JP2011221702A - 音声信号処理装置、音声信号処理方法、プログラム - Google Patents

音声信号処理装置、音声信号処理方法、プログラム Download PDF

Info

Publication number
JP2011221702A
JP2011221702A JP2010088659A JP2010088659A JP2011221702A JP 2011221702 A JP2011221702 A JP 2011221702A JP 2010088659 A JP2010088659 A JP 2010088659A JP 2010088659 A JP2010088659 A JP 2010088659A JP 2011221702 A JP2011221702 A JP 2011221702A
Authority
JP
Japan
Prior art keywords
tapping
audio signal
time
microphone
input operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010088659A
Other languages
English (en)
Other versions
JP2011221702A5 (ja
JP5716287B2 (ja
Inventor
Kohei Asada
宏平 浅田
Yuji Kitazawa
雄司 北澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2010088659A priority Critical patent/JP5716287B2/ja
Priority to EP11158799A priority patent/EP2375775A1/en
Priority to US13/069,561 priority patent/US8634565B2/en
Priority to TW100110180A priority patent/TWI458359B/zh
Priority to KR1020110028691A priority patent/KR20110112774A/ko
Priority to SG2011022480A priority patent/SG175501A1/en
Priority to BRPI1100916-0A priority patent/BRPI1100916A2/pt
Priority to CN201110084416.2A priority patent/CN102281484B/zh
Publication of JP2011221702A publication Critical patent/JP2011221702A/ja
Publication of JP2011221702A5 publication Critical patent/JP2011221702A5/ja
Priority to US14/062,639 priority patent/US9479883B2/en
Application granted granted Critical
Publication of JP5716287B2 publication Critical patent/JP5716287B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1626Constructional details or arrangements for portable computers with a single-body enclosure integrating a flat display, e.g. Personal Digital Assistants [PDAs]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1041Mechanical or electronic switches, or control elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/16Indexing scheme relating to G06F1/16 - G06F1/18
    • G06F2200/163Indexing scheme relating to constructional details of the computer
    • G06F2200/1636Sensing arrangement for detection of a tap gesture on the housing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/61Aspects relating to mechanical or electronic switches or control elements, e.g. functioning

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • General Health & Medical Sciences (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Telephone Function (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Electrophonic Musical Instruments (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

【課題】マイクロホンを入力操作に用い、かつ簡易な音声信号処理で入力操作を検知する。
【解決手段】マイクロホンによって集音された音声信号についての低域成分のエネルギーレベルを監視する。そして、エネルギーレベルが第1の時間内での増加及び減少した場合に叩打があったと判定する。特に、第2の時間内に複数回の叩打が検出された場合に叩打入力操作があったと判定する。これにより波形解析等を行わず、簡易な音声信号処理でユーザの入力操作を検知し、それに応じた制御処理を実行できるようにする。
【選択図】図1

Description

本発明は、マイクロホンによって集音された音声信号によってユーザの操作入力を検知する音声信号処理装置、音声信号処理方法に関する。また当該音声信号処理装置、音声信号処理方法を実現するためのプログラムに関する。
特開2008−166897号公報
各種の電子機器において、ユーザの操作入力のためのデバイスとして、操作キー、キーボード、マウス、操作ダイヤル、タッチパネル等が用いられている。
通常、電子機器の機能に応じて、これらの操作デバイスが搭載されるが、一方で、電子機器の機能や使用形態によっては、なるべく操作キーを少なくしたり、より使用性のよい操作、効率的な操作ができるようにすることが求められている。
上記特許文献1には、マイクロホンを操作入力のためのデバイスとして用いる技術が開示されている。この特許文献1に記載の技術は、マイクロホン或いはその周辺をユーザが指等で軽く叩打(タッピング)することを操作入力として認識する。このために、ユーザがタッピングしたときにマイクロホンで集音される音声信号波形を、波形相関処理により認識するようにしている。
上記特許文献1のように、マイクロホンを入力デバイスとして兼用できることで、機器筐体への操作キーの削減や、操作性の向上に寄与できる。
例えば携帯用音楽プレーヤの操作として、ユーザが装着しているヘッドホン部分にマイクロホンが取り付けられている場合を考える。ユーザは、携帯用音楽プレーヤは、通常衣服のポケットや鞄などに入れているが、ヘッドホン部分のマイクロホン周辺をタッピングすることで所定の操作が可能とされれば、わざわざ携帯用音楽プレーヤを取り出さなくてもよいためである。
ところが、マイクロホン入力の音声信号にタッピングによる音声信号成分が含まれていることを検出するためには、FFTを用いた周波数解析や、相互相関などが必要であった。これは演算処理装置としてのCPU(Central Processing Unit)やDSP(Digital Signal Processor)のリソース(計算量)を多くとり、処理負担が大きい。
特に、操作入力の検知処理は、不定期のユーザ操作に対応するために常に実行していなければならない。計算量の多い処理を常に実行していくためには、それだけ高性能な演算処理装置が必要となる。
これは高性能な電子機器では大きな問題とならないが、上記の携帯用音楽プレーヤなど、比較的低コスト化が強く求められる機器では、コストアップにつながる要因となるとして好ましくない。
さらに操作検知のための計算量が多いことで操作認識までの時間が長くなり、レスポンスの良い装置動作に不利であるという欠点もあった。
そこで本発明では、マイクロホン入力の音声信号からユーザの叩打(タッピング)による操作入力を検知する場合に、すべて処理および判定を時間軸信号処理で行い、計算量を減らし、同時に検知までの時間の短縮化を実現することを目的とする。
本発明の音声信号処理装置は、マイクロホンによって集音された音声信号が入力されるとともに、該音声信号の低域成分のエネルギーレベルの第1の時間内での増加及び減少を判定するエネルギー増減判定処理に基づいて叩打入力操作を検知する叩打検知部と、上記叩打検知部により叩打入力操作が検知されたことに応じて、叩打入力操作について設定された所定の制御処理を行う制御部とを備える。
また上記叩打検知部は、上記エネルギー増減判定処理で上記エネルギーレベルの増加及び減少が第1の時間内に検出されることが、上記第1の時間より長い第2の時間内において複数回発生した場合に、叩打入力操作がされたと検知する。
また上記叩打検知部には、複数チャンネルの音声信号が入力され、上記叩打検知部は、複数チャンネルの音声信号を加算した音声信号について、上記エネルギー増減判定処理を行う。
或いは、上記叩打検知部には、複数チャンネルの音声信号が入力され、上記叩打検知部は、複数の各チャンネルの音声信号のそれぞれについて、上記エネルギー増減判定処理を行い、各チャンネルについての叩打入力操作を検知する。
或いは上記叩打検知部には、複数チャンネルの音声信号が入力され、上記叩打検知部は、複数の各チャンネルの音声信号のうちで叩打音が含まれるチャンネルを判定するチャンネル判定処理と、上記複数チャンネルの音声信号を加算または減算した音声信号についての上記エネルギー増減判定処理とを行い、叩打入力操作の検知及び叩打入力操作が行われたチャンネルの検知を行う。
また上記エネルギー増減判定処理では、該音声信号の低域成分のエネルギーレベルが第1の閾値より上昇した後、上記第1の時間内で、上記エネルギーレベルが第2の閾値より減少するか否かを判定する。
またマイクロホンをさらに備え、上記マイクロホンによって集音された音声信号が上記叩打検知部に入力されるようにする。
本発明の音声信号処理方法は、マイクロホンによって集音された音声信号についての低域成分のエネルギーレベルの第1の時間内での増加及び減少を判定するエネルギー増減判定処理に基づいて、叩打入力操作を検知する叩打検知ステップと、上記叩打検知ステップで叩打入力操作が検知されたことに応じて、叩打入力操作について設定された所定の制御処理を行う制御ステップとを備える。
本発明のプログラムは、上記叩打検知ステップと制御ステップとを演算処理装置に実行させるプログラムである。
このような本発明では、一体または別体のマイクロホンによって集音された音声信号についての低域成分のエネルギーレベルを監視する。そして、エネルギーレベルが第1の時間内での増加及び減少した場合に叩打があったと判定する。
特には、第2の時間内に複数回の叩打が検出された場合に叩打入力操作があったと判定することも好適である。
叩打があった場合、マイクロホン入力信号の低域成分のエネルギーレベル(振幅)が大きくなる。そこで音声信号の低域成分のエネルギーを監視することで、波形解析等を行わず、簡易に叩打を検知することが可能となる。
本発明により、マイクロホン入力音声信号から簡易な処理で叩打によるユーザ操作を検知できるようになる。これによって操作検知のための処理負担の軽減、それによる低コスト化の促進が可能となる。
さらに簡易な処理であることで操作検知時間が短縮されレスポンスの良い装置動作が可能となる。
本発明の実施の形態の基本的な構成のブロック図である。 本発明の実施の形態の基本的な処理のフローチャートである。 実施の形態のNCヘッドホンの説明図である。 実施の形態のNCヘッドホンのブロック図である。 実施の形態の叩打検知部の構成例Iのブロック図である。 実施の形態の叩打検知部に入力される音声信号の説明図である。 実施の形態の叩打検知部の処理のフローチャートである。 実施の形態の叩打検知部のタッピング判定の説明図である。 実施の形態の叩打検知部の操作入力検知の説明図である。 実施の形態の叩打検知部の構成例IIのブロック図である。 実施の形態の叩打検知部の構成例IIIのブロック図である。 実施の形態の構成例IIIの叩打検知部の処理のフローチャートである。 実施の形態の3回タッピング判定の場合のフローチャートである。 実施の形態の2回及び3回タッピング判定の場合のフローチャートである。 実施の形態の電子メール操作の例の説明図である。 実施の形態の電子メール操作の例の動作の説明図である。
以下、本発明の実施の形態について、次の順序で説明する。
<1.基本構成及び処理>
<2.NCヘッドホンに適用した実施の形態>
[2−1:NCヘッドホンの構成]
[2−2:叩打検知部(構成例I)]
[2−3:叩打検知部(構成例II)]
[2−4:叩打検知部(構成例III)]
[2−5:叩打検知部の処理の変形例]
<3.各種機器に適用した実施の形態>
<4.プログラム>
<1.基本構成及び処理>

まず本発明の実施の形態としての基本構成を説明する。
本発明は、本来、機器に設置され収音目的で使われているマイクロホン(以下「マイク」と略称する)デバイスを、機器の機能をコントロールするための各種の操作入力のセンサとして使うシステムを前提とする。そして、マイクまたはその周辺部を軽く叩くこと(本明細書では、この行為を「叩打」又は「タッピング」と呼ぶ)をユーザの操作入力として認識する。本発明は、この叩打による操作入力の検知アルゴリズムに関するものである。特に本発明の検知アルゴリズムは、従来に使われているような周波数軸解析を行わず、時間軸のみで処理を行うことで、処理のリソースを少なくして検知効果が得られるものである。
以下説明していく実施の形態は、このような本発明の検知アルゴリズムを採用して操作入力を認識する音声信号処理装置を搭載した各種の電子機器となる。
図1に実施の形態の基本構成を示す。
この図1では、音声信号処理部1、マイク4、マイクアンプ5、A/D変換器6、通常処理系7を示している。
音声信号処理部1は叩打検知部2と制御部3を備える。この音声信号処理部1が本発明の音声信号処理装置に相当する。音声信号処理部1は、例えばCPUやDSP等で形成される。
マイク4で集音された音声信号はマイクアンプ5で増幅された後、A/D変換器6でアナログ−デジタル変換される。そしてデジタル信号とされた音声信号は、通常処理系7及び音声信号処理部1に入力される。
ここでいう通常処理系7とは、マイク4からの音声信号を入力する電子機器における音声信号に対する通常の機能の処理部を示している。
民生電子機器においては、既に様々な目的でマイク4が設けられている。或いは別体のマイク4が接続可能とされている。
例えば、携帯電話機や、録画とともに録音機能の付いたデジタルカメラ、ICレコーダ、音声コミュニケーション機能を持つパーソナルコンピュータなどの情報処理装置、モバイル機器、ノイズキャンセリングヘッドホン(以下「NCヘッドフォン」)などがある。
これら各種の電子機器では、マイク入力音声信号について、それぞれ機能に応じた処理系が搭載されている。
例えば記録媒体への録音を行う機能を有する機器であれば、録音のための圧縮処理、記録用エンコード処理、記録媒体への記録処理等を行う部位が、図1の通常処理系7となる。
また携帯電話機等の通信可能な機器において、音声信号を送信する機能を有する機器であれば、圧縮処理、送信用エンコード処理、送信処理等を行う部位が、図1の通常処理系7となる。
さらに図3以降で説明するNCヘッドフォンの場合、ノイズキャンセル処理を行う機能部分が通常処理系7に相当する。
通常処理系7では、入力された音声信号について、これらの機能に応じた処理を行う。
音声信号処理部1は、入力された音声信号について叩打検知を行い、ユーザによる操作入力を検知する。
まず叩打検知部2では、時間軸のみの処理でユーザの叩打を検知する。具体的には、入力された音声信号の低域成分のエネルギーレベルの第1の時間内での増加及び減少を判定するエネルギー増減判定処理に基づいて叩打入力操作を検知する。つまり第1の時間内として瞬間的なエネルギーレベルの増減があったときに、ユーザの叩打があったと検知する。
なお、1回の叩打によって操作入力と認識しても良いが、ユーザの無意識の叩打やマイク4の扱い、或いは何らか物体のマイク4への衝突等を操作として誤認識しないようにするため、複数回の連続的な叩打を操作入力として検知するようにしてもよい。即ちエネルギー増減判定処理として、音声信号の低域成分のエネルギーレベルの増加及び減少が第1の時間内に検出されることが、第1の時間より長い第2の時間内において複数回発生した場合に、叩打入力操作がされたと検知することも考えられる。
叩打検知部2は、ユーザの1回又は複数回のタッピングを操作入力として検知し、操作検知信号Sdetを制御部3に出力する。
制御部3は、電子機器において少なくともユーザ操作に対応して制御処理を行う機能を備える。そして制御部3は、操作検知信号Sdetによって、叩打検知部2により叩打入力操作が検知されたことを認識したら、叩打入力操作について設定された所定の制御処理を行う。
制御処理の例については、各種電子機器に応じて異なるため、後に具体的な電子機器の実施の形態の説明において述べるが、例えば音楽データ等の再生機能を有する機器であれば、再生制御などである。その場合、ユーザがマイク4を叩打することで音楽再生制御が行われ、音楽再生が実行されるような動作が実現されることとなる。
本発明の実施の形態の基本構成は以上の図1のようになる。つまり、音声信号処理部1に対してマイク4からの入力音声信号が入力され、音声信号処理部1が叩打の判定によりユーザ操作を検知する。そして操作入力があったと検知した場合は、その操作に応じた所定の制御処理を行う。
図2に実施の形態の基本的な処理の手順を示した。
図1のようにマイク入力音声信号が常時入力される音声信号処理部1において、ステップF1として叩打判定が行われる。つまり叩打検知部2の処理である。そしてユーザの操作入力としての叩打があったと判定された場合は、ステップF2からF3に進み、当該操作入力に応じた制御処理を行う。つまり制御部3の処理である。
以下では、具体的な電子機器の例として、ノイズキャンセリングヘッドホン(NCヘッドフォン)の例を挙げて、実施の形態を説明していく。
また他の電子機器の例についても後述する。
<2.NCヘッドホンに適用した実施の形態>
[2−1:NCヘッドホンの構成]

図3は、携帯用のメディアプレーヤ20等の音楽再生機器に接続して用いるNCヘッドフォン10を模式的に示している。
メディアプレーヤ20は、内部の記録媒体に記録された音楽等のデータを再生し、L、Rの2チャンネル音声信号を、接続されたNCヘッドフォン10に出力する。
NCヘッドフォン10は、ヘッドホン部11とノイズキャンセルユニット14から成る。
ヘッドホン部11は、ユーザの左右両耳に対応した各スピーカハウジング内にLチャンネルとRチャンネルのスピーカ13L、13Rを有する。
この例の場合、いわゆるフィードフォワード方式のノイズキャンセル処理を行うものとしており、マイク12L、12Rが、左右の各スピーカハウジングの外部音声を集音するように設けられている。
なおヘッドホン部11は、図のようなスピーカハウジングを有するタイプでなく、イヤホン型、耳当て型のようなタイプでもよい。本例の場合は、いずれにしてもマイク12L、12Rが設けられていればよい。
またフィードフォワード方式のノイズキャンセル処理を行うNCヘッドフォン10に限られず、フィードバック方式のノイズキャンセル処理を行うものでもよい。
上記のようにマイク12L、12Rが設けられたヘッドホン部11に対してノイズキャンセルユニット14が接続される。
ノイズキャンセルユニット14は、メディアプレーヤ20から供給されてくる再生音楽等の音声信号に対してノイズ低減音声信号をミックスすることで、外部ノイズの低減された音声信号をスピーカ13L、13Rから出力させるものである。
簡単に言えば次のようにノイズ低減を行う。
スピーカハウジングに取り付けられたマイク12L、12Rは、スピーカハウジングを介してユーザの耳に達する外部ノイズを集音する。ノイズキャンセルユニット14は、このマイク12L、12Rで集音した外部ノイズの音声信号から、外部ノイズとは音響的に逆相のノイズ低減音声信号を生成する。そして生成したノイズ低減音声信号を、再生音楽等の音声信号に合成してスピーカ13L、13Rに供給する。
従ってスピーカ13L、13Rから出力される音声には、外部ノイズの逆相成分が含まれているため、この逆相成分と、実際にスピーカハウジングを介して漏れ込む外部ノイズとが空間的に相殺されることになり、ユーザの聴覚には外部ノイズ成分が低減されて本来の再生音楽の出力音声が届くものとなる。
ノイズキャンセルユニット14の内部構成例を図4に示す。
ノイズキャンセルユニット14は、マイクアンプ31L、31R、A/D変換器32L、32R、DSPまたはCPUによる主処理部33、メモリ部40、パワーアンプ42L、42R、A/D変換器41L、41Rを有する。
主処理部33には、ノイズキャンセル部34,ゲイン部35、加算器36L、36R、叩打検知部37、制御部38、イコライザ39が設けられる。
まずメディアプレーヤ20からの再生音楽等の音声信号は次のように処理される。
メディアプレーヤ20からは、いわゆるヘッドホン出力としてのLチャンネル、Rチャンネルの再生音声信号SA−L,SA−Rが供給される。
この再生音声信号SA−L,SA−Rは、A/D変換器41L、41Rでデジタル信号化される。そしてイコライザ39で振幅−周波数特性補正や位相−周波数特性補正、あるいはその両方などの音質補正がなされる。
イコライザ39の補正処理は制御部38からの制御信号SG3に基づいて実行される。例えば周波数特性の指示などが制御信号SG3によってなされる。
イコライザ39で音質補正された再生音声信号SA−L,SA−Rは、それぞれ加算器36L、36Rでノイズ低減音声信号と加算されたうえで、パワーアンプ42L、42Rに供給される。
パワーアンプ42L、42Rはデジタルアンプで構成されても良いし、D/A変換器とアナログアンプで構成されても良い。
そしてパワーアンプ42L、42Rからの出力が、スピーカ13L、13Rに対する駆動信号とされ、スピーカ13L、13Rから再生音声信号SA−L,SA−Rに基づく音声出力が行われる。
一方、上述のノイズキャンセルのための処理が次のように行われる。
マイク12L、12Rで集音された音声信号SmL,SmRは、ノイズキャンセルユニット14におけるマイクアンプ31L、31Rで増幅された後、A/D変換器32L、32Rでデジタル信号化される。
A/D変換器32L、32Rから出力されるデジタル化された音声信号SmL,SmRは、ノイズキャンセル部34に供給される。ノイズキャンセル部34は上述したフィードフォワード方式でのノイズ低減音声信号を生成するデジタルフィルタとされる。このノイズキャンセル部34は、制御部38から制御信号SG1で指示されるフィルタ係数で、音声信号SmL,SmRのそれぞれについてのフィルタ処理を行い、Lチャンネル及びRチャンネルのノイズ低減音声信号を生成する。
生成されたLチャンネル及びRチャンネルのノイズ低減音声信号はゲイン部35に供給される。ゲイン部35は、制御部38からの制御信号SG2で指示されるゲイン係数により、Lチャンネル及びRチャンネルのノイズ低減音声信号に対するゲインを与える。
そしてゲイン部35からのLチャンネル及びRチャンネルのノイズ低減音声信号は加算器36L、36Rに供給される、上述のように再生音声信号SA−L,SA−Rとそれぞれ加算される。
このようなノイズ低減音声信号が加算された再生音声信号SA−L,SA−Rにより、スピーカ13L、13Rから再生音声が出力されることで、上述のようなノイズ低減機能が発揮される。
本例のノイズキャンセルユニット14は、さらにマイク12L、12R又はその周辺の叩打によるユーザ操作を検知する機能を備える。
マイク12L、12Rで集音された音声信号SmL,SmRは、叩打検知部37にも供給される。
叩打検知部37の構成及び動作は詳しく後述するが、叩打検知部37では、時間軸のみの処理でユーザのマイク12L、12R又はその周辺への叩打を検知する。具体的には、入力された音声信号SmL,SmRの低域成分のエネルギーレベルの第1の時間内での増加及び減少を判定するエネルギー増減判定処理に基づいて叩打入力操作を検知する。そして特に叩打が複数回連続して行われたときに、それをユーザの操作入力として検知し、操作検知信号Sdetを制御部38に出力する。
制御部38は、上記の制御信号SG1,SG2,SG3によりノイズキャンセルユニット14の各部を制御する。またメディアプレーヤ20に対して制御信号SG4を送信することもできる。
特に本例では、制御部38はユーザの叩打操作に対応して制御処理を行う機能を備える。即ち制御部38は、操作検知信号Sdetによって、叩打検知部37により叩打入力操作が検知されたことを認識したら、叩打入力操作について設定された所定の制御処理を行う。例えば叩打入力による操作の検知に応じて、制御信号SG4としてメディアプレーヤ20へ操作入力情報を送信することなどを行う。
メモリ部40は、制御部38が制御処理において参照する情報が記憶されている。例えばメモリ部40には、ノイズキャンセル部34やイコライザ39におけるフィルタ係数の情報等が記憶されている。
本実施の形態では、ユーザの叩打入力操作に応じて制御部38が所定の制御を行うが、その制御処理の例としては次のようなものが想定される。
まず制御信号SG4としてメディアプレーヤ20へ操作入力情報を送信することが考えられる。
例えば、
− 再生/停止/録音/FF(早送り)/REW(早戻し)など、音楽等の再生動作に関わる制御
− 再生・ミュート(又は小音量再生)の切替え
− ノイズキャンセル機能のオン/オフの切替え
− ノイズキャンセル機能オン/モニターモード(環境音収音,補聴動作)の切替え
− ボリュームアップ/ダウン
− 音声通話・音楽再生の切替え
などがあげられる。
例えば叩打(タッピング)操作を「再生」の操作とする場合、制御部38は叩打検知部37によって叩打操作が検知された場合に、メディアプレーヤ20に「再生」のコマンドを送信するという処理を行うことになる。他の場合も同様であり、叩打操作についてどのような操作内容が割り当てられているかによる。
また後述するが、マイク12Lの叩打とマイク12Rの叩打を区別して検知する場合は、2種類の操作内容を割り当てることができる。その場合、例えばマイク12Lの叩打をボリュームアップ、マイク12Rの叩打をボリュームダウンとすれば、制御部38は叩打検知部37による叩打操作の検知に応じて、メディアプレーヤ20に「ボリュームアップ」又は「ボリュームダウン」のコマンドを送信する処理を行うこととなる。
さらに、連続的なタッピング回数で操作を区別することや、タッピング回数と左右マイク12L、12Rの組み合わせなどで、多様な操作を区別して設定することもできる。その場合も、制御部38はそれらの叩打操作の検知に応じて、所定のコマンドをメディアプレーヤ20に送信する。
ノイズキャンセル機能を実現するためには、より耳元位置に近いマイク12L、12Rを」設置することが必要なため、通常マイク12L、12Rは、耳元に設置されている。すると、例えば通勤時などにメディアプレーヤ20の本体を取り出さなくても、マイク12L、12Rを叩打するだけで、メディアプレーヤ20の動作の制御が可能になるのは、ユーザにとって大きな利便性がある。
また制御部38が、叩打検知に応じて、ノイズキャンセルユニット14の内部制御を行う例も考えられる。
例えば叩打操作に応じて、制御信号SG1による制御でノイズキャンセル部34のフィルタ係数の切り替えを行うようにしても良い。
一般的に、ノイズ環境特性は、周波数特性で観察したとしても、飛行場、駅のプラットホーム、電車内、工場などの場所の環境によって大きく異なっている。したがって、ノイズ低減のためのフィルタ特性は、本来は、各ノイズ環境特性に合わせた最適なものを用いることが望まれる。そのため、ユーザがマイク12L、12Rのタッピングによって、最も適したフィルタ特性を切り替えて選んでいけるようにすることは有用である。
また制御部38が、叩打検知に応じて、制御信号SG2よる制御でゲイン部35のゲイン係数の切り替えを行うようにしても良い。これによってユーザは、ノイズキャンセルのレベルを、容易な操作で任意に調整できることになる。
また制御部38が、叩打検知に応じて、制御信号SG3よる制御でイコライザ39におけるフィルタ係数の変更を行うようにしても良い。これによってユーザは、容易な操作で音質補正状態を選択できる。例えばプリセットとして各種周波数特性をメモリ部40に記憶させておき、ユーザが好みの音質となるイコライザ特性を、容易なタッピング操作で任意に選択できることは有用である。
[2−2:叩打検知部(構成例I)]

以下、叩打検知部37の構成及び動作を説明する。ここではまず図5に示す構成例Iについて説明する。
この構成例Iは、マイク12L、12Rからの音声信号SmL,SmRについて共通に叩打を検知する構成例である。
叩打検知部37は、加算器51,ローパスフィルタ52、絶対値化回路53、ローパスフィルタ54、判定処理部55を備える。
マイク12L、12Rからの各音声信号SmL,SmRは、加算器51で加算されてローパスフィルタ52に入力される。ローパスフィルタ52はカットオフ周波数がfc1とされている。例えばfc1=100Hzなどとされる。
ローパスフィルタ52から出力される音声信号SmL,SmRの加算信号についての低域成分は絶対値化回路53で絶対値化される。
絶対値化回路53で絶対値化された信号はローパスフィルタ54を介して、音声信号SmL,SmRのエネルギーレベルを表した信号Sとされて判定処理部55に入力される。ローパスフィルタ54のカットオフ周波数fc2は例えば50Hzなどとされる。
判定処理部では信号Sについて後述するエネルギー増減判定処理で叩打による操作入力の有無を検知する。そして検知の結果、操作検知信号Sdetを制御部38に出力する。
このような叩打検知部37の動作を図6〜図9で説明する。
図6(a)は、叩打があったときの波形を示している。
ここでは、ヘッドホン部11に取り付けられたマイク12L、12Rの周辺部を、連続して2回叩打(ダブルタッピング)した時のマイク12L、12Rの出力としての音声信号SmL,SmRの時間波形としている。
時間t1は1回の叩打時の波形の時間長であり、時間t2は1回目の叩打開始(波形の立ち上がり)から2回目の叩打終了(波形の収束)までにかかる時間長である。
実際には、図を見てわかるとおり叩打の時に筐体や音響部によって反射が発生し、叩打反応波形よりやや遅れて、小さな波形がみてとれる。
ここで、1回叩打した時の応答波形(反射による波形は除く、t1時間の波形が対象)の周波数特性は、図6(b)のようになっている。
一点鎖線は通常時の暗騒音を収音している状態で、破線が叩打時の特性、実線が両者の差成分である。
この周波数特性からわかるように、叩打時は低域成分(例えば100Hz以下)の信号が圧倒的に大きく収音されることが明らかであり、ここの情報に着目すればよいことがわかる。
まず図5に示したローパスフィルタ52は、このような低域成分を抽出する意味を持つ。
そしてローパスフィルタ52の出力は、当該低域成分であるが、正/負の値を持つ振幅であるため、負の振幅もエネルギーレベルとして判断するために絶対値化回路53で絶対値化する。そしてローパスフィルタ54でエネルギーレベルを示す包絡線としての信号sとする。
図7は判定処理部55が信号Sから、連続2回のタッピングをユーザの操作入力として検知するための、エネルギー増減判定処理のフローチャートを示している。
判定処理部55は入力される信号Sに対して図7のエネルギー増減判定処理を行う。
まずステップF101で判定処理部55は、信号Sのレベルが閾値TH1より高いか否かを判断する。
図8,図9には信号Sの波形と閾値TH1、TH2を示している。閾値TH1は、信号Sのエネルギーレベルが増大したか否かを判断する閾値である。一方、閾値TH2は、信号Sのエネルギーレベルが減少したか否かを判断する閾値である。
ステップF101では、入力される信号Sの値を逐次閾値TH1と比較していく。信号Sが閾値TH1以下であると判断されたときは、「R」で示すようにステップF101に戻り、次の信号Sの入力値と閾値TH1の比較を行う。
信号Sが閾値TH1を越えたときに判定処理部55はステップF102に進む。
ステップF102では判定処理部55は、まずカウンタCn1を0にリセットし、カウントをスタートさせる。
そして判定処理部55はステップF103でカウンタCn1をインクリメントしていきながら、ステップF104,F105の判断を行っていく。
ステップF104では判定処理部55は、カウンタCn1の値が、第1の時間THtm1に達していないかどうかを判断する。
第1の時間THtm1とは、図8に示すような所定時間である。これは、信号Sのエネルギー増減が瞬間的に起こったか否かを判断するための時間として設定される。
もしステップF104でカウンタCn1の値が、第1の時間THtm1を越えたら、「R」で示すようにステップF101に戻る。つまりその場合は、操作としてのタッピングではなかったと判断する。
またステップF105では判定処理部55は、信号Sが閾値TH2より小さくなったか否かを判断する。
このステップF105で信号Sが閾値TH2より小さくなったと判定したら、判定処理部55はステップF106に進み、操作としてのタッピングの1回目があったと仮判定する。
先に図6(a)で述べたように、叩打時の信号Sの波形は、急峻にエネルギーレベルが増大し、その後短時間でエネルギーレベルが減少する。このような波形変化を時間軸で判断するために、ステップF104で、エネルギーレベルの増大が検出された後の経過時間を確認する。つまり、まだステップF105で信号Sのエネルギーレベルが減少したと判定されていない時点での経過時間である。
このことを図8で説明する。
図8(a)は、1回のタッピングがあったと判定される場合の例である。
この場合、信号Sの波形(エネルギーレベル包絡線波形)は、急峻に立ち上がり、時点taで閾値TH1を越えることで、ステップF101でエネルギー増と判定される。
この時点でステップF102でカウンタCn1のカウントがスタートされる。
この図8(a)の場合は、時点tbで信号Sのエネルギーレベルが閾値TH2より下がっている。この時点tbは、まだ時点tbより第1の時間THtm1を経過する前である。従って時点tbでステップF105からF106に進んで、1回目のタッピングと判断することとなる。
つまり、エネルギーレベルの増加及び減少が第1の時間THtm1内に検出されることで、1回の操作としての叩打と判定する。
一方、図8(b)は、操作としてのタッピングとは判断されない場合を示している。
この場合、信号Sの波形は、時点tcで閾値TH1を越えることで、ステップF101でエネルギー増と判定される。
この時点でステップF102でカウンタCn1のカウントがスタートされる。
この図8(b)の場合は、その後エネルギーレベルが急激には低下していない。そして時点tcより第1の時間THtm1を経過した時点tdにおいても、信号Sのエネルギーレベルは閾値TH2より下がっていない。
この場合、図7の処理は第1の時間THtm1を経過することで、ステップF104からステップF101に戻ることになる。
つまり、エネルギーレベルの増加及び減少が第1の時間THtm1内に検出されなかったため、操作としての叩打による信号Sのエネルギーレベルの増大ではなかったと判定する。例えば他の外部ノイズ等によるエネルギーレベルの増大などとみなすものとなる。
以上のステップF106までの処理で、判定処理部55は、1回のタッピングがあったか否かを判定することとなる。
ステップF106で1回目のタッピングがあったと判定した場合、判定処理部55はステップF107でカウンタCn2を0にリセットし、カウントをスタートさせる。
そして判定処理部55はステップF108でカウンタCn2をインクリメントしていきながら、ステップF109,F110の判断を行っていく。
ステップF109では判定処理部55は、カウンタCn2の値が、第2の時間THtm2に達していないかどうかを判断する。
第2の時間THtm2とは、図9に示すような所定時間である。この第2の時間THtm2は第1の時間THtm1より長い時間とされ、2回の連続的なタッピングであるか否かを判断するための時間として設定される。
もしステップF109でカウンタCn2の値が、第2の時間THtm2を越えたら、「R」で示すようにステップF101に戻る。つまりその場合は、操作としての2回連続のタッピングが行われているのではないと判断する。
またステップF110では判定処理部55は、信号Sが閾値TH1より大きくなったか否かを判断する。
これは2回目のタッピングによる信号Sのエネルギーレベルの増大が観測されたか否かの判断処理となる。
このステップF110で信号Sが閾値TH1より大きくなったと判定したら、判定処理部55はステップF111〜F114の処理を行う。
なお破線で囲ったステップF111〜F114の処理は、同じく破線で囲ったステップF102〜F105と同一の処理(共通ルーチン)となる。
ステップF111では判定処理部55は、まずカウンタCn1を0にリセットし、カウントをスタートさせる。
そして判定処理部55はステップF112でカウンタCn1をインクリメントしていきながら、ステップF113,F114の判断を行っていく。
ステップF113では判定処理部55は、カウンタCn1の値が、第1の時間THtm1に達していないかどうかを判断する。
第1の時間THtm1とは、上記のように信号Sのエネルギー増減が瞬間的に起こったか否か、つまりタッピング操作によるエネルギーレベルの瞬間的な増減であるか否かを判断するための時間として設定されている。
従って、ステップF113でカウンタCn1の値が、第1の時間THtm1を越えたら、「R」で示すようにステップF101に戻る。つまりその場合は、操作としてのタッピングではなかったと判断する。
またステップF114では判定処理部55は、信号Sが閾値TH2より小さくなったか否かを判断する。
このステップF114で信号Sが閾値TH2より小さくなったと判定したら、判定処理部55はステップF115に進み、操作としての2回目のタッピングがあったと判断する。
図9で説明する。
図9は2回の連続的なタッピングがあった場合の信号Sのエネルギーレベルの変化を示している。
この場合、信号Sの波形が時点teで閾値TH1を越えることで、ステップF101でエネルギー増と判定される。この時点でステップF102でカウンタCn1のカウントがスタートされる。
そして時点tfで信号Sのエネルギーレベルが閾値TH2より下がっている。この時点tfは、まだ時点tbより第1の時間THtm1を経過する前である。従って時点tfでステップF105からF106に進んで、1回目のタッピングと判断することとなる。
その時点tfからステップF107でカウンタCn2のカウントが開始される。
そしてカウンタCn2の値が第2の時間THtm2に達する前に、時点tgで信号Sの波形が閾値TH1を越えることで、ステップF110で2回目のタッピングによるエネルギー増が推定される。この時点でステップF111でカウンタCn1のカウントがスタートされる。
そして時点thで信号Sのエネルギーレベルが閾値TH2より下がっている。この時点thは、まだ時点tgより第1の時間THtm1を経過する前である。従って時点tgでステップF114からF115に進んで、2回目のタッピングもなされたと判断することとなる。
なお、ステップF109でタッピング操作ではないとしてステップF101に戻る場合とは、時点tf以後、第2の時間THtm2に達しても、2回目のエネルギーレベルの増大が検出されない場合である。
またステップF113でタッピング操作ではないとしてステップF101に戻る場合とは、時点tg以後、第1の時間THtm1に達しても、エネルギーレベルの減少が検出されない場合である。これはつまり2回目のエネルギーレベルの増大が図8(b)のようなものであった場合である。
ステップF115に進んだ場合、判定処理部55は、ユーザの意識的な操作としてのダブルタッピングが行われたと判定する。その場合、操作有りとしての操作検知信号Sdetを制御部38に出力することとなる。
本例の叩打検知部37は、判定処理部55が以上の図7のように時間軸でのエネルギー増減判定処理を行うことで、リソースの増加を招くことなく、容易に叩打操作を判定できる。
叩打があった場合、マイクロホン入力信号の低域成分のエネルギーレベル(振幅)が大きくなる。そこで音声信号の低域成分のエネルギーを監視することで、波形解析等を行わず、エネルギー増減判定で叩打を検知するようにしている。
これによって操作検知のための処理負担の軽減、それによる低コスト化の促進が可能となる。特にNCヘッドフォン10のノイズキャンセルユニット14のように小型でリソースの小さい機器において、このように簡易な動作で必要な検知処理が可能となることは、非常に有効である。
また操作入力の検知処理は、不定期のユーザ操作に対応するために常に実行していなければならない。このため時間軸の信号処理として計算量の小さい処理であることで、常に実行していく処理として適している。
さらに簡易な処理であることで操作検知時間が短縮されレスポンスの良い装置動作が可能となる。
また本例の場合は、2回の連続的なタッピング(ダブルタッピング)を、第2の時間THtm2を基準として判定し、ダブルタッピングがあった場合に、ユーザの操作として認識する。
さらに、1回目及び2回目の各タッピングの判断は、第1の時間THtm1を基準とし、瞬間的な信号Sのエネルギーレベルの増減を確認する。
即ち叩打検知部37は、図7のエネルギー増減判定処理で、信号Sのエネルギーレベルの増加及び減少が第1の時間THtm1内に検出されることが、第1の時間THtm1より長い第2の時間THtm2内において複数回(この例では2回)発生した場合に、叩打入力操作がされたと検知する。
従って、まずエネルギーレベルの増大があったときに、すぐにタッピング操作であると判断しないことから、他の外部ノイズ等によるエネルギーレベルの増大をタッピングと誤検出することを避けることができる。例えば風などの外来ノイズや、ユーザがマイク12L、12Rを触りつづけるときなどをタッピングと誤検出しないようにできる。
また、ダブルタッピングを操作として認識することでは、ユーザが誤操作でマイク12L又は12Rに触れてしまう場合や、外来雑音の影響を取り除き、1回のタッピング動作に比べ検知精度を高めるのに役立っている。
また、図5に示した構成例Iによれば、ユーザは左右のマイク12L、12Rのどちらでも任意にタッピング操作を行うことができる。
例えば鞄などを持って片方の手がふさがっているときに、空いている手でタッピング操作を行うことが容易となり、操作性が良いものとすることができる。
そして叩打検知部37がこのように叩打操作を検知することに応じて、制御部38は当該叩打操作に割り当てられた操作内容に応じた制御、例えば先に例示した制御を行う。
制御部38がメディアプレーヤ20の動作を制御するコマンドを送信することとすれば、ユーザは通勤時などにメディアプレーヤ20をポケットや鞄にしまったまま操作ができる。
また指で叩くという操作手法であることで直観的にメディアプレーヤ20或いはノイズキャンセルユニット14のコントロールが可能となる。
また、マイク12L、12Rを叩く方式であるため、タッチセンサなど特殊なセンサを使わなくても通常の(安価な)マイクと、CPU/DSP等の信号処理部があれば実装できるため、コスト削減に役立つ。
さらに本例のNCヘッドフォン10の場合、ノイズキャンセル機能のためにヘッドホン部11にマイク12L、12Rが設けられている。このマイク12L、12Rを利用してタッピングによる操作を可能とするものであるため、操作入力のための新たなセンサデバイスを設けることは不要であり、その点でもコスト削減に適しており、また装置構成部品の増大ということもない。
なお、図5の例ではL、Rチャンネルの各マイク12L、12Rからの音声信号SmL,SmRを合成して、タッピング操作を判断したが、一方のチャンネルのみの音声信号(例えば音声信号SmL)のみをローパスフィルタ52に入力してもよい。その場合は、当該チャンネルのマイク12Lのみがタッピング操作の用途に供される構成となる。
[2−3:叩打検知部(構成例II)]

構成例IIとしての叩打検知部37を図10で説明する。
この構成例IIは、LチャンネルとRチャンネル、即ちマイク12L、12Rを、それぞれ別の操作に割り当てることができるようにする例である。
例えばマイク12Lのタッピングをボリュームアップ、マイク12Rのタッピングをボリュームダウンなどとすることができるような構成例である。
図10に示すように、叩打検知部37には、LチャンネルとRチャンネルで独立2系統の叩打検知構成を採る。
即ちマイク12Lからの音声信号SmLに対して、ローパスフィルタ52L、絶対値化回路53L、ローパスフィルタ54L、判定処理部55Lを設ける。またマイク12Rからの音声信号SmRに対して、ローパスフィルタ52R、絶対値化回路53R、ローパスフィルタ54R、判定処理部55Rを設ける。
ローパスフィルタ52L、52R、絶対値化回路53L、53R、ローパスフィルタ54L、54Rの動作は上記構成例Iのローパスフィルタ52、絶対値化回路53、ローパスフィルタ54の動作と同様であるため、繰り返しの説明は避ける。
また判定処理部55L、55Rは、それぞれが例えば図7のようなエネルギー増減判定処理を行えばよい。
そして判定処理部55Lは音声信号SmLから得られる信号Sについてダブルタッピングを検知したら操作検知信号SdetLを制御部38に出力する。
判定処理部55Rは音声信号SmRから得られる信号Sについてダブルタッピングを検知したら操作検知信号SdetRを制御部38に出力する。
制御部38は操作検知信号SdetL、SdetRにより、2種類の操作入力を認識でき、それらに応じて例えば上記のボリュームアップ/ダウンの制御などを行うことができる。
このような構成例IIにより、左右のマイク12L、12Rで2種類の操作を使い分けることができ、ユーザの操作性向上に好適である。
[2−4:叩打検知部(構成例III)]

続いて構成例IIIを図11に示す。これは上記構成例IIと同様に、LチャンネルとRチャンネル、即ちマイク12L、12Rを、それぞれ別の操作に割り当てることができるようにする例である。上記構成例IIの場合は、叩打検知部37に単純に2系統の叩打検知処理系を搭載するため、構成負担が大きくなる。この構成例IIIは構成負担を軽減できる例である。
この構成例IIIでは、叩打検知部37は、複数の各チャンネルの音声信号SmL,SmRのうちで叩打音が含まれるチャンネルを判定するチャンネル判定処理と、複数チャンネルの音声信号を加算または減算した音声信号についてのエネルギー増減判定処理とを行う。これにより叩打入力操作の検知及び叩打入力操作が行われたチャンネルの検知を行うものである。
この場合、図11に示すように、マイク12Lからの音声信号SmLはローパスフィルタ52Lに入力され、カットオフ周波数fc1で低域抽出される。
また、マイク12Rからの音声信号SmRはローパスフィルタ52Rに入力され、カットオフ周波数fc1で低域抽出される。
ローパスフィルタ52Lの出力は絶対値化回路56Lと減算器59に供給される。
またローパスフィルタ52Rの出力は絶対値化回路56Rと減算器59に供給される。
絶対値化回路56Lはローパスフィルタ52Lの出力を絶対値化して減算器57に供給する。絶対値化回路56Rはローパスフィルタ52Rの出力を絶対値化して減算器57に供給する。
従って減算器57の出力としては、左右チャンネルの音声信号SmL,SmRの各低域成分のエネルギーレベルの差分が現れることになる。
この減算器57の出力はカットオフ周波数fc2のローパスフィルタ58で包絡線信号とされて判定処理部55に供給される。
判定処理部55では、マイク12L、12Rのいずれかに対してタッピングがなされたときは、この包絡線信号の正負判定により、マイク12L、12Rのどちらに対するタッピングであったかを検出できる。
ローパスフィルタ52L、52Rで抽出された音声信号SmL,SmRの各低域成分は、減算器59で減算処理され、差分値が抽出される。
マイク12L、12Rのうちで一方がタッピングされた場合、そのタッピングされた方の音声信号の低域成分のエネルギーが増大するが、従って減算器59の出力としては、そのタッピングによるエネルギー増大成分が現れる。
この減算器59の出力は絶対値化回路53で絶対値化され、カットオフ周波数fc2のローパスフィルタ54で包絡線化された信号Sとされて判定処理部55に供給される。
判定処理部55では、信号Sに対してエネルギー増減判定処理を行い、信号Sについてダブルタッピングを検知したら操作検知信号Sdet、及びLチャンネル/Rチャンネルの判定信号D−LRを制御部38に出力する。
この場合の判定処理部55のエネルギー増減判定処理は、例えば図12のように行われればよい。
なお図12において、上記図7と同一の処理については同一のステップ番号を付し、重複説明は避ける。
この図12の処理では、ステップF101〜F106で、1回目のタッピングの検知を行う。またステップF107〜F110で、1回目のタッピングから2回目のタッピングまでの時間を監視する。以上は図7と同様である。
ステップF110で2回目のタッピングと判定される可能性のある信号Sのエネルギーレベルの増大があったら、判定処理部55はステップF130でL/R判定を行う。
これは、この時点で図11のローパスフィルタ58からの信号の正負を判定する。図11のように減算器57でLチャンネルの絶対値化信号からRチャンネルの絶対値化信号が減算される構成の場合、ローパスフィルタ58からの信号が正であればLチャンネル、負であればRチャンネルと判定する。
即ちこのL/R判定は、マイク12L、12Rのどちらがタッピングされたかを検出する処理となる。
続いて判定処理部55はステップF111〜F114で2回目のタッピングであるかの確認処理を図7の場合と同様に行う。
そしてステップF114で第2の時間THtm2内の信号Sのエネルギーレベルの減少が検出されたら、ステップF115Aで2回目のタッピングがなされたと判定する。
このとき判定処理部55は、操作検知信号SdetL、及びLチャンネル/Rチャンネルの判定信号D−LRを制御部38に出力する。判定信号D−LRはステップF130のP判定処理に基づいて生成するものである。
この構成例IIIの場合、制御部38は操作検知信号Sdetと判定信号D−LRにより、マイク12L、12Rを別個に用いた2種類の操作入力を認識でき、それらに応じて例えばボリュームアップ/ダウンなどの制御などを行うことができる。
従ってこの構成例IIIによっても、左右のマイク12L、12Rで2種類の操作を使い分けることができ、ユーザの操作性向上に好適である。その上で構成例IIに比べて叩打検知部37の構成負担を少なくできる。特に判定処理部55が1つでよいことで処理(リソース)負担も軽減される。
なお、減算器59に代えて加算器を用いることも考えられる。
[2−5:叩打検知部の処理の変形例]

ここまで叩打検知部37の構成例及びエネルギー増減判定処理例について例を挙げてきたが、実施の形態の変形例としてさらに多様な例が考えられる。
上記各例では、ダブルタッピングを所定の操作とする例を挙げたが、もちろん1回目のタッピングだけで操作と認識するようにしてもよい。
例えばその場合、判定処理部55は図7のステップF106に進んだ時点で、ユーザの操作として判定し、操作検知信号Sdetを出力するようにすればよい。
また、ダブルタッピングではなくトリプルタッピング、即ち3回の連続的な叩打を操作入力として認識するようにしても良い。
この場合のエネルギー増減判定処理は例えば図13のようにする。
図13において図7と同一の処理は同一のステップ番号を付して詳細な説明を省略する。
この図13では、ステップF101〜F114は図7と同一である。従って、ステップF114で信号Sが閾値TH2より下がったと検出された場合は、2回目のタッピングがあったと判定される場合となる。そこで判定処理部55はステップF115Bに進んで、ユーザ操作と推定される2回目のタッピングがあったと仮判定する。
そしてステップF116で判定処理部55はカウンタCn2をさらにインクリメントしていきながら、ステップF117,F118の判断を行っていく。
ステップF117では判定処理部55は、カウンタCn2の値が、第2の時間THtm2に達していないかどうかを判断する。
もしステップF117でカウンタCn2の値が、第2の時間THtm2を越えたら、「R」で示すようにステップF101に戻る。つまりその場合は、第2の時間THtm2に達しても、3回目のエネルギーレベルの増大が検出されない場合であり、操作としての3回連続のタッピングが行われているのではないと判断する。
またステップF118では判定処理部55は、信号Sが閾値TH1より大きくなったか否かを判断する。
これは3回目のタッピングによる信号Sのエネルギーレベルの増大が観測されたか否かの判断処理となる。
このステップF118で信号Sが閾値TH1より大きくなったと判定したら、判定処理部55はステップF119〜F122の処理を行う。
この場合も、破線で囲ったステップF119〜F122の処理は、同じく破線で囲ったステップF111〜F114、及びステップF102〜F105と同一の処理(共通ルーチン)となる。
ステップF119では判定処理部55は、まずカウンタCn1を0にリセットし、カウントをスタートさせる。
そして判定処理部55はステップF120でカウンタCn1をインクリメントしていきながら、ステップF121,F122の判断を行っていく。
ステップF121では判定処理部55は、カウンタCn1の値が、第1の時間THtm1に達していないかどうかを判断する。
第1の時間THtm1とは、上記のように信号Sのエネルギー増減が瞬間的に起こったか否か、つまりタッピング操作によるエネルギーレベルの瞬間的な増減であるか否かを判断するための時間として設定されている。
従って、ステップF121でカウンタCn1の値が、第1の時間THtm1を越えたら、「R」で示すようにステップF101に戻る。つまりその場合は、操作としてのタッピングではなかったと判断する。
またステップF122では判定処理部55は、信号Sが閾値TH2より小さくなったか否かを判断する。
このステップF122で信号Sが閾値TH2より小さくなったと判定したら、判定処理部55はステップF123に進み、操作としての3回目のタッピングがあったと判断する。
そして判定処理部55は、ユーザの意識的な操作としてのトリプルタッピングが行われたと判定し、操作有りとしての操作検知信号Sdetを制御部38に出力する。
このような処理により、一定時間内に3回のタッピングを行ったことが検知でき、それを操作入力と認識して制御部38が所定の制御処理を行うことができる。
もちろん、4回以上の連続タッピングを操作として検知することもできる。その場合の処理も上記図13の処理を応用して考えればよい。
また、複数回のタッピングと無音区間と組み合わせることで操作入力を検知することも可能である。
さらに先に、構成例II、IIIではマイク12L、12Rの各叩打で2種類の操作を認識できる例を示したが、タッピング回数で複数種類の操作を認識することも可能である。
図14には、ダブルタッピングとトリプルタッピングを異なる操作として認識する処理例を示した。
図14において図13と同一の処理は同一のステップ番号を付して説明を省略する。
ステップF101〜F115Bは図13と同様である。
ステップF115Bで2回目のタッピングがあったと仮判定した場合は、図13と同様にステップF116〜F118で3回目のタッピングが第2の時間THtm2内に発生するか否かを監視する。
ここで、ステップF117で3回目のタッピングが検出されないまま第2の時間THtm2の経過となった場合はステップF124に進むこととする。
即ち判定処理部55はユーザのタッピングが2回で終了したと判断し、ステップF124でダブルタッピング操作による操作入力と判定する。そしてダブルタッピング操作有りとしての操作検知信号SdetWを制御部38に出力する。
一方、3回目のタッピングが推定される場合はステップF118からF119に進み、図13の場合と同様にステップF119〜F122の処理を行う。そして3回目のタッピングと判定されるときは、ステップF123に進み、操作としてのトリプルタッピングを認定する。この場合判定処理部55はトリプルタッピング操作有りとしての操作検知信号SdetTを制御部38に出力する。
この図14のようなエネルギー増減判定処理によれば、制御部38は操作検知信号SdetW、SdetTによって2種類の操作入力を認識し、それぞれに応じて所定の制御処理を行うことができる。
もちろん、上述の構成例II、IIIと組み合わせれば、マイク12L、12Rのそれぞれのダブルタッピング、トリプルタッピングとして、4種類の操作入力を認識できることにもなる。
当然、さらに1回タッピング、4回以上の連続タッピングなども区別して認識し、さらに多様な操作を可能とすることも考えられる。
また、本実施の形態ではNCヘッドフォン10の例として、既存のノイズキャンセル用のマイク12L、12Rを用いた例であるが、操作入力用のマイクロホンを多数配設できるのであれば、各マイクロホンで多種類の操作入力が可能となる。
<3.各種機器に適用した実施の形態>

ここまではNCヘッドフォン10に本発明を適用した実施の形態を述べてきたが、本発明は多様な電子機器に適用できる。以下例示していく。
まず図3に示したメディアプレーヤ20において、図1に示した音声信号処理部1(叩打検知部2,制御部3)を搭載することが考えられる。
即ちノイズキャンセルユニット14の機能をメディアプレーヤ20に内蔵する場合である。この場合、メディアプレーヤ20が本発明の実施の形態の音声信号処理部1を搭載した具体的な装置となり、上述したNCヘッドフォン10の効果と同様の効果を発揮できる。
その場合のマイク4は、接続されるヘッドホン装置に搭載されるものでも良いし、マイク入力端子に接続されたヘッドホン装置とは別体のマイク機器でもよい。もちろんメディアプレーヤ20の本体にマイクを内蔵する場合、そのマイクを用いても良い。
また、デジタルスチルカメラ、ビデオカメラ等の撮像機器でも、マイクを搭載することが多い。そのような撮像機器に図1の構成を備えるようにすることで、マイクを利用した操作入力が可能となる。
ゲーム機であれば、マイク4に対するタッピングをゲーム上の操作に利用することもできる。
同様にパーソナルコンピュータや携帯型情報処理装置(例えばPDA(Personal Digital Assistant))、携帯電話機などでも本発明は適用できる。
これらの機器に音声入力用のマイクを設ける場合、そのマイクをタッピングすることによる操作入力が可能となる。例えばパーソナルコンピュータやモバイルPCで搭載されている通信用ステレオマイクを用いて、叩打検知による操作を認識し、所定の処理を行うようにすることができる。
また携帯電話機の場合、マイクは当然に設けられるため、これを利用することでマイクデバイスの新規搭載負担なく、本発明を適用できる。
特にNCヘッドフォン、メディアプレーヤ、携帯電話機、モバイルPC、携帯用ゲーム機など、マイクが設置されている機器は可搬性の高いモバイル機器であることが多く、大きく場所をとるスイッチの設置を省くことができるのは有用である。
なお小型機器であるため、必然的に内部に搭載されるCPUやDSPのリソースは限られたものであり、検知のアルゴリズムは、より軽いものであることが望まれる、という背景がある。
そのため上述した時間軸でエネルギー増減判定処理を行い、周波数解析等を行わないで叩打検知を行う実施の形態のアルゴリズムはより有効である。
さらに、各種の通信装置、AV(Audio-Visual)機器、家電機器などにも本発明は適用できる。
またタッピング操作に関しては、タッピングするマイクの別、タッピング回数、タッピング間隔などで多様な操作を割り当てることができる。
また、マイクに関しては、他の音声入力機能に用いるマイクを利用するだけでなく、叩打操作入力の専用のマイクを設けても良い。
また叩打操作に用いるマイクはステレオマイクロホン、モノラルマイクロホン、多チャンネルマイクロホンのいずれであってもよい。
また、叩打操作による操作内容としては、記録再生に関する操作、送受信に関する操作、メニュー操作、エンター操作、電源オン/オフ操作など多様な例が考えられる。
さらには、電子メール文章の作成や文字入力などにも利用できる。
電子メールの作成及び送信操作としての一例を挙げる。
図15(a)は携帯電話機100にマイク102が搭載されたイヤホンスピーカ101が接続されている例を示している。
もちろん、マイク102は携帯電話機100の本体に搭載されているマイクとしても良い。
このマイクロホン102のタッピングで任意の電子メール文書を作成し、送信する。
まず携帯電話機100内の図示しない制御部は、図15(b)のように特殊コードとセレクトモードを設定しておく。
特殊コードとしては、1秒以内のダブルタッピングをセレクトモードのイン/アウト操作とする。また1秒以内のトリプルタッピングを1つ前のセレクトアイテムへ戻る操作とする。
セレクトモードとしては、送信先セレクト、文面セレクト、実行セレクトを用意する。
送信先セレクトモードでは、アドレス登録された人をメール送信先として選べるようにする。文面セレクトモードでは、文章内容を選択できるようにする。実行セレクトモードでは、送信や取り消し等の動作を選択できるようにする。
図16で電子メールの作成及び送信の動作例を示す。
まずダブルタッピングが検知されたら、携帯電話機100の制御部は送信先セレクトモードに入る。そして送信先として登録された人の名前を読み上げる。
ユーザは、読み上げられる名前をスピーカ101で聴き取り、今回送信しようとする相手の名前が読み上げられた時点で再びダブルタッピングする。
すると制御部は、そのダブルタッピングの直前に読み上げた人を送信先として決定する。図の場合、「Bさん」が送信先として選ばれることになる。そして制御部は送信先セレクトモードから文面セレクトモードに移行する。
文面セレクトモードでは、制御部は各種の文面を読み上げていく処理を行う。ユーザは読み上げられる文面をスピーカ101で聴き取り、今回送信しようとする内容の文面が読み上げられた時点で再びダブルタッピングすればよい。
また、読み上げ内容を戻したい場合はトリプルタッピングすればよい。
図の例では「現在出社中」「今から帰る」「本日遅刻します」・・・と順に読み上げられていく。ここで、ユーザは「今から帰る」を選択したかったのに、次の文面まで読み上げが進んでしまったのなら、トリプルタッピングを行う。これに応じて制御部は1つ前の「今から帰る」を再び読み上げる。
ここでユーザがダブルタッピングをすれば、制御部は「今から帰る」が選択されたとして文面セレクトモードから実行セレクトモードに移行する。
実行セレクトモードでも制御部は、実行内容を読み上げる処理を行う。そして例えば「送信」と読み上げられたタイミングでユーザがダブルタッピングすれば、制御部は「送信」が選択されたと認識し、実行セレクトモードを終了して送信処理を行う。
このような処理によって「Bさん」に対して「今から帰る」という電子メール文書が作成され、送信されることになる。
この例のように、タッピングのタイミングを判定することで、文字コードや、あらかじめ決まった文章を打ち込むこともできる。例えば図15(a)のように耳元にマイクがある場合であれば、電車内などでしゃべることなく、また携帯電話/端末を鞄などから出して打つ必要なく、耳元で簡易的に操作するだけで、定型文をメールで送信することができる。
上記例では、あらかじめ、メーカもしくはユーザが良く使用される送信先や定型文の種類をプリセットしておき、さらに特殊コードとしての規則を決めておくようにした。
このようにすることで、比較的簡単に、効率よく、また周囲のヒトから気づかれにくく送信することができる。
また上記例ではセレクトアイテム時に読み上げ処理を行うとしたが、これは必ずしも必要なわけではなく、最後または途中段階で確認が入るような仕組みにしても良い。
またセレクトアイテムの読み上げをシングルタッピング操作で進行させるような操作を取り入れることも考えられる。
もちろん、同様の手法を用いて、定型文でなく文字そのもののコードを入力するようにして、タッピングを使って1文字ずつ入力する機構を実装してもかまわない。例えば、図示はしないが、左耳のタッピングで「あ、か、さ、た、な・・・」を選択し、その後右耳にて「あ段、い段、・・・」を選択するようにすれば、比較的平易に入力することが可能である。
<4.プログラム>

本発明の実施の形態のプログラムは、叩打検知ステップと制御ステップとを演算処理装置に実行させるプログラムである。
叩打検知ステップは、一体又は別体接続されたマイクロホンによって集音された音声信号についての低域成分のエネルギーレベルの第1の時間内での増加及び減少を判定するエネルギー増減判定処理に基づいて、叩打入力操作を検知する。
制御ステップは、叩打検知ステップで叩打入力操作が検知されたことに応じて、叩打入力操作について設定された所定の制御処理を行う。
このようなプログラムに基づいて上述した各種機器の制御部(演算処理装置)が動作することで、本発明の音声信号処理装置が実現される。即ち図2及び図7(又は図12,図13,図14等)の処理が実行される。
このようなプログラムは、パーソナルコンピュータ等の機器に内蔵されている記録媒体としてのHDDや、CPUを有するマイクロコンピュータ内のROMやフラッシュメモリ等に予め記録しておくことができる。
あるいはまた、フレキシブルディスク、CD−ROM(Compact Disc Read Only Memory)、MO(Magnet optical)ディスク、DVD、ブルーレイディスク、磁気ディスク、半導体メモリ、メモリカードなどのリムーバブル記録媒体に、一時的あるいは永続的に格納(記録)しておくことができる。このようなリムーバブル記録媒体は、いわゆるパッケージソフトウェアとして提供することができる。
また、プログラムは、リムーバブル記録媒体からパーソナルコンピュータ等にインストールする他、ダウンロードサイトから、LAN(Local Area Network)、インターネットなどのネットワークを介してダウンロードすることもできる。
1 音声信号処理部、2 叩打検知部、3 制御部、4 マイク、10 NCヘッドフォン、11 ヘッドホン部、12L、12R マイク、13L、13R スピーカ、14 ノイズキャンセルユニット、20 メディアプレーヤ、34 ノイズキャンセル部、35 ゲイン部、37 叩打検知部、38 制御部、39 イコライザ、52,52L、52R,54,54L,54R,58 ローパスフィルタ、53,53L,53R,56L,56R 絶対値化回路、55,55L,55R 判定処理部

Claims (9)

  1. マイクロホンによって集音された音声信号が入力されるとともに、該音声信号の低域成分のエネルギーレベルの第1の時間内での増加及び減少を判定するエネルギー増減判定処理に基づいて叩打入力操作を検知する叩打検知部と、
    上記叩打検知部により叩打入力操作が検知されたことに応じて、叩打入力操作について設定された所定の制御処理を行う制御部と、
    を備えた音声信号処理装置。
  2. 上記叩打検知部は、上記エネルギー増減判定処理で上記エネルギーレベルの増加及び減少が第1の時間内に検出されることが、上記第1の時間より長い第2の時間内において複数回発生した場合に、叩打入力操作がされたと検知する請求項1に記載の音声信号処理装置。
  3. 上記叩打検知部には、複数チャンネルの音声信号が入力され、
    上記叩打検知部は、複数チャンネルの音声信号を加算した音声信号について、上記エネルギー増減判定処理を行う請求項2に記載の音声信号処理装置。
  4. 上記叩打検知部には、複数チャンネルの音声信号が入力され、
    上記叩打検知部は、複数の各チャンネルの音声信号のそれぞれについて、上記エネルギー増減判定処理を行い、各チャンネルについての叩打入力操作を検知する請求項2に記載の音声信号処理装置。
  5. 上記叩打検知部には、複数チャンネルの音声信号が入力され、
    上記叩打検知部は、複数の各チャンネルの音声信号のうちで叩打音が含まれるチャンネルを判定するチャンネル判定処理と、上記複数チャンネルの音声信号を加算または減算した音声信号についての上記エネルギー増減判定処理とを行い、叩打入力操作の検知及び叩打入力操作が行われたチャンネルの検知を行う請求項2に記載の音声信号処理装置。
  6. 上記エネルギー増減判定処理では、該音声信号の低域成分のエネルギーレベルが第1の閾値より上昇した後、上記第1の時間内で、上記エネルギーレベルが第2の閾値より減少するか否かを判定する請求項2に記載の音声信号処理装置。
  7. マイクロホンをさらに備え、
    上記マイクロホンによって集音された音声信号が上記叩打検知部に入力される請求項2に記載の音声信号処理装置。
  8. マイクロホンによって集音された音声信号についての低域成分のエネルギーレベルの第1の時間内での増加及び減少を判定するエネルギー増減判定処理に基づいて、叩打入力操作を検知する叩打検知ステップと、
    上記叩打検知ステップで叩打入力操作が検知されたことに応じて、叩打入力操作について設定された所定の制御処理を行う制御ステップと、
    を備えた音声信号処理方法。
  9. マイクロホンによって集音された音声信号についての低域成分のエネルギーレベルの第1の時間内での増加及び減少を判定するエネルギー増減判定処理に基づいて、叩打入力操作を検知する叩打検知ステップと、
    上記叩打検知ステップで叩打入力操作が検知されたことに応じて、叩打入力操作について設定された所定の制御処理を行う制御ステップと、
    を演算処理装置に実行させるプログラム。
JP2010088659A 2010-04-07 2010-04-07 音声信号処理装置、音声信号処理方法、プログラム Expired - Fee Related JP5716287B2 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2010088659A JP5716287B2 (ja) 2010-04-07 2010-04-07 音声信号処理装置、音声信号処理方法、プログラム
EP11158799A EP2375775A1 (en) 2010-04-07 2011-03-18 Audio signal processing apparatus, audio signal processing method, and program
US13/069,561 US8634565B2 (en) 2010-04-07 2011-03-23 Audio signal processing apparatus, audio signal processing method, and program
TW100110180A TWI458359B (zh) 2010-04-07 2011-03-24 音訊處理設備,音訊處理方法及程式
SG2011022480A SG175501A1 (en) 2010-04-07 2011-03-30 Audio signal processing apparatus, audio signal processing method, and program
KR1020110028691A KR20110112774A (ko) 2010-04-07 2011-03-30 음성 신호 처리 장치, 음성 신호 처리 방법, 프로그램
BRPI1100916-0A BRPI1100916A2 (pt) 2010-04-07 2011-03-31 aparelho e mÉtodo de processamento de sinal de Áudio, e programa
CN201110084416.2A CN102281484B (zh) 2010-04-07 2011-03-31 音频信号处理设备和音频信号处理方法
US14/062,639 US9479883B2 (en) 2010-04-07 2013-10-24 Audio signal processing apparatus, audio signal processing method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010088659A JP5716287B2 (ja) 2010-04-07 2010-04-07 音声信号処理装置、音声信号処理方法、プログラム

Publications (3)

Publication Number Publication Date
JP2011221702A true JP2011221702A (ja) 2011-11-04
JP2011221702A5 JP2011221702A5 (ja) 2013-04-18
JP5716287B2 JP5716287B2 (ja) 2015-05-13

Family

ID=44343043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010088659A Expired - Fee Related JP5716287B2 (ja) 2010-04-07 2010-04-07 音声信号処理装置、音声信号処理方法、プログラム

Country Status (8)

Country Link
US (2) US8634565B2 (ja)
EP (1) EP2375775A1 (ja)
JP (1) JP5716287B2 (ja)
KR (1) KR20110112774A (ja)
CN (1) CN102281484B (ja)
BR (1) BRPI1100916A2 (ja)
SG (1) SG175501A1 (ja)
TW (1) TWI458359B (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019504346A (ja) * 2015-12-18 2019-02-14 ボーズ・コーポレーションBose Corporation タップ制御する音響ノイズ低減オーディオシステム
JP2022548769A (ja) * 2019-09-20 2022-11-21 パイカー、アクスティック、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング タップ音検出によって車内通信システムを制御するためのシステム、方法、およびコンピューター読取り可能な記録媒体
WO2023063407A1 (ja) * 2021-10-14 2023-04-20 ソニーグループ株式会社 情報処理システム、情報処理装置および方法、収納ケースおよび情報処理方法、並びにプログラム

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006029378A2 (en) 2004-09-09 2006-03-16 Guenther Godehard A Loudspeaker and systems
JP5716287B2 (ja) 2010-04-07 2015-05-13 ソニー株式会社 音声信号処理装置、音声信号処理方法、プログラム
JP5593851B2 (ja) 2010-06-01 2014-09-24 ソニー株式会社 音声信号処理装置、音声信号処理方法、プログラム
JP5593852B2 (ja) 2010-06-01 2014-09-24 ソニー株式会社 音声信号処理装置、音声信号処理方法
US8787599B2 (en) * 2010-09-20 2014-07-22 Plantronics, Inc. Reduced microphone handling noise
JP2013025757A (ja) * 2011-07-26 2013-02-04 Sony Corp 入力装置、信号処理方法、プログラム、および記録媒体
US20130051567A1 (en) * 2011-08-31 2013-02-28 Kirk P Gipson Tap detection of sound output device
EP2584459A1 (en) * 2011-10-21 2013-04-24 Research In Motion Limited System and method for changing an activation state of an electronic device using acoustic signals
US9351089B1 (en) * 2012-03-14 2016-05-24 Amazon Technologies, Inc. Audio tap detection
US9374448B2 (en) * 2012-05-27 2016-06-21 Qualcomm Incorporated Systems and methods for managing concurrent audio messages
US20140334657A1 (en) * 2013-05-13 2014-11-13 Dr. G Licensing, Llc Portable loudspeakers and convertible personal audio headphone/loudspeakers
TWI544478B (zh) * 2014-04-10 2016-08-01 拓集科技股份有限公司 基於聲音觸發之作業啟始方法及系統,及相關電腦程式產品
JP6311871B2 (ja) * 2014-04-17 2018-04-18 セイコーエプソン株式会社 物理量検出用回路、物理量検出装置、物理量計測システム、電子機器、移動体及び物理量計測データ生成方法
EP2945398B1 (en) * 2014-05-15 2017-10-11 Nxp B.V. Motion sensor
CN105812506A (zh) * 2014-12-27 2016-07-27 深圳富泰宏精密工业有限公司 操作方式控制系统与方法
US9858948B2 (en) * 2015-09-29 2018-01-02 Apple Inc. Electronic equipment with ambient noise sensing input circuitry
US10110987B2 (en) * 2015-12-18 2018-10-23 Bose Corporation Method of controlling an acoustic noise reduction audio system by user taps
US9930440B2 (en) 2015-12-18 2018-03-27 Bose Corporation Acoustic noise reduction audio system having tap control
US10091573B2 (en) 2015-12-18 2018-10-02 Bose Corporation Method of controlling an acoustic noise reduction audio system by user taps
US10477328B2 (en) 2016-08-01 2019-11-12 Qualcomm Incorporated Audio-based device control
US10582290B2 (en) * 2017-02-21 2020-03-03 Bragi GmbH Earpiece with tap functionality
CN110998713B (zh) * 2017-08-03 2023-12-26 伯斯有限公司 由用户轻击来控制声学噪声降低音频系统的方法
US11087776B2 (en) * 2017-10-30 2021-08-10 Bose Corporation Compressive hear-through in personal acoustic devices
US10354641B1 (en) * 2018-02-13 2019-07-16 Bose Corporation Acoustic noise reduction audio system having tap control
JP2019208098A (ja) * 2018-05-28 2019-12-05 オンキヨー株式会社 イヤホン、及び、イヤホンの設定方法
US11693896B2 (en) 2018-09-25 2023-07-04 International Business Machines Corporation Noise detection in knowledge graphs
CN111246326B (zh) * 2018-11-29 2022-03-11 原相科技股份有限公司 耳机组控制方法和耳机组
CN111684522A (zh) * 2019-05-15 2020-09-18 深圳市大疆创新科技有限公司 声音识别方法、交互方法、声音识别系统、计算机可读存储介质及可移动平台
CN111243584B (zh) * 2020-01-03 2023-07-07 广州大学 一种多维声音信号控制的智能插座及多维声音信号的控制方法
WO2021211146A1 (en) * 2020-04-12 2021-10-21 Delahoussaye Kevin Superior sound reduction
CN112817227B (zh) * 2020-12-31 2022-05-31 联想(北京)有限公司 一种信息处理方法及电子设备
CN113488076A (zh) * 2021-06-30 2021-10-08 北京小米移动软件有限公司 音频信号处理方法及装置
CN113473299A (zh) * 2021-07-22 2021-10-01 立讯电子科技(昆山)有限公司 控制方法和穿戴式装置
US11985481B2 (en) 2022-04-01 2024-05-14 Rehear Audiology Company Ltd. Hearing compensation device and hearing compensation method
TWM635174U (zh) * 2022-04-01 2022-12-11 弘憶國際股份有限公司 聽覺補償裝置及具有該聽覺補償裝置之聽力設備

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001154692A (ja) * 1999-11-30 2001-06-08 Sony Corp ロボット制御装置およびロボット制御方法、並びに記録媒体
JP2007019787A (ja) * 2005-07-07 2007-01-25 Yamaha Motor Co Ltd 入力装置、入力機能付きヘルメットシステムおよびそれを備えた車両システム
JP2007081560A (ja) * 2005-09-12 2007-03-29 Sony Corp 雑音低減装置及び雑音低減方法並びに雑音低減プログラムとその電子機器用収音装置
US20070079206A1 (en) * 2005-09-09 2007-04-05 Manish Arora Method and apparatus to control operation of multimedia device
JP2008166897A (ja) * 2006-12-27 2008-07-17 Sony Corp 音声出力装置、音声出力方法、音声出力処理用プログラムおよび音声出力システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10145994C2 (de) * 2001-09-18 2003-11-13 Siemens Audiologische Technik Hörgerät und Verfahren zur Steuerung eines Hörgeräts durch Klopfen
JP4037086B2 (ja) * 2001-10-31 2008-01-23 株式会社エヌ・ティ・ティ・ドコモ コマンド入力装置
US8477955B2 (en) 2004-09-23 2013-07-02 Thomson Licensing Method and apparatus for controlling a headphone
WO2006075275A1 (en) * 2005-01-12 2006-07-20 Koninklijke Philips Electronics N.V. Audio entertainment system, method, computer program product
US7966084B2 (en) 2005-03-07 2011-06-21 Sony Ericsson Mobile Communications Ab Communication terminals with a tap determination circuit
US20080234842A1 (en) 2007-03-21 2008-09-25 Microsoft Corporation Microphones as contact sensors for device control
US8428275B2 (en) 2007-06-22 2013-04-23 Sanyo Electric Co., Ltd. Wind noise reduction device
JP5121659B2 (ja) 2008-10-08 2013-01-16 株式会社東芝 洗濯乾燥機
US8326569B2 (en) * 2008-10-21 2012-12-04 Analog Devices, Inc. Tap detection
JP5716287B2 (ja) 2010-04-07 2015-05-13 ソニー株式会社 音声信号処理装置、音声信号処理方法、プログラム
JP5593852B2 (ja) 2010-06-01 2014-09-24 ソニー株式会社 音声信号処理装置、音声信号処理方法
JP5593851B2 (ja) 2010-06-01 2014-09-24 ソニー株式会社 音声信号処理装置、音声信号処理方法、プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001154692A (ja) * 1999-11-30 2001-06-08 Sony Corp ロボット制御装置およびロボット制御方法、並びに記録媒体
JP2007019787A (ja) * 2005-07-07 2007-01-25 Yamaha Motor Co Ltd 入力装置、入力機能付きヘルメットシステムおよびそれを備えた車両システム
US20070079206A1 (en) * 2005-09-09 2007-04-05 Manish Arora Method and apparatus to control operation of multimedia device
JP2007081560A (ja) * 2005-09-12 2007-03-29 Sony Corp 雑音低減装置及び雑音低減方法並びに雑音低減プログラムとその電子機器用収音装置
JP2008166897A (ja) * 2006-12-27 2008-07-17 Sony Corp 音声出力装置、音声出力方法、音声出力処理用プログラムおよび音声出力システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019504346A (ja) * 2015-12-18 2019-02-14 ボーズ・コーポレーションBose Corporation タップ制御する音響ノイズ低減オーディオシステム
JP2022548769A (ja) * 2019-09-20 2022-11-21 パイカー、アクスティック、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング タップ音検出によって車内通信システムを制御するためのシステム、方法、およびコンピューター読取り可能な記録媒体
WO2023063407A1 (ja) * 2021-10-14 2023-04-20 ソニーグループ株式会社 情報処理システム、情報処理装置および方法、収納ケースおよび情報処理方法、並びにプログラム
WO2023062959A1 (ja) * 2021-10-14 2023-04-20 ソニーグループ株式会社 情報処理システム、情報処理装置および方法、並びにプログラム

Also Published As

Publication number Publication date
KR20110112774A (ko) 2011-10-13
US20140050327A1 (en) 2014-02-20
US9479883B2 (en) 2016-10-25
US20110249824A1 (en) 2011-10-13
SG175501A1 (en) 2011-11-28
US8634565B2 (en) 2014-01-21
BRPI1100916A2 (pt) 2012-08-14
EP2375775A1 (en) 2011-10-12
CN102281484A (zh) 2011-12-14
JP5716287B2 (ja) 2015-05-13
TW201206205A (en) 2012-02-01
TWI458359B (zh) 2014-10-21
CN102281484B (zh) 2015-08-26

Similar Documents

Publication Publication Date Title
JP5716287B2 (ja) 音声信号処理装置、音声信号処理方法、プログラム
JP5593851B2 (ja) 音声信号処理装置、音声信号処理方法、プログラム
JP5401759B2 (ja) 音声出力装置、音声出力方法、音声出力システムおよび音声出力処理用プログラム
JP5396685B2 (ja) 音声出力装置、音声出力方法、音声出力システムおよび音声出力処理用プログラム
EP3459266B1 (en) Detection for on the head and off the head position of a personal acoustic device
US20140079239A1 (en) System and apparatus for controlling a user interface with a bone conduction transducer
JP2010187218A (ja) 制御装置、制御方法及び制御プログラム
US12015903B2 (en) Headphone and headphone status detection method
JP2014187413A (ja) 音響機器並びにプログラム
CN105681950A (zh) 提示方法、提示装置、耳机及终端
JP2024001353A (ja) ヘッドホン、および音響信号処理方法、並びにプログラム
JP4942555B2 (ja) ノイズキャンセルヘッドホン
KR20150145671A (ko) 마이크를 이용한 기기의 제어 장치와 방법
TWI837440B (zh) 音訊播放的控制方法與音訊播放裝置
JP2012186525A (ja) 音響装置
WO2018004530A1 (en) User input through transducer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130306

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150302

R151 Written notification of patent or utility model registration

Ref document number: 5716287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees