JP2011216576A - 蓄電デバイス - Google Patents

蓄電デバイス Download PDF

Info

Publication number
JP2011216576A
JP2011216576A JP2010081687A JP2010081687A JP2011216576A JP 2011216576 A JP2011216576 A JP 2011216576A JP 2010081687 A JP2010081687 A JP 2010081687A JP 2010081687 A JP2010081687 A JP 2010081687A JP 2011216576 A JP2011216576 A JP 2011216576A
Authority
JP
Japan
Prior art keywords
negative electrode
current collector
positive electrode
electrode
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010081687A
Other languages
English (en)
Inventor
Takashi Utsunomiya
隆 宇都宮
Mitsuru Nagai
満 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2010081687A priority Critical patent/JP2011216576A/ja
Publication of JP2011216576A publication Critical patent/JP2011216576A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

【課題】プレドープ時間を短縮できる蓄電デバイスを提供する。
【解決手段】蓄電デバイスは、正極と負極とがセパレータを介して交互に積層される電極積層ユニットと、負極にリチウムイオンをプレドープする金属リチウムを備えたリチウム極とから構成されている。正極集電体および負極集電体には、貫通孔が厚さ方向に沿って形成されている。積層方向に隣り合う正極および負極の正極集電体および負極集電体の貫通孔の対向する側の開口面積の和(a)に対する、貫通孔の開口が重なる部分の面積(b)の率(重複率、孔重複率)b/a×100(%)を、30%以上とする。このように、積層する電極間の貫通孔の位置を最適化したことにより、リチウムイオンの移動距離を短くして拡散速度をコントロールすることが可能となる。
【選択図】図6

Description

本発明は蓄電デバイスの技術に関し、特に電極にプレドープされるリチウムイオンを供給するリチウムイオン供給源を備えたものに適用して有効な技術である。
近年、車の排気ガス等に対する環境問題が、クローズアップされている。そのため、環境にやさしい電気自動車等の開発が行われている。電気自動車の開発にあたっては、特に電源となる蓄電デバイスの開発が盛んである。そのため、旧来の鉛蓄電池に代わり、種々の形式の蓄電デバイスが提案されている。
この蓄電デバイスとしては、例えば、リチウムイオン二次電池や電気二重層キャパシタ等が挙げられる。特に、予め負極にリチウムイオンをドープ(プレドープ)したリチウムイオンキャパシタを含めたハイブリッドキャパシタが、現在、注目を集めている。プレドープ型のハイブリッドキャパシタは、一部では実際の車両にも搭載され、その実用化に向けての実施試験も行われている。
このプレドープ型のハイブリッドキャパシタでは、電解液中のリチウムイオンが集電体を通過できるように、集電体の表裏面を貫通する貫通孔が形成された多孔性の集電体が使用される。多孔性の集電体の開口率は、リチウムイオンの通過を適切かつ容易に行う観点から、通常40〜60%程度とされている(例えば、特許文献1および2参照)。
また、プレドープ型の蓄電デバイス以外でも、集電体に貫通孔を形成することは種々提案されている。例えば、特許文献3では、セル特性や品質の均一性の向上を図ることを目的として、集電体の厚さを0.005〜0.05mmとし、集電体に径0.01〜1mmの貫通孔を形成した密閉型電池が提案されている。特許文献4では、可塑剤の抽出を容易にすること等を目的として、貫通孔の径とピッチとを所定の関係とした二次電池等が提案されている。その他にも、貫通孔の大きさや電極の厚さを所定範囲とすることが種々提案されている(特許文献5〜7参照)。
特開2007−141897号公報 特開2009−199963号公報 特開平9−161805号公報 特開2000−311693号公報 特許第4352972号公報 特開2008−269890号公報 特開2005−294168号公報
しかしながら、特許文献1および2の提案のように、単に開口率を所定範囲としたのみでは、積層される各電極に形成される貫通孔の互いの位置関係によっては、リチウムイオンの移動距離が長くなり、拡散に時間を要してプレドープ時間が長くなることがあった。プレドープ時間が長くなれば、不安定な状態に長く置かれることになるため、ガス発生、不均一なプレドープ(電位のバラツキ)、リチウム析出によるマイクロショートなどの諸問題を引き起こしやすくなる。また、電解液の含浸にも長い時間がかかることになるため、SEI(Solid Electrolyte Interface)形成のバラツキ、不均一な電解液含浸といった問題も引き起こしやすくなる。したがって、プレドープ時間の短縮を図るために、各電極に形成される貫通孔の互いの位置関係を定めることが望まれていた。
ここで、特許文献3〜7の提案は、各電極単独での孔径や厚さを考慮しているため、電極間の移動距離に依存するプレドープ時間の短縮の指標とはならない。
本発明の目的は、プレドープ時間を短縮できる蓄電デバイスを提供することにある。
本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
すなわち、本発明の蓄電デバイスは、複数の貫通孔が形成された集電体をそれぞれ有する正極および負極が交互に積層される電極積層ユニットと、前記正極または前記負極に予めドープされるリチウムイオンを供給するリチウムイオン供給源とを備える蓄電デバイスであって、積層方向に隣り合う前記正極および前記負極の前記集電体における前記貫通孔の対向する側の開口面積の和(a)に対する、前記貫通孔の開口が重なる部分の面積の和(b)の率b/a×100(%)を30%以上とする。
本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
すなわち、積層方向に隣り合う正極および負極の集電体における貫通孔の対向する側の開口面積の和(a)に対する、貫通孔の開口が重なる部分の面積の和(b)の率b/a×100(%)を30%以上としたので、各電極に形成される貫通孔の互いの位置関係を、リチウムイオンの移動距離を短くなるように定めることが可能となる。これにより、プレドープ時間を短縮できる。
本発明の一実施の形態である蓄電デバイスを示す斜視図である。 図1のA−A線に沿って蓄電デバイスの内部構造を概略的に示す断面図である。 正極集電体と負極集電体とで貫通孔の配列周期(ピッチ)を、(a)は同じとした場合、(b)は0.25周期、(c)は0.5周期、(d)は0.75周期、(e)は1周期、それぞれずらした場合の貫通孔の重なり度合いを説明する説明図である。 ピッチと重複率との関係を示すグラフである。 (a)、(b)は、電極積層ユニットを構成する電極の位置決め方法の一例を説明する説明図である。 重複率とプレドープ時間との関係を示すグラフである。
以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、本実施の形態を説明するための全図において同一機能を有するものは原則として同一の符号を付すようにし、その繰り返しの説明は可能な限り省略するようにしている。
図1は本発明の一実施の形態である蓄電デバイスを示す斜視図であり、図2は図1のA−A線に沿って蓄電デバイスの内部構造を概略的に示す断面図である。図3は、正極集電体と負極集電体とで貫通孔の配列周期(ピッチ)を、(a)は同じとした場合、(b)は0.25周期、(c)は0.5周期、(d)は0.75周期、(e)は1周期、それぞれずらした場合の貫通孔の重なり度合いを説明する説明図である。
図1および図2に示すように、ラミネートフィルム等を用いて構成される外装容器11には、電極積層ユニット12が収容されている。この電極積層ユニット12は、正極13と負極14とが、セパレータ15を介して、負極14が外側に配置されるようにして交互に積層されている。電極積層ユニット12の最外部には、セパレータ15を介して、リチウム極16が対向するように配置されている。これにより、正極13、負極14およびリチウム極16からなる三極積層ユニットが構成されている。なお、外装容器11には、リチウム塩を含む非プロトン性極性溶媒からなる電解液が注入されている。
図2に示すように、正極13は、厚さ方向に沿って多数の貫通孔20aを備えた正極集電体20を有している。この正極集電体20の両面には、正極活物質層21が設けられている。負極14は、厚さ方向に沿って多数の貫通孔22aを備えた負極集電体22を有している。この負極集電体22の両面には、負極活物質層23が設けられている。リチウム極16は、リチウム極集電体24を有している。リチウム極集電体24には、リチウムイオン供給源としての金属リチウム25が貼り付けられている。なお、正極集電体20には正極端子26が接続されており、負極集電体22およびリチウム極集電体24には負極端子27が接続されている。これらの端子は、図1に示した外装容器11からタブ状に突出するようになっている。
正極活物質層21では、表面にリチウムイオンやアニオンを可逆的にドープおよび脱ドープさせることが可能である。負極活物質層23では、表面にリチウムイオンを可逆的にドープおよび脱ドープさせることが可能である。このように構成された蓄電デバイス10は、例えば、外装容器11に入れられて製品とされる前に、リチウムイオンが予めドープ(プレドープ)され、リチウムイオンキャパシタとして機能するようになっている。このプレドープは、組立工程内で、外装容器11を密封した状態で、負極14とリチウム極16との間で行われる。つまり、負極14にリチウムイオンが予めドープされた状態で、製品として出荷される。リチウムイオンのプレドープにより、正極13と負極14とを短絡させた後の正極13の電位は、例えば、2V以下にされていることが好ましい。
なお、本明細書において、ドープとは、吸蔵、担持、吸着、挿入等を意味する。つまり、正極活物質や負極活物質に対してアニオンやリチウムイオン等が入る状態を意味している。また、脱ドープとは、放出、脱離等を意味している。つまり、正極活物質や負極活物質からアニオンやリチウムイオン等が出る状態を意味している。
正極集電体20および負極集電体22に形成される多数の貫通孔20a、22aは、積層方向に隣り合っている正極13と負極14において、貫通孔20a、22aの対向する側の開口面積の和(a)に対する、その開口が重なる部分の面積の和(b)の率b/a×100(%)が30%以上100%以下である。つまり、積層方向に隣り合う正極13と負極14とでは、貫通孔20a、22aの開口が対向することになるが、b/aは、その対向部分の開口面積の和に対する開口が重なる部分の面積の和の割合を意味している。また、貫通孔20a、22aの開口が重なる部分とは、例えば図3にfで表わしたような、積層方向に隣り合う正極13と負極14とで、貫通孔20a、22aの形成域が重複している範囲における開口部分を意味している。以下、この部分の率b/a×100(%)を重複率という。
重複率が30%未満であると、プレドープ時間が長くなり、それに起因してガス発生、不均一なプレドープ(電位のバラツキ)、リチウム析出によるマイクロショートなどの諸問題を起こしやすくなる。一方、重複率が40%以上であると、プレドープ時間をより短縮しやすくなるので好ましく、さらにプレドープ時間を短縮するためには、重複率は高い程よい。
正極集電体20と負極集電体22とでは、重複率が上述の範囲にあれば、貫通孔20a、22aの開口率は同一であってもよいし、異なっていてもよい。同様に、貫通孔20a、22aの孔径および間隔は同一であっても異なっていてもよく、その配列も規則的であっても不規則であってもよい。ただし、重複率の調整を容易とする観点からは、両者の開口率は、いずれの集電体においても同一であることが好ましい。同様に、貫通孔20a、22aは、いずれの集電体においても、孔径および間隔が互いに同一径かつ同一間隔で形成され、規則的に配列されていることが好ましい。
正極集電体20および負極集電体22の貫通孔20a、22aの開口率は通常40〜60%であり、重複率を高める観点からは50〜60%であることが好ましい。ここで、開口率とは、集電体における開口面の面積割合と定義できる。つまり、厳密には、集電体の開口面の総面積の集電体金属部の面積に対する割合である。集電体は、集電体材料を切断して個片化することで製造される。この製造された集電体を検証することで開口率は測定できる。簡易には、集電体材料に設定した単位面積当りの開口面の総面積の割合で開口率を算出してもよい。貫通孔20a、22aの孔径は、プレドープ時間短縮の観点から1〜1000μmが好ましく、活物質の通過をスムーズにし、かつ集電体の引張強度を強くする観点から10〜1000μmがより好ましい。貫通孔20a、22aの孔径は、例えば、光学電子顕微鏡または走査型電子顕微鏡(SEM)を用いて測定することができる。貫通孔20a、22aは、例えば、エキスパンドメタル等のメタルラス、ワイヤラス、パンチングメタル、エッチング箔、電解エッチング箔、三次元加工(3D)箔等により形成することができる。
次に、貫通孔20a、22aの重複率の調整方法(概念)について説明する。まず、正極集電体20と負極集電体22とで貫通孔20a、22aの開口率が同じである場合に、図3(a)に示すように、貫通孔20aと22aとで配列周期(ピッチ)を同じにすると、重複率は100%である。ここで、貫通孔20a、22aの孔径と貫通孔20a、20a間および貫通孔22a、22a間の間隔とが互いに等しい場合に、図3(b)に示すように、ピッチを0.25周期ずらすと、重複率は50%となる。同様の場合に、図3(c)に示すように、ピッチを0.5周期ずらすと、重複率は0%となる。一方、図3(d)に示すように、ピッチを0.75周期ずらすと、重複率は再び50%となり、0.25周期ずらした際と同じ重複率となる。そして、図3(e)に示すように、ピッチを1周期ずらすと、重複率は再び100%となり、ピッチをずらなさかった場合と同じ重複率となる。なお、図3においては便宜上、破断線を描いてないが、正極13の下方には図示されない負極が、負極14の上方には図示されない正極またはリチウム極が、セパレータを介して配置されていることは言うまでもない。
ここで、実際にピッチを変化させた場合の重複率の変動について説明する。図4は、ピッチと重複率との関係を示すグラフである。具体的には、図4は、貫通孔を開口率40%、50%、60%で、それぞれ正極および負極の集電体で同一径かつ同一間隔にて規則的に配置して、ピッチを0.1から0.5まで0.1周期ずつずらした場合における重複率の変化を示している。図4のグラフより、正極と負極とでずらす貫通孔のピッチを少なくする程、重複率が高くなる一方、多くする程、低くなっていることがわかる。また、貫通孔の開口率を高くする程、重複率も高くなっていることがわかる。つまり、重複率は、正極と負極とで貫通孔の配列のズレを少なくしたり、開口率を上げることで、高くなるように調整可能となるのである。
以上説明したように、蓄電デバイス10では、重複率を30%以上としたので、正極集電体20の貫通孔20aの位置と、この正極集電体20を有する正極13と積層して隣り合っている負極14の負極集電体22の貫通孔22aの位置とが最適化され、プレドープ時間が短縮されるように制御することが可能となる。つまり、貫通孔20a、22aの孔径および開口率が同一で、位置(重なり度合い)のみが異なるセル構成でプレドープを行った場合、重複率が大きい方がプレドープ時間は短くなる。プレドープ時のリチウムイオンの移動は律速であると考えられることから、垂直(積層)方向に移送するリチウムイオンの移動距離は孔が重複している方が短くなり、結果としてプレドープ時間の短縮につながったと推測される。
要するに、蓄電デバイス10では、正極集電体20や負極集電体22単独での貫通孔20a、22aのみに着目するのではなく、セル構成として、積層している集電体の孔の位置関係を制御している。つまり、貫通孔20a、22aの重複率を制御することにより、リチウムイオンの拡散速度をコントロールすることができるようになり、プレドープ時間を制御することが可能となるのである。これにより、各電極の電位が早く安定するため、均一にプレドープを行うことが可能となる。そのため、リチウムイオンの析出やガス発生を抑制でき、安全性の向上に寄与する。また、プレドープ時間が短ければ、電解液の含浸も早く行えるため、安定したSEI(Solid Electrolyte Interface)を形成でき、均一に電解液を含浸させることが可能となる。
さらに、蓄電デバイス10は、貫通孔20a、22aの重複率を定めることで位置関係を最適化しているため、貫通孔20a、22aの孔径や開口率あるいは電極等の厚さを予め所定範囲に定めなくても、プレドープ時間を短縮できるので、設計の自由度が高くなる。
つづいて、電極積層ユニットを構成する電極積層時の電極の位置決め方法について説明する。図5(a)、(b)は、電極積層ユニットを構成する電極の位置決め方法の一例を説明する説明図である。
電極積層ユニットを構成する正極13および負極14(電極)を積層する際の位置決め方法としては、特に制限はないが、不具合発生を防ぐ観点から、正極活物質および負極活物質の未塗工部(電極活物質未塗工部)を基準として位置決めを行うことが好ましい。例えば、図5(a)に示すように、正極集電体20や負極集電体22のタブ状に突出して形成された電極活物質未塗工部に、3箇所ほど目印11aを付しておく。そして、この部分を基準として画像処理を行うことにより、各電極を位置決めしながら積層してもよい。また、目印による画像処理の代わりに、図5(b)に示すように、正極集電体20や負極集電体22の電極活物質未塗工部に位置決め孔28を形成しておく。そして、この位置決め孔28を、位置決め治具(図示せず)の位置決めピン(ピン)30に挿入することにより、位置決めをしてもよい。さらに、目印を付さずに電極の外形を基準として画像処理を行うことにより、電極の位置決めをしてもよい。
このように、電極活物質未塗工部を基準として位置決めをすれば、正極活物質層21や負極活物質層23に目印を付す等の必要がなくなる。これにより、位置決めの際に、誤って正極活物質層21や負極活物質層23に傷をつけてしまい、それに起因して不具合が発生することを回避できる。
なお、蓄電デバイス10としては、孔の開いた集電体を使用することが適切なものであれば、リチウムイオンキャパシタに限定されず、例えば、リチウムイオン二次電池に適用してもよいし、他の構成のデバイスに適用してもよい。また、電極積層ユニット12の最外層の電極を正極として、正極にリチウムイオンをプレドープするようにしてもよい。
以下、本発明の蓄電デバイス10の各要素に使用される材料や成分について説明する。正極集電体20としては、例えば、アルミニウム、ステンレス等が挙げられる。負極集電体22としては、例えば、ステンレス鋼、銅、ニッケル等が挙げられる。正極集電体20および負極集電体22は、既に述べたように、多数の貫通孔が形成され、導電性の多孔体に構成されている。また、正極集電体と負極集電体とでは、同じものを使用することができるし、リチウムイオン供給源と反応しなければ例示する以外の他の材質により構成してもよい。
正極活物質層21および負極活物質層23は、活物質、バインダ、必要に応じて導電助剤等の合材により構成されている。この合材はスラリー状に形成される。このスラリーを、集電体の両面または片面に塗布し、乾燥することで電極が作製される。
正極活物質としては、蓄電デバイス10がリチウムイオンキャパシタの場合には、リチウムイオンと、リチウムイオンとが対をなす、例えばBF4、PF6等のような、アニオンを可逆的にドープできる物質が使用される。例えば、活性炭、導電性高分子、ポリアセン系物質等が挙げられる。活性炭の場合には、例えば、水酸化カリウム等のアルカリ金属の水酸化物塩などにより賦活処理がされているものを使用すれば、賦活処理がされていないものに比して比表面積が大きいので好ましい。これらの例示した活物質は、1種単独で使用してもよいし、2種以上を組み合せて使用してもよい。
正極活物質は、蓄電デバイスがリチウムイオン二次電池の場合には、例えば、周期律表第V族元素および第I族元素から選ばれる1種または2種以上の金属元素の酸化物を含む物質が挙げられる。このような金属酸化物としては、例えば、バナジウム酸化物(酸化バナジウム)、酸化ニオブ等が挙げられる。
負極活物質としては、例えば、黒鉛、炭素系材料、ポリアセン系物質、リチウム系材料等が挙げられる。炭素系材料としては、例えば、難黒鉛化炭素材料等が挙げられる。ポリアセン系物質としては、例えば、ポリアセン系骨格を有する不溶不融性基体であるポリアセン系有機半導体(PAS)等が挙げられる。リチウム系材料としては、金属リチウム、例えばリチウム−アルミニウム合金のようなリチウム合金等のリチウム系金属材料が挙げられる。また、スズ、ケイ素等の金属と金属リチウムとの金属間化合物材料、窒化リチウム等のリチウム化合物も挙げられる。これらの負極活物質は、いずれもリチウムイオンを可逆的にドープ可能な物質である。
本発明の蓄電デバイス10では、初期充電時にリチウムイオンを負極または正極にプレドープさせる。この際に使用するリチウムイオン供給源としては、金属リチウム、リチウム−アルミニウム合金等が挙げられる。つまり、リチウム元素を含有し、リチウムイオンを供給できる物質であれば使用可能である。
バインダとしては、例えば、ゴム系バインダ、結着樹脂が挙げられる。ゴム系バインダとしては、例えば、ジエン系重合体であるスチレンブタジエンゴム(SBR)、ニトリルゴム(NBR)等が挙げられる。結着樹脂としては、例えば、フッ素系樹脂、熱可塑性樹脂、アクリル系樹脂等が挙げられる。フッ素系樹脂とは、例えば、ポリ四フッ化エチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等が挙げられる。熱可塑性樹脂としては、例えば、ポリプロピレン、ポリエチレン等が挙げられる。アクリル系樹脂としては、例えば、アクリル酸−2−エチルヘキシル、メタクリル酸・アクリロニトリル・エチレングリコールジメタクリレート共重合体等が挙げられる。
導電助剤としては、例えば、アセチレンブラック、ケッチェンブラック等のカーボンブラック、および、膨張黒鉛、炭素繊維、カーボンナノチューブ等の導電性炭素材料が挙げられる。また、増粘剤としてカルボキシメチルセルロース(CMC)を使用することもできる。
これらの活物質、バインダ、導電助剤、増粘剤等は、例えば、水またはN−メチル−2−ピロリドン等の溶媒を用いてスラリーに形成することができる。このスラリーにより形成される正極活物質層21および負極活物質層23は、貫通孔が形成された集電体面上に所定厚で設けておく。設けるに際しては、例えば、ダイコータ、コンマコータ等の塗工装置を用いて塗工処理を行う。所定厚で集電体上に塗工処理した活物質層は、バインダの耐熱性にもよるが、通常、真空中100〜200℃の温度で12時間程度乾燥させて電極が製造される。
蓄電デバイス10の電極積層ユニット12を浸す電解液としては、蓄電デバイス10がリチウムイオンキャパシタの場合には、非プロトン性有機溶媒を使用することができる。非プロトン性有機溶媒は、非プロトン性有機溶媒電解質溶液を形成する。非プロトン性有機溶媒としては、例えば、エチレンカーボネート、ジメチルカーボネート、γ−ブチロラクトン、アセトニトリル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、塩化メチレン、スルホラン等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を混合した混合液を使用してもよい。電解液に溶解される電解質としては、リチウムイオンを生成し得る電解質であれば特に制限はない。例えば、LiClO、LiAsF、LiBF、LiPF、LiN(CSO)、LiN(CFSO)等が挙げられる。
蓄電デバイス10がリチウムイオン二次電池の場合には、電解液としては、例えば、非水系溶媒が挙げられる。非水系溶媒としては、例えば、鎖状カーボネート、環状カーボネート、環状エステル、ニトリル化合物、酸無水物、アミド化合物、ホスフェート化合物、アミン化合物等が挙げられる。より具体的には、例えば、エチレンカーボネート、ジエチルカーボネート(DEC)、プロピレンカーボネート、ジメトキシエタン、γ−ブチロラクトン、n−メチルピロリジノン、N,N’ −ジメチルアセトアミド、アセトニトリル、あるいはプロピレンカーボネートとジメトキシエタンとの混合物、スルホランとテトラヒドロフランとの混合物等が挙げられる。電解質としては、CFSOLi、CSOLi、(CFSONLi、(CFSOCLi、LiBF、LiPF、LiClO等のリチウム塩が挙げられる。
セパレータ15としては、大きなイオン透過度(透気度)、所定の機械的強度、および電解液、正極活物質、負極活物質等に対する耐久性を有し、かつ連通気孔を有する電子伝導性のない多孔質体等が使用される。例えば、紙(セルロース)、レーヨン、ガラス繊維、ポリエチレン、ポリプロピレン、ポリスチレン、ポリエステル、ポリテトラフルオロエチレン、ポリビニリデンジフルオライド、ポリイミド、ポリフェニレンスルフィド、ポリアミド、ポリアミドイミド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルエーテルケトン等からなる隙間を有する布、不織布または微多孔体が挙げられる。例示したセパレータは、目的に応じて単独で使用してもよいし、同一種のセパレータを重ねて使用してもよい。また、複数種のセパレータを重ねて使用してもよい。セパレータ15の厚さは、電解液の保持量やセパレータ15の強度等を勘案して適宜設定することができるが、蓄電デバイス10の直流抵抗の低下や体積当たりのエネルギー密度の向上のためにセパレータ15の厚みはなるべく薄い方が好ましい。
外装容器11としては、一般に用いられている種々の材質を使用することができる。例えば、鉄やアルミニウム等の金属材料を使用してもよいし、樹脂等のフィルム材料を使用してもよい。また、外装容器11の形状についても特に限定されることはなく、円筒型や角型など用途に応じて適宜選択することが可能である。蓄電デバイス10の小型化や軽量化の観点からは、アルミニウムのラミネートフィルムを用いたフィルム型の外装容器を用いることが好ましい。
以下、実施例によって、本発明をさらに説明する。なお、本発明は、これらの実施例によって限定されない。
(実施例1)
〔負極の作製〕フラン樹脂炭の原料であるフルフリルアルコールを60℃で24時間保持することにより樹脂を硬化させ、黒色樹脂を得た。得られた黒色樹脂を静置式電気炉内に入れ、窒素雰囲気下にて1200℃まで3時間で昇温した。その後、その到達温度にて2時間保持した。放冷冷却後、取り出した試料をボールミルで粉砕した。この粉砕により、D50%(50%体積累積径)=5.0μmの難黒鉛化性炭素粉末(水素原子/炭素原子=0.008)である試料を得た。
次に、上記試料を100重量部と、ポリフッ化ビニリデン粉末10重量部をN−メチル−2−ピロリドン80重量部に溶解した溶液とを充分に混合して、負極スラリーを得た。この負極スラリーを、同一径かつ同一間隔にて孔径100μmの貫通孔を、厚さ方向に沿って形成した厚さ26μm(開口率10%)の銅製エキスパンドメタルからなる負極集電体の両面に、ダイコータにて均等に塗工して負極活物質層を形成した。その後、乾燥し、プレス後、厚さ70μmの負極を得た。
〔正極の作製〕比表面積2000m/gの市販活性炭粉末85重量部、アセチレンブラック粉体5重量部、アクリル系樹脂バインダ6重量部、カルボキシメチルセルロース4重量部および水200重量部からなる組成にて十分に混合することにより正極スラリーを得た。
負極集電体に対して配列周期(ピッチ)が0.25周期ずつずれるように、同一径かつ同一間隔にて、孔径100μmの貫通孔を、開口率10%で形成した厚さ38μmのアルミニウム製エキスパンドメタルの両面に、非水系のカーボン系導電塗料をダイコータにてコーティングした。その後、乾燥することにより導電層が形成された正極用集電体を得た。全体の厚さ(集電体厚さと導電層厚さとの合計)は100μmであった。正極スラリーをロールコーターにて、正極集電体の両面に均等に塗工して正極活物質層を形成した。
〔電極積層ユニットの作製〕負極を6.0×7.5cm(端子溶接部を除く)に11枚カットし、正極を5.8×7.3cm(端子溶接部を除く)に10枚カットした。セパレータとして、厚さ35μmの市販のセルロース/レーヨン混合不織布を用いた。
セパレータを介して、正極集電体、負極集電体の端子溶接部が、それぞれ反対側になるよう配置し、正極と負極とを交互に積層した。積層に際しては、電極の最外部が負極となるようにした。併せて、最上部と最下部とにはセパレータを配置して、4辺をテープ留めした。また、正極集電体の端子溶接部(10枚)、負極集電体の端子溶接部(11枚)を、それぞれ幅50mm、長さ50mm、厚さ0.2mmのアルミニウム製正極端子および銅製負極端子に超音波溶接した。このようにして、電極積層ユニットを得た。
〔リチウム極の作製〕リチウム極として、金属リチウム箔を厚さ80μmのステンレス網に圧着したものを用いた。このリチウム極を、最外部の負極と完全に対向するように配置した。つまり、電極積層ユニットの外側にリチウム極を1枚配置するとともに、このリチウム極とは反対の外側に電位モニター用のリチウム極を配置し、三極積層ユニットを得た。なお、リチウム極集電体の端子溶接部は、負極端子溶接部に抵抗溶接した。
〔セルの作製および電解液の含浸〕電極積層ユニットの形状に合わせて深絞りした外装容器としての3.5mmのラミネートフィルムの内部に、三極積層ユニットを設置した。また、ラミネートフィルムの下辺部および側辺部の三辺を熱融着した。
つづいて、熱融着を行っていない残りの一辺に漏斗を挿入し、スポイドにて電解液としてのプロピレンカーボネート溶液を15g注液した。このプロピレンカーボネート溶液は、プロピレンカーボネートに対して1モル/Lの濃度となるようにLiPFを溶解して調製した。その後に、残り一辺を減圧下にて融着させ、本発明の蓄電デバイスとしてのフィルム型セルを組み立てた。なお、セル内に配置された金属リチウムは、負極活物質重量当たり550mAh/g相当である。
(実施例2)
実施例1において、正極集電体および負極集電体の貫通孔の開口率を20%としたこと以外は同様にして、フィルム型セルを組み立てた。
(実施例3)
実施例1において、正極集電体および負極集電体の貫通孔の開口率を30%としたこと以外は同様にして、フィルム型セルを組み立てた。
(実施例4)
実施例1において、正極集電体および負極集電体の貫通孔の開口率を40%としたこと以外は同様にして、フィルム型セルを組み立てた。
(実施例5)
実施例1において、正極集電体および負極集電体の貫通孔の開口率を50%としたこと以外は同様にして、フィルム型セルを組み立てた。
(実施例6)
実施例1において、正極集電体および負極集電体の貫通孔の開口率を60%としたこと以外は同様にして、フィルム型セルを組み立てた。
(実施例7)
実施例1において、正極集電体および負極集電体の貫通孔の開口率を70%としたこと以外は同様にして、フィルム型セルを組み立てた。
(実施例8)
実施例1において、正極集電体および負極集電体の貫通孔の開口率を80%としたこと以外は同様にして、フィルム型セルを組み立てた。
(実施例9)
実施例1において、正極集電体および負極集電体の貫通孔の開口率を90%としたこと以外は同様にして、フィルム型セルを組み立てた。
〔重複率とプレドープ時間との関係の評価〕実施例1〜9の積層方向に隣り合わせた正極と負極とで、正極集電体および負極集電体の貫通孔の対向する側の開口面積の和に対する、貫通孔の開口が重なる部分の面積の和の率(重複率)を測定した。また、実施例1〜9で得られたフィルム型セルについて、電解液を含浸してから金属リチウムが完全に消失するまでの時間をプレドープ時間として測定した。測定した重複率とプレドープ時間との関係について、図6に示すように、横軸を重複率(図中、孔重複率と表示)、縦軸をプレドープ時間の相対値(図中、PD時間と表示)としたグラフにより評価した。結果を図6に示す。なお、重複率は、開口率を高くした例ほど高くなった。
図6の結果より、重複率が30%以上となると、プレドープ時間を飛躍的に短縮できた。また、重複率が40%を超えると、さらにプレドープ時間を顕著に短縮できることがわかった。さらに、重複率が高くなる程、プレドープ時間を短縮できた。これらのことから、重複率が高くなる程リチウムイオンの垂直(積層)方向への移動距離が短くなり、プレドープ時間が短縮されると考えられる。
なお、実施例1〜9では、正極および負極は、電極の外形全体により画像処理を行って位置決めしながら積層したので、電極に傷がつくことがなかった。
本発明は、蓄電デバイスの分野で有効に利用することができる。
10 蓄電デバイス
11 外装容器
11a 目印
12 電極積層ユニット
13 正極
14 負極
15 セパレータ
16 リチウム極
20 正極集電体
20a 貫通孔
21 正極活物質層
22 負極集電体
22a 貫通孔
23 負極活物質層
24 リチウム極集電体
25 金属リチウム
26 正極端子
27 負極端子
28 位置決め孔
30 位置決めピン(ピン)
f 貫通孔の形成域が重複している範囲

Claims (5)

  1. 複数の貫通孔が形成された集電体をそれぞれ有する正極および負極が交互に積層される電極積層ユニットと、前記正極または前記負極に予めドープされるリチウムイオンを供給するリチウムイオン供給源とを備える蓄電デバイスであって、
    積層方向に隣り合う前記正極および前記負極の前記集電体における前記貫通孔の対向する側の開口面積の和(a)に対する、前記貫通孔の開口が重なる部分の面積の和(b)の率b/a×100(%)が30%以上であることを特徴とする蓄電デバイス。
  2. 請求項1に記載の蓄電デバイスにおいて、
    前記正極と前記負極とで前記集電体の前記貫通孔の開口率が同一であることを特徴とする蓄電デバイス。
  3. 請求項1または2に記載の蓄電デバイスにおいて、
    前記貫通孔は、前記正極と前記負極とで互いに同一径かつ同一間隔で形成されるとともに、規則的に配列されることを特徴とする蓄電デバイス。
  4. 請求項1〜3のいずれか1項に記載の蓄電デバイスにおいて、
    前記貫通孔の開口率が40〜60%であることを特徴とする蓄電デバイス。
  5. 請求項1〜4のいずれか1項に記載の蓄電デバイスにおいて、
    前記電極積層ユニットを構成する電極を積層する際に、電極活物質未塗工部に付した目印もしくは前記電極の外形を基準とした画像処理により、または前記電極活物質未塗工部に位置決め孔を形成しておき、この位置決め孔を位置決め治具のピンに挿入することにより、前記電極の位置を決定することを特徴とする蓄電デバイス。
JP2010081687A 2010-03-31 2010-03-31 蓄電デバイス Pending JP2011216576A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010081687A JP2011216576A (ja) 2010-03-31 2010-03-31 蓄電デバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010081687A JP2011216576A (ja) 2010-03-31 2010-03-31 蓄電デバイス

Publications (1)

Publication Number Publication Date
JP2011216576A true JP2011216576A (ja) 2011-10-27

Family

ID=44946040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010081687A Pending JP2011216576A (ja) 2010-03-31 2010-03-31 蓄電デバイス

Country Status (1)

Country Link
JP (1) JP2011216576A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065575A1 (ja) * 2011-10-31 2013-05-10 株式会社村田製作所 蓄電デバイス
JP2014123641A (ja) * 2012-12-21 2014-07-03 Taiyo Yuden Co Ltd 電気化学デバイス
JP2015130329A (ja) * 2013-12-06 2015-07-16 株式会社半導体エネルギー研究所 蓄電装置およびその作製方法、並びに電子機器
JP2017084495A (ja) * 2015-10-23 2017-05-18 プライムアースEvエナジー株式会社 二次電池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065575A1 (ja) * 2011-10-31 2013-05-10 株式会社村田製作所 蓄電デバイス
JP5614567B2 (ja) * 2011-10-31 2014-10-29 株式会社村田製作所 リチウムイオン二次電池
JPWO2013065575A1 (ja) * 2011-10-31 2015-04-02 株式会社村田製作所 リチウムイオン二次電池
JP2014123641A (ja) * 2012-12-21 2014-07-03 Taiyo Yuden Co Ltd 電気化学デバイス
JP2015130329A (ja) * 2013-12-06 2015-07-16 株式会社半導体エネルギー研究所 蓄電装置およびその作製方法、並びに電子機器
JP2017084495A (ja) * 2015-10-23 2017-05-18 プライムアースEvエナジー株式会社 二次電池

Similar Documents

Publication Publication Date Title
US8974947B2 (en) Electric storage device and its production method
JP5474622B2 (ja) 蓄電デバイス
JP2009231234A (ja) 負極用炭素材料、蓄電デバイス、及び蓄電デバイス搭載品
JP2009200302A (ja) 蓄電デバイスの製造方法および蓄電デバイス
JP5409467B2 (ja) 捲回型の蓄電デバイス
KR20170014216A (ko) 패터닝 리튬전극과 그 제조방법 및 이를 이용한 리튬 이차전지
JP2008251583A (ja) 蓄電デバイス
JP2016207313A (ja) 非水電解液二次電池及びその組電池
JP2008300667A (ja) 蓄電デバイス
KR20140016899A (ko) 리튬 이온 캐패시터
WO2019163896A1 (ja) 蓄電デバイス、蓄電デバイス用負極、及びそれらの製造方法
JP5214172B2 (ja) 電極の製造方法、および蓄電デバイスの製造方法
JP2012004491A (ja) 蓄電デバイス
JP2010161249A (ja) リチウムイオンキャパシタ
JP2012156405A (ja) 蓄電デバイス
JP2009199963A (ja) 蓄電装置、電極、電極の製造方法、並びに管理方法
KR20140016917A (ko) 축전 디바이스
JP2011216576A (ja) 蓄電デバイス
JP2012038900A (ja) リチウムイオンキャパシタ
JP5768483B2 (ja) 電気デバイスに用いられる電極
JP6487841B2 (ja) 蓄電デバイス
JP5563705B2 (ja) 蓄電デバイスおよびその製造方法
JP2014060122A (ja) リチウムイオン二次電池
JP2014060118A (ja) リチウムイオン二次電池用セパレータ及びリチウムイオン二次電池
JP2011210995A (ja) 蓄電デバイス