WO2017036304A1 - 分布式光纤周界安防系统、声音还原系统及方法 - Google Patents

分布式光纤周界安防系统、声音还原系统及方法 Download PDF

Info

Publication number
WO2017036304A1
WO2017036304A1 PCT/CN2016/095649 CN2016095649W WO2017036304A1 WO 2017036304 A1 WO2017036304 A1 WO 2017036304A1 CN 2016095649 W CN2016095649 W CN 2016095649W WO 2017036304 A1 WO2017036304 A1 WO 2017036304A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
sound
fiber
sensing
interference
Prior art date
Application number
PCT/CN2016/095649
Other languages
English (en)
French (fr)
Inventor
魏宇峰
姚锴
徐骏
杨捷
高柏松
徐惠康
肖航
许明
刘云飞
董坤
毛献辉
Original Assignee
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司 filed Critical 同方威视技术股份有限公司
Priority to MX2017015391A priority Critical patent/MX2017015391A/es
Priority to EA201792295A priority patent/EA036635B1/ru
Priority to BR112017024077-7A priority patent/BR112017024077B1/pt
Priority to EP16840733.6A priority patent/EP3321901B1/en
Publication of WO2017036304A1 publication Critical patent/WO2017036304A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/02Mechanical actuation
    • G08B13/12Mechanical actuation by the breaking or disturbance of stretched cords or wires
    • G08B13/122Mechanical actuation by the breaking or disturbance of stretched cords or wires for a perimeter fence
    • G08B13/124Mechanical actuation by the breaking or disturbance of stretched cords or wires for a perimeter fence with the breaking or disturbance being optically detected, e.g. optical fibers in the perimeter fence
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/16Actuation by interference with mechanical vibrations in air or other fluid
    • G08B13/1654Actuation by interference with mechanical vibrations in air or other fluid using passive vibration detection systems
    • G08B13/1672Actuation by interference with mechanical vibrations in air or other fluid using passive vibration detection systems using sonic detecting means, e.g. a microphone operating in the audio frequency range
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/181Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems
    • G08B13/183Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems by interruption of a radiation beam or barrier
    • G08B13/186Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems by interruption of a radiation beam or barrier using light guides, e.g. optical fibres

Definitions

  • the present disclosure relates to the field of security technologies, and in particular, to a sound reduction system, a sound reduction method, and a distributed fiber perimeter security system.
  • Fiber optics can be used not only for signal transmission, but also for fiber optic applications in sensing applications.
  • part of the optical signal transmitted by the optical fiber changes.
  • the characteristics of the optical attenuation, phase, wavelength, polarization, mode field distribution and propagation can be monitored. Interference with time changes. Measurement of many events and states is made possible by the modulation of the optical signal.
  • the distributed fiber perimeter security system is a distributed sensing system that utilizes fiber as the sensing and transmission medium.
  • the fiber perimeter security system can remotely and real-time monitor unexpected events such as intrusion behavior within a certain accuracy range in the sensing fiber deployment area. It can be used for perimeter security monitoring in prisons, important military targets, arsenals, railroad fences, etc. It can also be used for perimeter security monitoring of important facilities such as communities, government agencies, nuclear power plants, and airports.
  • the perimeter is divided into several small monitoring areas (called zones). Each zone is monitored by a fiber-optic sensing unit. This sensing unit usually has no positioning capability and can only be sensed. Measure and transmit intrusion vibration signals and determine whether an intrusion event occurs.
  • a plurality of optical fiber sensing units are formed into a network, and it can be determined in which zone the intrusion event occurs, thereby achieving the positioning purpose.
  • the purpose of the present disclosure is to provide a sound reduction system with sound reduction capability, a sound reduction method, and a distributed fiber perimeter security system, thereby at least to some extent overcoming the limitations and defects of the related art.
  • a sound reduction system for use in a distributed fiber perimeter security system for monitoring a plurality of zones; wherein the sound restoration system comprises:
  • a laser generating mechanism for providing a laser signal
  • a splitting mechanism for dividing the laser signal into multiple input optical signals
  • each of the fiber Michelson interference mechanisms Receiving an input optical signal and outputting an interference signal in response to the peripheral sound pressure;
  • An audio output mechanism receives each of the interference signals and outputs a sound signal restored according to the interference signal of the zone when receiving an alarm signal of any of the zones.
  • the audio output mechanism restores the sound signal according to the intensity of the interference signal.
  • the fiber Michelson interference mechanism includes:
  • sensing fiber having a reference arm and a sensing arm
  • a front end device for receiving the input optical signal, and inputting the input optical signal from the first end of the sensing fiber to the reference arm and the sensing arm;
  • a tail end device for feeding back the input optical signal from the second end of the sensing fiber to the first end of the sensing fiber to form an interference signal
  • a photodetector is disposed at the first end of the sensing fiber to receive and output the interference signal.
  • the audio output mechanism restores the sound signal according to the following equation:
  • I is the intensity of the interference signal
  • I 1 and I 2 are the light intensities of the optical signals in the reference arm and the sensing arm, respectively.
  • n is the effective refractive index of the sensing fiber
  • is the incident wavelength of the input optical signal
  • P 12 and P 11 are the Pockel constant
  • is the Poisson's ratio
  • ⁇ 3 is the The rate of change of the axial length of the sensing arm
  • L is the length of the shock
  • k is the inherent parameter of the sensing fiber
  • p is the sound pressure of the sound signal acting on the sensing arm.
  • the front end device includes a fiber optic coupler.
  • the end device includes a Faraday rotating mirror or a mirror.
  • the sensing fiber at least partially multiplexes an optical fiber for intrusion sensing in the distributed fiber perimeter security system.
  • the sensing fiber is laid in a mesh shape, a spiral shape, or a linear shape.
  • the audio output mechanism includes:
  • a processing unit configured to restore the sound signal of the zone according to the interference signal of any zone
  • control unit configured to output a control signal after receiving an alarm signal sent by any of the zones, the control signal including at least information of a zone that issues an alarm signal;
  • a strobing unit is connected to the control unit and the processing unit, and configured to output, after receiving the control signal, the sound signal of the zone that sends out the alarm signal according to the control signal.
  • the audio output mechanism further includes:
  • a demodulation unit configured to demodulate the sound signal to play and/or store a sound corresponding to the sound signal.
  • a distributed fiber perimeter security system comprising:
  • An intrusion sensing system for collecting intrusion vibration signals of multiple zones
  • An alarm unit configured to send an alarm signal of the zone when an abnormal event occurs in any of the zones according to the intrusion vibration signal
  • Any of the above sound restoration systems for outputting a sound signal restored according to an interference signal of the zone when receiving an alarm signal of the zone.
  • the intrusion sensing system includes an optical fiber for sensing and transmitting the intrusion shock signal, wherein the sensing fiber of the fiber Michelson interference mechanism at least partially multiplexes the optical fiber.
  • a sound restoration method which is applied to a distributed fiber perimeter security system for monitoring a plurality of zones; the sound restoration method includes:
  • each of the fiber Michelson interference mechanisms receiving an input optical signal and outputting an interference signal in response to the peripheral sound pressure;
  • Each of the interference signals is received, and when an alarm signal of any of the zones is received, a sound signal restored according to the interference signal of the zone is output.
  • the sound signal is restored according to the intensity of the interference signal.
  • the fiber Michelson interference mechanism comprises a sensing fiber, the sensing fiber has a reference arm and a sensing arm, and I 1 and I 2 are respectively the reference arm and the sensing
  • n is the effective refractive index of the sensing fiber
  • is the incident wavelength of the input optical signal
  • P 12 and P 11 are the Pockel constant
  • is the Poisson's ratio
  • ⁇ 3 is the The rate of change of the axial length of the sensing arm
  • L is the length of the shock
  • k is the inherent parameter of the sensing fiber
  • p is the sound pressure of the sound signal acting on the sensing arm.
  • an interference signal generated according to a sound pressure of a sound signal of each zone is acquired, and when an alarm signal of any zone is received, a sound signal restored according to an interference signal of the zone is output Therefore, the user can further confirm and judge whether an abnormal event such as an intrusion occurs, thereby greatly improving the user's ability to distinguish abnormal events, thereby timely grasping abnormal conditions and abnormal situations, and reducing false alarms; and, the sound is restored.
  • the system only outputs the corresponding sound signal after receiving the alarm signal, on the one hand avoids judging the user.
  • the interference on the other hand saves system resources.
  • FIG. 1 is a schematic structural view of a sound restoration system in the present exemplary embodiment.
  • FIG. 2 is a schematic structural view of a fiber-optic Michelson interference mechanism in the present exemplary embodiment.
  • Fig. 3 is a schematic structural view of an audio output mechanism in the exemplary embodiment.
  • FIG. 4 is a flow chart showing a sound restoration method in the exemplary embodiment.
  • the present exemplary embodiment first provides a sound restoration system, which is applied to multiple zones.
  • the distributed fiber perimeter security system can monitor eight zones, and the sound reduction system can mainly include a laser generating mechanism 11 , a beam splitting mechanism 12 , and more A fiber Michelson interference mechanism 13 and an audio output mechanism 14.
  • the sound reduction system can mainly include a laser generating mechanism 11 , a beam splitting mechanism 12 , and more A fiber Michelson interference mechanism 13 and an audio output mechanism 14.
  • those skilled in the art can also set other structures such as a power supply, a control component, a signal optimization component, and the like as needed.
  • the laser generating mechanism 11 is mainly used to provide a laser signal.
  • the laser generating mechanism 11 in order to ensure high stability of the light source frequency, high optical amplitude stability, and monochromaticity, the laser generating mechanism 11 is preferably a semiconductor DFB (Distributed Feedback Laser) light source, thereby improving the system. The ability to resist environmental interference and improve the overall system signal to noise ratio.
  • the beam splitting mechanism 12 is mainly used to divide the laser signal into multiple input optical signals, so as to be correspondingly provided to the respective fiber Michelson interference mechanisms 13, which may be prior art splitters.
  • other optical components such as an isolator, a circulator, and the like may be provided, which are not particularly limited in the present exemplary embodiment.
  • the fiber Michelson interference mechanism is mainly used for receiving an input optical signal and outputting an interference signal carrying the sound pressure information generated by the sound signal under the influence of the sound pressure generated by the peripheral sound signal.
  • the fiber Michelson interference mechanism 13 has advantages of being safe and reliable, strong in anti-interference ability, and long in transmission distance, and is very suitable for the sound restoration system in the present exemplary embodiment.
  • the beam splitting mechanism 12 divides the laser signal into eight input optical signals and a total of eight of the fiber Michelson interference mechanisms 13 are provided, each fiber Michelson interference mechanism. 13 is correspondingly disposed in one of the zones, thereby acquiring an interference signal carrying sound pressure information generated according to the sound signal of the zone.
  • the audio output mechanism 14 is mainly configured to receive each of the interference signals, and when receiving an alarm signal of any of the zones, output a sound signal restored according to the interference signal of the zone.
  • the audio output mechanism 14 is mainly configured to receive eight channels of the interference signal, and when receiving the alarm signal of the zone 2, output a sound signal restored according to the interference signal of the zone 2, and receive an alarm of the zone 7 At the time of the signal, a sound signal or the like restored according to the interference signal of the zone 7 is output.
  • the sound restoration system by acquiring an interference signal generated based on the sound pressure of the sound signal of each zone, and receiving an alarm signal of any zone, the sound signal restored according to the interference signal of the zone is output, thereby It can help the user to further confirm and judge the abnormal events such as intrusion behavior, greatly improve the user's ability to distinguish abnormal events, and then grasp the abnormal situation and abnormal situation in time, and reduce the false alarm; Moreover, the sound restoration system only After receiving the alarm signal, the corresponding sound signal is output, on the one hand, avoiding interference on the judgment of the user, and on the other hand, saving system resources.
  • the fiber Michelson interference mechanism 13 may include a sensing fiber 131, a front end device 132, a tail end device 133, and a photodetector 134.
  • the sensing fiber 131 has a reference arm and a sensing arm.
  • the front end device 132 is configured to receive the input optical signal and the sensing light
  • the first end of the fiber 131 inputs the input optical signal to the reference arm and the sensing arm.
  • the tail end device 133 is configured to feed back the input optical signal from the second end of the sensing fiber 131 to the first end of the sensing fiber 131 to form an interference signal.
  • the photodetector 134 is disposed at the first end of the sensing fiber 131 to receive the interference signal and output after photoelectric conversion.
  • the front end device 132 may include a fiber coupler
  • the tail end device 133 may include a Faraday Rotator Mirror (FRM) or a mirror.
  • the fiber coupler receives the input beam and equally couples the input beam to the reference arm of the sensing fiber 131 and the sensing arm; the reference beam and the input beam in the sensing arm reach the second end of the sensing fiber 131, and are set
  • the reference beam and the sensing arm reflected by the mirror or the Faraday rotating mirror of the second end of the sensing fiber 131 are respectively formed into reference light and signal light, and the reference light and the signal light form an interference signal in the fiber coupler. It is received by the photodetector 134 and output to the audio output mechanism 14 after photoelectric conversion.
  • the sensing fiber 131 can partially or completely multiplex the original transmission fiber in the distributed fiber perimeter security system, such as the transmission fiber originally used for sensing and transmitting the intrusion vibration signal, thereby There is no need to add a new sensing fiber 131 or avoid adding too many sensing fibers 131 to reduce the implementation cost of the system.
  • the sensing fiber 131 can be arranged in a mesh or a spiral shape. On the one hand, the interference signal can be more uniformly obtained. On the other hand, the longer sensing fiber 131 can increase the sensing sensitivity of the system.
  • the above-mentioned tail end device 133 is preferably a Faraday rotating mirror, for example, a 45-degree Faraday rotating mirror is added to the end of the reference arm and the sensing arm, so that the optical signals of the reference arm and the sensing arm are rotated back and forth by 90 degrees, eliminating The effect of random changes in the polarization state on the intensity of the interference signal.
  • a Faraday rotating mirror for example, a 45-degree Faraday rotating mirror is added to the end of the reference arm and the sensing arm, so that the optical signals of the reference arm and the sensing arm are rotated back and forth by 90 degrees, eliminating The effect of random changes in the polarization state on the intensity of the interference signal.
  • the audio output mechanism 14 can restore the sound signal according to the intensity of the interference signal. For example:
  • the intensity of the interference signal output by the fiber Michelson interference mechanism 13 is:
  • I 1 and I 2 are the light intensities of the optical signals in the reference arm and the sensing arm, respectively.
  • the phase difference between the two According to the fiber strain theory, the influence of temperature change on the fiber is ignored, and the phase difference is:
  • n is the effective refractive index of the sensing fiber 131
  • is the incident wavelength of the input optical signal
  • P 12 and P 11 are Pockel constants
  • is Poisson's ratio
  • ⁇ 3 is The rate of change of the axial length of the sensing arm
  • ⁇ 3 ⁇ L / L
  • L is the length of the shock
  • ⁇ L is the axial deformation.
  • the axial length change rate ⁇ 3 of the sensing arm of the sensing fiber 131 in the sound field is approximately proportional to the sound pressure:
  • k is an intrinsic parameter of the sensing fiber 131
  • p is the sound signal applied to the sensing arm Sound pressure
  • the intensity of the interference signal outputted by the fiber Michelson interference mechanism 13 is proportional to the external sound pressure, and therefore can be passed according to the above formula (1)(2)(3).
  • the interference signal output by the fiber Michelson interference mechanism 13 directly restores the appearance of the field sound signal.
  • the audio output mechanism 14 may include a processing unit 141, a control unit 142, and a gating unit 143.
  • the processing unit 141 is configured to restore the sound signal of the zone according to the interference signal of any zone.
  • the control unit 142 is configured to output a control signal after receiving an alarm signal sent by any of the zones, the control signal including at least information of a zone that issues an alarm signal.
  • the strobe unit 143 is connected to the control unit 142 and the processing unit 141 for outputting the sound signal of the zone that issues the alarm signal according to the control signal after receiving the control signal.
  • the audio output mechanism 14 may further include a demodulation unit 144; the demodulation unit 144 is configured to demodulate the sound signal to play and store the sound corresponding to the sound signal.
  • the processing unit 141 may resume the interference signal from the zone after receiving the alarm signal of a certain zone.
  • the sound signal of the zone which in turn is output to the control unit 142, is not limited to the implementation in the present exemplary embodiment.
  • the processing unit 141 can be a signal processing circuit
  • the gating unit 143 can be a single-chip gating circuit
  • the control unit 142 can be a industrial computer.
  • the interference signals of the eight zones are photoelectrically converted by the photodetector 134 and then enter the signal processing circuit. After the signal processing circuit performs filtering and shaping, the sound signal is demodulated and 8 sound signals are output to the MCU gate circuit.
  • the industrial computer After receiving the alarm signal sent by a certain zone (the alarm signal may also be generated by the industrial computer itself), the industrial computer sends a control signal including at least the information of the zone to the single-chip strobe circuit, and the single-chip strobe circuit uses the zone The sound signal is strobed and then input to the industrial computer.
  • the demodulation unit 144 may be demodulation software installed on the industrial computer. After the sound signal of the zone is input to the industrial computer, the demodulation software performs demodulation to realize sound playback and storage. In addition, the user can also set parameters such as the playing time and storage time of the sound through the demodulation software.
  • the processing unit, the gating unit, and the control unit are described by taking specific hardware as an example, but they may also be implemented by software or other types of hardware; similarly, the demodulation unit may also be implemented by other means such as hardware.
  • any combination of the above processing unit, the gating unit, the control unit, and the demodulation unit may be integrated into one functional module or component, which is not particularly limited in the exemplary embodiment.
  • the distributed fiber perimeter security system mainly includes an intrusion sensing system and any of the above sound recovery systems, and may further include other parts such as an alarm unit.
  • the intrusion sensing system is configured to collect intrusion vibration signals of multiple zones, so that the alarm unit can determine whether an intrusion behavior or the like occurs in each zone according to the intrusion vibration signal, and the alarm unit can be the above-mentioned industrial computer, when the alarm unit senses When an abnormal event occurs in a certain zone, an alarm signal is issued for the zone.
  • the sound restoration system When receiving the alarm signal of the zone, the sound restoration system outputs a sound signal restored according to the interference signal of the zone.
  • the distributed fiber perimeter security system in the exemplary embodiment when an intrusion event occurs in a certain zone, The user can hear the real-time sound of the site at the same time, and because the sound signal has a high degree of reduction, the user can further confirm the situation on the spot.
  • the sound restoration method may include:
  • Step S1. Provide a laser signal.
  • Step S2. Dividing the laser signal into multiple input optical signals.
  • Step S3. Providing a plurality of fiber Michelson interference mechanisms and correspondingly disposed in each of the zones, each of the fiber Michelson interference mechanisms receiving an input optical signal and outputting an interference signal in response to the peripheral sound pressure.
  • Step S4 Receive each of the interference signals, and when receiving an alarm signal of any of the zones, output a sound signal restored according to the interference signal of the zone.
  • the output is restored according to the interference signal of the zone.
  • the sound signal can help the user to further confirm and judge the abnormal events such as intrusion behavior, which greatly improves the user's ability to distinguish abnormal events, and thus can grasp abnormal conditions and abnormal situations in time, and reduce false alarms;
  • the sound restoration system outputs the corresponding sound signal only after receiving the alarm signal, thereby avoiding interference on the user on the one hand, and saving system resources on the other hand.
  • the sensing fiber in the fiber-optic Michelson interference mechanism in the exemplary embodiment can reuse the original fiber in the distributed fiber perimeter security system, so that the implementation cost can be effectively reduced, and the utility model has high practicability.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Burglar Alarm Systems (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Lasers (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

一种分布式光纤周界安防系统、声音还原系统及方法。该声音还原系统应用于对多个防区进行监控的分布式光纤周界安防系统;该声音还原系统包括:一激光发生机构(11),用于提供一激光信号;一分光机构(12),用于将该激光信号分为多路输入光信号;多个光纤迈克尔逊干涉机构(13),对应设于各防区;每一光纤迈克尔逊干涉机构(13)接收一输入光信号并响应周边声压输出一干涉信号;一音频输出机构(14),接收各干涉信号,并在接收到任一防区的警报信号时,输出根据该防区的干涉信号而还原出的声音信号。本系统可以帮助用户对是否发生入侵行为等异常事件进行进一步的确认判断。

Description

分布式光纤周界安防系统、声音还原系统及方法 技术领域
本公开涉及安防技术领域,特别涉及一种声音还原系统、一种声音还原方法以及一种分布式光纤周界安防系统。
背景技术
光纤不仅仅可以用于信号传输,在感测应用中采用光纤,还可使光纤作为传感器。当外界干扰影响传到光纤时,光纤传输的光信号的部分特性就会改变,通过配置专门的感测仪表就能监测使光的特性即衰减、相位、波长、极化、模场分布和传播时间变化的干扰。通过光信号的调变,使得许多事件和状态的测量成为可能。
分布式光纤周界安防系统是利用光纤作为传感及传输介质的一种分布式传感系统。光纤周界安防系统可以在传感光纤布设区域内,对一定精度范围内的入侵行为等突发事件进行远程和实时的监测。它可以用于监狱、重要军事目标、武器库、铁路沿线围栏等周界的安防监控,还可以用于小区、政府机关、核电站、机场等重要设施的周界安防监控。
目前的分布式光纤周界安防系统中把周界分为几个小的监控区域(称为防区),每个防区用一个光纤传感单元监测,这个传感单元通常没有定位能力,只能感测以及传输入侵震动信号以及判断有无入侵事件发生。通过复用技术,把多个光纤传感单元构成一个网络,就可以判断入侵事件发生在哪个防区中,从而达到定位目的。
然而,由于每个防区的光纤基本都裸露在外界环境中,极容易产生由外界环境干扰(例如,风雨以及飞鸟等)引起的误报,使用户感到困惑。因此需要采取辅助手段帮助用户进行进一步的确认判断。
发明内容
本公开的目的在于提供具备声音还原能力的一种声音还原系统、一种声音还原方法以及一种分布式光纤周界安防系统,从而至少在一定程度上克服由于相关技术的限制和缺陷而导致的一个或多个问题。
本公开的其它特性和优点将通过下面的详细描述变得显然,或部分地通过本公开的实践而习得。
根据本公开的第一方面,提供一种声音还原系统,应用于对多个防区进行监控的一分布式光纤周界安防系统;其特征在于,所述声音还原系统包括:
一激光发生机构,用于提供一激光信号;
一分光机构,用于将所述激光信号分为多路输入光信号;
多个光纤迈克尔逊干涉机构,对应设于各所述防区;每一所述光纤迈克尔逊干涉机构 接收一所述输入光信号并响应周边声压输出一干涉信号;
一音频输出机构,接收各所述干涉信号,并在接收到任一所述防区的警报信号时,输出根据该防区的干涉信号而还原出的声音信号。
本公开的一种示例性实施例中,所述音频输出机构根据所述干涉信号光强而还原出所述声音信号。
本公开的一种示例性实施例中,所述光纤迈克尔逊干涉机构包括:
一传感光纤,具有参考臂以及感测臂;
一前端设备,用于接收所述输入光信号,并自所述传感光纤第一端将所述输入光信号输入至所述参考臂和感测臂;
一尾端设备,用于自所述传感光纤第二端将所述输入光信号反馈至所述传感光纤第一端以形成一干涉信号;
一光电探测器,设于所述传感光纤第一端,以接收并输出所述干涉信号。
本公开的一种示例性实施例中,所述音频输出机构根据下述方程而还原出所述声音信号:
Figure PCTCN2016095649-appb-000001
Figure PCTCN2016095649-appb-000002
ε3=k·p                  (3)
其中,I为所述干涉信号光强,I1、I2分别为所述参考臂和感测臂中光信号的光强且
Figure PCTCN2016095649-appb-000003
为两者相位差,n为所述传感光纤的有效折射率,λ为所述输入光信号入射波长,P12、P11为普克尔常数,ν为泊松比,ε3为所述感测臂轴向长度变化率,L为震动长度,k为所述传感光纤固有参数,p为所述声音信号作用于所述感测臂的所述声压。
本公开的一种示例性实施例中,所述前端设备包括光纤耦合器。
本公开的一种示例性实施例中,所述尾端设备包括法拉第旋转镜或反射镜。
本公开的一种示例性实施例中,所述传感光纤至少部分复用所述分布式光纤周界安防系统中用于入侵感测的光纤。
本公开的一种示例性实施例中,所述传感光纤呈网状、螺旋状或者直线状布设。
本公开的一种示例性实施例中,所述音频输出机构包括:
一处理单元,用于根据任一防区的所述干涉信号而还原出该防区的声音信号;
一控制单元,用于在接收到任一所述防区发出的警报信号后,输出一控制信号,所述控制信号至少包括发出警报信号的防区的信息;
一选通单元,与所述控制单元及处理单元连接,用于在接收到所述控制信号后,根据所述控制信号输出所述发出警报信号的防区的声音信号。
本公开的一种示例性实施例中,所述音频输出机构还包括:
一解调单元,用于对所述声音信号进行解调以播放和/或存储所述声音信号对应的声音。
根据本公开的第二方面,提供一种分布式光纤周界安防系统,包括:
一入侵感测系统,用于采集多个防区的入侵震动信号;
一警报单元,用于在根据所述入侵震动信号判断任一防区出现异常事件时,发出该防区的一警报信号;
一上述任意一种声音还原系统,用于在接收到该防区的警报信号时,输出根据该防区的干涉信号而还原出的声音信号。
本公开的一种示例性实施例中,所述入侵感测系统包括用于感测及传输所述入侵震动信号的光纤,其中,所述光纤迈克尔逊干涉机构的传感光纤至少部分复用该光纤。
根据本公开的第三方面,提供一种声音还原方法,应用于对多个防区进行监控的一分布式光纤周界安防系统;所述声音还原方法包括:
提供一激光信号;
将所述激光信号分为多路输入光信号;
提供多个光纤迈克尔逊干涉机构并对应设于各所述防区,每一所述光纤迈克尔逊干涉机构接收一所述输入光信号并响应周边声压而输出一干涉信号;
接收各所述干涉信号,并在接收到任一所述防区的警报信号时,输出根据该防区的干涉信号而还原出的声音信号。
本公开的一种示例性实施例中,其中,根据所述干涉信号光强而还原出所述声音信号。
本公开的一种示例性实施例中,其中,根据下述方程而还原出所述声音信号:
Figure PCTCN2016095649-appb-000004
Figure PCTCN2016095649-appb-000005
ε3=k·p               (3)
其中,I为所述干涉信号光强,所述光纤迈克尔逊干涉机构包括传感光纤,所述传感光纤具有参考臂以及感测臂,I1、I2分别为所述参考臂和感测臂中光信号的光强且
Figure PCTCN2016095649-appb-000006
为两者相位差,n为所述传感光纤的有效折射率,λ为所述输入光信号入射波长,P12、P11为普克尔常数,ν为泊松比,ε3为所述感测臂轴向长度变化率,L为震动长度,k为所述传感光纤固有参数,p为所述声音信号作用于所述感测臂的所述声压。
本公开示例性实施例中,通过获取根据各防区的声音信号的声压所产生的干涉信号,并在接收到任一防区的警报信号时,输出根据该防区的干涉信号而还原出的声音信号,从而可以帮助用户对是否发生入侵行为等异常事件进行进一步的确认判断,大大提高了用户对异常事件的辨别能力,进而可以及时掌握异常状况和异常形势,并降低误报;而且,该声音还原系统仅在接收到警报信号后才输出对应的声音信号,一方面避免对用户造成判断 上的干扰,另一方面节省了系统资源。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本示例性实施例中一种声音还原系统的结构示意图。
图2是本示例性实施例中一种光纤迈克尔逊干涉机构的结构示意图。
图3是本示例性实施例中一种音频输出机构的结构示意图。
图4是本示例性实施例中一种声音还原方法的流程示意图。
附图标记说明
11激光发生机构
12分光机构
13光纤迈克尔逊干涉机构
131传感光纤
132前端设备
133尾端设备
134光电探测器
14音频输出机构
141处理单元
142控制单元
143选通单元
144解调单元
具体实施方式
现在将参考附图更全面地描述示例性实施例。然而,示例性实施例能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本公开将全面和完整,并将示例性实施例的构思全面地传达给本领域的技术人员。在图中,相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
此外,所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本公开的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而没有所述特定细节中的一个或更多,或者可以采用其它的组件、步骤等。在其它情况下,不详细示出或描述公知结构以避免模糊本公开的各方面。
为了帮助分布式光纤周界安防系统用户对是否发生入侵行为等异常事件进行进一步的确认判断,本示例性实施例中首先提供了一种声音还原系统,该声音还原系统应用于对多个防区进行监控的一分布式光纤周界安防系统。参考图1中所示,本示例性实施例中,所述分布式光纤周界安防系统可以对8个防区进行监控,该声音还原系统可以主要包括一激光发生机构11、一分光机构12、多个光纤迈克尔逊干涉机构13以及一音频输出机构14。当然,除此之外,本领域技术人员也可以根据需要设置诸如供电电源、控制组件、信号优化组件等其他结构。
其中,该激光发生机构11主要用于提供一激光信号。例如,本示例性实施例中为了保证光源频率的高稳定性、光振幅高稳定性以及单色性,该激光发生机构11优选半导体DFB(Distributed Feedback Laser,分布式反馈激光器)光源,进而提高系统的抗环境干扰能力以及改善整个系统信噪比。该分光机构12主要用于将所述激光信号分为多路输入光信号,从而对应提供至各个光纤迈克尔逊干涉机构13,其可以为现有技术中的分光器。除此之外,还可以设置隔离器、环形器等其他光学元件,本示例性实施例中对此不做特殊限定。
光纤迈克尔逊(Michelson)干涉机构主要用于接收一所述输入光信号,并在周边声音信号所产生的声压的影响下而输出一携带有该声音信号所产生的声压信息的干涉信号。此外,光纤迈克尔逊干涉机构13具有使用安全可靠、抗干扰能力强以及传输距离远等优点,非常适用于本示例性实施例中的声音还原系统。本示例性实施例中,根据所述防区的数量,分光机构12将所述激光信号分为8路输入光信号且共设置8个所述光纤迈克尔逊干涉机构13,每个光纤迈克尔逊干涉机构13对应设于一个所述防区,从而获取携带有根据该防区的声音信号所产生的声压信息的干涉信号。
音频输出机构14主要用于接收各所述干涉信号,并在接收到任一所述防区的警报信号时,输出根据该防区的干涉信号而还原出的声音信号。举例而言,音频输出机构14主要用于接收8路所述干涉信号,在接收到防区2的警报信号时,输出根据防区2的干涉信号而还原出的声音信号,在接收到防区7的警报信号时,输出根据防区7的干涉信号而还原出的声音信号等等。
上述声音还原系统中,通过获取根据各防区的声音信号的声压所产生的干涉信号,并在接收到任一防区的警报信号时,输出根据该防区的干涉信号而还原出的声音信号,从而可以帮助用户对是否发生入侵行为等异常事件进行进一步的确认判断,大大提高了用户对异常事件的辨别能力,进而可以及时掌握异常状况和异常形势,并降低误报;而且,该声音还原系统仅在接收到警报信号后才输出对应的声音信号,一方面避免对用户造成判断上的干扰,另一方面节省了系统资源。
参考图2中所示,本示例性实施例中,所述光纤迈克尔逊干涉机构13可以包括一传感光纤131、一前端设备132、一尾端设备133以及一光电探测器134。其中,该传感光纤131具有参考臂以及感测臂。该前端设备132用于接收所述输入光信号,并自所述传感光 纤131第一端将所述输入光信号输入至所述参考臂和感测臂。该尾端设备133用于自所述传感光纤131第二端将所述输入光信号反馈至所述传感光纤131第一端以形成一干涉信号。该光电探测器134设于所述传感光纤131第一端,以接收所述干涉信号,并在进行光电转换后输出。
举例而言,本示例性实施例中,所述前端设备132可以包括一光纤耦合器,所述尾端设备133可以包括一法拉第旋转镜(Faraday Rotator Mirror,FRM)或反射镜。光纤耦合器接收输入光束,并将输入光束均等的耦合至传感光纤131的参考臂以及感测臂;参考臂以及感测臂中的输入光束到达传感光纤131的第二端后,被设置于传感光纤131第二端的反射镜或法拉第旋转镜反射回传感光纤131的参考臂以及感测臂分别形成参考光与信号光,该参考光与信号光在光纤耦合器里形成干涉信号,被光电探测器134接收,并在进行光电转换后输出至音频输出机构14。
上述光纤迈克尔逊干涉机构13中,传感光纤131可以部分或全部复用所述分布式光纤周界安防系统中原有的传输光纤,例如原先用于感测及传输入侵震动信号的传输光纤,从而无需增设新的传感光纤131或避免增设过多的传感光纤131,以降低系统的实现成本。而且,所述传感光纤131可以呈网状或螺旋状布设,一方面,可以更加均匀的获取上述干涉信号,另一方面,更长的传感光纤131可以增加系统的感测灵敏度。此外,上述尾端设备133优选为法拉第旋转镜,例如,在参考臂以及感测臂的末端加上45度的法拉第旋转镜,从而使参考臂以及感测臂的光信号来回旋转90度,消除偏振态的随机变化对干涉信号强度的影响。
基于上述光纤迈克尔逊干涉机构13,本示例性实施例中,所述音频输出机构14可以根据所述干涉信号光强而还原出所述声音信号。举例而言:
光纤迈克尔逊干涉机构13输出的干涉信号光强为:
Figure PCTCN2016095649-appb-000007
其中,I1、I2分别为所述参考臂和感测臂中光信号的光强且
Figure PCTCN2016095649-appb-000008
为两者相位差。根据光纤应变理论,忽略温度变化对光纤的影响,相位差为:
Figure PCTCN2016095649-appb-000009
其中,n为所述传感光纤131的有效折射率,λ为所述输入光信号入射波长,P12、P11为普克尔(Pockel)常数,ν为泊松比,ε3为所述感测臂轴向长度变化率,ε3=ΔL/L,L为震动长度,ΔL是轴向形变。
根据声学振动原理,可认为声场中传感光纤131的感测臂轴向长度变化率ε3与声压大小近似成正比关系:
ε3=k·p        (3)
其中,k为所述传感光纤131固有参数,p为所述声音信号作用于所述感测臂的所述 声压。
由上述公式(1)(2)(3)可见,光纤迈克尔逊干涉机构13输出的干涉信号的光强与外界声压成正比,因此可以根据上述公式(1)(2)(3),通过光纤迈克尔逊干涉机构13输出的干涉信号直接还原出现场声音信号。
参考图3中所示,本示例性实施例中,所述音频输出机构14可以包括一处理单元141、一控制单元142以及一选通单元143。其中,该处理单元141用于根据任一防区的所述干涉信号而还原出该防区的声音信号。该控制单元142用于在接收到任一所述防区发出的警报信号后,输出一控制信号,所述控制信号至少包括发出警报信号的防区的信息。该选通单元143与所述控制单元142及处理单元141连接,用于在接收到所述控制信号后,根据所述控制信号输出所述发出警报信号的防区的声音信号。此外,本示例性实施例中,所述音频输出机构14还可以包括解调单元144;解调单元144用于对所述声音信号进行解调以播放以及存储所述声音信号对应的声音。当然,本领域技术人员容易理解的是,在本公开的其他示例性实施例中,也可以是处理单元141在接收到某一防区的警报信号后,再开始从该防区的干涉信号还原出该防区的声音信号,进而输出至控制单元142,并不以本示例性实施例中的实现方式为限。
举例而言,本示例性实施例中,处理单元141可以为一信号处理电路,选通单元143可以为一单片机选通电路,控制单元142可以为一工控机。8个防区的干涉信号分别经光电探测器134进行光电转换后进入信号处理电路,通过信号处理电路进行滤波整形等处理后解调出声音信号并输出8路声音信号至单片机选通电路。当接收到某一所述防区发出的警报信号后(警报信号亦可由工控机本身生成),工控机将至少包括该防区的信息的控制信号发送给单片机选通电路,单片机选通电路将该防区的声音信号选通后再输入至工控机。解调单元144可以为安装在所述工控机上的解调软件,该防区的声音信号输入至工控机后,通过该解调软件进行解调,以实现声音的播放和存储。此外,用户还可以通过解调软件对声音的播放时间、存储时间等参数进行设置。
上述音频输出机构中,处理单元、选通单元以及控制单元虽以特定硬件为例进行说明,但其也可以通过软件或其他类型的硬件实现;同样的,解调单元也可以通过硬件等其他方式实现;此外,上述处理单元、选通单元、控制单元以及解调单元中的任意组合可以集成于一个功能模块或组件,本示例性实施例中对此均不作特殊限定。
本示例性实施例中还提供了一种分布式光纤周界安防系统。该分布式光纤周界安防系统主要包括一入侵感测系统以及一上述任意一种声音还原系统,此外,还可以包括警报单元等其他部分。入侵感测系统用于采集多个防区的入侵震动信号,从而供警报单元根据所述入侵震动信号判断各防区是否出现入侵行为等异常事件,警报单元可以为上述的工控机,当警报单元感测到某一防区出现异常事件时,发出该防区的警报信号。上述声音还原系统在接收到该防区的警报信号时,输出根据该防区的干涉信号而还原出的声音信号。因此,通过本示例性实施例中的分布式光纤周界安防系统,当某一防区出现入侵事件时,用 户可以相应的听到该防区现场的实时声音,而且,由于此声音信号还原度较高,因此用户可以对现场情况进行进一步的确认判断。
此外,本示例性实施例中还提供了对应上述任意一种声音还原系统的声音还原方法。参考图4中所示,该声音还原方法可以包括:
步骤S1.提供一激光信号。
步骤S2.将所述激光信号分为多路输入光信号。
步骤S3.提供多个光纤迈克尔逊干涉机构并对应设于各所述防区,每一所述光纤迈克尔逊干涉机构接收一所述输入光信号并响应周边声压而输出一干涉信号。
步骤S4.接收各所述干涉信号,并在接收到任一所述防区的警报信号时,输出根据该防区的干涉信号而还原出的声音信号。
由于本示例性实施例中分布式光纤周界安防系统以及声音还原方法的实施方式以及更多细节已经在上述声音还原系统中进行了详细的说明,因此在此不再赘述。
综上所述,本示例性实施例中,通过获取根据各防区的声音信号的声压所产生的干涉信号,并在接收到任一防区的警报信号时,输出根据该防区的干涉信号而还原出的声音信号,从而可以帮助用户对是否发生入侵行为等异常事件进行进一步的确认判断,大大提高了用户对异常事件的辨别能力,进而可以及时掌握异常状况和异常形势,并降低误报;而且,该声音还原系统仅在接收到警报信号后才输出对应的声音信号,一方面避免对用户造成判断上的干扰,另一方面节省了系统资源。进一步的,本示例性实施例中通过构建光纤迈克尔逊干涉机构以及提供干涉信号还原算法,可以提高所还原的声音信号的准确度,帮助用户进行更精准的判断。此外,本示例性实施例中光纤迈克尔逊干涉机构中的传感光纤可以复用分布式光纤周界安防系统中原有的光纤,因此实现成本也可以得到有效的降低,具有很高的实用性。
本公开已由上述相关实施例加以描述,然而上述实施例仅为实施本公开的范例。必需指出的是,已揭露的实施例并未限制本公开的范围。相反地,在不脱离本公开的精神和范围内所作的更动与润饰,均属本公开的专利保护范围。

Claims (15)

  1. 一种声音还原系统,应用于对多个防区进行监控的一分布式光纤周界安防系统;其特征在于,所述声音还原系统包括:
    一激光发生机构,用于提供一激光信号;
    一分光机构,用于将所述激光信号分为多路输入光信号;
    多个光纤迈克尔逊干涉机构,对应设于各所述防区;每一所述光纤迈克尔逊干涉机构接收一所述输入光信号并响应周边声压输出一干涉信号;
    一音频输出机构,接收各所述干涉信号,并在接收到任一所述防区的警报信号时,输出根据该防区的干涉信号而还原出的声音信号。
  2. 根据权利要求1所述的声音还原系统,其特征在于,所述音频输出机构根据所述干涉信号光强而还原出所述声音信号。
  3. 根据权利要求1所述的声音还原系统,其特征在于,所述光纤迈克尔逊干涉机构包括:
    一传感光纤,具有参考臂以及感测臂;
    一前端设备,用于接收所述输入光信号,并自所述传感光纤第一端将所述输入光信号输入至所述参考臂和感测臂;
    一尾端设备,用于自所述传感光纤第二端将所述输入光信号反馈至所述传感光纤第一端以形成一干涉信号;
    一光电探测器,设于所述传感光纤第一端,以接收并输出所述干涉信号。
  4. 根据权利要求3所述的声音还原系统,其特征在于,所述音频输出机构根据下述方程而还原出所述声音信号:
    Figure PCTCN2016095649-appb-100001
    Figure PCTCN2016095649-appb-100002
    ε3=k·p               (3)
    其中,I为所述干涉信号光强,I1、I2分别为所述参考臂和感测臂中光信号的光强且
    Figure PCTCN2016095649-appb-100003
    为两者相位差,n为所述传感光纤的有效折射率,λ为所述输入光信号入射波长,P12、P11为普克尔常数,v为泊松比,ε3为所述感测臂轴向长度变化率,L为震动长度,k为所述传感光纤固有参数,p为所述声音信号作用于所述感测臂的所述声压。
  5. 根据权利要求3所述的声音还原系统,其特征在于,所述前端设备包括光纤耦合器。
  6. 根据权利要求3所述的声音还原系统,其特征在于,所述尾端设备包括法拉第旋转镜或反射镜。
  7. 根据权利要求3所述的声音还原系统,其特征在于,所述传感光纤至少部分复用所述分布式光纤周界安防系统中用于入侵感测的光纤。
  8. 根据权利要求3所述的声音还原系统,其特征在于,所述传感光纤呈网状、螺旋状或者直线状布设。
  9. 根据权利要求1-8任意一项所述的声音还原系统,其特征在于,所述音频输出机构包括:
    一处理单元,用于根据任一防区的所述干涉信号而还原出该防区的声音信号;
    一控制单元,用于在接收到任一所述防区发出的警报信号后,输出一控制信号,所述控制信号至少包括发出警报信号的防区的信息;
    一选通单元,与所述控制单元及处理单元连接,用于在接收到所述控制信号后,根据所述控制信号输出所述发出警报信号的防区的声音信号。
  10. 根据权利要求9所述的声音还原系统,其特征在于,所述音频输出机构还包括:
    一解调单元,用于对所述声音信号进行解调以播放和/或存储所述声音信号对应的声音。
  11. 一种分布式光纤周界安防系统,其特征在于,包括:
    一入侵感测系统,用于采集多个防区的入侵震动信号;
    一警报单元,用于在根据所述入侵震动信号判断任一防区出现异常事件时,发出该防区的一警报信号;
    一根据权利要求1-10任意一项所述的声音还原系统,用于在接收到该防区的警报信号时,输出根据该防区的干涉信号而还原出的声音信号。
  12. 根据权利要求11所述的分布式光纤周界安防系统,其特征在于,所述入侵感测系统包括用于感测及传输所述入侵震动信号的光纤,其中,所述光纤迈克尔逊干涉机构的传感光纤至少部分复用该光纤。
  13. 一种声音还原方法,应用于对多个防区进行监控的一分布式光纤周界安防系统;其特征在于,所述声音还原方法包括:
    提供一激光信号;
    将所述激光信号分为多路输入光信号;
    提供多个光纤迈克尔逊干涉机构并对应设于各所述防区,每一所述光纤迈克尔逊干涉机构接收一所述输入光信号并响应周边声压而输出一干涉信号;
    接收各所述干涉信号,并在接收到任一所述防区的警报信号时,输出根据该防区的干涉信号而还原出的声音信号。
  14. 根据权利要求13所述的声音还原方法,其特征在于,其中,根据所述干涉信号光强而还原出所述声音信号。
  15. 根据权利要求13所述的声音还原方法,其特征在于,其中,根据下述方程而 还原出所述声音信号:
    Figure PCTCN2016095649-appb-100004
    Figure PCTCN2016095649-appb-100005
    ε3=k·p                    (3)
    其中,I为所述干涉信号光强,所述光纤迈克尔逊干涉机构包括传感光纤,所述传感光纤具有参考臂以及感测臂,I1、I2分别为所述参考臂和感测臂中光信号的光强且
    Figure PCTCN2016095649-appb-100006
    为两者相位差,n为所述传感光纤的有效折射率,λ为所述输入光信号入射波长,P12、P11为普克尔常数,v为泊松比,ε3为所述感测臂轴向长度变化率,L为震动长度,k为所述传感光纤固有参数,p为所述声音信号作用于所述感测臂的所述声压。
PCT/CN2016/095649 2015-09-02 2016-08-17 分布式光纤周界安防系统、声音还原系统及方法 WO2017036304A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MX2017015391A MX2017015391A (es) 2015-09-02 2016-08-17 Sistema de seguridad perimetral de fibra optica distribuido y sistema y metodo de restauracion del sonido.
EA201792295A EA036635B1 (ru) 2015-09-02 2016-08-17 Распределенная оптоволоконная система обеспечения безопасности периметра, система и способ восстановления звука
BR112017024077-7A BR112017024077B1 (pt) 2015-09-02 2016-08-17 Sistema de segurança perimetral de fibra óptica distribuída, e sistema e método de restauração de som
EP16840733.6A EP3321901B1 (en) 2015-09-02 2016-08-17 Distributed optical fiber perimeter security system, and sound restoration system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510557454.3A CN105096490B (zh) 2015-09-02 2015-09-02 分布式光纤周界安防系统、声音还原系统及方法
CN201510557454.3 2015-09-02

Publications (1)

Publication Number Publication Date
WO2017036304A1 true WO2017036304A1 (zh) 2017-03-09

Family

ID=54576813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/095649 WO2017036304A1 (zh) 2015-09-02 2016-08-17 分布式光纤周界安防系统、声音还原系统及方法

Country Status (6)

Country Link
EP (1) EP3321901B1 (zh)
CN (1) CN105096490B (zh)
BR (1) BR112017024077B1 (zh)
EA (1) EA036635B1 (zh)
MX (1) MX2017015391A (zh)
WO (1) WO2017036304A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109360359A (zh) * 2018-11-22 2019-02-19 桂林聚联科技有限公司 一种辅助振动围栏抗天气干扰的装置及方法
CN112578190A (zh) * 2020-11-25 2021-03-30 中国科学院上海光学精密机械研究所 Fast分布式光纤全域监测系统
CN113348352A (zh) * 2019-02-12 2021-09-03 日本电信电话株式会社 架空光缆检查方法、架空光缆检查装置以及程序
CN113507316A (zh) * 2021-06-22 2021-10-15 武汉凹伟能源科技有限公司 单纤双向无源光纤音频传输系统及光纤传输网络

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105096490B (zh) * 2015-09-02 2020-12-25 同方威视技术股份有限公司 分布式光纤周界安防系统、声音还原系统及方法
CN105551163B (zh) * 2016-02-29 2018-05-08 刘海 一种光纤智能防盗装置
CN105931402B (zh) * 2016-06-27 2018-06-05 上海波汇科技股份有限公司 基于图像识别的光纤周界入侵监测方法
SG10202104872UA (en) 2016-11-10 2021-06-29 Fiber Sense Pty Ltd Acoustic method and system for providing digital data
CN108426630B (zh) * 2017-12-14 2020-11-10 北京遥测技术研究所 一种双迈克尔逊干涉式测声传感器
CN109272688A (zh) * 2018-09-25 2019-01-25 武汉理工光科股份有限公司 光纤光栅周界安防系统报警策略自动调整方法及系统
CN109523729A (zh) * 2018-10-31 2019-03-26 天津大学 基于全建模的光纤周界安防入侵事件识别方法及识别器
CN109974836A (zh) * 2019-04-09 2019-07-05 苏州珈全智能科技有限公司 一种提高φ-OTDR频率响应的装置及方法
US11796382B2 (en) * 2019-11-21 2023-10-24 Baker Hughes Oilfield Operations Llc Drift correction in a fiber optic distributed acoustic sensing system
CN111341049B (zh) * 2020-03-31 2021-04-20 华中科技大学 一种隧道异物入侵识别与定位方法及装置
CN112556824A (zh) * 2020-12-22 2021-03-26 北京航天控制仪器研究所 一种发动机用超高声压噪声测试光纤传声器系统
TWI820724B (zh) * 2022-05-24 2023-11-01 中華電信股份有限公司 光纖圍籬偵測系統以及入侵偵測方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101969344A (zh) * 2010-10-15 2011-02-09 复旦大学 基于光纤光弹效应的大区域声音监听系统
JP2011214921A (ja) * 2010-03-31 2011-10-27 Oki Electric Industry Co Ltd 干渉型光ファイバーセンサーシステムおよび演算器
CN103208161A (zh) * 2013-03-19 2013-07-17 石家庄供电公司 有源探测型光纤光栅电缆隧道安防监控系统
CN103595489A (zh) * 2013-11-08 2014-02-19 苏州桑泰海洋仪器研发有限责任公司 一种基于光纤传感技术的水下对讲系统
CN105096490A (zh) * 2015-09-02 2015-11-25 同方威视技术股份有限公司 分布式光纤周界安防系统、声音还原系统及方法
CN205003805U (zh) * 2015-09-02 2016-01-27 同方威视技术股份有限公司 分布式光纤周界安防系统及声音还原系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000037925A1 (en) * 1998-12-18 2000-06-29 Future Fibre Technologies Pty Ltd Apparatus and method for monitoring a structure using a counter-propagating signal method for locating events
WO2003014774A2 (en) * 2001-08-10 2003-02-20 The Board Of Trustees Of The Leland Stanford Junior University Amplified tree structure technology for fiber optic sensor arrays
CA2467898A1 (en) * 2004-05-21 2005-11-21 Pure Technologies Ltd. Fiber optic sensor method and apparatus
JP2008139170A (ja) * 2006-12-01 2008-06-19 Fuji Heavy Ind Ltd 衝撃探知システム
GB2445364B (en) * 2006-12-29 2010-02-17 Schlumberger Holdings Fault-tolerant distributed fiber optic intrusion detection
CN101452626A (zh) * 2007-11-30 2009-06-10 石家庄紫藤惠尔科技有限公司 一种现场监听无线防盗报警装置
CN201191221Y (zh) * 2008-05-09 2009-02-04 东南大学 分布式光纤振动传感系统扰动信号判别模块
CN101901531B (zh) * 2009-05-31 2012-12-12 中国石油天然气管道局 一种基于光纤干涉仪的区域防入侵方法
CN101608946B (zh) * 2009-06-23 2011-05-25 中国人民解放军海军工程大学 光纤激光水听器信号解调系统
KR101522318B1 (ko) * 2010-10-14 2015-05-27 파이버소닉스 인크. 간섭계 시스템
CA2780396A1 (en) * 2012-06-13 2013-12-13 Robert Keith Harman Fiber optic interferometric perimeter security apparatus and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214921A (ja) * 2010-03-31 2011-10-27 Oki Electric Industry Co Ltd 干渉型光ファイバーセンサーシステムおよび演算器
CN101969344A (zh) * 2010-10-15 2011-02-09 复旦大学 基于光纤光弹效应的大区域声音监听系统
CN103208161A (zh) * 2013-03-19 2013-07-17 石家庄供电公司 有源探测型光纤光栅电缆隧道安防监控系统
CN103595489A (zh) * 2013-11-08 2014-02-19 苏州桑泰海洋仪器研发有限责任公司 一种基于光纤传感技术的水下对讲系统
CN105096490A (zh) * 2015-09-02 2015-11-25 同方威视技术股份有限公司 分布式光纤周界安防系统、声音还原系统及方法
CN205003805U (zh) * 2015-09-02 2016-01-27 同方威视技术股份有限公司 分布式光纤周界安防系统及声音还原系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3321901A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109360359A (zh) * 2018-11-22 2019-02-19 桂林聚联科技有限公司 一种辅助振动围栏抗天气干扰的装置及方法
CN113348352A (zh) * 2019-02-12 2021-09-03 日本电信电话株式会社 架空光缆检查方法、架空光缆检查装置以及程序
CN113348352B (zh) * 2019-02-12 2024-03-19 日本电信电话株式会社 架空光缆检查方法、架空光缆检查装置以及程序
CN112578190A (zh) * 2020-11-25 2021-03-30 中国科学院上海光学精密机械研究所 Fast分布式光纤全域监测系统
CN112578190B (zh) * 2020-11-25 2023-03-14 中国科学院上海光学精密机械研究所 Fast分布式光纤全域监测系统
CN113507316A (zh) * 2021-06-22 2021-10-15 武汉凹伟能源科技有限公司 单纤双向无源光纤音频传输系统及光纤传输网络
CN113507316B (zh) * 2021-06-22 2023-04-18 武汉凹伟能源科技有限公司 单纤双向无源光纤音频传输系统及光纤传输网络

Also Published As

Publication number Publication date
MX2017015391A (es) 2018-03-01
EA036635B1 (ru) 2020-12-02
CN105096490B (zh) 2020-12-25
EP3321901A1 (en) 2018-05-16
BR112017024077B1 (pt) 2022-08-23
EP3321901B1 (en) 2020-03-25
EP3321901A4 (en) 2019-02-27
EA201792295A1 (ru) 2018-04-30
BR112017024077A2 (zh) 2018-07-24
CN105096490A (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
WO2017036304A1 (zh) 分布式光纤周界安防系统、声音还原系统及方法
CN100561144C (zh) 分布式光纤振动传感方法及装置
CN104977233B (zh) 水工结构物及其基础渗流状况分布式光纤辨识系统与方法
CN101968161B (zh) 基于分布式光纤偏振传感器的智能管道自动预警系统
CN102737462A (zh) 光纤分布式扰动与视频联动长距离周界安全监控系统
CN102034327A (zh) 一种多防区定位型光纤振动入侵探测系统
WO2019015454A1 (zh) 一种地埋电缆防误开挖预警装置
US11378423B2 (en) Long-distance optical cable physical safety monitoring system
CN103208161A (zh) 有源探测型光纤光栅电缆隧道安防监控系统
CN101969344B (zh) 基于光纤光弹效应的大区域声音监听系统
CN103780883A (zh) 一种可与视频联动的全光纤周界安全监控设备
CN103542925A (zh) 一种准分布式光纤振动传感装置
CN104296783A (zh) 增强型相干光时域反射的传感检测方法及装置
CN112525238A (zh) 一种利用马赫曾德干涉仪滤波特性的分布式光纤传感系统
CN106153089A (zh) 一种分布式光纤传感系统
CN204789261U (zh) 水工结构物及其基础渗流状况分布式光纤辨识系统
CN205003805U (zh) 分布式光纤周界安防系统及声音还原系统
JP2019039881A (ja) 振動検知光ファイバセンサ及び振動検知方法
CN101956567A (zh) 一种本质安全的全光纤井下监测系统
CN101937602A (zh) 多场地光纤振动入侵监测装置
CN105825606A (zh) 一种周界安防系统
CN103777250A (zh) 一种新型全光纤周界安防系统
Sun et al. High capacity fiber optic sensor networks using hybrid multiplexing techniques and their applications
Zyczkowski et al. Simple fiber optic sensor for applications in security systems
CN111508173A (zh) 一种高压电缆通道防破坏预警系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16840733

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 201792295

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/015391

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017024077

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017024077

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171109