JP2011247823A - 堆積物検知装置と、該装置を備えた排気ポンプ - Google Patents

堆積物検知装置と、該装置を備えた排気ポンプ Download PDF

Info

Publication number
JP2011247823A
JP2011247823A JP2010123310A JP2010123310A JP2011247823A JP 2011247823 A JP2011247823 A JP 2011247823A JP 2010123310 A JP2010123310 A JP 2010123310A JP 2010123310 A JP2010123310 A JP 2010123310A JP 2011247823 A JP2011247823 A JP 2011247823A
Authority
JP
Japan
Prior art keywords
pressure
deposit
flow path
gas flow
measuring means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010123310A
Other languages
English (en)
Inventor
Manabu Nonaka
学 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Edwards Japan Ltd
Original Assignee
Edwards Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Edwards Japan Ltd filed Critical Edwards Japan Ltd
Priority to JP2010123310A priority Critical patent/JP2011247823A/ja
Publication of JP2011247823A publication Critical patent/JP2011247823A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/607Preventing clogging or obstruction of flow paths by dirt, dust, or foreign particles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

【課題】ガス流路に堆積した物質の物性による影響を受けることなく、どのような物性の物質が堆積しても信頼性の高い堆積物の検知を可能とした堆積物検知装置と、該装置を備えた排気ポンプを提供する。
【解決手段】堆積物検知装置1は、ガス流路R内の堆積物を検知する堆積物検知装置であって、感圧部2Aで圧力を検出し出力する圧力計測手段2と、圧力計測手段2の感圧部2Aとガス流路Rとに開口した連通路3と、圧力計測手段2からの出力である圧力の変動幅を監視することにより堆積物を検知する検知処理手段4と、を備える。
【選択図】図1

Description

本発明は、例えば半導体製造工程におけるCVD、エッチング等のプロセス装置において、その装置から排気されるガスの流路に堆積した物質(堆積物)を検知する堆積物検知装置と、該装置を備えた排気ポンプに関し、特に、その堆積物の物性による影響を受けることなく、どのような物性の物質が堆積しても信頼性の高い堆積物の検知を可能としたものである。
エッチング等のプロセス装置で使用されたガスは、ターボ分子ポンプ等の排気ポンプを含む排気系を通じてプロセス装置の外部へ排出される。このように排出されるガスの中にはプロセスに用いられる反応性ガスや、プロセスで副次的に生成されるガス状物質(副生成物)も含まれている。このような反応性ガスやガス状物質は、図11に示す昇華曲線に応じて固化し、排気系のガス流路、例えば排気ポンプ内のガス流路や排気ポンプの排気口に接続された配管などに付着し堆積する。
前記のようにガス流路に堆積した物質(堆積物)を検知する手段としては、例えば特許文献1の方式が知られている。同文献1の方式は、誘電率の変化を利用して堆積物を検知する方式である。具体的には、堆積物を検知したい場所(同文献1ではパイプ8内)に3つの電極(同文献1では電極14、15、16)を配置し、これらの電極を利用してその場所の誘電率の変化を監視し、誘電率の変化から堆積物を検知するものである。
しかしながら、誘電率の値は堆積する物質により大きく変わるため、特許文献1のように誘電率の変化から堆積物を検知する方式では、定量的な物質の堆積量(厚み)を把握することは難しい。また、堆積した物質が水分を含有すると、物質の堆積による誘電率の変化よりも大きな変化が生じるので、実際の堆積量より多い堆積量を検知するという事態(誤検知)が生じる等、正確に堆積物を検知することができないという問題点がある。
特開平8−210836号公報
本発明は、前記問題点を解決するためになされたものであり、その目的は、ガス流路に堆積した物質の物性による影響を受けることなく、どのような物性の物質が堆積しても信頼性の高い堆積物の検知を可能とした堆積物検知装置と、該装置を備えた排気ポンプを提供することにある。
前記目的を達成するために、本発明は、ガス流路内の堆積物を検知する堆積物検知装置であって、前記堆積物検知装置は、感圧部で圧力を検出し、かつ、検出した圧力を出力する圧力計測手段と、前記圧力計測手段の感圧部と前記ガス流路とに開口した連通路と、前記圧力計測手段からの出力である圧力の変動幅を監視することにより堆積物を検知する検知処理手段と、を備えてなることを特徴とする。
前記本発明において、前記検知処理手段における圧力の変動幅の監視は、その圧力の変動幅が閾値以下か否かを判定するものであり、前記検知処理手段における堆積物の検知は、前記圧力の変動幅が閾値以下となったときに、堆積物が所定量に達したものとして信号を出力するものである構成を採用してもよい。
本発明は、ガス流路内の堆積物を検知する堆積物検知装置であって、前記堆積物検知装置は、感圧部で圧力を検出し、検出した圧力を出力する2以上の圧力計測手段と、前記各圧力計測手段の感圧部と前記ガス流路とに開口した2以上の連通路と、前記各圧力計測手段からの出力である圧力の差分を監視することにより堆積物を検知する検知処理手段と、を備えてなることを特徴とする。
2以上の圧力計測手段を有する前記本発明において、前記検知処理手段における圧力の差分の監視は、その圧力の差分が閾値か否かを判定するものであり、前記検知処理手段における堆積物の検知は、前記圧力の差分が閾値となったときに、堆積物が所定量に達したものとして信号を出力するものである構成を採用してもよい。
2以上の圧力計測手段を有する前記本発明では、前記ガス流路がその上流から下流に向けて圧力が変化する場合において、前記2以上の連通路のうち、少なくとも1つの連通路は、他の連通路とは圧力の異なる箇所に開口するように設けてもよい。
2以上の圧力計測手段を有する前記本発明では、前記ガス流路がその上流から下流に向けて圧力が変化する場合において、前記2以上の連通路のうち、少なくとも1つの連通路は、他の連通路よりも上流に開口するように設けてもよい。
2以上の圧力計測手段を有する前記本発明では、前記2以上の連通路のうち、少なくとも1つの連通路の開口面積は、それ以外の他の連通路の開口面積と異なるように設けてもよい。
2以上の圧力計測手段を有する前記本発明において、前記ガス流路は、ガスを排気するターボ分子ポンプのポンプ内ガス流路であって、前記2以上の連通路は、前記ポンプ内ガス流路の圧力溜りとなる箇所に開口するように設けてもよい。
2以上の圧力計測手段を有する前記本発明では、前記2以上の連通路のうち、少なくとも1つの連通路が前記ガス流路に開口している開口部近傍に、温度調節手段が設けられていて、この温度調節手段により前記開口部付近の温度をそれ以外の部位より上げる、若しくは下げるように構成してもよい。
本発明にあっては、ガス流路内の堆積物を検知する方式として、前記の通り、連通路を通じて圧力計測手段で圧力を検出し、検出した圧力の変動幅を監視する構成、または、2以上の連通路を通じて2以上の圧力計測手段でそれぞれ圧力を検出し、検出した圧力の差分を監視する構成を採用した。この圧力の変動幅や圧力の差分は堆積によって狭くなる連通路の開口面積に応じて変化するものであり、いかなる物性の物質が堆積してもその堆積量が同じであれば同じ圧力の変動幅や圧力の差分が得られるから、どのような物性の物質が堆積しても信頼性の高い堆積物の検知が可能となるという作用効果が得られる。
本発明の第1の実施形態である堆積物検知装置のブロック図。 ガス流路に生成物が堆積した状態の説明図。 例えばCVD、エッチング等のプロセス装置から排気されるガスの流路に生成物等の物質が堆積する前に予め圧力計測手段が検出した1プロセス間の圧力(堆積前の圧力)、そのガス流路に生成物等の物質が所定量堆積した時に圧力計測手段が検出した1プロセス間の圧力(堆積時の圧力)、及び、そのガス流路が堆積物で閉塞した時に圧力計測手段が検出した1プロセス間の圧力(閉塞時の圧力)を示した図。 プロセスチャンバ内にワークを搬送し、同チャンバ内でワークに対してエッチング等のプロセスを実行したときの、同チャンバ内の圧力を示した図。 本発明の第2の実施形態である堆積物検知装置のブロック図。 2つの連通路の開口面積が異なるように構成する例の説明図。 2つの連通路の開口面積が異なるように構成する例の説明図。 (a)2つの連通路の開口面積が異なるように構成する例の説明図、(b)は図中B−B線での断面図。 上流から下流に向けて圧力が変化するガス流路の一例として、ターボ分子ポンプのガス流路に2つの連通路を開口した例の説明図。 本発明に係る堆積物検知装置を適用したプロセス装置のブロック図。 昇華曲線の説明図。
以下、本発明を実施するための最良の形態について、添付した図面を参照しながら詳細に説明する。なお、本明細書において、「連通路の開口面積」とは、連通路に生成物等の物質が堆積していない場合は、その連通路を垂直に横断する面と連通路とが交わる部分の面積をいい、連通路に当該物質が堆積している場合は、その面積から堆積物の断面積を差し引いた残りの面積をいうものとする。
A.第1の実施形態(圧力計測手段が1つの例)
≪堆積物検知装置の基本構成≫
図1は、本発明の第1の実施形態である堆積物検知装置のブロック図である。本堆積物検知装置1は、ガス流路R内の堆積物(図2参照)を検知する装置であり、具体的には、感圧部2Aで圧力を検出し出力する圧力計測手段2と、圧力計測手段2の感圧部2Aとガス流路Rとに開口した連通路3と、圧力計測手段2からの出力である圧力の変動幅を監視することにより堆積物を検知する検知処理手段4と、を備えている。
≪堆積物検知装置の詳細≫
圧力計測手段2は、既存の熱電対ゲージ、ピラニゲージ、隔膜真空計などを採用することができるが、これらに限定されることはなく、連通路3を通じてガス流路R内の圧力を検出でき、かつ、検出した圧力を出力できるものであれば、圧力計測手段2として採用してもよい。
連通路3は、図1のようにガス流路Rとなる配管RPに分岐管P1を1本接続し、この分岐管P1の一端を配管RP内のガス流路Rに開口し、同分岐管P1の他端を圧力計測手段2の感圧部2Aに開口した構成になっている。なお、ガス流路Rは、例えばCVD、エッチング等のプロセス装置から排気されるガスの流路である。
検知処理手段4は、圧力計測手段2からの出力である圧力をデータとして記録するための記録手段4Aや、その記録した圧力データを解析して圧力の変動幅を監視する等、堆積物の検知に関する処理を行うデータ処理手段4Bを有している。
検知処理手段4のデータ処理手段4Bにおける圧力の変動幅の監視は、圧力計測手段2が検出した1プロセス分の圧力をデータとして記録手段4Aに記録する処理、記録した1プロセス分の圧力データを解析して1プロセス間での圧力の変動幅を算出する処理、及び算出した圧力の変動幅が閾値より小さいか否かを判定する処理を行うものである。
図3は、例えばCVD、エッチング等のプロセス装置から排気されるガスの流路に生成物等の物質が堆積する前に予め圧力計測手段が検出した1プロセス間の圧力(堆積前の圧力)、そのガス流路に生成物等の物質が所定量堆積した時に圧力計測手段が検出した1プロセス間の圧力(堆積時の圧力)、及び、そのガス流路が堆積物で閉塞した時に圧力計測手段が検出した1プロセス間の圧力(閉塞時の圧力)を示した図である。
図3から明確に分かるように、堆積前と堆積時では堆積時の方が圧力の変動幅が小さくなる。そして、図示は省略するが、連通路3やガス流路Rにおける生成物等の物質の堆積が更に進むと、その堆積量に応じて更に圧力の変動幅が小さくなる。堆積した生成物等の物質によって連通路3又はガス流路Rのいずれかが閉塞すると、圧力の変動幅は“0”になる。つまり、圧力計測手段2で検出される圧力の変動幅は、連通路3に堆積する生成物等の物質の堆積量に応じて小さくなる。
そこで、検知処理手段4のデータ処理手段4Bにおける堆積物の検知は、圧力計測手段2から出力された圧力の変動幅が所定の閾値以下か否かを判定し、その圧力の変動幅が閾値以下となったときに、堆積物が所定量に達したものとして、所定の信号を出力する構成を採用している。なお、前記所定の閾値は検知処理手段4の閾値設定部4Cに格納してある。
前記検知処理手段4における所定の信号の出力方式としては、例えば、リレーを使用する方式、所定の電圧または電流を出力する方式、またはTTL回路の論理信号を出力する方式など、各種の方式を採用することができる。
先に説明した圧力の変動幅の「所定の閾値」は1つでもよいが、段階的に異なる値で複数設けてもよい。この場合は、圧力の変動幅がそれぞれの閾値を下回るごとに、異なる信号を出力するように構成することで、生成物等の物質の堆積量を数段階に分けて把握することが可能になる。
図4は、プロセスチャンバ内にワークを搬送し、同チャンバ内でワークに対してエッチング等のプロセスを実行したときの、同チャンバ内の圧力を示した図である。
前記「圧力の変動幅」としては、図4のように1プロセスが繰返し行われる場合に、それぞれのプロセスの同一期間内に出現する圧力の最大値Pmaxと最小値Pminとの差分を変動幅とする例、それぞれのプロセスの同一期間内に出現する圧力の最低値Pminと出現する圧力の各値P1、P2…との差分の和を変動幅とする例、あるいは、それぞれのプロセスの同一期間内において出現する圧力の最低値Pminと出現する圧力の各値P1、P2…との差分を時間で積分した積分値を変動幅とする例を採用することができる。
ところで、プロセスチャンバ内の圧力は図4のように時間の経過とともに変化する。特に、同図の例では、プロセスの最初と最後にプロセスチャンバでワークの入れ替え作業を行うために、プロセスチャンバ内の圧力をチャンバ搬送室の圧力まで高めている。ところが、そのように高められた圧力がプロセス時の圧力よりも著しく大きい場合は、その高い圧力を圧力計測手段2が検出してしまうことにより本来の圧力の変動幅を正確に検出することができず、堆積物の検知精度が悪くなる。また、ワークをプロセスチャンバに設置してからプロセスを開始するまでに予備真空引きを行うが、このときの圧力がプロセス時の圧力よりも低い場合も、同様である。
そこで、堆積物の検知精度を高めるために、先に説明した検知処理手段4のデータ処理手段4Bにおける「圧力の変動幅」を算出する処理では、予め圧力の上限値PUや下限値PLなどの制限値を設定しておき、下限値PUを超える圧力は除外する、または、下限値PLを下回る圧力は除外する、あるいは上限値PUと下限値PLの圧力範囲に入らない圧力は除外することが望ましい。
また、先に説明した上限値PUや下限値PLとの関係から無効な圧力を除外する代わりに、別の方法で無効な圧力を除外してもよい。その具体例としては、例えば、検知処理手段4では、プロセスを実行する装置(プロセス装置)からプロセス中であることを示す信号を受信し、かかる信号を受信している時のみ圧力の変動幅を監視する方式を採用してもよい。これは、具体的には、かかる信号を受信していないときに圧力計測手段2から出力される圧力はデータとして記録せず、かかる信号の受信中に圧力計測手段2から出力された圧力のみをデータとして記録し、この記録した圧力データを解析して圧力の変動幅を監視するというものである。
以上説明した第1の実施形態の堆積物検知装置1によると、図示しない動作開始スイッチの押下により、圧力計測手段2が圧力の検出動作と検出した圧力の出力動作とを開始する。そして、検知処理手段4では、圧力計測手段2からの出力である圧力を1プロセス分受信し、受信した1プロセス分の圧力をデータとして記録する。そして、記録した1プロセス分の圧力データを解析して1プロセス間での圧力の変動幅を算出し、算出した圧力の変動幅が所定の閾値以下であるときに、所定の信号を出力するので、ガス流路内に所定量の生成物等の物質が堆積していることが分かる。
以上説明したように第1の実施形態の堆積物検知装置1においては、ガス流路R内の堆積物を検知する方式として、連通路3を通じて圧力計測手段2で圧力を検出し、検出した圧力の変動幅を監視する構成を採用した。この圧力の変動幅は生成物等の物質の堆積によって狭くなる連通路3の開口面積に応じて小さくなるので、いかなる物性の物質が堆積してもその堆積量が同じであれば同じ圧力の変動幅が得られるから、どのような物性の物質が堆積しても信頼性の高い堆積物の検知が可能である。
B.第2の実施形態(圧力計測手段を複数備える例)
≪堆積物検知装置の基本構成≫
図5は、本発明の第2の実施形態である堆積物検知装置のブロック図である。本堆積物検知装置1は、ガス流路R内の堆積物を検知する装置であり、具体的には、感圧部2Aで圧力を検出し出力する2以上(図5の例では2つ)の圧力計測手段21、22と、それぞれの圧力計測手段21、22の感圧部2A、2Aとガス流路Rとに開口した2以上(図5の例では2つ)の連通路31、32と、それぞれの圧力計測手段21、22からの出力である圧力の差分を監視することにより堆積物を検知する検知処理手段41と、を備えている。
≪堆積物検知装置の詳細≫
前記2つの圧力計測手段21、22の具体的な構成は、先に説明した第1の実施形態の圧力計測手段2と同様であるため、その詳細説明は省略する。
2つの連通路31、32のうち、一方の連通路31の開口面積は他方の連通路32の開口面積と異なるように設けることができる。この場合、例えば、一方の連通路31の開口面積を他方の連通路32の開口面積より小さくすることができる。ここで、仮にいずれの連通路31、32における生成物等の物質の堆積量が略同じであるならば、開口面積の大きい連通路32に比べて、開口面積の小さい連通路の方が堆積物で閉塞しやすい。このため、圧力の変動は開口面積の小さい連通路31の方が著しく小さくなるので、比較的少量の堆積でも、2つの圧力計測手段2からの出力である圧力の差分が大きくなり、堆積物の検知感度が高まる。
図6の例は、図5に示す2つの連通路31、32の内径を同一とした上で、一方の連通路31のガス流路側開口端に細かいメッシュM1を設置し、かつ、他方の連通路32のガス流路側開口端にそれより荒いメッシュM2を設置することで、2つの連通路31、32の開口面積が異なるように構成した例である。
また、図7と図8の例は、ガス流路R側に開口している一方の連通路31の開口数を多くし、かつ、同じガス流路R側に開口している他方の連通路32の開口数を少なくすることで、2つの連通路31、32の開口面積が異なるように構成した例である。これらの構成以外の別の構成により2つの連通路31、32の開口面積が異なるようにしてもよい。
図5の検知処理手段41は、圧力計測手段21、22ごとに、各圧力計測手段21、22からの出力である圧力をデータとして記録するための記録手段4Aや、記録した圧力データを解析して圧力の差分を監視する等、堆積物の検知に関する処理を行うデータ処理手段4Bを有している。
検知処理手段41のデータ処理手段4Bにおける圧力の差分の監視は、圧力計測手段21、22ごとに、それぞれの圧力計測手段21、22が検出した1プロセス分の圧力をデータとして記録手段4Aに記録する記録処理、記録した圧力計測手段21、22ごとの1プロセス分の圧力データから1プロセス間での圧力の差分を算出する演算処理、及び、算出した圧力の差分が閾値以下か否かを判定する判定処理を行うものである。
前記2つの圧力計測手段21、22のうち、一方の圧力計測手段21により1プロセス間で検出される圧力は生成物等の物質の堆積によって狭くなる連通路31の開口面積に応じて小さくなり、また、他方の圧力計測手段22により1プロセス間で検出される圧力もまた生成物等の物質の堆積によって狭くなる連通路32の開口面積に応じて小さくなる。このため、2つの連通路31、32のうちいずれか一方の連通路の堆積量が多くなると、それに応じて2つの圧力計測手段で検出される圧力の差分が変化する。
そこで、検知処理手段41のデータ処理手段4Bにおける堆積物の検知は、前記2つの圧力計測手段21、22から出力された圧力の差分が所定の閾値か否かを判定し、その圧力の差分が所定の閾値となったときに、堆積物が所定量に達したものとして、所定の信号を出力する構成を採用している。なお、この閾値も検知処理手段41の閾値設定部4Cに格納してある。
前記のように構成された第2の実施形態の堆積物検知装置1によると、図示しない動作開始スイッチの押下により、2つの圧力計測手段21、22が圧力の検出動作と検出した圧力の出力動作とを開始する。そして、検知処理手段41では、圧力計測手段21、22ごとに、圧力計測手段21、22からの出力である圧力を1プロセス分受信し、受信した1プロセス分の圧力をデータとして記録する。また、記録した圧力計測手段21、22ごとの1プロセス分の圧力データから1プロセス間での圧力の差分を算出し、算出した圧力の差分が所定の閾値となったときに、所定の信号を出力するので、ガス流路内に所定量の生成物等の物質が堆積していることが分かる。
以上説明したように第2の実施形態の堆積物検知装置1では、前記の通り、2以上の連通路を通じて2以上の圧力計測手段でそれぞれ圧力を検出し、検出した圧力の差分を監視する構成を採用した。この圧力の差分は堆積によって狭くなるガス流路や連通路の開口面積に応じて変化するので、いかなる物性の物質が堆積してもその堆積量が同じであれば同じ圧力の差分が得られるから、どのような物性の物質がガス流路に堆積しても信頼性の高い堆積物の検知が可能である。
前記ガス流路Rがその上流から下流に向けて圧力が変化する場合において、前記2つの連通路31、32のうち、少なくとも1つの連通路は、他の連通路とは圧力の異なる箇所に開口するように設けてもよい。
上流から下流に向けて圧力が変化するガス流路の例としては、例えば、図9に示すターボ分子ポンプTのポンプ内ガス流路R1がある。このポンプ内ガス流路R1は、その上流から下流にかけて圧力が高くなる。具体的には、ポンプ内ガス流路R1の上流側は高真空であり、その下流側は大気圧に近い圧力となる。
従って、前記2つの連通路31、32のうち、一方の連通路31の一端をポンプ内ガス流路R1の下流付近に開口し、他方の連通路32の一端はそれより上流に開口することにより、これらの連通路31、32はそれぞれ圧力の異なる箇所に開口したものとなる。特に、図9の例では、他方の連通路32の一端はポンプガス流路R1の圧力溜りPPとなる箇所に開口しているが、この開口位置に限定されることはない。
また、前記2以上の連通路31、32のうち、少なくとも1つの連通路が前記ポンプガス流路R1などのガス流路Rに開口している開口部近傍に、図示しない温度調節手段を設け、この温度調節手段により前記開口部付近の温度をそれ以外の部位より上げる、若しくは下げるように構成することで、それぞれの開口部付近における堆積し易さをコントロールしてもよい。この種の温度調節手段としては、例えば電気ヒータ等による加熱方式、空冷又は水冷による冷却方式を採用することができる。また、温度調節されたターボ分子ポンプ等の排気ポンプや配管では、前記のような連通路の開口部付近を断熱材等により断熱し、その温度調節による熱量が開口部付近に積極的に及ばないように構成することで、開口部付近の温度が意図的に低下する方式を採用してもよい。
C.第2の実施形態の堆積物検知装置をプロセス装置に適用した例
図10は、本発明に係る堆積物検知装置を適用したプロセス装置のブロック図である。同図のプロセス装置100は、プロセスチャンバ101とその排気装置102とを備え、プロセスチャンバ101内でCVD、エッチング等のプロセスを行うものである。
プロセスで使用された反応性ガスやプロセスで副次的に生成されるガス状物質(副生成物)など、プロセスチャンバ101内のガスは、排気装置102により排気される。プロセスチャンバ101内へのプロセスガスの供給はガス供給制御バルブ103により制御され、プロセスチャンバ101内の圧力はチャンバ圧力計104により検出できるように構成してある。
排気装置102は、排気ポンプとして公知のターボ分子ポンプTと、補助ポンプSとにより構成されている。ターボ分子ポンプTは、その吸気口T1が吸気口バルブBを介してプロセスチャンバ101に接続され、かつ、その排気口T2が配管RPを介して補助ポンプSの吸気口S1に接続されるように構成してある。また、補助ポンプSの排気口S2はガス回収装置CDに接続してある。そして、ターボ分子ポンプTと補助ポンプSの起動により、プロセスチャンバ101内のガスは、吸気口バルブB→ターボ分子ポンプT→配管RP→補助ポンプSの順に移行し、最終的にガス回収装置CDで回収されるようになっている。
ターボ分子ポンプTには電線ケーブルK1を介して制御ユニット105が接続されており、また、制御ユニット105には通信ケーブルK2を介して演算ユニット106が接続されている。また、ターボ分子ポンプTと補助ポンプSとを接続している前記配管RPには2つの圧力計測手段21、22を設けている。
ターボ分子ポンプTは、例えば図9に示すような円筒部(ロータ)T3とブレード部(回転翼)T4とで構成された回転体T5を有し、この回転体T5が駆動モータT6により回転軸T7(ロータ軸)周りに回転駆動される。そして、回転体T5が高速で回転することにより、ターボ分子ポンプTの吸気口T1側に位置するガスの分子は、回転するブレード部T4で下向きの運動量が与えられ、ネジ溝部T8の上流に移送され、ネジ溝部T8で圧縮された後、排気口T2から外部に排気される。
ターボ分子ポンプTの制御ユニット105は、ターボ分子ポンプTを統括制御するマイクロコンピュータ部、ターボ分子ポンプTを回転駆動する駆動モータT6のドライバ、回転体T5を磁力で支持する磁気軸受T9のドライバ、及び、演算ユニット106との間でデータの送受信を行う通信部など、ターボ分子ポンプTの運転に必要な各種機器を含んでいる。
演算ユニット106は、配管RPに設けた前記2つの圧力計測手段21、22からの出力を受け取る入力部(図示省略)を有するとともに、先の第2の実施形態で説明した堆積物検知装置41の検知処理手段4を構成するデータ処理手段4Bとして機能する。すなわち、演算ユニット106は、圧力計測手段21、22ごとに、各圧力計測手段21、22からの出力である圧力をデータとして、例えば制御ユニット105内の図示しない記憶手段(図5の記憶手段4Aに相当する)に記録する処理や、記録した圧力データを解析して圧力の差分を監視する等、堆積物の検知に関する処理を行う。
この演算ユニット106における圧力の差分の監視は、先の第2の実施形態で説明した検知処理手段41のデータ処理手段4Bにおける圧力の差分の監視と同様であるため、その詳細説明は省略する。また、前記2つの圧力計測手段21、22の具体的な構成も、先に説明した第2の実施形態における2つの圧力計測手段21、22と同様であるため、その詳細説明も省略する。
前記のように構成されたプロセス装置100によると、図示しない動作開始スイッチの押下により、排気装置102が作動し、2つの圧力計測手段21、22が圧力の検出動作と検出した圧力の出力動作とを開始する。そして、演算ユニット106では、圧力計測手段21、22ごとに、圧力計測手段21、22からの出力である圧力を1プロセス分受信し、受信した1プロセス分の圧力をデータとして記録する。また、記録した圧力計測手段21、22ごとの1プロセス分の圧力データから1プロセス間での圧力の差分を算出し、算出した圧力の差分が所定の閾値となったときに、通信ケーブルK2を介して所定の信号をターボ分子ポンプTの制御ユニット105へ出力するので、制御ユニット105では配管RP内に所定量の生成物等の物質が堆積していることが分かる。
以上説明したように本プロセス装置100では、2以上の連通路を通じて2以上の圧力計測手段でそれぞれ圧力を検出し、検出した圧力の差分を監視する構成を採用した。この圧力の差分は堆積によって狭くなる連通路の開口面積に応じて変化するものであり、いかなる物性の物質が堆積してもその堆積量が同じであれば同じ圧力の差分が得られるから、どのような物性の物質が配管内(ガス流路)に堆積しても信頼性の高い堆積量の検知が可能である。
図10では、排気ポンプの一例としてターボ分子ポンプTを例示し、ターボ分子ポンプTの制御ユニット105が本発明の堆積物検知装置として機能する例を説明したが、この例に限定されることはない。本発明に係る堆積物検知装置をターボ分子ポンプ以外の他の排気ポンプの制御ユニットに適用することにより、本発明に係る堆積物検知装置を備えた排気ポンプとして構成することもできる。
1 堆積物検知装置
2、21、22 圧力計測手段
2A 感圧部
3、31、32 連通路
4、41 検知処理手段
4A 記録手段
4B データ処理手段
4C 閾値設定部
100 プロセス装置
101 プロセスチャンバ
102 排気装置
103 ガス供給制御バルブ
104 チャンバ圧力計
105 制御ユニット
106 演算ユニット
B 吸気口バルブ
CD ガス回収装置
K1 電線ケーブル
K2 通信ケーブル
M1、M2 メッシュ
PP 圧力溜り
P1 分岐管
R ガス流路
R1 ポンプ内ガス流路
RP 配管
S 補助ポンプ
S1 補助ポンプの吸気口
S2 補助ポンプの排気口
T ターボ分子ポンプ
T1 ターボ分子ポンプの吸気口
T2 ターボ分子ポンプの排気口
T3 円筒部(ロータ)
T4 ブレード部(回転翼)
T5 回転体
T6 駆動モータ
T7 回転軸(ロータ軸)
T8 ネジ溝部
T9 磁気軸受

Claims (10)

  1. ガス流路内の堆積物を検知する堆積物検知装置であって、
    前記堆積物検知装置は、
    感圧部で圧力を検出し出力する圧力計測手段と、
    前記圧力計測手段の感圧部と前記ガス流路とに開口した連通路と、
    前記圧力計測手段からの出力である圧力の変動幅を監視することにより堆積物を検知する検知処理手段と、を備えてなること
    を特徴とする堆積物検知装置。
  2. 前記検知処理手段における圧力の変動幅の監視は、その圧力の変動幅が閾値以下か否かを判定するものであり、
    前記検知処理手段における堆積物の検知は、前記圧力の変動幅が閾値以下となったときに、堆積物が所定量に達したものとして信号を出力するものであること
    を特徴とする請求項1に記載の堆積物検知装置。
  3. ガス流路内の堆積物を検知する堆積物検知装置であって、
    前記堆積物検知装置は、
    感圧部で圧力を検出し出力する2以上の圧力計測手段と、
    前記各圧力計測手段の感圧部と前記ガス流路とに開口した2以上の連通路と、
    前記各圧力計測手段からの出力である圧力の差分を監視することにより堆積物を検知する検知処理手段と、を備えてなること
    を特徴とする堆積物検知装置。
  4. 前記検知処理手段における圧力の差分の監視は、その圧力の差分が閾値か否かを判定するものであり、
    前記検知処理手段における堆積物の検知は、前記圧力の差分が閾値となったときに、堆積物が所定量に達したものとして信号を出力するものであること
    を特徴とする請求項3に記載の堆積物検知装置。
  5. 前記ガス流路がその上流から下流に向けて圧力が変化する場合において、前記2以上の連通路のうち、少なくとも1つの連通路は、他の連通路とは圧力の異なる箇所に開口するように設けたこと
    を特徴とする請求項3に記載の堆積物検知装置。
  6. 前記ガス流路がその上流から下流に向けて圧力が変化する場合において、前記2以上の連通路のうち、少なくとも1つの連通路は、他の連通路よりも上流に開口するように設けたこと
    を特徴とする請求項3に記載の堆積物検知装置。
  7. 前記2以上の連通路のうち、少なくとも1つの連通路の開口面積は、それ以外の他の連通路の開口面積と異なるように設けたこと
    を特徴とする請求項3に記載の堆積物検知装置。
  8. 前記ガス流路は、ガスを排気するターボ分子ポンプのポンプ内ガス流路であって、
    前記2以上の連通路は、前記ポンプ内ガス流路の圧力溜りとなる箇所に開口するように設けたこと
    を特徴とする請求項3に記載の堆積物検知装置。
  9. 前記2以上の連通路のうち、少なくとも1つの連通路が前記ガス流路に開口している開口部近傍に、温度調節手段が設けられていて、この温度調節手段により前記開口部付近の温度をそれ以外の部位より上げる、若しくは下げるように構成したこと
    を特徴とする請求項3に記載の堆積物検知装置。
  10. 前記請求項1から9のいずれか1項に記載の堆積物検知装置を備えた排気ポンプ。
JP2010123310A 2010-05-28 2010-05-28 堆積物検知装置と、該装置を備えた排気ポンプ Pending JP2011247823A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010123310A JP2011247823A (ja) 2010-05-28 2010-05-28 堆積物検知装置と、該装置を備えた排気ポンプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010123310A JP2011247823A (ja) 2010-05-28 2010-05-28 堆積物検知装置と、該装置を備えた排気ポンプ

Publications (1)

Publication Number Publication Date
JP2011247823A true JP2011247823A (ja) 2011-12-08

Family

ID=45413249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010123310A Pending JP2011247823A (ja) 2010-05-28 2010-05-28 堆積物検知装置と、該装置を備えた排気ポンプ

Country Status (1)

Country Link
JP (1) JP2011247823A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020184504A1 (ja) 2019-03-14 2020-09-17 エドワーズ株式会社 真空ポンプ
CN111828362A (zh) * 2019-04-18 2020-10-27 株式会社岛津制作所 真空泵系统
KR20210135988A (ko) 2019-03-14 2021-11-16 에드워즈 가부시키가이샤 진공 펌프

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02223887A (ja) * 1989-02-23 1990-09-06 Kubota Ltd 排水管の詰まり検知方法及び装置
JPH05185390A (ja) * 1992-01-13 1993-07-27 Juki Corp 部品吸着装置
JPH08210836A (ja) * 1994-10-03 1996-08-20 Boc Group Plc:The パイプ及び容器内の付着物の監視装置
JPH1174254A (ja) * 1997-08-29 1999-03-16 Nec Kyushu Ltd ドライエッチング装置
JP2004117091A (ja) * 2002-09-25 2004-04-15 Boc Edwards Technologies Ltd 真空ポンプ
JP2008501117A (ja) * 2004-05-24 2008-01-17 ホスピラ・インコーポレイテツド 組み合わされた流量、気泡、および閉塞の検出器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02223887A (ja) * 1989-02-23 1990-09-06 Kubota Ltd 排水管の詰まり検知方法及び装置
JPH05185390A (ja) * 1992-01-13 1993-07-27 Juki Corp 部品吸着装置
JPH08210836A (ja) * 1994-10-03 1996-08-20 Boc Group Plc:The パイプ及び容器内の付着物の監視装置
JPH1174254A (ja) * 1997-08-29 1999-03-16 Nec Kyushu Ltd ドライエッチング装置
JP2004117091A (ja) * 2002-09-25 2004-04-15 Boc Edwards Technologies Ltd 真空ポンプ
JP2008501117A (ja) * 2004-05-24 2008-01-17 ホスピラ・インコーポレイテツド 組み合わされた流量、気泡、および閉塞の検出器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020184504A1 (ja) 2019-03-14 2020-09-17 エドワーズ株式会社 真空ポンプ
KR20210135988A (ko) 2019-03-14 2021-11-16 에드워즈 가부시키가이샤 진공 펌프
US11898567B2 (en) 2019-03-14 2024-02-13 Edwards Japan Limited Vacuum pump
CN111828362A (zh) * 2019-04-18 2020-10-27 株式会社岛津制作所 真空泵系统
JP2020176555A (ja) * 2019-04-18 2020-10-29 株式会社島津製作所 真空ポンプシステム
US11162499B2 (en) 2019-04-18 2021-11-02 Shimadzu Corporation Vacuum pump system

Similar Documents

Publication Publication Date Title
CN107795498B (zh) 堆积物监视装置及真空泵
CN101042072B (zh) 温度和/或压力传感器组件
TWI631320B (zh) Flow control device and abnormality detecting method using flow control device
US20190063689A1 (en) Leak detection device and method
JP4598044B2 (ja) 流量検定故障診断装置、流量検定故障診断方法及び流量検定故障診断プログラム
KR101319250B1 (ko) 진공 라인 및 이를 모니터링 하기 위한 방법
KR101410076B1 (ko) 진공 배기 장치 및 진공 처리 장치 및 진공 배기 방법
TW200600990A (en) System and method for flow monitoring and control
US11162499B2 (en) Vacuum pump system
JP2002519630A (ja) 流体が流れている系内の漏れの存在を検出する方法と装置
US8771598B2 (en) Ammonia storage system
JP2011247823A (ja) 堆積物検知装置と、該装置を備えた排気ポンプ
US20110100097A1 (en) Leakage Seeker
JP7439890B2 (ja) ポンプ監視装置および真空ポンプ
KR20180074698A (ko) 샘플 테이크오프를 위한 정상 상태의 유체 유동 검증
JP2011088026A (ja) 脱気装置
KR102650699B1 (ko) 진공 펌프 시스템, 진공 펌프 모니터링 방법 및 반도체 소자의 제조방법
CN113227642B (zh) 一种用于检测在压力或真空下的气体网络中的泄漏的方法和气体网络
JP7172821B2 (ja) ポンプ監視装置および真空ポンプ
GB2504736A (en) Apparatus and method for determining the flow rate of a pump
JP4789666B2 (ja) ガスパイプライン監視設備
EP3903019B1 (en) Method for detecting obstructions in a gas network under pressure or under vacuum and gas network
CN114072612B (zh) 在压力或真空下的气体管网中检测阻塞的方法及气体管网
JP2007322296A (ja) 差圧検出装置
CN115693354A (zh) 激光器的净化方法、系统及装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141020