JP2011241798A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2011241798A
JP2011241798A JP2010116930A JP2010116930A JP2011241798A JP 2011241798 A JP2011241798 A JP 2011241798A JP 2010116930 A JP2010116930 A JP 2010116930A JP 2010116930 A JP2010116930 A JP 2010116930A JP 2011241798 A JP2011241798 A JP 2011241798A
Authority
JP
Japan
Prior art keywords
passage
air bypass
valve
intake passage
egr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010116930A
Other languages
English (en)
Other versions
JP5420473B2 (ja
Inventor
Yoshiharu Ishigami
佳治 石神
Hajime Udo
肇 宇土
Jun Kato
潤 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010116930A priority Critical patent/JP5420473B2/ja
Publication of JP2011241798A publication Critical patent/JP2011241798A/ja
Application granted granted Critical
Publication of JP5420473B2 publication Critical patent/JP5420473B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)

Abstract

【課題】過給された新気を吸気通路のコンプレッサの上流側に還流させる場合において、エアフローセンサによる新気量の検出精度を向上させることができる内燃機関の制御装置を提供する。
【解決手段】この制御装置1では、吸気通路4のエアフローセンサ21およびコンプレッサ10aの間と排気通路5とにEGR通路11aが接続され、吸気通路4のエアフローセンサ21とEGR通路11aの接続部との間に第1EGR制御弁11bが設けられている。吸気通路4のコンプレッサよりも下流側と吸気通路4のコンプレッサおよび第1EGR制御弁11bの間とにエアバイパス通路12が接続され、このエアバイパス通路12に過給運転状態から減速運転状態に移行したときに開弁するエアバイパス弁13が設けられている。エアバイパス弁13が開弁したと判定されたときに、第1EGR制御弁11bを閉じ側に制御する。
【選択図】図5

Description

本発明は、吸気通路にコンプレッサが設けられた過給機を有する内燃機関の制御装置に関する。
従来のこの種の内燃機関の制御装置として、例えば特許文献1に開示されたものが知られている。この内燃機関の吸気通路には、コンプレッサをバイパスするようにエアバイパス通路が接続されている。このエアバイパス通路には、エアバイパス弁が設けられており、その開度を変更することによって、コンプレッサによって過給された新気を吸気通路のコンプレッサよりも上流側に還流させる。また、吸気通路には、エアバイパス通路との接続部よりも上流側にエアフローセンサが設けられている。
この制御装置では、内燃機関の回転数、スロットル弁の開度およびエアバイパス弁の開度に応じ、所定のマップを検索することによって補正係数を算出し、この補正係数をエアフローセンサで検出した新気量に乗算し、これを補正することによって、最終的な新気量を算出する。このように、エアバイパス弁の開度に応じて新気量を補正することによって、エアバイパス弁の開弁に伴う新気の還流によるエアフローセンサの検出値のずれを補償するようにしている。
特開2007−9867号公報
しかし、エアバイパス通路を介して吸気通路に還流する新気の還流量は、内燃機関の回転数、スロットル弁の開度およびエアバイパス弁の開度だけでなく、コンプレッサによる過給圧などに応じて変化する。このため、従来の制御装置のように、内燃機関の回転数、スロットル弁の開度およびエアバイパス弁の開度に応じてエアフローセンサの検出値を補正しても、補正した最終的な新気量が実際の新気量に一致するとは限らず、補正の精度には限界がある。また、上記の3つのパラメータを用いた所定のマップに基づいて補正係数を算出するので、そのマップのマッピングの工数がかかってしまう。
本発明は、このような課題を解決するためになされたものであり、過給された新気を吸気通路のコンプレッサの上流側に還流させる場合において、エアフローセンサによる新気量の検出精度を向上させることができる内燃機関の制御装置を提供することを目的とする。
上記の目的を達成するため、請求項1に係る発明は、吸気通路4にコンプレッサ(実施形態における(以下、本項において同じ)コンプレッサブレード10a)が設けられた過給機(ターボチャージャ10)を有する内燃機関3の制御装置1であって、吸気通路4のコンプレッサよりも上流側に設けられ、内燃機関3に吸入される新気の量を検出するエアフローセンサ21と、吸気通路4のエアフローセンサ21およびコンプレッサの間と排気通路5とに接続され、排気通路5に排出された排ガスの一部を、吸気通路4に還流させるためのEGR通路11aと、吸気通路4のエアフローセンサ21とEGR通路11aの接続部との間に設けられた第1EGR制御弁11bと、吸気通路4のコンプレッサよりも下流側と吸気通路4のコンプレッサおよび第1EGR制御弁11bの間とに接続されたエアバイパス通路12と、エアバイパス通路12に設けられ、内燃機関3がコンプレッサによる過給が行われる過給運転状態から減速運転状態に移行したときに開弁するエアバイパス弁13と、エアバイパス弁13が開弁したか否かを判定する判定手段(ECU2、図3のステップ1,2)と、判定手段によりエアバイパス弁13が開弁したと判定されたときに、第1EGR制御弁11bを閉じ側に制御する制御手段(ECU2、図3のステップ7)と、を備えることを特徴とする。
この内燃機関の制御装置によれば、吸気通路に設けられたエアフローセンサによって、内燃機関に吸入される新気の量が検出される。また、吸気通路には、エアフローセンサとコンプレッサの間にEGR通路が接続されており、このEGR通路を介して、排気通路に排出された排ガスの一部が、吸気通路に還流する。また、吸気通路のエアフローセンサとEGR通路の接続部との間には、第1EGR制御弁が設けられており、この第1EGR制御弁の開度を制御することによって、排ガスの還流に必要な吸気通路と排気通路との差圧が確保される。
また、吸気通路には、コンプレッサの下流側とコンプレッサおよび第1EGR制御弁の間とにエアバイパス通路が接続されており、このエアバイパス通路には、エアバイパス弁が設けられている。このエアバイパス弁は、内燃機関が、コンプレッサによる過給が行われる過給運転状態から減速運転状態に移行したときに開弁する。これにより、コンプレッサによって過給された新気が吸気通路のコンプレッサよりも上流側に還流し、コンプレッサの下流側における吸気通路内の圧力が低下する結果、吸気通路内の圧力の過大化に起因するサージングや吸気通路の外れなどが回避される。
さらに、エアバイパス弁が開弁したと判定されたときに、第1EGR制御弁を閉じ側に制御するので、エアバイパス通路を介して吸気通路に還流した、過給された新気が、第1EGR制御弁の上流側、ひいてはエアフローセンサ付近に逆流するのを抑制することができる。これにより、過給された新気を吸気通路のコンプレッサの上流側に還流させる場合において、エアフローセンサによる新気量の検出精度を向上させることができる。また、第1EGR制御弁はもともと、排ガスの還流に必要な吸気通路と排気通路との差圧を確保するために設けられるものであるので、そのための専用のデバイスを追加する必要がなく、製造コストを削減することができる。
請求項2に係る発明は、請求項1に記載の内燃機関3の制御装置1において、吸気通路4のエアバイパス通路12との下流側の接続部よりも下流側に設けられたスロットル弁6と、吸気通路4のエアフローセンサ21および第1EGR制御弁11bの間とスロットル弁6よりも下流側とに接続され、内燃機関3に新気を供給するための新気バイパス通路14と、新気バイパス通路14に設けられた新気バイパス弁15と、をさらに備え、制御手段は、エアバイパス弁13が開弁したと判定されたときに、スロットル弁6を閉じ側に制御するとともに、新気バイパス弁15を開き側に制御することを特徴とする。
排ガスをコンプレッサの上流側に還流させる場合、吸気通路のEGR通路との接続部から内燃機関の燃焼室までの距離が比較的長いことで、排ガスの応答遅れは大きくなる。特に、内燃機関が過給運転状態から減速運転状態に移行したときには、排ガスの応答遅れによる影響によって、燃焼室に供給される新気の割合が少なくなることで、内燃機関の燃焼状態が不安定になり、失火しやすくなる。また、このような不具合を解消するために、スロットル弁を閉弁した場合には、燃焼室に供給される空気が不足することで、燃焼状態がやはり不安定になる。
以上のような観点に基づき、本発明によれば、吸気通路のエアフローセンサおよび第1EGR制御弁の間とスロットル弁よりも下流側とに、新気バイパス通路が接続されており、この新気バイパス通路に新気バイパス弁が設けられている。そして、エアバイパス弁が開弁したとき、すなわち内燃機関の減速運転状態への移行時に、スロットル弁の開度を閉じ側に制御するとともに、新気バイパス弁の開度を開き側に制御する。これにより、新気バイパス通路を介して、新気が第1EGR制御弁の上流側からコンプレッサをバイパスし、スロットル弁の下流側に供給される。この場合、第1EGR制御弁およびスロットル弁は、閉じ側に制御されるので、第1EGR制御弁の上流側およびスロットル弁の下流側への排ガスの流出を抑制することができる。以上により、新気バイパス通路を介して新気を十分に供給することができ、内燃機関の安定した燃焼状態を維持することができる。
また、スロットル弁を閉じ側に制御しても、エアバイパス弁が開弁されているので、スロットル弁の上流側における吸気通路内の圧力が過大になることはなく、それに伴うスロットル弁の故障を回避することができる。
請求項3に係る発明は、請求項1または2に記載の内燃機関3の制御装置1において、EGR通路11aに設けられた第2EGR制御弁11cをさらに備え、制御手段は、エアバイパス弁13が開弁したと判定されたときに、第2EGR制御弁11cを開き側に制御することを特徴とする。
この構成によれば、エアバイパス弁が開弁したときには、EGR通路に設けた第2EGR制御弁の開度を開き側に制御するので、コンプレッサによって過給された新気をEGR通路を介して排気通路に逃がすことができる。これにより、第1EGR制御弁の下流側とスロットル弁の上流側との間における吸気通路内の圧力の上昇を抑制することができる。
本発明を適用した内燃機関の構成を概略的に示す図である。 制御装置の概略構成を示すブロック図である。 新気量制御処理を示すメインフローである。 通常制御処理を示すサブルーチンである。 減速移行時制御処理を示すサブルーチンである。
以下、図面を参照しながら、本発明の好ましい実施形態について説明する。図1に示すように、本実施形態の制御装置1が適用された内燃機関(以下「エンジン」という)3は、#1〜#4の4つの気筒3aを有する4気筒のガソリンエンジンであり、ターボチャージャ10およびEGR装置11などを備えている。
ターボチャージャ10は、吸気通路4に設けられたコンプレッサブレード10aと、排気通路5に設けられ、コンプレッサブレード10aと一体に回転するタービンブレード10bと、複数の可変ベーン10c(2つのみ図示)と、可変ベーン10cを駆動するベーンアクチュエータ10dなどを備えている。
このターボチャージャ10では、排気通路5を流れる排ガスによってタービンブレード10bが回転駆動されると、これと一体のコンプレッサブレード10aも同時に回転することによって、吸気を過給する過給動作が行われる。
可変ベーン10cは、タービンブレード10bを収容するハウジング(図示せず)の壁部に回動自在に取り付けられており、ベーンアクチュエータ10dに機械的に連結されている。可変ベーン10cの開度は、後述するECU2により、ベーンアクチュエータ10dを介して制御される。これにより、タービンブレード10bに吹き付けられる排ガスの量が変化するのに伴い、タービンブレード10bおよびコンプレッサブレード10aの回転速度が変化することによって、過給圧が制御される。
吸気通路4には、上流側から順に、エアフローセンサ21、EGR装置11の第1EGR制御弁11b、吸気圧センサ22、前記コンプレッサブレード10a、過給圧センサ23およびスロットル弁6が設けられている。エアフローセンサ21は、例えば熱線式のものであり、エンジン3に吸入される新気の流量に応じて変化する熱線の抵抗値を新気量QAとして検出し、その検出信号をECU2に出力する。
吸気圧センサ22は、コンプレッサブレード10aと第1EGR制御弁11bとの間における吸気通路4内の圧力を、吸気圧PINとして検出し、その検出信号をECU2に出力する。過給圧センサ23は、コンプレッサブレード10aのすぐ下流側における吸気通路4内の圧力を、過給圧PBSTとして検出し、その検出信号をECU2に出力する。
スロットル弁6は、吸気通路4の吸気マニホルド4aよりも上流側に配置され、吸気通路4内に回動自在に設けられている。スロットル弁6の開度は、ECU2からの制御入力に応じて、THアクチュエータ6a(図2参照)を介して制御され、それにより、スロットル弁6を通過する新気の量が制御される。
排気通路5のタービンブレード10bよりも下流側には、触媒7が設けられている。この触媒7は、例えば三元触媒で構成されており、排気通路5を流れる排ガス中のHCやCOを酸化するとともに、NOxを還元させることによって、排ガスを浄化する。また、排気通路5には、触媒7の下流側に排気圧センサ24が設けられている。排気圧センサ24は、排気通路5内の圧力(以下「排気圧」という)PEXを検出し、その検出信号をECU2に出力する。
前述したEGR装置11は、排気通路5に排出された排ガスの一部を吸気通路4に還流させるEGR動作を実行するためのものであり、EGR通路11a、前記第1EGR制御弁11bおよび第2EGR制御弁11cなどで構成されている。EGR通路11aは、吸気通路4のエアフローセンサ21およびコンプレッサブレード10aの間と、排気通路5の触媒7よりも下流側に接続されている。
第1EGR制御弁11bは、吸気通路4のエアフローセンサ21とEGR通路11aの接続部との間に設けられており、その開度は、ECU2からの制御入力に応じて制御される。また、第2EGR制御弁11cは、EGR通路11aに設けられており、その開度は、ECU2からの制御入力に応じて制御される。
以上の構成のEGR装置11によれば、第1EGR制御弁11bの開度を制御することによって、排ガスの還流に必要な吸気通路4と排気通路5との差圧が確保されるとともに、第2EGR制御弁11cの開度を制御することによって、排ガスの還流量が制御される。
また、吸気通路4には、エアバイパス通路12および新気バイパス通路14が設けられている。エアバイパス通路12は、コンプレッサブレード10aおよびスロットル弁6の間と、コンプレッサブレード10aおよび第1EGR制御弁11bの間に接続されている。エアバイパス通路12には、エアバイパス弁13が設けられており、その開閉は、ECU2からの制御入力に応じて制御される。この構成により、エアバイパス弁13が開弁しているときには、コンプレッサブレード10aよりも下流側の吸気が、エアバイパス通路12を介して、吸気通路4の第1EGR制御弁11bとコンプレッサブレード10aとの間に還流する。
新気バイパス通路14は、エアフローセンサ21および第1EGR制御弁11bの間と、スロットル弁6よりも下流側に接続されている。新気バイパス通路14には、新気バイパス弁15が設けられており、その開閉は、ECU2からの制御入力に応じて制御される。この構成により、新気バイパス弁15が開弁しているときには、新気が、新気バイパス通路14を介して、第1EGR制御弁11bの上流側からコンプレッサブレード10aをバイパスし、スロットル弁6の下流側に供給される。
また、エンジン3には、クランク角センサ25が設けられている。このクランク角センサ25は、クランクシャフト(図示せず)の回転に伴い、パルス信号であるCRK信号およびTDC信号をECU2に出力する。
CRK信号は、所定クランク角(例えば1°)ごとに出力される。ECU2は、このCRK信号に基づき、エンジン3の回転数(以下「エンジン回転数」という)NEを算出する。また、TDC信号は、いずれかの気筒3aにおいてピストン(図示せず)が吸気行程の開始時の上死点よりも若干、手前の所定のクランク角位置にあることを表す信号であり、本実施形態のようにエンジン3が4気筒の場合には、クランク角180゜ごとに出力される。
また、ECU2には、アクセル開度センサ26から、車両のアクセルペダル(図示せず)の踏み込み量(以下「アクセル開度」という)APを表す検出信号が出力される。
ECU2は、CPU、RAM、ROMおよびI/Oインターフェース(いずれも図示せず)などから成るマイクロコンピュータで構成されている。ECU2は、前述した各種のセンサ21〜26の検出信号などに応じて、エンジン3の運転状態を判別するとともに、判別した運転状態に応じて、新気量や排ガス還流量などを制御する新気量制御処理を実行する。なお、本実施形態では、ECU2が、判定手段および制御手段に相当する。
図3は、上述した新気量制御処理を示すフローチャートである。本処理は、TDC信号の発生に同期して実行される。本処理では、まずステップ1(「S1」と図示。以下同じ)において、エンジン3の所定の減速運転が開始されたか否かを判別する。具体的には、エンジン3がターボチャージャ10による過給が行われる過給運転状態から減速運転状態に移行したときに、所定の減速運転が開始されたと判別される。この判別結果がNOで、所定の減速運転の開始時でないときには、エアバイパスフラグF_ABVが「1」であるか否かを判別する(ステップ2)。後述するように、このエアバイパスフラグF_ABVは、エアバイパス弁13が開弁しているときに「1」にセットされるものである。
この判別結果がNOで、エアバイパスフラグF_ABVが「0」のときには、通常制御を実行し(ステップ5)、本処理を終了する。
上記の通常制御は、図4に示すサブルーチンによって実行される。本処理ではまず、エアバイパス弁13を閉弁する(ステップ11)とともに、新気バイパス弁15を閉弁する(ステップ12)。これにより、エアバイパス通路12を介した吸気の還流、および新気バイパス通路14を介した新気の供給が禁止される。また、アクセル開度APに応じてスロットル弁6の開度を制御することによって、気筒3aに供給される新気量を制御する(ステップ13)。
次に、排気圧PEXおよび吸気圧PINに応じて、第1EGR制御弁11bを制御する(ステップ14)。具体的には、第1EGR制御弁11bは、排気圧PEXと吸気圧PINとの差圧が小さいほど、より大きな差圧を得るために、より閉じ側に制御される。
次いで、エンジン回転数NEおよび要求トルクPMCMDに応じて、第2EGR制御弁11cを制御し(ステップ15)、本処理を終了する。具体的には、第2EGR制御弁11cは、エンジン回転数NEが大きいほど、また、要求トルクPMCMDが高いほど、NOxの発生を抑制すべく、より多量の排ガスを還流させるために、より開き側に設定される。なお、要求トルクPMCMDは、エンジン回転数NEおよびアクセル開度APに応じて、算出される。
図3に戻り、前記ステップ1の判別結果がYESで、過給運転からエンジン3の減速運転が開始されたときには、エアバイパスフラグF_ABVを「1」にセットする(ステップ6)とともに、減速移行時制御を実行した(ステップ7)後、本処理を終了する。
上記の減速移行時制御は、図5に示すサブルーチンによって実行される。本処理ではまず、エアバイパス弁13を開弁する(ステップ21)とともに、新気バイパス弁15を開弁する(ステップ22)。また、スロットル弁6をほぼ全閉状態に制御する(ステップ23)。次に、第1EGR制御弁11bを全閉状態に制御する(ステップ24)とともに、第2EGR制御弁11cを全開状態に制御し(ステップ25)、本処理を終了する。
上述した減速移行時制御によれば、エアバイパス弁13の開弁に伴い、スロットル弁6をほぼ全閉状態に、第1EGR制御弁11bを全閉状態に、第2EGR制御弁11cを全開状態に、それぞれ制御する。これにより、過給された吸気が、エアバイパス通路12を通って、コンプレッサブレード10aと第1EGR制御弁11bの間に還流し、さらにEGR通路11aを通って排気通路5に流出する(図1の黒矢印)ことによって、コンプレッサブレード10aとスロットル弁6の間の吸気通路4内の圧力が低下する。上記に加え、新気バイパス弁15を開弁することによって、新気が、第1EGR制御弁11bの上流側から新気バイパス通路14を通って、吸気通路4のスロットル弁6の下流側に流入し(同図の白矢印)、気筒3aに供給される。
図3に戻り、前記ステップ6および7が実行されると、前記ステップ2の判別結果がYESになり、その場合には、過給圧PBSTが所定圧PREFよりも小さいか否かを判別する(ステップ3)。この判別結果がNOで、PBST≧PREFのときには、コンプレッサブレード10aとスロットル弁6の間の吸気通路4内の圧力が高く、サージングなどが発生するおそれがあり、この圧力を低下させる必要があるとして、前記ステップ6以降に進み、減速移行時制御を引き続き実行する。
一方、前記ステップ3の判別結果がYESで、過給圧PBST<所定圧PREFのときには、コンプレッサブレード10aとスロットル弁6の間における吸気通路4内の圧力が十分に低下し、サージングなどが発生するおそれがないとして、エアバイパスフラグF_ABVを「0」にセットする(ステップ4)とともに、減速移行時制御を終了し、前記ステップ5に進み、通常制御を実行する。
以上のように、本実施形態によれば、エンジン3が過給運転状態から減速運転状態に移行したときに、エアバイパス弁13を開弁する(図3のステップ1:YES、図5のステップ21)。これにより、ターボチャージャ10によって過給された吸気が、吸気通路4のコンプレッサブレード10aよりも上流側に還流し、コンプレッサブレード10aの下流側における吸気通路4内の圧力が低下する結果、吸気通路4内の圧力の過大化に起因するサージングや吸気通路4の外れなどを回避することができる。
また、エアバイパス弁13を開弁したときに、第1EGR制御弁11bを全閉状態に制御する(図5のステップ24)ので、エアバイパス通路12を介して吸気通路4に還流した空気が、第1EGR制御弁11bの上流側、ひいてはエアフローセンサ21付近に逆流するのを回避することができる。これにより、過給された吸気を吸気通路4のコンプレッサブレード10aの上流側に還流させる場合において、エアフローセンサ21による新気量QAの検出精度を向上させることができる。さらに、第1EGR制御弁11bはもともと、排ガスの還流に必要な吸気通路4と排気通路5との差圧を確保するために設けられるものであるので、そのための専用のデバイスを追加する必要がなく、製造コストを削減することができる。
さらに、減速運転への移行時に、スロットル弁6をほぼ全閉状態に制御する(図5のステップ23)とともに、新気バイパス弁15を開弁する(図5のステップ22)。これにより、第1EGR制御弁11bの上流側への排ガスの流出を防止するとともに、スロットル弁6の下流側への排ガスの流出を抑制しながら、新気バイパス通路14を介して新気を気筒3aに十分に供給することができる結果、エンジン3の安定した燃焼状態を維持することができる。
また、スロットル弁6をほぼ全閉状態に制御しても、エアバイパス弁13は開弁されているので、スロットル弁6の上流側における吸気通路4内の圧力が過大になることはなく、それに伴うスロットル弁6の故障を回避することができる。
さらに、減速運転への移行時に、スロットル弁6をほぼ全閉状態に制御することで、吸気通路4を若干、開放するので、コンプレッサブレード10aとスロットル弁6の間に排ガスが滞留することがなくなる。これにより、その後、スロットル弁6が開弁したときに、排ガスが気筒3aに急激に流入するのを回避でき、スロットル弁6が開弁した直後においても安定した燃焼状態を確保することができる。また、排ガスの滞留に伴う吸気通路4などの腐食を防止することができる。
また、エアバイパス弁13が開弁したときに、第2EGR制御弁11cを全開状態に制御するので(図5のステップ25)、ターボチャージャ10によって過給された空気をEGR通路11aを介して排気通路5に逃がすことができる。これにより、第1EGR制御弁11bの下流側とスロットル弁6の上流側との間における吸気通路4内の圧力の上昇を抑制することができる。
なお、本発明は、説明した実施形態に限定されることなく、種々の態様で実施することができる。例えば、実施形態では、過給運転から減速運転への移行時に、第1EGR制御弁11bを全閉状態に制御しているが、これに限らず、閉じ側の所定の開度に制御してもよい。同様に、減速運転への移行時に、スロットル弁6を全閉に制御してもよく、また、第2EGR制御弁11cを開き側の所定の開度に制御してもよい。さらに、実施形態では、エアバイパス弁13および新気バイパス弁15は、開閉式のものであるが、これに代えて、開度が無段階に変更可能なもので構成するとともに、減速運転への移行時に、それらの開度を増大側に制御してもよい。
また、実施形態では、新気バイパス通路14を、吸気マニホルド4aの上流側に接続しているが、これに限らず、吸気マニホルド4aに接続し、新気バイパス通路14からの新気を直接、吸気マニホルド4aに流入させるようにしてもよい。
さらに、実施形態は、本発明を車両に搭載されたガソリンエンジンに適用した例であるが、本発明は、これに限らず、ガソリンエンジン以外のディーゼルエンジンなどの各種のエンジンに適用してもよく、また、車両用以外のエンジン、例えば、クランク軸を鉛直に配置した船外機などのような船舶推進機用エンジンにも適用可能である。その他、本発明の趣旨の範囲内で、細部の構成を適宜、変更することが可能である。
1 制御装置
2 ECU(判定手段および制御手段)
3 エンジン
4 吸気通路
5 排気通路
6 スロットル弁
10 ターボチャージャ(過給機)
10a コンプレッサブレード(コンプレッサ)
11a EGR通路
11b 第1EGR制御弁
11c 第2EGR制御弁
12 エアバイパス通路
13 エアバイパス弁
14 新気バイパス通路
15 新気バイパス弁
21 エアフローセンサ

Claims (3)

  1. 吸気通路にコンプレッサが設けられた過給機を有する内燃機関の制御装置であって、
    前記吸気通路の前記コンプレッサよりも上流側に設けられ、前記内燃機関に吸入される新気の量を検出するエアフローセンサと、
    前記吸気通路の前記エアフローセンサおよび前記コンプレッサの間と排気通路とに接続され、当該排気通路に排出された排ガスの一部を、前記吸気通路に還流させるためのEGR通路と、
    前記吸気通路の前記エアフローセンサと前記EGR通路の接続部との間に設けられた第1EGR制御弁と、
    前記吸気通路の前記コンプレッサよりも下流側と前記吸気通路の前記コンプレッサおよび前記第1EGR制御弁の間とに接続されたエアバイパス通路と、
    当該エアバイパス通路に設けられ、前記内燃機関が前記コンプレッサによる過給が行われる過給運転状態から減速運転状態に移行したときに開弁するエアバイパス弁と、
    当該エアバイパス弁が開弁したか否かを判定する判定手段と、
    当該判定手段により前記エアバイパス弁が開弁したと判定されたときに、前記第1EGR制御弁を閉じ側に制御する制御手段と、
    を備えることを特徴とする内燃機関の制御装置。
  2. 前記吸気通路の前記エアバイパス通路との下流側の接続部よりも下流側に設けられたスロットル弁と、
    前記吸気通路の前記エアフローセンサおよび前記第1EGR制御弁の間と前記スロットル弁よりも下流側とに接続され、前記内燃機関に新気を供給するための新気バイパス通路と、
    当該新気バイパス通路に設けられた新気バイパス弁と、をさらに備え、
    前記制御手段は、前記エアバイパス弁が開弁したと判定されたときに、前記スロットル弁を閉じ側に制御するとともに、前記新気バイパス弁を開き側に制御することを特徴とする、請求項1に記載の内燃機関の制御装置。
  3. 前記EGR通路に設けられた第2EGR制御弁をさらに備え、
    前記制御手段は、前記エアバイパス弁が開弁したと判定されたときに、前記第2EGR制御弁を開き側に制御することを特徴とする、請求項1または2に記載の内燃機関の制御装置。
JP2010116930A 2010-05-21 2010-05-21 内燃機関の制御装置 Expired - Fee Related JP5420473B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010116930A JP5420473B2 (ja) 2010-05-21 2010-05-21 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010116930A JP5420473B2 (ja) 2010-05-21 2010-05-21 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2011241798A true JP2011241798A (ja) 2011-12-01
JP5420473B2 JP5420473B2 (ja) 2014-02-19

Family

ID=45408700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010116930A Expired - Fee Related JP5420473B2 (ja) 2010-05-21 2010-05-21 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP5420473B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217318A (ja) * 2012-04-10 2013-10-24 Toyota Motor Corp 車載内燃機関の制御装置
WO2014181394A1 (ja) 2013-05-08 2014-11-13 トヨタ自動車株式会社 過給機付き内燃機関
WO2015181973A1 (ja) * 2014-05-30 2015-12-03 日産自動車株式会社 内燃機関及び内燃機関の制御方法
US9303574B2 (en) 2014-01-14 2016-04-05 Aisan Kogyo Kabushiki Kaisha Control device of engine with supercharger
JP2020067039A (ja) * 2018-10-24 2020-04-30 トヨタ自動車株式会社 内燃機関の潤滑装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006342761A (ja) * 2005-06-10 2006-12-21 Toyota Motor Corp 内燃機関の制御装置
JP2007255188A (ja) * 2006-03-20 2007-10-04 Honda Motor Co Ltd 内燃機関の燃料制御装置
JP2008144633A (ja) * 2006-12-07 2008-06-26 Toyota Motor Corp 内燃機関の排気浄化システム
JP2009209784A (ja) * 2008-03-04 2009-09-17 Nissan Motor Co Ltd 過給機付エンジンのegr制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006342761A (ja) * 2005-06-10 2006-12-21 Toyota Motor Corp 内燃機関の制御装置
JP2007255188A (ja) * 2006-03-20 2007-10-04 Honda Motor Co Ltd 内燃機関の燃料制御装置
JP2008144633A (ja) * 2006-12-07 2008-06-26 Toyota Motor Corp 内燃機関の排気浄化システム
JP2009209784A (ja) * 2008-03-04 2009-09-17 Nissan Motor Co Ltd 過給機付エンジンのegr制御装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217318A (ja) * 2012-04-10 2013-10-24 Toyota Motor Corp 車載内燃機関の制御装置
WO2014181394A1 (ja) 2013-05-08 2014-11-13 トヨタ自動車株式会社 過給機付き内燃機関
US9708971B2 (en) 2013-05-08 2017-07-18 Toyota Jidosha Kabushiki Kaisha Supercharged internal combustion engine
US9303574B2 (en) 2014-01-14 2016-04-05 Aisan Kogyo Kabushiki Kaisha Control device of engine with supercharger
WO2015181973A1 (ja) * 2014-05-30 2015-12-03 日産自動車株式会社 内燃機関及び内燃機関の制御方法
JPWO2015181973A1 (ja) * 2014-05-30 2017-04-20 日産自動車株式会社 内燃機関及び内燃機関の制御方法
RU2660685C2 (ru) * 2014-05-30 2018-07-09 Ниссан Мотор Ко., Лтд. Двигатель внутреннего сгорания и способ для управления двигателем внутреннего сгорания
JP2020067039A (ja) * 2018-10-24 2020-04-30 トヨタ自動車株式会社 内燃機関の潤滑装置
JP7119897B2 (ja) 2018-10-24 2022-08-17 トヨタ自動車株式会社 内燃機関の潤滑装置

Also Published As

Publication number Publication date
JP5420473B2 (ja) 2014-02-19

Similar Documents

Publication Publication Date Title
JP5277351B2 (ja) 内燃機関の制御装置
JP4583038B2 (ja) 過給機付き内燃機関の過給圧推定装置
JP5187123B2 (ja) 内燃機関の制御装置
JP4495204B2 (ja) Egr装置の異常判定装置
JP5545654B2 (ja) ターボチャージャ付き内燃機関
US9027535B2 (en) Control apparatus for internal combustion engine
JP2008057498A (ja) ブローバイガス還流装置の異常判定装置
JP5775509B2 (ja) 内燃機関の制御装置
JP5420473B2 (ja) 内燃機関の制御装置
JP5075137B2 (ja) 内燃機関のegr制御装置
CN108026841B (zh) 内燃机的控制装置以及内燃机的控制方法
JP2014034959A (ja) 過給機付きエンジンの排気還流装置
JP2009019611A (ja) 過給機付き内燃機関の制御装置
CN108026840B (zh) 内燃机的控制装置以及内燃机的控制方法
JP5844216B2 (ja) エンジンの排気還流装置
JP4818344B2 (ja) 内燃機関の過給圧制御装置
JP4997272B2 (ja) 内燃機関の燃料供給制御装置
JP6536299B2 (ja) 内燃機関制御方法及び内燃機関制御装置
JP2008267247A (ja) 内燃機関の制御装置
JP5858864B2 (ja) エンジンの制御装置
JP6234810B2 (ja) エンジンの制御装置
JP2012225215A (ja) 内燃機関の点火時期制御方法
JP4818341B2 (ja) 内燃機関の制御装置
JP4946782B2 (ja) 内燃機関の制御装置
JP2009085034A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131120

R150 Certificate of patent or registration of utility model

Ref document number: 5420473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees