waveform.

電力変換装置100は、複数段のインバータとして、第1のインバータ10、第2のインバータ20を有する。第1のインバータ10は、4つのスイッチング素子1で構成されるブリッジ回路である。つまり、直列に接続された2つのスイッチング素子1からなる組が、2組並列に接続されている。スイッチング素子1としては、例えば、GTO、IGBT等のパワー半導体素子を用いることができる。   The power conversion apparatus 100 includes a first inverter 10 and a second inverter 20 as a plurality of stages of inverters. The first inverter 10 is a bridge circuit composed of four switching elements 1. That is, two sets of two switching elements 1 connected in series are connected in parallel. As the switching element 1, for example, a power semiconductor element such as GTO or IGBT can be used.

各スイッチング素子1には、フィードバック用のダイオード2が並列に接続されている。各組の2つのスイッチング素子1の間は、リアクトル11及びトランス12の1次側を介して接続されている。また、第2のインバータ20も、第1のインバータ10と同様の構成であり、各組の2つのスイッチング素子1の間は、リアクトル21及びトランス22の一次側を介して接続されている。   A feedback diode 2 is connected to each switching element 1 in parallel. The two switching elements 1 in each set are connected via the reactor 11 and the primary side of the transformer 12. The second inverter 20 has the same configuration as that of the first inverter 10, and the two switching elements 1 of each set are connected via the primary side of the reactor 21 and the transformer 22.

第1のインバータ10及び第2のインバータ20の入力側は、直流電圧源200に並列に接続されている。一方、第1のインバータ10及び第2のインバータ20の出力側は、負荷300に直列に接続されている。つまり、トランス12、22の二次側が、負荷300に直列に接続されている。   The input sides of the first inverter 10 and the second inverter 20 are connected to the DC voltage source 200 in parallel. On the other hand, the output sides of the first inverter 10 and the second inverter 20 are connected to the load 300 in series. That is, the secondary sides of the transformers 12 and 22 are connected to the load 300 in series.

電力変換装置100は、直流電圧源200からの直流電圧を、単相の交流電圧へと変換する。このとき、第1のインバータ10、第2のインバータ20は、それぞれの対角線上のスイッチング素子1の組を、交互にオンオフすることにより、方形波の交流電圧を出力する。出力された交流電圧はトランス12、22を介して昇圧され、負荷300へ供給される。   The power conversion apparatus 100 converts the DC voltage from the DC voltage source 200 into a single-phase AC voltage. At this time, the first inverter 10 and the second inverter 20 output a square-wave AC voltage by alternately turning on and off the pair of switching elements 1 on the respective diagonal lines. The output AC voltage is boosted via the transformers 12 and 22 and supplied to the load 300.

[2.制御装置]
制御装置400は、電力変換装置100の運転を制御する装置である。この制御装置400は、出力演算部40、パルス幅設定部41、位相差設定部42、スイッチング制御部43、判定部44、変更部45、記憶部46を有する。
[2. Control device]
The control device 400 is a device that controls the operation of the power conversion device 100. The control device 400 includes an output calculation unit 40, a pulse width setting unit 41, a phase difference setting unit 42, a switching control unit 43, a determination unit 44, a changing unit 45, and a storage unit 46.

[出力演算部]
出力演算部40は、電力変換装置100に必要な所要出力を演算する処理部である。所要出力は、負荷300との関係で電力変換装置100が供給すべき出力である。出力演算部40は、例えば、外部から入力された情報に基づいて所要出力を演算する。外部から入力された情報とは、負荷電流の状態を示す各種のパラメータである。例えば、負荷に流れる電流を検出する検出部Tからの検出値とする。つまり、出力演算部40は、負荷電流をフィードバックにより制御することを可能にする。
[Output calculation section]
The output calculation unit 40 is a processing unit that calculates a required output necessary for the power conversion apparatus 100. The required output is an output that the power conversion apparatus 100 should supply in relation to the load 300. The output calculation unit 40 calculates a required output based on, for example, information input from the outside. The information input from the outside is various parameters indicating the state of the load current. For example, a detection value from the detection unit T that detects the current flowing through the load is used. That is, the output calculation unit 40 can control the load current by feedback.

[パルス幅設定部]
パルス幅設定部41は、出力演算部40により演算された所要出力に基づいて、各インバータのパルス幅を設定する処理部である。例えば、パルス幅設定部41は、電力変換装置100の出力が所要出力となるように、第1のインバータ10及び第2のインバータ20のパルス幅を演算により求めて設定する。
[Pulse width setting section]
The pulse width setting unit 41 is a processing unit that sets the pulse width of each inverter based on the required output calculated by the output calculation unit 40. For example, the pulse width setting unit 41 calculates and sets the pulse widths of the first inverter 10 and the second inverter 20 so that the output of the power conversion device 100 becomes a required output.

パルス幅は、方形波の正又は負の立ち上がりエッジから立ち下がりエッジまでの幅である。ここでは、説明の便宜上、立ち上がりエッジ幅、立ち下がりエッジ幅は考慮しない。また、本実施形態では、パルス幅を度数表記する。第1のインバータ10及び第2のインバータ20のそれぞれの出力のパルス幅は、最小が0°、最大が180°である。例えば、電圧型の第1のインバータ10及び第2のインバータ20が出力可能な電圧の範囲は、直流電圧源200の電圧とパルス幅で決定される。   The pulse width is the width from the positive or negative rising edge to the falling edge of the square wave. Here, for convenience of explanation, the rising edge width and the falling edge width are not considered. In the present embodiment, the pulse width is expressed as a frequency. The pulse widths of the outputs of the first inverter 10 and the second inverter 20 are 0 ° at the minimum and 180 ° at the maximum. For example, the voltage range that can be output by the voltage-type first inverter 10 and the second inverter 20 is determined by the voltage of the DC voltage source 200 and the pulse width.

[位相差設定部]
位相差設定部42は、複数段のインバータの出力の位相差を設定する処理部である。位相差は、所定の周波数の方形波の位相のずれである。本実施形態では、位相差設定部42は、第1のインバータ10の出力と第2のインバータ20の出力との位相差を設定する。例えば、第1のインバータ10及び第2のインバータ20の出力電圧の位相差は、立ち上がり又は立ち下がりのずれ幅である。本実施形態では、この位相差も度数表記する。なお、後述するように、この位相差は、変更部45により変更される場合がある。
[Phase difference setting section]
The phase difference setting unit 42 is a processing unit that sets a phase difference between outputs of a plurality of inverters. The phase difference is a phase shift of a square wave having a predetermined frequency. In the present embodiment, the phase difference setting unit 42 sets the phase difference between the output of the first inverter 10 and the output of the second inverter 20. For example, the phase difference between the output voltages of the first inverter 10 and the second inverter 20 is a deviation width of rising or falling. In the present embodiment, this phase difference is also expressed as a frequency. As will be described later, this phase difference may be changed by the changing unit 45.

[スイッチング制御部]
スイッチング制御部43は、パルス幅設定部41により演算されたパルス幅及び位相差設定部42により設定された位相差に基づいて、電力変換装置100におけるスイッチング素子1のスイッチングを制御する処理部である。スイッチングの制御とは、スイッチング素子1のオンオフの切り替えを制御することをいう。具体的には、スイッチング制御部43は、所定のタイミングで各スイッチング素子1のオンオフを切り替えるゲート信号を生成し、出力することにより、スイッチングを制御する。
[Switching control unit]
The switching control unit 43 is a processing unit that controls switching of the switching element 1 in the power conversion device 100 based on the pulse width calculated by the pulse width setting unit 41 and the phase difference set by the phase difference setting unit 42. . Switching control refers to controlling on / off switching of the switching element 1. Specifically, the switching control unit 43 controls switching by generating and outputting a gate signal for switching on and off each switching element 1 at a predetermined timing.

[判定部]
判定部44は、出力演算部40により演算される所要出力に基づいて、非定常状態であることを判定する処理部である。ここで、定常状態と非定常状態について説明する。まず、定常状態は、安定して電力の供給を行うことができる状態である。例えば、検出部Tにより検出された負荷電流が安定していて、必要な電圧に急激な変化が生じていない場合は、定常状態に含まれる。この場合、出力演算部40が演算する所要出力は安定している。
[Determining part]
The determination unit 44 is a processing unit that determines that the state is an unsteady state based on the required output calculated by the output calculation unit 40. Here, the steady state and the unsteady state will be described. First, the steady state is a state in which power can be supplied stably. For example, when the load current detected by the detection unit T is stable and the required voltage does not change rapidly, it is included in the steady state. In this case, the required output calculated by the output calculation unit 40 is stable.

一方、非定常状態とは、定常状態を逸脱した状態から安定化するまでの状態である。例えば、過渡応答による負荷変動が大きいため、検出部Tにより検出された電流値に基づいて出力演算部40が演算する所要出力が、定常状態のパルス幅又は位相差による複数段のインバータの合成出力の最大値を超える場合がある。本実施形態では、第1のインバータ10及び第2のインバータ20の出力電圧の最大値を超える場合である。このような場合は、非定常状態に含まれる。   On the other hand, the unsteady state is a state from the state deviating from the steady state to the stabilization. For example, since the load fluctuation due to the transient response is large, the required output calculated by the output calculation unit 40 based on the current value detected by the detection unit T is the combined output of a plurality of inverters based on the pulse width or phase difference in the steady state. May exceed the maximum value of. In the present embodiment, the maximum output voltage value of the first inverter 10 and the second inverter 20 is exceeded. Such a case is included in the unsteady state.

判定部44による非定常状態か否かの判定は、例えば、所要出力としきい値との比較により行う。上記の出力電圧の最大値をしきい値として、出力演算部40の演算による所要出力が、このしきい値を超える場合、非定常状態であると判定できる。例えば、検出部Tが検出する負荷電流により、負荷が必要な電圧が急激に増大した場合、最大電圧−所要電圧がマイナスとなり、非定常状態と判定される。   The determination of whether or not the unsteady state is caused by the determination unit 44 is performed, for example, by comparing the required output with a threshold value. With the maximum value of the output voltage as a threshold value, if the required output by the calculation of the output calculation unit 40 exceeds this threshold value, it can be determined that the state is unsteady. For example, when the voltage required for the load rapidly increases due to the load current detected by the detection unit T, the maximum voltage minus the required voltage becomes negative, and it is determined that the state is unsteady.

[変更部]
変更部45は、判定部44が非定常状態と判定すると、複数段のインバータの出力の位相差を変更することにより、複数段のインバータの合成出力を非定常状態に応じた出力とする処理部である。例えば、変更部45は、最大電圧−所要電圧に必要な位相に変換するための係数を掛けた値だけ、位相を小さくする。これにより、不足している電圧相当分だけ、位相が変化し、非定常時のみ位相により電圧制御が可能となる。この時、パルス幅は180°である。
[Change section]
When the determination unit 44 determines that the determination unit 44 is in the unsteady state, the change unit 45 changes the phase difference between the outputs of the plurality of stages of inverters so that the combined output of the plurality of stages of inverters is output according to the unsteady state. It is. For example, the changing unit 45 reduces the phase by a value obtained by multiplying the maximum voltage minus the required voltage by a coefficient for conversion to a necessary phase. As a result, the phase changes by an amount corresponding to the insufficient voltage, and voltage control can be performed based on the phase only in the non-steady state. At this time, the pulse width is 180 °.

あるいは、位相を切り替えてもよい。たとえば、判定部44が非定常状態と判定すると、位相差設定部42が設定する位相差を、第1の位相差と第2の位相差との間で切り替える。これにより、出力電圧に余裕ができるため、パルス幅による出力電圧制御が可能となる。   Alternatively, the phase may be switched. For example, when the determination unit 44 determines that the state is unsteady, the phase difference set by the phase difference setting unit 42 is switched between the first phase difference and the second phase difference. As a result, there is a margin in the output voltage, so that the output voltage can be controlled based on the pulse width.

第1の位相差は、定常状態のための位相差である。定常状態のための位相差とは、電力変換装置100が、定常状態に対応する出力を得られる位相差をいう。定常状態に対応する出力とは、定常状態において必要な負荷電流が得られる出力をいう。   The first phase difference is a phase difference for a steady state. The phase difference for the steady state refers to a phase difference that allows the power conversion apparatus 100 to obtain an output corresponding to the steady state. The output corresponding to the steady state refers to an output from which a necessary load current can be obtained in the steady state.

第1の位相差としては、図2に示すように、例えば、60°とする。第1のインバータ10の出力P1及び第2のインバータ20の出力P2のパルス幅が180°で、位相差が60°であれば、導通角は、120°となる。導通角は、電圧が印加されて電流が流れる幅を度数表記したものである。本実施形態では、電力変換装置100の出力、つまり複数段のインバータの合成出力Psの導通角は、第1のインバータ10と第2のインバータ20の立ち上がりが重なる幅である。この幅は、合成出力Psのパルス幅となる。出力P1、P2のプラス・マイナスが打ち消されてゼロになる部分がなくなり、プラスが重なる部分で電圧が高くなる。   The first phase difference is, for example, 60 ° as shown in FIG. If the pulse width of the output P1 of the first inverter 10 and the output P2 of the second inverter 20 is 180 ° and the phase difference is 60 °, the conduction angle is 120 °. The conduction angle is a frequency notation indicating the width of current flowing when voltage is applied. In the present embodiment, the conduction angle of the output of the power conversion device 100, that is, the combined output Ps of a plurality of inverters, is a width in which the rising edges of the first inverter 10 and the second inverter 20 overlap. This width is the pulse width of the combined output Ps. There is no portion where the plus / minus of the outputs P1 and P2 are canceled and become zero, and the voltage increases at the portion where the plus overlaps.

なお、位相差の設定により、各インバータの出力周波数に対して所定の次数の高調波を除去できる。例えば、位相差が60°であれば、後述するように、第1のインバータ10の第3次高調波R1、第2のインバータ20の第3次高調波R2を除去できる。   Note that, by setting the phase difference, harmonics of a predetermined order can be removed with respect to the output frequency of each inverter. For example, if the phase difference is 60 °, the third harmonic R1 of the first inverter 10 and the third harmonic R2 of the second inverter 20 can be removed as will be described later.

第2の位相差は、非定常状態のための位相差である。非定常状態のための位相差とは、電力変換装置100が、非定常状態に対応する出力を得られる位相差をいう。非定常状態に対応する出力とは、少なくとも定常状態に必要な負荷電流より大きく且つ非定常状態において必要な負荷電流以下の電流が得られる出力をいう。非定常状態において必要な負荷電流より大きな電流が得られる出力であってもよい。   The second phase difference is a phase difference for the unsteady state. The phase difference for the unsteady state refers to a phase difference that allows the power conversion apparatus 100 to obtain an output corresponding to the unsteady state. The output corresponding to the unsteady state refers to an output that can obtain a current that is at least larger than the load current necessary for the steady state and equal to or less than the load current necessary for the unsteady state. The output may be a current that is larger than the load current required in the unsteady state.

第2の位相差としては、図3に示すように、例えば、50°とする。第1のインバータ10の出力P1及び第2のインバータ20の出力P2のパルス幅が180°で、位相差が50°であれば、合成出力Psの導通角は、130°になる。この場合、導通角は、定常状態よりも拡大するため、非定常状態に応じた出力を得ることができる。   The second phase difference is, for example, 50 ° as shown in FIG. If the pulse width of the output P1 of the first inverter 10 and the output P2 of the second inverter 20 is 180 ° and the phase difference is 50 °, the conduction angle of the combined output Ps is 130 °. In this case, since the conduction angle is larger than that in the steady state, an output corresponding to the unsteady state can be obtained.

この場合も、第1の位相差と同等を上限として、複数段のインバータの出力周波数に対する所定の次数の高調波低減の作用が得られる。例えば、位相差が50°であっても、後述するように、第1のインバータ10の第3次高調波R1、第2のインバータ20の第3次高調波R2の低減効果が得られる。   In this case as well, an effect of reducing harmonics of a predetermined order with respect to the output frequency of the plurality of inverters can be obtained with an upper limit equal to the first phase difference. For example, even if the phase difference is 50 °, the effect of reducing the third harmonic R1 of the first inverter 10 and the third harmonic R2 of the second inverter 20 can be obtained as described later.

なお、変更部45による位相差の変更は、少なくとも非定常状態が判定されてから定常状態となるまでの間、変更されていればよい。従って、例えば、非定常状態に切り替えてから1秒〜数秒後に定常状態に戻せばよい。   Note that the change of the phase difference by the changing unit 45 only needs to be changed at least after the unsteady state is determined until the steady state is reached. Therefore, for example, it may be returned to the steady state 1 second to several seconds after switching to the unsteady state.

[記憶部]
記憶部46は、制御装置400の処理に必要な各種の情報を記憶する処理部である。例えば、検出部Tにより検出された電流値、非定常状態を判定するためのしきい値等を記憶することができる。しきい値としては、上記のように、定常状態における複数段のインバータの合成出力の最大値とすることができる。
[Storage unit]
The storage unit 46 is a processing unit that stores various types of information necessary for the processing of the control device 400. For example, a current value detected by the detection unit T, a threshold value for determining an unsteady state, and the like can be stored. As described above, the threshold value can be the maximum value of the combined output of a plurality of inverters in a steady state.

さらに、記憶部46は、第1の位相差記憶部46a、第2の位相差記憶部46bを有する。第1の位相差記憶部46aは、定常状態のための位相差である第1の位相差を記憶する処理部である。第2の位相差記憶部46bは、非定常状態のための位相差である第2の位相差を記憶する処理部である。なお、第2の位相差は、特定の位相差であってもよいし、第1の位相差に対する変動幅として設定されていてもよい。   Furthermore, the storage unit 46 includes a first phase difference storage unit 46a and a second phase difference storage unit 46b. The first phase difference storage unit 46a is a processing unit that stores a first phase difference that is a phase difference for a steady state. The second phase difference storage unit 46b is a processing unit that stores a second phase difference that is a phase difference for an unsteady state. Note that the second phase difference may be a specific phase difference, or may be set as a fluctuation range with respect to the first phase difference.

このような記憶部46は、典型的には、内蔵された若しくは外部接続された各種メモリ等の記憶媒体により構成できるが、現在又は将来において利用可能なあらゆる記憶媒体を利用可能である。演算に用いるレジスタ等も、記憶部46として捉えることができる。   Such a storage unit 46 can typically be configured by a storage medium such as a built-in or externally connected memory, but any storage medium that can be used at present or in the future can be used. A register or the like used for calculation can also be understood as the storage unit 46.

以上のような制御装置400は、CPU等を含むコンピュータを所定のプログラムで制御することによって実現できる。この場合のプログラムは、コンピュータのハードウェアを物理的に活用することで、上記のような処理部を実現するものである。   The control device 400 as described above can be realized by controlling a computer including a CPU and the like with a predetermined program. The program in this case implements the processing unit as described above by physically utilizing computer hardware.

上記の処理部による処理を実行する方法、プログラム及びプログラムを記録した記録媒体も、本実施形態の一態様である。また、ハードウェアで処理する範囲、プログラムを含むソフトウェアで処理する範囲をどのように設定するかは、特定の態様には限定されない。例えば、上記の処理を実現するように構成された回路も、実施形態の一態様である。   A method for executing processing by the processing unit, a program, and a recording medium on which the program is recorded are also an aspect of the present embodiment. Moreover, how to set the range processed by hardware and the range processed by software including a program is not limited to a specific mode. For example, a circuit configured to realize the above processing is also an aspect of the embodiment.

また、制御装置400は、図示はしないが、入出力部等を備えている。入出力部は、例えば、操作パネル、キーボード、マウス、ディスプレイ、入出力用端末等により構成できる。この入出力部は、運転開始、運転停止、その他上記の処理に必要な情報の入力を行うことができるとともに、記憶部46に記憶された情報、各部の処理結果等を表示等させることができる。   The control device 400 includes an input / output unit and the like (not shown). The input / output unit can be configured by, for example, an operation panel, a keyboard, a mouse, a display, an input / output terminal, and the like. The input / output unit can input information necessary for starting, stopping, and other processes described above, and can display information stored in the storage unit 46, processing results of each unit, and the like. .

[B.実施形態の作用]
以上のような本実施形態の作用を、図1〜5を参照して説明する。なお、以下の説明では、第1のインバータ10の出力P1及び第2のインバータ20の出力P2に生じる位相差を段間位相差と呼ぶ。
[B. Operation of the embodiment]
The operation of the present embodiment as described above will be described with reference to FIGS. In the following description, the phase difference generated between the output P1 of the first inverter 10 and the output P2 of the second inverter 20 is referred to as an interstage phase difference.

始動時から、スイッチング制御部43は、スイッチング素子1のスイッチングを制御して、第1のインバータ10及び第2のインバータ20の出力を制御する。つまり、直流電圧源200から供給される直流電圧を、スイッチング制御により交流電圧に変換して、負荷300に供給する。このスイッチング制御は、パルス幅設定部41により設定されたパルス幅及び位相差設定部42により設定された位相差に基づいて行う。   From the start, the switching control unit 43 controls the switching of the switching element 1 and controls the outputs of the first inverter 10 and the second inverter 20. That is, the DC voltage supplied from the DC voltage source 200 is converted into an AC voltage by switching control and supplied to the load 300. This switching control is performed based on the pulse width set by the pulse width setting unit 41 and the phase difference set by the phase difference setting unit 42.

パルス幅設定部41は、出力演算部40により演算された所要出力に応じて、設定するパルス幅を適宜調整する。位相差設定部42に設定された位相差は、定常状態においては、第1の位相差である。これにより、負荷電流に応じた安定した合成出力が得られるように、パルス幅が制御される。   The pulse width setting unit 41 appropriately adjusts the pulse width to be set according to the required output calculated by the output calculation unit 40. The phase difference set in the phase difference setting unit 42 is the first phase difference in the steady state. Thus, the pulse width is controlled so that a stable combined output corresponding to the load current can be obtained.

本実施形態のように、第1のインバータ10の出力P1、第2のインバータ20の出力P2を直列に接続したときの合成出力Psは、両者の出力を足し合わせたものに等しい。例えば、図2に示すように、電力変換装置100が、60°の段間位相差で駆動している場合、合成出力Psは最大120°の導通角となる。もし、段間位相差の制御を行わない場合、つまり段間位相差が0°の場合、合成出力Psは最大180°の導通角となる。このため、段間位相差の制御を行った場合は、段間位相差の制御を行わない場合と比較して、導通角が狭まり、出力電圧が制限されることになる。   As in this embodiment, the combined output Ps when the output P1 of the first inverter 10 and the output P2 of the second inverter 20 are connected in series is equal to the sum of both outputs. For example, as illustrated in FIG. 2, when the power conversion apparatus 100 is driven with a phase difference of 60 °, the combined output Ps has a conduction angle of 120 ° at the maximum. If the interphase phase difference is not controlled, that is, if the interphase phase difference is 0 °, the combined output Ps has a conduction angle of 180 ° at the maximum. For this reason, when the interphase phase difference is controlled, the conduction angle is narrowed and the output voltage is limited as compared with the case where the interphase phase difference is not controlled.

但し、高調波に着目すると、段間位相差が生じるように複数段のインバータの出力を制御すると、複数段の出力における高調波が打ち消されるので、所望の次数の高調波を除去できる。例えば、図2に示すように、第3次高調波のみに着目すると、段間位相差を制御すると、第1のインバータ10の第3次高調波R1、第2のインバータ20の第3次高調波R2の位相もずれることになる。このため、第1のインバータ10、第2のインバータ20において発生する互いの第3次高調波R1、R2が打ち消されることになり、全体として第3次高調波を除去できる。   However, paying attention to harmonics, if the output of a plurality of stages of inverters is controlled so that an interstage phase difference is generated, the harmonics at the outputs of the plurality of stages are canceled out, so that harmonics of a desired order can be removed. For example, as shown in FIG. 2, focusing only on the third harmonic, when the interphase phase difference is controlled, the third harmonic R1 of the first inverter 10 and the third harmonic of the second inverter 20 are controlled. The phase of the wave R2 is also shifted. For this reason, the third harmonics R1 and R2 generated in the first inverter 10 and the second inverter 20 are canceled out, and the third harmonic can be removed as a whole.

ここで、例えば、回路定数の制約等で出力に余裕がない電圧で制御を行っている際に、負荷変動等による過度応答が発生した場合を想定する。この場合、最大120°の導通角で所望の電流を負荷へ流す制御をしようとしても、電力変換装置100で出力できる電圧が制限されてしまう。このため、負荷に流す電流を指令値通りに制御できなくなる可能性がある。   Here, for example, a case is assumed in which an excessive response due to a load variation or the like occurs when the control is performed with a voltage with which there is no margin in output due to restrictions on circuit constants. In this case, even if it is attempted to control a desired current to flow to the load with a conduction angle of 120 ° at the maximum, the voltage that can be output by the power conversion device 100 is limited. For this reason, there is a possibility that the current flowing through the load cannot be controlled according to the command value.

このような場合、出力演算部40が演算する所要出力が、定常状態の位相差による第1のインバータ10及び第2のインバータ20の合成出力の最大値を超える。このため、判定部44は、出力演算部40が演算するパルス幅と、しきい値とを比較して、しきい値を超えるために、非定常状態であると判定する。   In such a case, the required output calculated by the output calculation unit 40 exceeds the maximum value of the combined output of the first inverter 10 and the second inverter 20 due to the phase difference in the steady state. Therefore, the determination unit 44 compares the pulse width calculated by the output calculation unit 40 with a threshold value, and determines that the state is in an unsteady state in order to exceed the threshold value.

すると、変更部45は、位相差設定部42が設定する位相差を、第2の位相差に切り替える。これにより、段間位相差が狭まることになるので、出力電圧が大きくなり、過度応答時にも所望の電流を負荷に供給することが可能となる。例えば、図3に示すように、非定常状態に、50°の段間位相差とすることで、60°で行っていた場合の段間位相差よりも、合成出力のパルス幅を10°広げることができる。過度応答時にのみ、このように段間位相差を狭めることによって、負荷に必要な電流を供給できる。   Then, the changing unit 45 switches the phase difference set by the phase difference setting unit 42 to the second phase difference. As a result, the phase difference between the stages is narrowed, so that the output voltage is increased and a desired current can be supplied to the load even during an excessive response. For example, as shown in FIG. 3, the pulse width of the combined output is increased by 10 ° compared to the phase difference between steps when the phase difference is 50 ° in the non-steady state and the phase difference is 50 °. be able to. The current required for the load can be supplied by narrowing the interphase phase difference in this way only at the time of excessive response.

非定常状態から定常状態に戻ると、判定部44は、出力演算部40が演算する出力が、しきい値以下となったと判定する。すると、変更部45は、位相差設定部42が設定する位相差を、第1の位相差に戻す。上記のように、非定常状態は、非常に短時間であるため、第2の位相差への切り替えから第1の位相差へ戻すまでの時間は短い。なお、第2の位相差へ切り替えてから、所定時間を経過した後、第1の位相差に戻すように設定してもよい。なお、説明では、第1の位相差から第2の位相差へ切り替えるように説明したが、連続的に変化させても同様である。   When returning from the unsteady state to the steady state, the determination unit 44 determines that the output calculated by the output calculation unit 40 is equal to or less than the threshold value. Then, the changing unit 45 returns the phase difference set by the phase difference setting unit 42 to the first phase difference. As described above, since the unsteady state is a very short time, the time from switching to the second phase difference to returning to the first phase difference is short. In addition, after switching to a 2nd phase difference, you may set so that it may return to a 1st phase difference, after predetermined time passes. In the description, the switching from the first phase difference to the second phase difference has been described, but the same is true even if the phase difference is continuously changed.

[C.実施形態の効果]
(1)以上のような本実施形態は、第1のインバータ10、第2のインバータ20という複数段のインバータを有する電力変換装置100に必要な所要出力を演算する出力演算部40と、出力演算部40により演算された所要出力に基づいて、各インバータのパルス幅を設定するパルス幅設定部41と、複数段のインバータの出力の位相差を設定する位相差設定部42と、を有する。そして、パルス幅設定部41により設定されたパルス幅及び位相差設定部42により設定された位相差に基づいて、電力変換装置100におけるスイッチング素子1のスイッチングを制御するスイッチング制御部43を有する。さらに、出力演算部40により演算される所要出力に基づいて、非定常状態であることを判定する判定部44と、判定部44が非定常状態と判定すると、複数段のインバータの出力の位相差を変更することにより、複数段のインバータの合成出力を非定常状態に応じた出力とする変更部45と、を有する。
[C. Effects of the embodiment]
(1) In the present embodiment as described above, the output calculation unit 40 that calculates the required output required for the power conversion device 100 having a plurality of inverters, the first inverter 10 and the second inverter 20, and the output calculation Based on the required output calculated by the unit 40, a pulse width setting unit 41 that sets the pulse width of each inverter and a phase difference setting unit 42 that sets the phase difference between the outputs of the inverters in a plurality of stages are provided. And it has the switching control part 43 which controls switching of the switching element 1 in the power converter device 100 based on the pulse width set by the pulse width setting part 41, and the phase difference set by the phase difference setting part 42. Furthermore, based on the required output calculated by the output calculation unit 40, a determination unit 44 that determines that the state is an unsteady state, and if the determination unit 44 determines that the state is an unsteady state, the phase difference between the outputs of the plurality of inverters Is changed to change the combined output of the plurality of inverters into an output corresponding to the unsteady state.

このように、非定常状態に応じて位相差を変更することで、第1のインバータ10と第2のインバータ20による最大の合成出力の範囲を拡大することができるので、過度応答による負荷変動時のように出力が不足する場合でも、電力変換装置100の出力を上昇させることができる。   In this way, by changing the phase difference according to the unsteady state, the range of the maximum combined output by the first inverter 10 and the second inverter 20 can be expanded. Even when the output is insufficient, the output of the power conversion device 100 can be increased.

(2)本実施形態は、定常状態のための位相差である第1の位相差を記憶する第1の位相差記憶部46aと、非定常状態のための位相差である第2の位相差を記憶する第2の位相差記憶部46bを有する。そして、変更部45は、判定部44が非定常状態と判定すると、位相差設定部42が設定する位相差を、第1の位相差と第2の位相差との間で切り替える。 (2) In the present embodiment, a first phase difference storage unit 46a that stores a first phase difference that is a phase difference for a steady state, and a second phase difference that is a phase difference for an unsteady state Has a second phase difference storage unit 46b. And if the determination part 44 determines with the non-steady state, the change part 45 will switch the phase difference which the phase difference setting part 42 sets between a 1st phase difference and a 2nd phase difference.

このため、定常状態における第1の位相差では、過度応答による負荷変動時に出力が不足する場合でも、非定常状態における第2の位相差に切り替えることで、所望の電流を負荷300へ流すように高速に応答することができる。   For this reason, in the first phase difference in the steady state, even when the output is insufficient when the load fluctuates due to an excessive response, the desired current flows to the load 300 by switching to the second phase difference in the unsteady state. It can respond at high speed.

(3)第1の位相差及び第2の位相差は、各インバータの出力周波数に対して所定の次数の高調波が低減される位相差である。このため、定常状態においても、非定常状態においても、所望の電流を負荷300に供給しつつ、高調波による外部への影響を防止することができる。 (3) The first phase difference and the second phase difference are phase differences that reduce harmonics of a predetermined order with respect to the output frequency of each inverter. For this reason, it is possible to prevent the influence of the harmonics on the outside while supplying a desired current to the load 300 in both the steady state and the unsteady state.

(4)判定部44は、所要出力が、定常状態のパルス幅又は位相差による複数段のインバータの合成出力の最大値を超えるか否かを判定する。このため、要求される出力が定常状態に比べて過大であっても、これに応じた位相差制御又はパルス幅制御により、所望の電流を負荷300に供給できる。 (4) The determination unit 44 determines whether the required output exceeds the maximum value of the combined output of the plurality of inverters due to the pulse width or phase difference in the steady state. For this reason, even if the required output is excessive compared to the steady state, a desired current can be supplied to the load 300 by phase difference control or pulse width control corresponding to the output.

(5)出力演算部40は、電力変換装置100に接続された負荷300に流れる負荷電流の検出値に基づいて、各インバータの出力のパルス幅を演算する。このため、出力電流のフィードバックによる出力電流の一定制御を行うことができ、出力不足を速やかに検出して、過度応答に対する制御を実現できる。 (5) The output calculation unit 40 calculates the pulse width of the output of each inverter based on the detected value of the load current flowing through the load 300 connected to the power conversion device 100. For this reason, it is possible to perform constant control of the output current by feedback of the output current, and it is possible to quickly detect an output shortage and realize control for an excessive response.

[D.他の実施形態]
(1)上記の実施形態では、複数段のインバータとして、第1のインバータ10、第2のインバータ20の2段の例で説明したが、2段よりも多くして出力を大きくできるように構成してもよい。4段、6段のように偶数段とする場合には、単純に2段のものを重ねて構成すればよい。また、奇数段とする場合には、トランスの巻数比を調整する必要がある。
[D. Other Embodiments]
(1) In the above embodiment, the two-stage example of the first inverter 10 and the second inverter 20 has been described as a plurality of stages of inverters. However, the output can be increased by increasing the number of stages to two. May be. In the case of an even number of stages, such as 4 stages or 6 stages, it may be configured by simply overlapping two stages. Further, in the case of an odd number of stages, it is necessary to adjust the turns ratio of the transformer.

(2)所要出力、パルス幅、位相差等の具体的な設定値は、上記の実施形態には限定されない。位相差を少なくすることによる合成出力の拡大効果と、位相差をずらすことによる高調波低減効果とのバランスで調整することが考えられる。位相差の設定によっては、5次等の他の次数の高調波を除去することもできる。 (2) Specific set values such as required output, pulse width, and phase difference are not limited to the above-described embodiment. It may be possible to adjust the balance between the effect of expanding the combined output by reducing the phase difference and the effect of reducing the harmonics by shifting the phase difference. Depending on the setting of the phase difference, harmonics of other orders such as the fifth order can be removed.

(3)上記の実施形態は、電圧型のインバータであったが、電流型のインバータであっても適用できる。つまり、上記の実施形態における出力、パルス幅、位相差の関係を出力電流のパルスとしても同様である。 (3) Although the above embodiment is a voltage type inverter, it can be applied even to a current type inverter. That is, the relationship between the output, the pulse width, and the phase difference in the above embodiment is the same for the output current pulse.

(4)本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 (4) Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

1 スイッチング素子
2 ダイオード
10 第1のインバータ
11、21 リアクトル
12、22 トランス
20 第2のインバータ
40 出力演算部
41 パルス幅設定部
42 位相差設定部
43 スイッチング制御部
44 判定部
45 変更部
46 記憶部
46a 第1の位相差記憶部
46a 第2の位相差記憶部
100 電力変換装置
200 直流電圧源
300 負荷
400 制御装置
T 検出部
S 電力変換システム
DESCRIPTION OF SYMBOLS 1 Switching element 2 Diode 10 1st inverter 11, 21 Reactor 12, 22 Transformer 20 2nd inverter 40 Output calculating part 41 Pulse width setting part 42 Phase difference setting part 43 Switching control part 44 Determination part 45 Change part 46 Storage part 46a 1st phase difference memory | storage part 46a 2nd phase difference memory | storage part 100 Power converter 200 DC voltage source 300 Load 400 Control apparatus T Detection part S Power conversion system

Claims (8)

複数段のインバータを有する電力変換装置に必要な所要出力を演算する出力演算部と、
前記出力演算部により演算された所要出力に基づいて、各インバータのパルス幅を設定するパルス幅設定部と、
複数段のインバータの出力の位相差を設定する位相差設定部と、
前記パルス幅設定部により設定されたパルス幅及び前記位相差設定部により設定された位相差に基づいて、複数段のインバータにおけるスイッチング素子のスイッチングを制御するスイッチング制御部と、
前記出力演算部により演算される所要出力に基づいて、非定常状態であることを判定する判定部と、
前記判定部が非定常状態と判定すると、複数段のインバータの出力を変更することにより、複数段のインバータの合成出力を非定常状態に応じた出力とする変更部と、
を有することを特徴とする電力変換装置の制御装置。
An output calculation unit for calculating a required output necessary for a power converter having a plurality of stages of inverters;
Based on the required output calculated by the output calculation unit, a pulse width setting unit for setting the pulse width of each inverter;
A phase difference setting unit for setting the phase difference of the output of the multi-stage inverter;
Based on the pulse width set by the pulse width setting unit and the phase difference set by the phase difference setting unit, a switching control unit that controls switching of switching elements in a plurality of inverters;
Based on the required output calculated by the output calculation unit, a determination unit that determines that it is in an unsteady state;
When the determination unit determines that it is in an unsteady state, by changing the output of a plurality of inverters, a change unit that makes the combined output of the plurality of inverters an output according to the unsteady state;
The control apparatus of the power converter device characterized by having.
定常状態のための位相差である第1の位相差を記憶する第1の位相差記憶部と、
非定常状態のための位相差である第2の位相差を記憶する第2の位相差記憶部と、
を有し、
前記変更部は、前記判定部が非定常状態と判定すると、前記位相差設定部が設定する位相差を、前記第1の位相差と前記第2の位相差との間で切り替えることを特徴とする請求項1記載の電力変換装置の制御装置。
A first phase difference storage unit that stores a first phase difference that is a phase difference for a steady state;
A second phase difference storage unit that stores a second phase difference that is a phase difference for an unsteady state;
Have
The change unit switches the phase difference set by the phase difference setting unit between the first phase difference and the second phase difference when the determination unit determines that the state is an unsteady state. The control device for the power conversion device according to claim 1.
前記第1の位相差及び前記第2の位相差は、各インバータの出力周波数に対して所定の次数の高調波が低減される位相差であることを特徴とする請求項2記載の電力変換装置の制御装置。   The power converter according to claim 2, wherein the first phase difference and the second phase difference are phase differences that reduce harmonics of a predetermined order with respect to an output frequency of each inverter. Control device. 前記判定部は、前記所要出力が、定常状態の位相差による前記複数段のインバータの合成出力の最大値を超えるか否かを判定することを特徴とする請求項1〜3のいずれか1項に記載の電力変換装置の制御装置。   The said determination part determines whether the said required output exceeds the maximum value of the synthetic | combination output of the said multistage inverter by the phase difference of a steady state, The any one of Claims 1-3 characterized by the above-mentioned. The control apparatus of the power converter device of description. 前記出力演算部は、前記電力変換装置に接続された負荷に流れる負荷電流の検出値に基づいて前記所要出力を演算することを特徴とする請求項1〜4のいずれか1項に記載の電力変換装置の制御装置。   5. The electric power according to claim 1, wherein the output calculation unit calculates the required output based on a detected value of a load current flowing in a load connected to the power conversion device. Control device for the conversion device. コンピュータ又は電子回路が、
複数段のインバータを有する電力変換装置に必要な所要出力を演算する出力演算処理と、
前記出力演算処理により演算された所要出力に基づいて、各インバータのパルス幅を設定するパルス幅設定処理と、
複数段のインバータの出力の位相差を設定する位相差設定処理と、
前記パルス幅設定処理により設定されたパルス幅及び前記位相差設定処理により設定された位相差に基づいて、複数段のインバータにおけるスイッチング素子のスイッチングを制御するスイッチング制御処理と、
前記出力演算処理により演算される所要電圧に基づいて、非定常状態であることを判定する判定処理と、
前記判定処理により非定常状態と判定されると、複数段のインバータの出力の位相差を変更することにより、複数段のインバータの合成出力を非定常状態に応じた出力とする変更処理と、
を実行することを特徴とする電力変換装置の制御方法。
A computer or electronic circuit
An output calculation process for calculating a required output required for a power converter having a plurality of stages of inverters;
Based on the required output calculated by the output calculation process, a pulse width setting process for setting the pulse width of each inverter;
A phase difference setting process for setting the phase difference of the output of the multi-stage inverter;
Based on the pulse width set by the pulse width setting process and the phase difference set by the phase difference setting process, a switching control process for controlling switching of switching elements in a plurality of inverters;
Based on the required voltage calculated by the output calculation process, a determination process for determining an unsteady state;
When it is determined that the unsteady state is determined by the determination process, by changing the phase difference between the outputs of the plurality of inverters, a change process for changing the combined output of the plurality of inverters to an output corresponding to the unsteady state;
The control method of the power converter device characterized by performing.
コンピュータに、
複数段のインバータを有する電力変換装置に必要な所要出力を演算する出力演算処理と、
前記出力演算処理により演算された所要出力に基づいて、各インバータのパルス幅を設定するパルス幅設定処理と、
複数段のインバータの出力の位相差を設定する位相差設定処理と、
前記パルス幅設定処理により設定されたパルス幅及び前記位相差設定処理により設定された位相差に基づいて、複数段のインバータにおけるスイッチング素子のスイッチングを制御するスイッチング制御処理と、
前記出力演算処理により演算される所要出力に基づいて、非定常状態であることを判定する判定処理と、
前記判定処理により非定常状態と判定されると、複数段のインバータの出力の位相差を変更することにより、複数段のインバータの合成出力を非定常状態に応じた出力とする変更処理と、
を実行させることを特徴とする電力変換装置の制御プログラム。
On the computer,
An output calculation process for calculating a required output required for a power converter having a plurality of stages of inverters;
Based on the required output calculated by the output calculation process, a pulse width setting process for setting the pulse width of each inverter;
A phase difference setting process for setting the phase difference of the output of the multi-stage inverter;
Based on the pulse width set by the pulse width setting process and the phase difference set by the phase difference setting process, a switching control process for controlling switching of switching elements in a plurality of inverters;
Based on the required output calculated by the output calculation process, a determination process for determining that it is in an unsteady state;
When it is determined that the unsteady state is determined by the determination process, by changing the phase difference between the outputs of the plurality of inverters, a change process for changing the combined output of the plurality of inverters to an output corresponding to the unsteady state;
A control program for a power conversion device, characterized in that
請求項1〜5のいずれか1項に記載の電力変換装置の制御装置に、複数段のインバータを有する電力変換装置が接続されていることを特徴とする電力変換システム。   A power conversion system comprising: a power conversion device according to claim 1, wherein a power conversion device having a plurality of stages of inverters is connected to the control device for the power conversion device according to claim 1.
JP2015148918A 2015-07-28 2015-07-28 Power conversion device controller, control method, and control program, and power conversion system Pending JP2017034737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015148918A JP2017034737A (en) 2015-07-28 2015-07-28 Power conversion device controller, control method, and control program, and power conversion system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015148918A JP2017034737A (en) 2015-07-28 2015-07-28 Power conversion device controller, control method, and control program, and power conversion system

Publications (1)

Publication Number Publication Date
JP2017034737A true JP2017034737A (en) 2017-02-09

Family

ID=57986440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015148918A Pending JP2017034737A (en) 2015-07-28 2015-07-28 Power conversion device controller, control method, and control program, and power conversion system

Country Status (1)

Country Link
JP (1) JP2017034737A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190005644A (en) * 2017-07-07 2019-01-16 엘지전자 주식회사 Motor driver and air conditioner including the same
US11349410B2 (en) 2018-01-30 2022-05-31 Mitsubishi Electric Corporation Series multiplex inverter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190005644A (en) * 2017-07-07 2019-01-16 엘지전자 주식회사 Motor driver and air conditioner including the same
KR102396563B1 (en) 2017-07-07 2022-05-10 엘지전자 주식회사 Motor driver and air conditioner including the same
US11349410B2 (en) 2018-01-30 2022-05-31 Mitsubishi Electric Corporation Series multiplex inverter

Similar Documents

Publication Publication Date Title
Zeng et al. A novel hysteresis current control for active power filter with constant frequency
JP5762241B2 (en) Power supply device and power supply device for arc machining
US10158286B2 (en) DC/DC converter
US9853564B2 (en) Synchronous rectifier and control circuit thereof
JP2010200412A (en) Pwm rectifier
TWI660566B (en) Power converter
JP6282486B2 (en) Power converter
JP2016208557A (en) Control device for power conversion device
JP2009277577A (en) Operation method of power supply device for induction heating
JP6270696B2 (en) Power converter
JP5270272B2 (en) Inverter control circuit, grid-connected inverter system provided with this inverter control circuit, program for realizing this inverter control circuit, and recording medium recording this program
JP2017034737A (en) Power conversion device controller, control method, and control program, and power conversion system
JP2016086510A (en) Power conversion equipment
JP2016063687A (en) Power conversion system
JP6955206B2 (en) Power conversion system
JP4594218B2 (en) Inverter power supply and inverter system
CN110366814B (en) Power supply control device, power conversion system, and power supply control method
JP2020043716A (en) Multilevel power conversion device and cross current suppression control method of multilevel power conversion device
JP5491075B2 (en) Power converter
JP2018046600A (en) Modulation method and circuit using the same
JP6468046B2 (en) Parallel operation method and parallel operation apparatus for PWM power converter
JP2020096461A (en) Three-phase AC control device and three-phase AC control system
KR101627505B1 (en) Uninterruptible Power Supply
JP2019103284A (en) Chopper device
JP6372642B2 (en) Reactive power control device, reactive power control method, and program

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180216