JP2012009700A - 半導体記憶装置及びその製造方法 - Google Patents

半導体記憶装置及びその製造方法 Download PDF

Info

Publication number
JP2012009700A
JP2012009700A JP2010145450A JP2010145450A JP2012009700A JP 2012009700 A JP2012009700 A JP 2012009700A JP 2010145450 A JP2010145450 A JP 2010145450A JP 2010145450 A JP2010145450 A JP 2010145450A JP 2012009700 A JP2012009700 A JP 2012009700A
Authority
JP
Japan
Prior art keywords
layer
insulating layer
electrode
silicon
memory device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010145450A
Other languages
English (en)
Inventor
Masayuki Tanaka
正幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010145450A priority Critical patent/JP2012009700A/ja
Priority to US13/052,456 priority patent/US8466022B2/en
Publication of JP2012009700A publication Critical patent/JP2012009700A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40114Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66825Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a floating gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

【課題】書込・消去特性が高く、動作の信頼性が高い半導体記憶装置及びその製造方法を提供する。
【解決手段】実施形態に係る半導体記憶装置は、半導体基板と、前記半導体基板上に設けられたトンネル絶縁膜と、前記トンネル絶縁膜上に設けられた第1電極と、前記第1電極上に設けられた電極間絶縁膜と、前記電極間絶縁膜上に設けられた第2電極と、を備える。前記電極間絶縁膜は、積層絶縁層と、前記積層絶縁層上に設けられ、前記積層絶縁層よりもバリアハイトが低い電荷蓄積層と、前記電荷蓄積層上に設けられ、前記電荷蓄積層よりもバリアハイトが高いブロック絶縁層と、を有する。前記積層絶縁層は、第1絶縁層と、前記第1絶縁層上に設けられ、前記第1絶縁層よりもバリアハイトが低い量子効果層と、前記量子効果層上に設けられ、前記量子効果層よりもバリアハイトが高い第2絶縁層と、を有する。
【選択図】図1

Description

本発明の実施形態は、半導体記憶装置及びその製造方法に関する。
従来の浮遊ゲート電極型の不揮発性半導体記憶装置においては、メモリセルの微細化に伴い、浮遊ゲート電極に蓄積される電子数が減少する。このため、浮遊ゲート電極に蓄積された電子のうち1個が漏洩することによっても、メモリセルトランジスタの閾値が大きく変動してしまい、動作の信頼性が低下する要因となる。また、隣り合うメモリセル間の距離が縮小することにより、容量結合による干渉が大きくなり、書込時間及び消去時間の増加や誤動作の原因となり、装置の特性を劣化させる要因となっている。
特開2010−34233号公報
本発明の実施形態の目的は、書込・消去特性が高く、動作の信頼性が高い半導体記憶装置及びその製造方法を提供することである。
実施形態に係る半導体記憶装置は、半導体基板と、前記半導体基板上に設けられたトンネル絶縁膜と、前記トンネル絶縁膜上に設けられた第1電極と、前記第1電極上に設けられた電極間絶縁膜と、前記電極間絶縁膜上に設けられた第2電極と、を備える。前記電極間絶縁膜は、積層絶縁層と、前記積層絶縁層上に設けられ、前記積層絶縁層よりもバリアハイトが低い電荷蓄積層と、前記電荷蓄積層上に設けられ、前記電荷蓄積層よりもバリアハイトが高いブロック絶縁層と、を有する。前記積層絶縁層は、第1絶縁層と、前記第1絶縁層上に設けられ、前記第1絶縁層よりもバリアハイトが低い量子効果層と、前記量子効果層上に設けられ、前記量子効果層よりもバリアハイトが高い第2絶縁層と、を有する。
他の実施形態に係る半導体記憶装置の製造方法は、半導体基板上に、トンネル絶縁膜、第1電極、電極間絶縁膜及び第2電極がこの順に積層された積層体を形成する工程を備える。前記積層体を形成する工程は、前記第1電極上に積層絶縁層を形成する工程と、前記積層絶縁層上に前記積層絶縁層よりもバリアハイトが低い電荷蓄積層を形成する工程と、前記電荷蓄積層上に前記電荷蓄積層よりもバリアハイトが高いブロック絶縁層を形成する工程と、を有する。前記積層絶縁層を形成する工程は、前記第1電極上に第1絶縁層を形成する工程と、前記第1絶縁層上に前記第1絶縁層よりもバリアハイトが低い量子効果層を形成する工程と、前記量子効果層上に前記量子効果層よりもバリアハイトが高い第2絶縁層を形成する工程と、を有する。
第1の実施形態に係る半導体記憶装置を例示する断面図である。 第1の実施形態に係る半導体記憶装置を例示する断面図である。 第1の実施形態における電極間絶縁膜を例示する断面図である。 第1の実施形態に係る半導体記憶装置の製造方法を例示する工程断面図である。 第1の実施形態に係る半導体記憶装置の製造方法を例示する工程断面図である。 第1の実施形態に係る半導体記憶装置の製造方法を例示する工程断面図である。 第1の実施形態に係る半導体記憶装置の製造方法を例示する工程断面図である。 第1の実施形態に係る半導体記憶装置の製造方法を例示する工程断面図である。 第1の実施形態に係る半導体記憶装置の製造方法を例示する工程断面図である。 (a)は第1の実施形態における電極間絶縁膜及びその周辺部分を模式的に例示する図であり、(b)は書込動作時のエネルギーバンド図である。 (a)は第1の実施形態における電極間絶縁膜及びその周辺部分を模式的に例示する図であり、(b)はデータ保持時のエネルギーバンド図である。 横軸に電界強度をとり、縦軸に電流量をとって、JE特性を例示するグラフ図である。 (a)及び(b)は、横軸に時間をとり、縦軸に閾値をとって、メモリセルトランジスタの特性を例示するグラフ図であり、(a)は書込特性を示し、(b)は消去特性を示す。 第2の実施形態に係る半導体記憶装置を例示する断面図である。
以下、図面を参照しつつ、本発明の実施形態について説明する。
先ず、第1の実施形態について説明する。
図1及び図2は、本実施形態に係る半導体記憶装置を例示する断面図であり、相互に直交する断面を示しており、
図3は、本実施形態における電極間絶縁膜を例示する断面図である。
先ず、本実施形態の特徴部分を概略的に説明する。
本実施形態に係る半導体記憶装置はNAND型の不揮発性半導体記憶装置である。この装置においては、浮遊ゲート電極と制御ゲート電極との間に設けられた電極間絶縁膜中に、シリコン窒化物からなる電荷蓄積層が設けられている。これにより、浮遊ゲート電極の他に電荷蓄積層にも電荷を蓄積することができる。また、電極間絶縁膜における電荷蓄積層と浮遊ゲート電極に挟まれた部分、すなわち、電子が通過する部分においては、シリコン酸化層中に2層の薄いシリコン層が設けられている。電子に対するシリコン層のバリアハイトはシリコン酸化層のバリアハイトよりも低い。これにより、電極間絶縁膜に強い電界が印加されたときは、シリコン層を中継部分としてより多くのトンネル電流が流れる。このため、書込・消去特性が高い。また、これらのシリコン層は、それぞれ、量子効果を発揮する程度に薄い。これにより、電極間絶縁膜に電界がほとんど印加されていないときは、電子の量子的な閉じ込め効果によりシリコン層の伝導帯の下端が上昇する。このため、電荷蓄積層に蓄積された電荷の保持特性が高い。このように、本実施形態によれば、書込・消去特性が高く、動作の信頼性が高い半導体記憶装置を実現することができる。
以下、本実施形態に係る半導体記憶装置を詳細に説明する。
図1及び図2に示すように、本実施形態に係る半導体記憶装置1においては、半導体基板10が設けられている。半導体基板10は、例えば、導電形がp形のシリコン基板である。又は、n形のシリコン基板の上層部分にp形のウェルが形成されたものであってもよい。半導体基板10の上層部分の一部には、例えばシリコン酸化物からなり一方向に延びる素子分離絶縁体11が複数本等間隔に形成されており、半導体基板10の上層部分は、素子分離絶縁体11によって、一方向に延びる複数本のアクティブエリア12に区画されている。素子分離絶縁体11の上部は、半導体基板10の上面から突出している。すなわち、素子分離絶縁体11の上面はアクティブエリア12の上面よりも上方に位置している。以下、素子分離絶縁体11及びアクティブエリア12が延びる方向を、「ビット線方向」といい、素子分離絶縁体11及びアクティブエリア12が配列されている方向を「ワード線方向」という。また、半導体基板10の上面に対して垂直な方向を「上下方向」という。ビット線方向、ワード線方向及び上下方向は、相互に直交している。
アクティブエリア12の直上域には、例えばシリコン酸化物からなるトンネル絶縁膜13が設けられている。トンネル絶縁膜13は、通常は絶縁性であるが、半導体記憶装置1の駆動電圧の範囲内にある所定の電圧が印加されるとトンネル電流を流す膜である。トンネル絶縁膜13はアクティブエリア12に接しており、アクティブエリア12と同様にビット線方向に延びている。
トンネル絶縁膜13の直上域の一部には、金属からなる浮遊ゲート電極(FG電極)14が設けられている。FG電極14は、1本のアクティブエリア12の直上域においてはビット線方向に沿って断続的に設けられており、半導体記憶装置1全体としては、ビット線方向及びワード線方向の双方に沿ってマトリクス状に配列されている。各FG電極14の下部は素子分離絶縁体11間に位置しており、上部は素子分離絶縁体11の上面から突出している。
素子分離絶縁体11上及びFG電極14上には、電極間絶縁膜15が設けられている。電極間絶縁膜15は、FG電極14の直上域をつなぐようにワード線方向に延びている。ビット線方向から見て、電極間絶縁膜15の形状は、FG電極14の上面が素子分離絶縁体11の上面から突出していることを反映して、波状に蛇行した形状となっている。電極間絶縁膜15上には金属からなる制御ゲート電極(CG電極)16が設けられている。CG電極16も、電極間絶縁膜15と同様に、FG電極14の直上域をつなぐようにワード線方向に延びている。また、CG電極16の下面には、電極間絶縁膜15の形状を反映した凹凸が形成されている。FG電極14は、電極間絶縁膜15により、CG電極16から絶縁されている。
そして、ワード線方向に沿って配列された複数個のFG電極14、これらのFG電極14の直上域を繋ぐように設けられた各1本の電極間絶縁膜15及びCG電極16により、1つの積層体17が構成されている。積層体17の形状は、ワード線方向に延びる板状である。トンネル絶縁膜13上における積層体17間には、例えばシリコン酸化物からなる層間絶縁膜18が設けられている。また、アクティブエリア12における積層体17の直下域間の部分には、導電形がn形のソース・ドレイン領域19が形成されている。
以下、電極間絶縁膜15の構成を詳細に説明する。
図3に示すように、電極間絶縁膜15においては、下側から順に、積層絶縁層21、電荷蓄積層22及びブロック絶縁層23が積層されている。積層絶縁層21は、通常は絶縁性であるが、半導体記憶装置1の駆動電圧の範囲内にある所定の電圧が印加されるとトンネル電流を流す膜である。電荷蓄積層22は、電荷を蓄積する能力がある層であり、例えば、電荷のトラップサイトが多数形成されている層である。電荷蓄積層22は、比誘電率が7以上の材料によって形成されていることが好ましい。電荷蓄積層22は、例えば、シリコン窒化物により形成されている。
ブロック絶縁層23は、電荷蓄積層22をCG電極16から絶縁するための層である。ブロック絶縁層23は、半導体記憶装置1の駆動電圧の範囲内にある電圧が印加されても実質的に電流を流さない層であり、例えば、シリコン酸化物によって形成されている。電荷蓄積層22のバンドギャップは、積層絶縁層21及びブロック絶縁層23のバンドギャップよりも狭く、従って、電荷蓄積層22の電子に対するバリアハイトは、積層絶縁層21及びブロック絶縁層23の電子に対するバリアハイトよりも低い。
積層絶縁層21においては、下層側から順に、シリコン酸化層25、シリコン層26、シリコン酸化層27、シリコン層28及びシリコン酸化層29が積層されている。シリコン層26及び28の結晶構造はアモルファス構造でもよく、多結晶構造でもよい。また、シリコンの微粒子(シリコンドット)が3次元的に集合した構造であってもよい。シリコン層26及び28のバンドギャップは、シリコン酸化層25、27及び29のバンドギャップよりも狭く、従って、シリコン層26及び28の電子に対するバリアハイトは、シリコン酸化層25、27及び29のバリアハイトよりも低い。シリコン層26及び28の厚さは量子効果が発現する程度に薄く、例えば1〜2nm以下であり、例えば1nm以下である。シリコン酸化層25及び27の厚さは容易にトンネル電流を流す程度に薄く、例えば3nm以下であり、例えば1nm以下である。
以下、各層の厚さの一例を挙げる。
電極間絶縁膜15については、積層絶縁層21のシリコン酸化層25の厚さは0.8nmであり、シリコン層26の厚さは0.5nmであり、シリコン酸化層27の厚さは0.8nmであり、シリコン層28の厚さは0.5nmであり、シリコン酸化層29の厚さは0.8nmである。また、電荷蓄積層22の厚さは1〜5nmであり、ブロック絶縁層23の厚さは3〜4nmである。また、トンネル絶縁膜13の厚さは1〜15nmであり、FG電極14の厚さは10〜50nmである。
次に、本実施形態に係る半導体記憶装置の製造方法について説明する。
図4〜図9は、本実施形態に係る半導体記憶装置の製造方法を例示する工程断面図である。
先ず、図4に示すように、少なくとも上層部分がp形である半導体基板10を用意する。次に、半導体基板10上に、例えばシリコン酸化物を1〜15nmの厚さに堆積させて、トンネル絶縁膜13を形成する。なお、この段階では、トンネル絶縁膜13は分断されておらず、半導体基板10上に連続的に形成されている。次に、例えばCVD(chemical vapor deposition:化学気相成長)法により、金属を10〜50nmの厚さに堆積させて、浮遊ゲート電極(FG電極)14を形成する。FG電極14もこの段階ではマトリクス状に分断されておらず、1枚の連続膜として形成されている。
次に、例えばCVD法により、シリコン窒化物を50〜200nmの厚さに堆積させて、シリコン窒化膜41を形成する。次に、例えばCVD法により、シリコン酸化物を50〜400nmの厚さに堆積させて、シリコン酸化膜42を形成する。次に、シリコン酸化膜42上にフォトレジストを塗布してレジスト膜を成膜し、露光描画によりパターニングして、レジストパターン43を形成する。レジストパターン43は、ビット線方向に延びるラインアンドスペース状に形成する。
次に、図5に示すように、レジストパターン43(図4参照)を耐エッチングマスクとしてエッチングを施し、シリコン酸化膜42をパターニングする。その後、レジストパターン43を除去する。次に、パターニングされたシリコン酸化膜42をマスクとしてエッチングを施し、シリコン窒化膜41、FG電極14、トンネル絶縁膜13及び半導体基板10の上層部分を選択的に除去する。これにより、シリコン窒化膜41、FG電極14及びトンネル絶縁膜13がビット線方向に延びる複数本のラインに分断されると共に、半導体基板10の上層部分にビット線方向に延びる複数本の溝45が形成される。半導体基板10の上層部分のうち、溝45に挟まれた部分がアクティブエリア12となる。次に、例えば塗布法により、膜厚が200〜1500nmのシリコン酸化膜46を成膜し、溝45内及び分断されたトンネル絶縁膜13、FG電極14及びシリコン窒化膜41の相互間を埋め込む。
次に、図6に示すように、シリコン酸化膜46及びシリコン酸化膜42(図5参照)に対して、シリコン窒化膜41をストッパとしたCMP(chemical mechanical polishing:化学的機械研磨)を施し、上面を平坦化する。このとき、シリコン酸化膜42(図5参照)もシリコン酸化膜46の上部と共に除去される。次に、シリコン窒化膜41との間で選択比がとれる条件でエッチングを行ってシリコン酸化膜46をエッチバックし、シリコン酸化膜46の上面をFG電極14の上面よりも低く、FG電極14の下面よりも高い位置まで後退させる。これにより、シリコン酸化膜46が溝45内、分断されたトンネル絶縁膜13の相互間、及びFG電極14の下部の相互間のみに残留し、素子分離絶縁体11となる。その後、シリコン窒化膜41を除去する。
次に、図7に示すように、例えば、原料ガスとしてトリスジメチルアミノシラン及びオゾンを用い、温度を550℃としたALD(atomic layer deposition:原子層成長)法により、素子分離絶縁体11上及びFG電極14上に、シリコン酸化物を0.8nmの厚さに堆積させて、シリコン酸化層25を形成する。なお、この段階ではシリコン酸化層25は分断されておらず、素子分離絶縁体11の上面及びFG電極14の上面を被覆する1枚の連続層として形成される。
次に、図8に示すように、例えばCVD法、例えば、原料ガスとしてシランを用い、温度を500℃としたLP−CVD(low pressure chemical vapor deposition:低圧化学気相成長)法により、シリコンを0.5nmの厚さに堆積させる。これにより、シリコン層26を形成する。次に、上述のシリコン酸化層25と同様な方法により、シリコン酸化層27を形成し、シリコン層26と同様な方法により、シリコン層28を形成し、シリコン酸化層25と同様な方法により、シリコン酸化層29を形成する。これにより、積層絶縁層21が形成される。なお、シリコン酸化層25、シリコン層26、シリコン酸化層27、シリコン層28及びシリコン酸化層29の各層の形成後には、加熱処理又は酸化処理を行ってもよい。このような処理により、膜密度が増加し、欠陥が修復され、未結合手が結合され、不純物が除去されて、各層の品質が向上する。
次に、積層絶縁層21上に例えばシリコン窒化物を1〜5nmの厚さに堆積させて、電荷蓄積層22を形成する。次に、電荷蓄積層22上に例えばシリコン酸化物を3〜4nmの厚さに堆積させて、ブロック絶縁層23を形成する。これにより、電極間絶縁膜15が形成される。この段階では電極間絶縁膜15は分断されておらず、1枚の連続膜として形成される。
次に、図9に示すように、電極間絶縁膜15上に金属を堆積させて、制御ゲート電極(CG電極)16を形成する。CG電極16もこの段階では分断されておらず、1枚の連続膜である。次に、CG電極16上にレジスト膜を成膜し、露光描画によってパターニングすることにより、レジストパターン47を形成する。レジストパターン47は、ワード線方向に延びるラインアンドスペース状のパターンとする。
次に、レジストパターン47をマスクとしてエッチングを施し、CG電極16、電極間絶縁膜15及びFG電極14を選択的に除去する。これにより、CG電極16、電極間絶縁膜15及びFG電極14がビット線方向に沿って分断されて、積層体17(図2参照)が形成される。この結果、CG電極16及び電極間絶縁膜15は、ワード線方向に延びるライン状の形状となる。また、FG電極14は、図5に示す工程において既にビット線方向に延びるライン状に分断されているため、本エッチングにより、ビット線方向及びワード線方向の双方に沿って分断されて、マトリクス状に配列される。
次に、図1及び図2に示すように、積層体17をマスクとして、半導体基板10に対してドナーとなる不純物を形成する。これにより、アクティブエリア12における積層体17の直下域間の部分に、導電形がn形のソース・ドレイン領域19が形成される。その後、レジストパターン47(図9参照)が残留していれば、これを除去する。次に、積層体17間に例えばシリコン酸化物を堆積させて、層間絶縁膜18を形成する。以後、通常の方法により、層間絶縁膜18中にコンタクト(図示せず)を形成し、層間絶縁膜18上に上層配線等(図示せず)を形成する。これにより、半導体記憶装置1が製造される。
次に、本実施形態に係る半導体記憶装置の動作について説明する。
図10(a)は本実施形態における電極間絶縁膜及びその周辺部分を模式的に例示する図であり、(b)は書込動作時のエネルギーバンド図であり、
図11(a)は本実施形態における電極間絶縁膜及びその周辺部分を模式的に例示する図であり、(b)はデータ保持時のエネルギーバンド図である。
半導体記憶装置1においては、アクティブエリア12とCG電極16との最近接点毎に、1つのFG電極14を含むメモリセルトランジスタが構成される。
半導体記憶装置1のメモリセルトランジスタにデータを書き込む場合は、CG電極16の電位をアクティブエリア12の電位よりも高くする。これにより、トンネル絶縁膜13内にトンネル電流が流れ、アクティブエリア12からトンネル絶縁膜13を介してFG電極14内に電子が注入される。また、積層絶縁層21内にもトンネル電流が流れ、FG電極14から積層絶縁層21を介して電荷蓄積層22内に電子が注入される。
このとき、図10(a)及び(b)に示すように、積層絶縁層21におけるFG電極14側にはシリコン層26が設けられているため、シリコン酸化層25及び27からなるエネルギー障壁がシリコン層26によって空間的に分断される。これにより、電子がシリコン層26を中継地点として、シリコン酸化層25及び27の2つのエネルギー障壁をトンネルする。このため、シリコン層26を設けない場合と比較して、トンネル確率が増大し、トンネル電流が増加する。なお、書込電圧の印加により、シリコン層28及びシリコン酸化層29のエネルギーレベルは大きく低下しているため、シリコン層28及びシリコン酸化層29は、このトンネル電流にはほとんど影響を及ぼさない。
一方、ブロック絶縁層23内にはトンネル電流が実質的に流れないため、電荷蓄積層22からCG電極16に向けて電子が放出されることはない。この結果、FG電極14及び電荷蓄積層22に電荷が蓄積されて、データが書き込まれる。このように、半導体記憶装置1においては、積層絶縁層21にシリコン層26が設けられているため、アクティブエリア12とCG電極16との間に書込電圧を印加したときのトンネル電流が大きく、書込特性が良好である。
また、FG電極14はトンネル絶縁膜13と電極間絶縁膜15に挟まれており、これらの膜は所定の電圧が印加されなければトンネル電流を流さない。また、電荷蓄積層22は積層絶縁層21とブロック絶縁層23とに挟まれており、積層絶縁層21及びブロック絶縁層23のバリアハイトは電荷蓄積層22のバリアハイトよりも高いため、電界が印加されていない状態では、電荷蓄積層22に電子が閉じ込められる。これにより、アクティブエリア12とCG電極16との間に一定以上の電圧を印加しなければ、FG電極14及び電荷蓄積層22内に蓄積された電荷はそのまま保持されて、メモリセルトランジスタに書き込んだデータを保持することができる。
このとき、図11(a)及び(b)に示すように、積層絶縁層21にはバリアハイトが低いシリコン層26及び28が設けられているものの、シリコン層26及び28は量子効果を発現する程度に薄いため、電子の量子的な閉じ込め効果により、シリコン層26及び28の伝導帯の下端はΔEだけ上昇する。これにより、積層絶縁層21のトンネル確率が低下する。このため、シリコン層26及び28の存在に起因して、FG電極14から電荷蓄積層22を介してCG電極16に電子が漏洩しやすくなることを抑制できる。このため、半導体記憶装置1はデータの保持特性も良好である。
更に、メモリセルトランジスタに書き込んだデータを消去する場合は、アクティブエリア12の電位をCG電極16の電位よりも高くする。これにより、電荷蓄積層22に蓄積された電子が積層絶縁層21を介してFG電極14に引き抜かれ、FG電極14に蓄積された電子がトンネル絶縁膜13を介してアクティブエリア12に引き抜かれる。この結果、電荷蓄積層22及びFG電極14に蓄積されていた電荷が消滅し、メモリセルトランジスタからデータが消去される。
このとき、上述の書込動作のときと同様に、積層絶縁層21における電荷蓄積層22側に設けられたシリコン層28が電子の中継部分となり、積層絶縁層21を流れるトンネル電流が増加する。このため、半導体記憶装置1はデータの消去特性が良好である。なお、このとき、消去電圧が印加されることにより、シリコン層26及びシリコン酸化層25のエネルギーレベルは大きく低下するため、電荷蓄積層22からFG電極14に向けて流れるトンネル電流にはほとんど影響を及ぼさない。
なお、図10(a)及び(b)に示すように、書込動作時及び消去動作時においても、シリコン層26及び28の伝導帯の下端は閉じ込め効果によりΔEだけ上昇するが、書込動作時及び消去動作時においては、シリコン層26及び28は電子の中継部分として機能しているため、伝導帯の下端が上昇しても、トンネル電流は実質的に減少しない。
次に、本実施形態の効果について説明する。
本実施形態に係る半導体記憶装置1においては、データを記憶するための電子を、浮遊ゲート電極(FG電極)14に加えて、電荷蓄積層22にも蓄積することができる。これにより、所定の閾値を得るために必要な電子数のうち、FG電極14に蓄積させる電子数を減らすことができる。この結果、電子を保持する際に、FG電極14に蓄積された電子に起因してトンネル絶縁膜13に印加される電界を緩和することができ、FG電極14からトンネル絶縁膜13を介してアクティブエリア12に電子が漏洩することを抑制できる。
なお、電荷蓄積層22に蓄積された電子がメモリセルトランジスタの閾値に及ぼす影響の大きさは、アクティブエリア12と電荷蓄積層22との距離に依存し、距離が小さいほど影響が大きい。このため、FG電極14を薄くするほど、閾値に及ぼす影響を大きくすることができる。FG電極14の厚さは、隣り合うFG電極14間の距離以下とすることが好ましい。これにより、各電荷蓄積層22がその直下のアクティブエリア12に及ぼす影響を、隣の電荷蓄積層22が及ぼす影響に対して大きくすることができる。そして、FG電極14を薄くすれば、隣り合うFG電極14間の結合容量が減少するため、半導体記憶装置1を微細化しても、メモリセルトランジスタ間の干渉を抑制することができる。
また、半導体記憶装置1においては、上述の如く、積層絶縁層21内にシリコン層26が設けられているため、積層絶縁層21に書込電圧が印加された場合にトンネル確率が増加する。このため、書込特性が良好である。また、積層絶縁層21内にシリコン層28が設けられているため、積層絶縁層21に消去電圧が印加された場合にトンネル確率が増加する。このため、消去特性が良好である。一方、シリコン層26及び28の伝導帯の下端は量子的な閉じ込め効果により上昇するため、電圧が印加されていない場合には、電子のトンネル確率が低下する。このため、シリコン層26及び28を形成することによる電子の保持特性の低下を抑えることができる。なお、シリコン層26及び28の代わりに電子トラップ層を形成して、トンネル電流を中継することも考えられるが、この場合は、電圧を印加していないときの電荷保持特性が低下してしまう。
なお、シリコン層26及び28の厚さが薄い程、量子閉じ込め効果が大きく、ΔEが大きい。シリコン層26及び28の厚さを10nm以下とすれば、一定の効果が得られる。また、シリコン層26及び28がシリコンドットにより構成されている場合は、各ドットが小さい程、量子閉じ込め効果が大きく、ΔEが大きい。シリコン層26及び28の厚さ及び粒子の粒径は1nm以下であることがより好ましい。
また、所定の電界が印加されたときに、シリコン層26及び28と共に中継エネルギー状態を形成するためには、シリコン酸化層25及び29の厚さはある程度薄い必要がある。また、積層絶縁層21を流れる電流の絶対量を確保するためにも、シリコン酸化層25及び29の厚さは薄い方が好ましい。例えば、積層絶縁層21に印加される電界の強度が10MV/cmであるときに、上述のシリコン層を設けることによる効果を得るためには、シリコン酸化層25及び29の厚さは3nm以下とすることが好ましい。
以下、上述の効果を具体的な実験例を挙げて説明する。
図12は、横軸に電界強度をとり、縦軸に電流量をとって、JE特性を例示するグラフ図である。
本実験例においては、シリコンからなる半導体基板上にシリコン酸化物(SiO)からなる絶縁膜を形成し、その上に金属電極を形成したMIS(metal-insulator-semiconductor:金属−絶縁物−半導体)構造のサンプルを4個作製した。そのうち2個のサンプルにおいては、絶縁膜中に量子効果を得られる程度に薄いシリコン層を形成した。残りの2個のサンプルにおいては、絶縁膜中にシリコン層を形成しなかった。そして、これらのサンプルに半導体基板側から電子が注入される方向に電界を印加し、この電界を徐々に強くしていき、半導体基板と金属電極との間に流れる電流量を測定した。
図12に示すように、電界強度が相対的に弱い領域(低電界領域)においては、電界強度が電流量に及ぼす影響はほぼ同等であった。これに対して、電界強度が相対的に強い領域(高電界領域)においては、シリコン層を形成したサンプルの方が、シリコン層を形成しないサンプルよりもJEカーブの立ち上がりが急峻であり、電流量が大きかった。この結果から、低電界領域における電荷の保持特性はサンプル間で同等であり、高電界領域における電子の注入効率はシリコン層を設けたサンプルの方が高いことがわかる。
次に、実際の半導体記憶装置を用いた実験例について説明する。
図13(a)及び(b)は、横軸に時間をとり、縦軸に閾値をとって、メモリセルトランジスタの特性を例示するグラフ図であり、(a)は書込特性を示し、(b)は消去特性を示す。
本実験例においては、前述の第1の実施形態において説明した半導体記憶装置を作製し、これを「実施例」とした。また、第1の実施形態に係る半導体記憶装置と比較して、シリコン層26及び28を形成していない装置を作製し、これを「比較例」とした。
図13(a)及び(b)に示すように、本実施形態の実施例に係る半導体記憶装置は、比較例に係る半導体記憶装置と比較して、書込特性及び消去特性の双方が高かった。
次に、第2の実施形態について説明する。
図14は、本実施形態に係る半導体記憶装置を例示する断面図である。
図14に示すように、本実施形態に係る半導体記憶装置2においては、素子分離絶縁体11の上面及びFG電極14の上面が略同一平面を構成している。このため、電極間絶縁膜15の形状はワード線方向に延びる平坦な帯状であり、電極間絶縁膜15はFG電極14の上方のみに配置されている。また、CG電極16の下面も平坦である。本実施形態における上記以外の構成、製造方法、動作及び効果は、前述の第1の実施形態と同様である。すなわち、本実施形態によっても、前述の第1の実施形態と同様な効果を得ることができる。
以上、実施形態を参照して本発明を説明したが、本発明はこれらの実施形態に限定されるものではない。前述の各実施形態に対して、当業者が適宜、構成要素の追加、削除若しくは設計変更を行ったもの、又は、工程の追加、省略若しくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含有される。
例えば、前述の各実施形態においては、シリコン酸化層25、27及び29をALD法によって形成する例を示したが、本発明はこれに限定されず、例えば、LP−CVD法により、亜酸化窒素(NO)を800℃程度の温度で反応させてシリコン酸化層を形成してもよい。
また、前述の各実施形態においては、シランを原料ガスとしたLP−CVD法によってシリコン層26及び28を形成する例を示したが、本発明はこれに限定されず、原料ガスには、無機ソースであるジシラン若しくは塩化珪素、又は、有機ソースである炭化水素物シラン若しくはアミノシラン等を使用してもよい。又は、上述のシラン系ガスに、一酸化窒素(NO)、二酸化窒素(NO)若しくは亜酸化窒素(NO)等の酸化窒素ガス、又は、メタン、エタン若しくはエチレンアセチレン等の炭化水素化ガスを添加してもよい。これにより、これらの添加ガスの反応生成物がシリコンの結晶成長の核となり、シリコン層の結晶粒を微細化することができる。また、シリコンを堆積させた後、還元性雰囲気中でアニールしてもよい。これにより、シリコンが凝集し、シリコンドットを形成することができる。
更に、前述の各実施形態においては、積層絶縁層21中の下層側及び上層側の2ヶ所にシリコン層26及び28を形成する例を示したが、本発明はこれに限定されず、少なくともどちらか1ヶ所にシリコン層を形成すれば、書込特性及び消去特性のうち少なくとも一方を改善することができる。
更にまた、前述の各実施形態においては、電荷蓄積層22をシリコン窒化物により形成する例を示したが、本発明はこれには限定されない。電荷蓄積層22は、電荷を捕獲する能力がある層であればよく、例えば、シリコン窒化物、ハフニウム酸化物、ジルコニウム酸化物及びランタン酸化物からなる群から選択された1種の材料からなる単一材料層、これらの単一材料層が積層された複合層、若しくは、この群から選択された2種以上の材料の混晶化合物からなる化合物層、又は上述の単一材料層、複合層若しくは化合物層にシリコンが添加されたシリケート層とすることができる。
更にまた、前述の各実施形態においては、積層絶縁層21のシリコン層26及び28以外の部分、並びにブロック絶縁層23を、シリコン酸化物により形成する例を示したが、本発明はこれに限定されず、バリアハイトが電荷蓄積層22よりも高く、電荷トラップが少ない材料であればよい。例えば、アルミニウム酸化物又はマグネシウム酸化物等を用いることができる。
更にまた、電極間絶縁膜15の最上層及び最下層にシリコン窒化層を形成してもよい。すなわち、電極間絶縁膜15の層構造を、ONO構造ではなくNONON構造としてもよい。更にまた、トンネル絶縁膜13中に薄いシリコン層を形成しても、前述の各実施形態と同様な効果を得ることができる。
以上説明した実施形態によれば、書込・消去特性が高く、動作の信頼性が高い半導体記憶装置及びその製造方法を実現することができる。
1、2:半導体記憶装置、10:半導体基板、11:素子分離絶縁体、12:アクティブエリア、13:トンネル絶縁膜、14:浮遊ゲート電極(FG電極)、15:電極間絶縁膜、16:制御ゲート電極(CG電極)、17:積層体、18:層間絶縁膜、19:ソース・ドレイン領域、21:積層絶縁層、22:電荷蓄積層、23:ブロック絶縁層、25:シリコン酸化層、26:シリコン層、27:シリコン酸化層、28:シリコン層、29:シリコン酸化層、41:シリコン窒化膜、42:シリコン酸化膜、43:レジストパターン、45:溝、46:シリコン酸化膜、47:レジストパターン

Claims (9)

  1. 半導体基板と、
    前記半導体基板上に設けられたトンネル絶縁膜と、
    前記トンネル絶縁膜上に設けられた第1電極と、
    前記第1電極上に設けられた電極間絶縁膜と、
    前記電極間絶縁膜上に設けられた第2電極と、
    を備え、
    前記電極間絶縁膜は、
    積層絶縁層と、
    前記積層絶縁層上に設けられ、前記積層絶縁層よりもバリアハイトが低い電荷蓄積層と、
    前記電荷蓄積層上に設けられ、前記電荷蓄積層よりもバリアハイトが高いブロック絶縁層と、
    を有し、
    前記積層絶縁層は、
    第1絶縁層と、
    前記第1絶縁層上に設けられ、前記第1絶縁層よりもバリアハイトが低い量子効果層と、
    前記量子効果層上に設けられ、前記量子効果層よりもバリアハイトが高い第2絶縁層と、
    を有することを特徴とする半導体記憶装置。
  2. 前記第1絶縁層及び前記第2絶縁層はシリコン酸化物からなり、前記量子効果層はシリコンからなることを特徴とする請求項1記載の半導体記憶装置。
  3. 前記積層絶縁層は、
    前記第2絶縁層上に設けられ、前記第2絶縁層よりもバリアハイトが低い他の量子効果層と、
    前記他の量子効果層上に設けられ、前記他の量子効果層よりもバリアハイトが高い第3絶縁層と、
    をさらに有することを特徴とする請求項1または2に記載の半導体記憶装置。
  4. 前記第3絶縁層はシリコン酸化物からなり、前記他の量子効果層はシリコンからなることを特徴とする請求項3記載の半導体記憶装置。
  5. 前記電荷蓄積層は、シリコン窒化物、ハフニウム酸化物、ジルコニウム酸化物及びランタン酸化物からなる群から選択された1種の材料からなる単一材料層、これらの単一材料層が積層された複合層、若しくは、前記群から選択された2種以上の材料の混晶化合物からなる化合物層、又は前記単一材料層、前記複合層若しくは前記化合物層にシリコンが添加されたシリケート層であることを特徴とする請求項1〜4のいずれか1つに記載の半導体記憶装置。
  6. 前記半導体基板の上層部分は、第1方向に延びる複数本のライン状部分に区画されており、
    前記第1電極は、前記ライン状部分の直上域に、前記第1方向及び前記第1方向に対して交差する第2方向に沿ってマトリクス状に配列されており、
    前記電極間絶縁膜及び前記第2電極は、前記第1電極の直上域をつなぐように前記第2方向に延びていることを特徴とする請求項1〜5のいずれか1つに記載の半導体記憶装置。
  7. 半導体基板上に、トンネル絶縁膜、第1電極、電極間絶縁膜及び第2電極がこの順に積層された積層体を形成する工程を備え、
    前記積層体を形成する工程は、
    前記第1電極上に積層絶縁層を形成する工程と、
    前記積層絶縁層上に前記積層絶縁層よりもバリアハイトが低い電荷蓄積層を形成する工程と、
    前記電荷蓄積層上に前記電荷蓄積層よりもバリアハイトが高いブロック絶縁層を形成する工程と、
    を有し、
    前記積層絶縁層を形成する工程は、
    前記第1電極上に第1絶縁層を形成する工程と、
    前記第1絶縁層上に前記第1絶縁層よりもバリアハイトが低い量子効果層を形成する工程と、
    前記量子効果層上に前記量子効果層よりもバリアハイトが高い第2絶縁層を形成する工程と、
    を有することを特徴とする半導体記憶装置の製造方法。
  8. 前記量子効果層を形成する工程は、原料ガスとしてシラン又はジシランを用いた化学気相成長法によってシリコンを堆積させる工程を有することを特徴とする請求項7記載の半導体記憶装置の製造方法。
  9. 前記第1絶縁層を形成する工程は、原子層成長法によってシリコン酸化物を堆積させる工程を有することを特徴とする請求項7または8に記載の半導体記憶装置の製造方法。
JP2010145450A 2010-06-25 2010-06-25 半導体記憶装置及びその製造方法 Pending JP2012009700A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010145450A JP2012009700A (ja) 2010-06-25 2010-06-25 半導体記憶装置及びその製造方法
US13/052,456 US8466022B2 (en) 2010-06-25 2011-03-21 Semiconductor memory device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010145450A JP2012009700A (ja) 2010-06-25 2010-06-25 半導体記憶装置及びその製造方法

Publications (1)

Publication Number Publication Date
JP2012009700A true JP2012009700A (ja) 2012-01-12

Family

ID=45351714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010145450A Pending JP2012009700A (ja) 2010-06-25 2010-06-25 半導体記憶装置及びその製造方法

Country Status (2)

Country Link
US (1) US8466022B2 (ja)
JP (1) JP2012009700A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014003235A (ja) * 2012-06-20 2014-01-09 Toshiba Corp 不揮発性半導体記憶装置及びその製造方法
JP2014187286A (ja) * 2013-03-25 2014-10-02 Toshiba Corp 不揮発性半導体記憶装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8101989B2 (en) * 2006-11-20 2012-01-24 Macronix International Co., Ltd. Charge trapping devices with field distribution layer over tunneling barrier
JP4594973B2 (ja) 2007-09-26 2010-12-08 株式会社東芝 不揮発性半導体記憶装置
US8994089B2 (en) * 2011-11-11 2015-03-31 Applied Materials, Inc. Interlayer polysilicon dielectric cap and method of forming thereof
WO2016135849A1 (ja) * 2015-02-24 2016-09-01 株式会社 東芝 半導体記憶装置及びその製造方法
US11588031B2 (en) * 2019-12-30 2023-02-21 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor structure for memory device and method for forming the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106448A (ja) * 1993-10-08 1995-04-21 Hitachi Ltd 不揮発性半導体記憶装置
JP2006120663A (ja) * 2004-10-19 2006-05-11 Sharp Corp 不揮発性半導体記憶装置及びその製造方法
JP2009076764A (ja) * 2007-09-21 2009-04-09 Toshiba Corp 不揮発性半導体メモリおよびその書き込み方法ならびにその消去方法
JP2009277858A (ja) * 2008-05-14 2009-11-26 Toshiba Corp 不揮発性半導体記憶装置及びその製造方法
JP2010034233A (ja) * 2008-07-28 2010-02-12 Toshiba Corp 不揮発性半導体記憶装置およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203996A (ja) 2001-12-28 2003-07-18 Sharp Corp 半導体記憶装置
KR100505108B1 (ko) * 2003-02-12 2005-07-29 삼성전자주식회사 소노스 기억셀 및 그 제조방법
JP4580899B2 (ja) * 2006-06-08 2010-11-17 株式会社東芝 半導体記憶装置及びその製造方法
US7737488B2 (en) * 2007-08-09 2010-06-15 Macronix International Co., Ltd. Blocking dielectric engineered charge trapping memory cell with high speed erase
JP4594973B2 (ja) * 2007-09-26 2010-12-08 株式会社東芝 不揮発性半導体記憶装置
JP5459650B2 (ja) * 2008-09-22 2014-04-02 株式会社東芝 不揮発性半導体記憶装置のメモリセル

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106448A (ja) * 1993-10-08 1995-04-21 Hitachi Ltd 不揮発性半導体記憶装置
JP2006120663A (ja) * 2004-10-19 2006-05-11 Sharp Corp 不揮発性半導体記憶装置及びその製造方法
JP2009076764A (ja) * 2007-09-21 2009-04-09 Toshiba Corp 不揮発性半導体メモリおよびその書き込み方法ならびにその消去方法
JP2009277858A (ja) * 2008-05-14 2009-11-26 Toshiba Corp 不揮発性半導体記憶装置及びその製造方法
JP2010034233A (ja) * 2008-07-28 2010-02-12 Toshiba Corp 不揮発性半導体記憶装置およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014003235A (ja) * 2012-06-20 2014-01-09 Toshiba Corp 不揮発性半導体記憶装置及びその製造方法
JP2014187286A (ja) * 2013-03-25 2014-10-02 Toshiba Corp 不揮発性半導体記憶装置

Also Published As

Publication number Publication date
US20110316066A1 (en) 2011-12-29
US8466022B2 (en) 2013-06-18

Similar Documents

Publication Publication Date Title
US8916921B2 (en) Non-volatile semiconductor storage device including a dielectric with low permittivity in memory cells arranged in a three dimensional manner
WO2016135849A1 (ja) 半導体記憶装置及びその製造方法
US9754961B2 (en) Semiconductor memory device and method for manufacturing same
US20130221425A1 (en) Nonvolatile memory device and method for fabricating the same
KR101218447B1 (ko) 반도체 기억 장치
JP2012009700A (ja) 半導体記憶装置及びその製造方法
US8710572B2 (en) Nonvolatile semiconductor storage device having conductive and insulative charge storage films
KR20110058631A (ko) 반도체 메모리 장치
KR20080057617A (ko) 비휘발성 메모리 소자 및 그 동작 방법
JP6334268B2 (ja) 半導体装置およびその製造方法
JP2011023586A (ja) 半導体記憶装置およびその製造方法
TWI691086B (zh) 半導體記憶體裝置
WO2010087265A1 (ja) 不揮発性半導体記憶装置およびその製造方法
US20130069135A1 (en) Semiconductor device and method of manufacturing the same
JP2015002195A (ja) 半導体記憶装置
JP2013055131A (ja) 不揮発性半導体記憶装置
JP4665368B2 (ja) 不揮発性半導体メモリ装置、その動作方法および半導体装置の製造方法
JP2015095650A (ja) 不揮発性半導体記憶装置
US20150348992A1 (en) Semiconductor device and method for fabricating the same
US8264026B2 (en) Nonvolatile memory devices and methods of manufacturing the same
JP2011142246A (ja) 半導体記憶装置
US9129995B2 (en) Semiconductor memory device and method for manufacturing the same
US7867849B2 (en) Method of manufacturing a non-volatile semiconductor device
KR100905276B1 (ko) 다층 터널 절연막을 포함하는 플래시 메모리 소자 및 그제조 방법
KR20100076664A (ko) 비휘발성 메모리 소자 및 그 제조 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140404