JP2011214921A - 干渉型光ファイバーセンサーシステムおよび演算器 - Google Patents

干渉型光ファイバーセンサーシステムおよび演算器 Download PDF

Info

Publication number
JP2011214921A
JP2011214921A JP2010081859A JP2010081859A JP2011214921A JP 2011214921 A JP2011214921 A JP 2011214921A JP 2010081859 A JP2010081859 A JP 2010081859A JP 2010081859 A JP2010081859 A JP 2010081859A JP 2011214921 A JP2011214921 A JP 2011214921A
Authority
JP
Japan
Prior art keywords
signal
optical fiber
calculator
sensor system
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010081859A
Other languages
English (en)
Inventor
Ryotaku Sato
陵沢 佐藤
Yasuyuki Nakajima
康行 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2010081859A priority Critical patent/JP2011214921A/ja
Publication of JP2011214921A publication Critical patent/JP2011214921A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

【課題】ダイナミックレンジの広い演算器が不要な干渉型光ファイバーセンサーシステムを提供する。
【解決手段】物理量を検知するセンシングファイバー11aおよびリファレンスファイバーを有する干渉計と、前記物理量の測定信号3を含む干渉光32aを、電気信号に変換するO/E変換器33と、前記電気信号から、正弦波成分および余弦波成分を抽出するAM復調器51a、51bと、該正弦波成分および該余弦波成分を用いて逆正接演算を行い、前記測定信号を含む信号を出力する逆正接演算器53と、前記逆正接演算器から出力された信号の所定時間毎の差分を算出し、該差分信号を出力する差分器61と、を備える。
【選択図】図1

Description

本発明は、さまざま物理量を検出することが可能な干渉型光ファイバーセンサーシステムおよびこのシステムに用いられる演算器に関するものである。
従来の干渉型光ファイバーセンサーシステムの一例として、検出する信号をセンシングファイバーの歪みに変え、センシングファイバーをアームとする光ファイバー干渉計を構成して信号を検出するものがある。前記干渉型光ファイバーセンサーシステムは、様々な物理量を検出する事が可能あり、例えば、音響信号(非特許文献1、非特許文献4参照)、磁気信号(非特許文献2参照)、加速度(非特許文献3参照)などを検出できる。また、干渉型光ファイバーセンサーシステムの構成は、一つのセンシングファイバーを使用した構成もあるが、非特許文献1に示されているような、複数のセンシングファイバーを用いてセンサアレイを構成することもできる。また、干渉型光ファイバーセンサーシステムの復調方式は、例えば、非特許文献1と非特許文献3に示されているような、PGC方式がある。他の復調方式としては、非特許文献4に示されているような、ヘテロダイン方式がある。
図5は、従来のPGC方式を用いた干渉型光ファイバーセンサーシステムである。
PGC方式は、非特許文献1と非特許文献3などに記載されている復調方式である。図5による干渉型光ファイバーセンサーシステムは、物理量を検知するセンシングファイバー11aおよびリファレンスファイバー11bを有している。そしてセンシングファイバー11aを通過したセンシング光13aと、リファレンスファイバー11bを通過したリファレンス光13bは干渉し、干渉光32aとなる。干渉光32aは、O/E変換器33によって電気信号に変換された後、復調部70に入る。復調部70は、A/D変換器50、AM復調器51a、51b、逆正接演算器53、アンラップ処理器60、フィルター54、積算器55によって構成されている。A/D変換器50でA/D変換された信号は、PGC信号発生器40と同期がとれたAM復調器51aとAM復調器51bに入力する。そして、AM復調器51aは奇数次の振幅である干渉光32aの位相の正弦波成分を抽出し、AM復調器51bは偶数次の振幅である干渉光32aの位相の余弦波成分を抽出する。そして、逆正接演算器53で位相を算出して、逆正接の不連続点を繋ぎ合わせるアンラップ処理をすることで干渉光32aの位相を復調する。そして、アンラップ処理器60の出力を、測定信号3以外の周波数帯の信号を減衰させるフィルター54に通してから出力する。
特開平9−196749号広報
電子情報通信学会技術研究報告書OPE95-2 光ファイバハイドロホンの研究 JJAP Vol. 46, No. 2 "Design of Fiber-Optic Magnetometer Utilizing Magnetostriction" 12th International Conference on Optical Fiber Sensors, "Fiber-Optic Accelerometer" JASA Vol. 115, No. 6 "Acoustic Performance of a lage-aperture, seabed, fiber-optic hydrophone array"
センシングファイバー11aを通過したセンシング光13aの位相変化は、測定信号3の他に温度変化4でも起こる。温度変化4の周波数は低いので、測定信号3の位相と温度変化4の位相は、周波数の違いを利用して分離できる。しかし、音響信号、磁気信号及び加速度等の信号振幅に比べ、温度変化4による位相変動の振幅は大きい。そのため、アンラップ処理器60からフィルター54まで広いダイナミックレンジ(デジタル処理ではビット数)を確保する必要がある。したがって、ダイナミックレンジの広い演算器が必要になる。また、フィルター54の処理量が大きくなったり、アンラップ処理器60からフィルター54までの転送速度を早くする必要性が生じる。以上の理由から、復調部70の規模が大きくなるという課題があった。
本発明の干渉型光ファイバーセンサーシステムは、物理量を検知するセンシングファイバーおよびリファレンスファイバーを有する干渉計と、前記物理量の測定信号を含む干渉光を、電気信号に変換する変換器と、前記電気信号から、正弦波成分および余弦波成分を抽出する復調器と、該正弦波成分および該余弦波成分を用いて逆正接演算を行い、前記測定信号を含む信号を出力する逆正接演算器と、前記逆正接演算器から出力された信号の所定時間毎の差分を算出し、該差分信号を出力する差分器と、を備えることを特徴とする。
従来のアンラップ処理およびアンラップ処理の後のフィルター処理のような、信号と温度変化をあわせた大振幅の入力を扱うための広いダイナミックレンジ(デジタル処理ではビット数)が必要な処理が、不要となる。そのため、ダイナミックレンジの広い信号(デジタル処理ではビット数の多い信号)の処理及び伝送がなくなり、復調部の規模を小さくすることができる。
本発明の実施の形態1における干渉型光ファイバーセンサーシステムを示す概略図である。 本発明の実施の形態1における復調部の逆正接演算器以降の動作について、従来と本発明の実施の形態1とを比較した図である。 本発明の実施の形態2における干渉型光ファイバーセンサーシステムを示す概略図である。 本発明の実施の形態3における干渉型光ファイバーセンサーシステムを示す概略図である。 従来の干渉型光ファイバーセンサーシステムを示す概略図である。
以下、本発明の干渉型光ファイバーセンサーシステムについて、図面を用いて詳細に説明する。
実施の形態1.
図1は、本実施の形態1における干渉型光ファイバーセンサーシステムの構成を示す概略図である。
本実施の形態1における干渉型光ファイバーセンサーシステムは、パルス光1aを発生するパルス光源1と、物理量を検知する干渉計5と、干渉計5から伝送された光に遅延補償と変調を行う変調部6と、PGC信号を発生するPGC信号発生器40と、干渉光32aを電気信号に変換するO/E変換器33と、前記PGC信号の復調と測定信号3の抽出等を行う復調部71と、を備えている。
干渉計5は、光ファイバー1a、光カプラ10、センシングファイバー11a、光ファイバー11b、ミラー12a、12bおよび光ファイバー10aにより構成される。また、変調部6は、遅延補償ファイバー30a、光ファイバー30b、ミラー31a、31b、光カプラ32および圧電子34により構成される。また、復調部71は、A/D変換器50、AM復調器51a、51b、逆正接演算器53、差分器61、比較演算器62、フィルター54および積算器55により構成される。ここで復調部71は、A/D変換器50、比較演算器62、フィルター54および積算器55を必ずしも含むわけではないものとする。そして、A/D変換器50、比較演算器62、フィルター54および積算器55は、復調部71に含まれない場合、復調部71の外部に設けてもよい。また、A/D変換器50、比較演算器62、フィルター54および積算器55は、復調部71に含まれない場合、干渉型光ファイバーセンサーシステムの外部に設けてもよい。
パルス光源1から出力されるパルス光2は、光ファイバー1aを介して光カプラ10に入り、二つに分割される。分割された一方のパルス光2は、センシングファイバー11aを通過してセンシング光13aとなり、もう一方はリファレンス光13bとなる。センシング光13aはセンシングファイバー11aを通過するときに、センシングファイバー11aに加わる測定信号3により位相変調される。また、センシング光13aは温度変化4による雑音信号によって位相変調が加えられる。この位相変化をφA とする。この測定信号3としては、音響信号、磁気信号及び加速度等がある。雑音信号としては、温度変化4の他に、圧力変化などがある。そして、センシング光13aはミラー12aで反射し、リファレンス光13bはミラー12bで反射する。反射したセンシング光13aとリファレンス光13bは、光カプラ10と光ファイバー10aを経由して、光カプラ32に伝送される。このとき、センシング光13aはセンシングファイバー11aによる伝搬遅延のため、リファレンス光13bより遅延している。
そして、センシング光13aとリファレンス光13bは、光カプラ32bで2つに分割される。ここで、一方は遅延補償ファイバー30aを通過してからミラー31aで反射する。もう一方は、光ファイバー30bを通過して、ミラー31bで直接反射する。そして、センシングファイバー11aを通過して遅延補償ファイバー30aを通過しなかった光と、センシングファイバー11aを通過せずに遅延補償ファイバー30aを通過した光は、干渉し干渉光32aとなる。
ここで、遅延補償ファイバー30aは、圧電子34に取り付けられており、圧電子34には、PGC信号発生器40から信号線40aを介して正弦波電圧が印加される。したがって、圧電子34により遅延補償ファイバー30aに正弦波状の歪が加えられる。これにより遅延補償ファイバー30aを通過した光にPGC(Phase Generated Carrier)が発生する。PGC方式は、干渉型光ファイバーセンサーシステムで用いられる光信号の変復調方式の一つである。
そして、干渉光32aは、光ファイバー32bを経由しO/E変換器33に入力し、電気信号に変換される。そして、その電気信号は、復調部71に入り、まずA/D変換器50によってA/D変換される。そして、A/D変換された信号は、AM復調器51aとAM復調器51bに出力される。この信号の強度をI(t)とすると、I(t)は、A+Bcosθという形で表される。この式中のθが、干渉する2つの光(13aと13b)の位相差である。位相差θに、干渉する光の位相変化が含まれる。位相変化は、センサーで検出すべき測定信号、PGC信号3、温度変化4などである。すなわち、I(t)=A+Bcos[(PGC信号)+(測定信号3)+(温度変化4)]となる。
測定信号3とPGC信号のみを考慮した場合、I(t)は、A+Bcos[Ccos(ωt)+φ(t)](ここで、Cは変調度)で与えられる。ωtは、レーザ光を変調するPGC信号発生器40が出力する正弦波の角周波数、φ(t)は、センシングファイバー11aで加えられた、測定信号3による位相差である。この式中のCcos(ωt)をPGCとよぶ。I(t)からφ(t)を求める復調処理は、次のように行われる。ここで、cos[Ccos(ωt)+φ(t)]を、ベッセル関数で展開すると、以下のように表されることを利用する。
Figure 2011214921
上記展開式の1次の成分と2次の成分を、AM復調器51aとAM復調器51bにより、以下のように抽出する。
AM復調器51aとAM復調器51bは、同期検波のために、PGC信号発生器40から信号線40bを介して正弦波電圧を受ける。そして、AM復調器51aは、1次信号:2J1(C)・sinφ(t)・cosωtを、AM復調器51bは、2次信号:2J2(C)・cosφ(t)・cos2ωtを、抽出する。正弦波成分を含む該1次信号と余弦波成分を含む該2次信号はそれぞれ、逆正接演算器53に出力される。
AM復調器51aとAM復調器51bの出力から、信号位相φ(t)を抽出する方法は種々あるが、本実施の形態1においては逆正接処理によって行っている。逆正接処理は、始めに、入力信号に含まれるJ1(C)・sinφ(t)をJ2(C)・cosφ(t)で割って、さらに、J2(C)/J1(C)をかけて、tanφとする。そして、逆正接演算器53によってtan-1(アークtan)をとることによって信号位相φ(t)を抽出する。
ここで、逆正接演算器53は、位相がπを超えた場合は2πを引き、位相が−π未満となった場合は2πを足した、−π〜πの範囲の演算結果を出力する。
逆正接演算器53の演算結果は、差分器61に出力される。差分器61は、前記逆正接演算器53から出力された信号の所定時間毎の差分を算出する。復調部71の始動からn番目までの逆正接演算器53の出力をφB (0),φB (1),φB (2),・・・φB(i),φB(n)、すると、差分器61の出力△φB(i)は、
△φB(i)=φB(i)−φB(i−1) (1)
となる。ここで、差分器61の出力範囲は逆正接の計算範囲の2倍の−2πから2πが必要となる。そして、差分器61は、演算結果の差分信号を比較演算器62に出力する。
比較演算器62は、式(1)の計算結果がπradを超えたときには△φB(i)から2πを引き、該計算結果が−πradを下回ったときには△φB(i)に2πを足す。これにより、逆正接演算でπradを上回ったとき、または−πradを下回ったときに逆正接の不連続点で余分な±2πが足される現象を補償する。比較演算器62の出力を式で表すと、
△φC(i)=△φB(i)+2kπ (2)
k=−1,0,1 (3)
−π<△φC(i)<π (4)
である。前記比較演算器62は、上記の演算を行うことで、差分信号の不連続点を接続することができる。
比較演算器62は、演算結果の差分信号をフィルター54に出力する。フィルター54は、温度変化4などの信号帯域以外の成分を減衰させる。例えば、測定信号3が音響信号である場合、温度変化4の周波数帯は、測定信号3より低いため、周波数帯の違いを利用して分離できる。
フィルター54は、演算結果を積算器55に出力する。該演算結果は、差分信号であるため、積算器55はフィルター54から出力される信号を積算(時間積分)して測定信号3を含む信号を出力する。
図2は、本実施の形態1における逆正接演算器53から積算器55までの演算の一例を波形を用いて表し、図5における従来技術の逆正接演算器53からフィルター54までの演算と比較した図である。
φAは、一定の速さで変化する温度変化4と正弦波1周期の測定信号3が入力した場合の信号波形である。φAが逆正接演算器53に入力され、逆正接演算処理が行われると、前述した通り、−πからπの範囲で出力され、φBのような不連続な信号となる。この不連続な信号が、差分器61によって演算され所定時間毎の差分として算出されると△φBのような不連続な差分信号となる。比較演算器62が、該差分信号に比較演算を行うと、図2の例では、不連続部分AとBに2πを足すことで不連続な部分が接続され、△φCのような連続した差分信号となる。そして、フィルター54において温度変化4による信号の変化が減衰され、△φDのような差分信号となる。そして、積算器55において積算を行い、φDのような、測定信号3を含んだ信号として出力できる。ここで、φDは、φAから温度変化4による位相変調を除いたものであり、前述のφ(t)にあたるものである。以上のように、復調部71は、測定信号3を含み、温度変化4などの雑音信号を減衰させた信号を復調することができる。
また、本実施の形態1では、PGC方式において変調を行うために圧電子34を用いる例で説明したが、非特許文献1と同様に、電磁アクチュエータで遅延補償ファイバー30aを歪ませ、光の周波数を変調するなど、他の手段で光の位相を変化させても良い。
以上のように、本実施の形態1においては、差分器61の出力は、−πからπの範囲で出力されるため、従来技術のアンラップ処理器のような広いダイナミックレンジ(デジタル処理ではビット数)は不要である。また、差分器61の後に比較演算器62を構成することで、不連続な信号を連続にして、出力することができる。また、比較演算器62の後にフィルター54を構成することで、温度変化4などの雑音信号を減衰した信号を抽出できる。また、フィルター54の後に積算器55を構成することで、差分信号を積算し、測定信号3を含む信号に復調することができる。
実施の形態2.
図3は、本実施の形態2における干渉型光ファイバーセンサーシステムの構成を示す概略図である。
本実施の形態2では、非特許文献4などに示されたヘテロダインと称される復調方式を用いている。パルス光源1から出力されるパルス光2は、光ファイバー1aを経由し、光カプラ20に入り、2つに分割される。分割された一方は、遅延補償ファイバー20aを経由し、光カプラ23に入る。もう一方は、光ファイバー20bを経由し、光周波数シフター22に入る。光周波数シフター22において、オシレーター26から送信される信号faによりシフトされ、光カプラ23に入る。光カプラ23から出力される光は、遅延補償ファイバー20aを通過したパルス光24と、光周波数シフター22を通過し、信号faが加算されたパルス光25の2種類である。
パルス光24とパルス光25が光カプラ10に入り、センシング光とリファレンス光に分割され、再び光カプラ10を通過するまでの内容は、実施の形態1と同様である。
ここで、センシングファイバー11aを通過して遅延補償ファイバー20aを通過しなかった光と、センシングファイバー11aを通過せずに遅延補償ファイバー20aを通過した光は、干渉し干渉光35となる。そして、干渉光35は、光ファイバー10aを経由しO/E変換器33に入力し電気信号に変換される。そして、該電気信号は、A/D変換器50によってA/D変換され、AM復調器56aとAM復調器56bに出力される。
そして、該電気信号のfa成分をAM復調器56aとAM復調器56bで同期検波することでsinφAとcosφAを得る。ここで、AM変調器56aとAM変調器56bは、オシレーター26から出力される周波数faのリファレンス信号を復調に用いる。そして、AM変調器56aとAM変調器56bでリファレンス信号の位相に90度の差を付けておくことでsinφAとcosφAが得られる。逆正接演算器53以降は実施の形態1と同様である。
また、本実施の形態2では、1つの光周波数シフター22を用いる例を説明したが、非特許文献4に示されたように2つの光周波数シフター(AOM)も用いてもよい。
以上のように、本実施の形態2では、変調方式にヘテロダイン方式を用いた例を説明したが、逆正接演算器53以降は実施の形態1と同様の構成であるため、実施の形態1と同様の効果が得られる。
実施の形態3.
本実施の形態3では、実施の形態1における干渉計5を複数備え、時分割多重を用いた例を説明する。
図4は、本実施の形態3における干渉型光ファイバーセンサーシステムの概略図である。本実施の形態3は、干渉計を複数備え、それぞれの干渉計に遅延ファイバーを備えることで、時分割多重を実現している。そして、時分割多重化された干渉光は、復調部73によって、順次復調される。ここで、復調部73は、実施の形態1の復調部71と異なり、フィルター54と積算器55を備えておらず、差分信号のまま信号を出力する。
パルス光源1から出力されるパルス光2は、光ファイバー1aを介して光カプラ141に入り、二つに分割される。分割された一方のパルス光2は、光ファイバー141aを経由し、光カプラ101に入る。光カプラ101に入った光は、二つに分割され、一方はセンシングファイバー111aを通りセンシング光131aとなり、もう一方は光ファイバー111bを通りリファレンス光131bとなる。センシング光131aはセンシングファイバー111aを通過するときに、センシングファイバー111aに加わる測定信号3aで位相変調される。この測定信号3aは、前述のように、音響信号、磁気信号及び加速度等がある。そして、センシング光131aはミラー121aで反射し、リファレンス光131bはミラー121bで反射する。反射したセンシング光131aとリファレンス光131bは、光カプラ101を経由して、光カプラ151に伝送される。ここで、センシング光131aはセンシングファイバー111aによる伝搬遅延のため、リファレンス光131bより遅延している。
一方、光カプラ141で分割されたもう一方の光は、遅延ファイバー161により遅延し、光カプラ142で再び二つに分割される。一方は光ファイバー142aに送られ、光カプラ102に入った光は、二つに分割される。もう一方はセンシングファイバー112aを通りセンシング光132aとなり、もう一方は光ファイバー112bを通りリファレンス光132bとなる。
光カプラ142で分割されたもう一方の光は、さらに干渉計を備えている場合、遅延ファイバー162に送られ、前述の遅延ファイバー161に送られた光と同様の動作が行われる。
ここで、光カプラ152から送られたセンシング光132aとリファレンス光132bは、遅延ファイバー161を通過しているため、センシング光131aとリファレンス光131bより遅延している。これにより、各センシングファイバーの測定信号を含み、時分割多重により分割された光が生成される。本実施の形態3では、センシングファイバーが2つの例で説明したが、センシングファイバーが3つ以上ある場合も同様であり、多重化の数が増えるだけである。
以下の構成と動作は、実施の形態1と同様であるが、時分割多重の数に応じて、干渉光は複数生成される。そして、復調器73によって順次復調される。また、差分器61は、センシングファイバーを通過した一つ前の信号との差分を出力するように構成する。
非特許文献1の図4に示された構成では、デマルチプレキサでチャンネルごとに分離された後で復調する。一方、本実施の形態3では、多重化されたまま差分出力までを復調することができる。したがって、処理量が減り、非特許文献1の例に比べて復調器73の規模を小さくすることができる。なお、復調器73の出力にデマルチプレキサを接続して、時分割されたチャンネル毎に分離した後で、フィルターと積算器を接続することで信号を元の形まで復調することもできる。また、本実施の形態3では、実施の形態1のPGC方式を時分割多重構成にした例を示したが、実施の形態2のヘテロダイン方式でも同様に構成することができる。
以上に実施の形態1から3までを説明したが、本発明における干渉型光ファイバーセンサーシステムは、以上に説明した構成に限られるものではない。次に、実施の形態1から実施の形態3の変形例について説明する。
実施の形態1では圧電子によるPGC復調方式、実施の形態2では周波数シフターを用いるヘテロダイン方式でsinφAとcosφAを得る例を示した。しかし、他の方法でsinφAとcosφAを検出して逆正接演算器53以降を実施の形態1または実施の形態2と同様に構成することで同じ効果を得ることができる。
また、全ての実施の形態において、光カプラとミラーを用いるマイケルソン干渉計を構成する例で説明したが、マッハ・ツェンダ干渉計など他の干渉計を用いることもできる。
また、全ての実施の形態において、O/E変換器の次にA/D変換器を設ける例で説明した。他の例として、アナログゲート回路またはサンプルホールド回路などで干渉光を抽出して、アナログのAM復調器でsinφAとcosφAを復調してからA/D変換してもよい。
なお、全ての実施の形態において、光カプラとミラーを用いる干渉計で検出した信号を復調する例で説明したが、他の信号を復調する場合に、本発明の復調器部を用いることもできる。他の信号とは、例えば、波長変調されたレーザー光による信号などである。またその場合、本発明における復調部は演算器と称し、少なくとも逆正接演算器と、差分器とを備えるものとする。
また、全ての実施の形態において、逆正接演算器、差分器、比較演算器の順序で接続する例を示した。他の例として、逆正接演算器の出力に、連続する2つのサンプルデータの間で比較演算を行う比較演算器を接続して、その比較演算器に差分器を接続してもよい。
また、全ての実施の形態において、逆正接、差分などの演算器を用いる例で説明したが、ソフトウェアで演算するように構成することもできる。
また、全ての実施の形態において、−πからπの範囲の演算結果を出力する逆正接演算器を用いる例で説明した。他の例として、−π/2からπ/2、0からπ、0から2πなど他の範囲で演算結果を出力する逆正接演算器を用いてもよい。その場合、逆正接演算器の計算範囲に対応した比較演算器を用いる。
1 パルス光源、1a、10a、11b、20b、23a、30b、32b、111b、112b、141a、142a 光ファイバー、2、24、25 パルス光、3、3a、3b 測定信号、4、4a、4b 温度変化、5、5a、5b 干渉計、6、6a 変調部 10、20、23、32、101、102、141、142、151、152 光カプラ、11a センシングファイバー、12a、12b、121a、121b、122a、122b ミラー、13a、131a、132a センシング光、13b、131b、132b リファレンス光、20a 遅延補償ファイバー、22 光周波数シフター、26 オシレーター、26a、26b、40a、40b 信号線、30a 遅延補償ファイバー、31a、31b ミラー、32a、35、35a、35b 干渉光、33 O/E変換器、34 圧電子、40 PGC信号発生器、50 A/D変換器、51a、51b、56a、56b AM復調器、53 逆正接演算器、54 フィルター、55 積算器、60、アンラップ処理器、61 差分器、62 比較演算器、70、71、72、73 復調部、161、162 遅延ファイバー。

Claims (6)

  1. 物理量を検知するセンシングファイバーおよびリファレンスファイバーを有する干渉計と、
    前記干渉計からの前記物理量に対応する測定信号を含む干渉光を、電気信号に変換する変換器と、
    前記電気信号から、正弦波成分および余弦波成分を抽出する復調器と、
    該正弦波成分および該余弦波成分を用いて逆正接演算を行い、前記測定信号を含む信号を出力する逆正接演算器と、
    前記逆正接演算器から出力された信号の所定時間毎の差分を算出し、該差分信号を出力する差分器と、
    を備えることを特徴とする干渉型光ファイバーセンサーシステム。
  2. 前記差分信号が不連続となっている場合、不連続点を接続する演算を行う比較演算器を備えることを特徴とする請求項1に記載の干渉型光ファイバーセンサーシステム。
  3. 前記差分信号に含まれる雑音信号を減衰させるフィルターを備えることを特徴とする請求項1又は請求項2に記載の干渉型光ファイバーセンサーシステム。
  4. 前記差分信号を積算する積算器を備え、
    前記測定信号を復調することを特徴とする請求項1〜請求項3のいずれか一項に記載の干渉型光ファイバーセンサーシステム。
  5. 前記干渉計を複数備え、
    前記干渉光は、時分割多重により複数の測定信号を含むことを特徴とする請求項1又は請求項2に記載の干渉型光ファイバーセンサーシステム。
  6. 入力信号の正弦波成分と余弦波成分を用いて逆正接演算を行い、前記入力信号を含む信号を出力する逆正接演算器と、
    前記逆正接演算器から出力された前記信号の所定時間毎の差分を算出し、該差分信号を出力する差分器と、
    を備えることを特徴とする演算器。
JP2010081859A 2010-03-31 2010-03-31 干渉型光ファイバーセンサーシステムおよび演算器 Pending JP2011214921A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010081859A JP2011214921A (ja) 2010-03-31 2010-03-31 干渉型光ファイバーセンサーシステムおよび演算器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010081859A JP2011214921A (ja) 2010-03-31 2010-03-31 干渉型光ファイバーセンサーシステムおよび演算器

Publications (1)

Publication Number Publication Date
JP2011214921A true JP2011214921A (ja) 2011-10-27

Family

ID=44944831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010081859A Pending JP2011214921A (ja) 2010-03-31 2010-03-31 干渉型光ファイバーセンサーシステムおよび演算器

Country Status (1)

Country Link
JP (1) JP2011214921A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017036304A1 (zh) * 2015-09-02 2017-03-09 同方威视技术股份有限公司 分布式光纤周界安防系统、声音还原系统及方法
JP2017516093A (ja) * 2014-04-28 2017-06-15 オプトプラン・アー・エス 干渉計型光ファイバセンサシステムおよびインテロゲーションの方法
JP2018009896A (ja) * 2016-07-14 2018-01-18 白山工業株式会社 光ファイバセンサ
CN108731708A (zh) * 2018-04-24 2018-11-02 天津大学 可实现传感器任意通道匹配的多通道低相干干涉解调方法
JPWO2018070442A1 (ja) * 2016-10-12 2019-07-25 国立研究開発法人産業技術総合研究所 光角度変調測定装置及び測定方法
JP2020106306A (ja) * 2018-12-26 2020-07-09 沖電気工業株式会社 干渉型光ファイバセンサシステム、復調装置、復調方法及びプログラム
JP2022031310A (ja) * 2017-07-26 2022-02-18 テッラ15 プロプライエタリー リミテッド 分布光学センシングシステム及び方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677734A (ja) * 1992-08-28 1994-03-18 Kenwood Corp Fm復調器
JPH10160773A (ja) * 1996-11-29 1998-06-19 Anritsu Corp Fm信号測定装置
JP2008082921A (ja) * 2006-09-28 2008-04-10 Oki Electric Ind Co Ltd 光ファイバセンサシステム
JP2008175746A (ja) * 2007-01-19 2008-07-31 Oki Electric Ind Co Ltd 干渉型光ファイバセンサシステムおよびセンシング方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677734A (ja) * 1992-08-28 1994-03-18 Kenwood Corp Fm復調器
JPH10160773A (ja) * 1996-11-29 1998-06-19 Anritsu Corp Fm信号測定装置
JP2008082921A (ja) * 2006-09-28 2008-04-10 Oki Electric Ind Co Ltd 光ファイバセンサシステム
JP2008175746A (ja) * 2007-01-19 2008-07-31 Oki Electric Ind Co Ltd 干渉型光ファイバセンサシステムおよびセンシング方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017516093A (ja) * 2014-04-28 2017-06-15 オプトプラン・アー・エス 干渉計型光ファイバセンサシステムおよびインテロゲーションの方法
US10247581B2 (en) 2014-04-28 2019-04-02 Optoplan As Interferometric optical fibre sensor system and method of interrogation
WO2017036304A1 (zh) * 2015-09-02 2017-03-09 同方威视技术股份有限公司 分布式光纤周界安防系统、声音还原系统及方法
EA036635B1 (ru) * 2015-09-02 2020-12-02 Нюктек Компани Лимитед Распределенная оптоволоконная система обеспечения безопасности периметра, система и способ восстановления звука
JP2018009896A (ja) * 2016-07-14 2018-01-18 白山工業株式会社 光ファイバセンサ
JPWO2018070442A1 (ja) * 2016-10-12 2019-07-25 国立研究開発法人産業技術総合研究所 光角度変調測定装置及び測定方法
JP7239975B2 (ja) 2016-10-12 2023-03-15 国立研究開発法人産業技術総合研究所 光角度変調測定装置及び測定方法
US11098998B2 (en) 2016-10-12 2021-08-24 National Institute Of Advanced Industrial Science And Technology Apparatus and method for optical angle modulation measurement by a delayed self-heterodyne method
JP2022031310A (ja) * 2017-07-26 2022-02-18 テッラ15 プロプライエタリー リミテッド 分布光学センシングシステム及び方法
JP7293321B2 (ja) 2017-07-26 2023-06-19 テッラ15 プロプライエタリー リミテッド 分布光学センシングシステム及び方法
CN108731708A (zh) * 2018-04-24 2018-11-02 天津大学 可实现传感器任意通道匹配的多通道低相干干涉解调方法
CN108731708B (zh) * 2018-04-24 2020-04-24 天津大学 可实现传感器任意通道匹配的多通道低相干干涉解调方法
JP7225792B2 (ja) 2018-12-26 2023-02-21 沖電気工業株式会社 干渉型光ファイバセンサシステム、復調装置、復調方法及びプログラム
JP2020106306A (ja) * 2018-12-26 2020-07-09 沖電気工業株式会社 干渉型光ファイバセンサシステム、復調装置、復調方法及びプログラム

Similar Documents

Publication Publication Date Title
JP4930068B2 (ja) 干渉型光ファイバセンサシステムおよびセンシング方法
JP2011214921A (ja) 干渉型光ファイバーセンサーシステムおよび演算器
JP5450408B2 (ja) 位相ベースのセンシング
EP2053364B1 (en) Adaptive Mixing for High Slew Rates
JP5190847B2 (ja) 光ファイバ磁気センサ
JP7225792B2 (ja) 干渉型光ファイバセンサシステム、復調装置、復調方法及びプログラム
CN106323478B (zh) 抗偏振衰落的光纤干涉型传感器相位生成载波调制解调系统
JP5652229B2 (ja) 干渉型光ファイバセンサシステム
JP3842551B2 (ja) 時分割マルチプレックス処理された光ファイバセンサアレイのノイズ抑制装置および方法
JP6205680B2 (ja) 干渉型光ファイバセンサ
JP5118246B1 (ja) 光ファイバセンサ
US9188478B2 (en) Multi-channel laser interferometric method and apparatus for detection of ultrasonic motion from a surface
US20040184037A1 (en) Heterodyne lateral grating interferometric encoder
JP2014163854A (ja) 測定装置
CN114353931A (zh) 一种大动态范围的光纤干涉仪相位检测装置及方法
KR102022315B1 (ko) 광 간섭계 및 그의 동작방법
JP2007527647A (ja) 位相生成搬送波の復調位相オフセットと独立なセンサアレイ誘導位相角のフィルタリング計算方式
JP6070087B2 (ja) 干渉型光ファイバセンサ
JP6233820B2 (ja) 位相生成搬送波の感知データ搬送能力
JP6772676B2 (ja) 干渉型光ファイバセンサ
JPH07139996A (ja) 多重出力光ファイバセンサ装置
CN110836639A (zh) 相位生成载波微分交叉相乘载波延迟和伴生调幅消除方法
JP6729737B1 (ja) 光コヒーレントセンサ
JP2007527518A (ja) 位相生成搬送波を用いた光ファイバセンサアレイにおける位相信号の計算方法
Zhang et al. Investigation on upper limit of dynamic range of fiber optic interferometric sensors base on the digital heterodyne demodulation scheme

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131126