CN113348352B - 架空光缆检查方法、架空光缆检查装置以及程序 - Google Patents

架空光缆检查方法、架空光缆检查装置以及程序 Download PDF

Info

Publication number
CN113348352B
CN113348352B CN202080010119.0A CN202080010119A CN113348352B CN 113348352 B CN113348352 B CN 113348352B CN 202080010119 A CN202080010119 A CN 202080010119A CN 113348352 B CN113348352 B CN 113348352B
Authority
CN
China
Prior art keywords
cable
aerial
section
standard deviation
optical cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202080010119.0A
Other languages
English (en)
Other versions
CN113348352A (zh
Inventor
冈本达也
饭田大辅
押田博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Publication of CN113348352A publication Critical patent/CN113348352A/zh
Application granted granted Critical
Publication of CN113348352B publication Critical patent/CN113348352B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/08Testing mechanical properties
    • G01M11/088Testing mechanical properties of optical fibres; Mechanical features associated with the optical testing of optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35358Sensor working in reflection using backscattering to detect the measured quantity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3109Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3172Reflectometers detecting the back-scattered light in the frequency-domain, e.g. OFDR, FMCW, heterodyne detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Optical Communication System (AREA)

Abstract

本发明的目的是提供能够根据振动的感测结果来确定线缆松弛区间的架空光缆检查方法、架空光缆检查装置以及程序。本发明涉及的架空光缆检查方法,输入使用光纤振动感测装置来测定的、架空光缆的沿长度方向的振动分布波形,并算出该振动分布波形的各位置处的振幅的标准偏差,将该标准偏差和其他区间相比较大的区间确定为线缆松弛区间。

Description

架空光缆检查方法、架空光缆检查装置以及程序
技术领域
本公开涉及通过从通信大楼进行光试验而确定架空光缆的松弛区间的技术。
背景技术
为了防止通信服务中断,光通信运营商对通信设备的健全性进行检查。作为检查项目之一,可列举架空线缆有无松弛。目前,线缆有无松弛的检查作业通过作业员在赶赴现场以目视进行。为了使该检查作业高效化,进行了非专利文献1(以下称为现有技术1)记载的研究。在非专利文献1中,报告了从通信大楼对被储存在线缆的光纤进行光试验,通过测定施加于光纤的外部干扰引起的振动,从远距离处判断线缆有无松弛的概念。
现有技术文献
非专利文献
非专利文献1:野引敦,“光传输介质技术的研发动向,”NTT技术期刊,pp.48-52,2018.
非专利文献2:Y.Achkire,“Active tendon control of cable-stayed briges,”Ph.D.dissertation,Active Structures Laboratory,Universite Libre de Bruxelles,Belguim,1997.
发明内容
发明所要解决的课题
然而,在现有技术1中,作为静态现象的线缆松弛和作为动态现象的振动的关系还不清楚,并且还没有确立根据振动的感测结果来确定作为静态现象的线缆松弛区间的具体方式。
因此,本发明的目的是提供未确立的、能够根据振动的感测结果来确定线缆松弛区间的架空光缆检查方法、架空光缆检查装置以及程序。
用于解决课题的手段
为了实现上述目的,本发明涉及的架空光缆检查方法,设置为根据振动的感测结果获取线缆的沿长度方向的振动分布,基于振动分布的各点的振幅的标准偏差确定线缆松弛区间。
具体地,本发明涉及的架空光缆检查方法,其特征在于,进行:
获取工序,获取架空光缆的沿长度方向的振动分布;
计算工序,算出所述振动分布的各位置处的振幅的标准偏差;
解析工序,基于所述标准偏差来确定所述架空光缆松弛的线缆松弛区间。
此外,本发明涉及的架空光缆检查装置,包括:
计算电路,输入架空光缆的沿长度方向的振动分布,并算出所述振动分布的各位置处的振幅的标准偏差;和
解析电路,基于所述标准偏差确定所述架空光缆松弛的线缆松弛区间。
在振动分布中,在各点的振动的平均值的波形中没有发现由有无松弛引起的差异,但是在标准偏差的波形中发现差异,因此能够确定松弛区间。因此,本发明能够提供可根据振动的感测结果来确定线缆松弛区间的架空光缆检查方法以及架空光缆检查装置。
具体的判断基准如下所示。
(1)在所述解析工序中,其特征在于,将所述标准偏差大于将所述架空光缆的沿长度方向的各位置的所述标准偏差进行平均化的值的区间设为线缆松弛区间。
(2)在所述解析工序中,其特征在于,在所述架空光缆的沿长度方向的任意区间,在被包含在所述任意区间的各位置的所述标准偏差的方差比预设的阈值大的情况下,将所述任意区间设为所述线缆松弛区间。
(3)在所述解析工序中,其特征在于,将所述标准偏差大于预设的阈值的区间设为所述线缆松弛区间。
此外,本发明是用于使计算机作为所述架空光缆检查装置而起作用的程序。本发明涉及的架空光缆检查装置,也能够通过计算机和程序实现,也可以将程序存储在存储介质,或者通过网络提供。
另外,上述各发明可以尽可能地进行组合。
发明效果
本发明能够提供可根据振动的感测结果来确定线缆松弛区间的架空光缆检查方法、架空光缆检查装置以及程序。
附图说明
图1是说明本发明的架空光缆检查方法的图。
图2是说明本发明的架空光缆检查方法的原理的图。
图3是说明由本发明的架空光缆检查方法带来的检查结果的图。
图4是说明本发明的架空光缆检查方法的流程图。
图5是说明本发明的架空光缆检查装置的图。
具体实施方式
参照附图对本发明的实施方式进行说明。以下说明的实施方式是本发明的实施例,本发明并不限于以下的实施方式。此外,在本说明书以及附图中符号相同的技术特征表示彼此相同的技术特征。
图1表示本发明的光缆振动感测所实现的确定线缆松弛区间的实施例。在此,1是光纤振动感测装置,2是光缆,3是容纳在光缆中的光纤。表示通过图1的结构能够确定架空线缆的松弛区间。
架空线缆相对于外力的变形在非专利文献2中被讨论,被记载在(1)-(2)式(分别是p.13以及p.11)。对使用了图2(A)和图2(B)的模型的情况的(1)-(2)式进行说明。由于受到外力,架空线缆的微小区间从平衡状态位移。将朝x方向的位移量设为u,朝y方向的位移量设为v,朝z方向的位移量设为w。如果假设高阶的微分项带来的对变形的贡献较小,则线缆长度方向的变形ε不依赖于位移量v,而由下式给出。
[数1]
在此,ws表示线缆相对于位置x的松弛度。另外,松弛度ws由下式给出。
[数2]
ws(x)=4d·[-(x/l)2+x/l],(0≤x≤l) (2)
在此,d表示松弛度的最大值。如果将(2)式代入(1)式则得到下式。
[数3]
ε=εu+4d·(-2x/l2+1/l)·εw (3)
[数4]
εu和εw分别表示从平衡状态朝x方向和z方向的位移所引起的变形量。
如果考虑来自自然环境的外部干扰,则εu和εw分别独立。此外,由于εu和εw表示相对于平衡状态的变形量,因此其时间平均是零。因此,以(3)式给出的变形的平均值με和标准偏差σε成为下式。
[数5]
με=0 (5)
[数6]
在此,和/>分别表示εu和εw的方差值。
平均值不依赖于松弛度d,而标准偏差依赖于松弛度d,通过计算作为动态现象的振动的方差值,能够确定线缆松弛区间。标准偏差也依赖于εu和εw,但风等的外部干扰随线缆跨度而变化的情况很少,可以将εu和εw视为大致恒定。因此,施加于线缆的变形ε的标准偏差σε依存于松弛度d,通过对随着线缆跨度的变形,即振动的标准偏差进行比较,能够确定线缆松弛区间。
图5是图1所示的光纤振动感测装置1的功能框图。光纤振动感测装置1包括光纤反射测量部11、数据存储部12以及标准偏差解析部13。光纤反射测量部11接收射入到测量对象的光缆的试验光的后方散射光,获得架空光缆的沿长度方向的振动分布。光纤反射测量部11例如是OTDR(Optical Time Domain Reflectometer)。数据存储部12存储该振动分布。
标准偏差解析部13相当于本发明的架空光缆检查装置。标准偏差解析部13包括计算电路13a和解析电路13b,
计算电路13a通过数据存储部12输入架空光缆的沿长度方向的振动分布、并算出所述振动分布的各位置处的振幅的标准偏差,
解析电路13b基于所述标准偏差来确定所述架空光缆松弛的线缆松弛区间。
图4是说明光纤振动感测装置1所进行的架空光缆检查方法的图。即,光纤振动感测装置1进行以下工序:在光纤反射测量部11获取架空光缆的沿长度方向的振动分布的获取工序S01,在标准偏差解析部13算出所述振动分布的各位置处的振幅的标准偏差的计算工序S02,和基于所述标准偏差来确定所述架空光缆松弛的线缆松弛区间的解析工序S03。
即,在获取工序S01进行光纤振动感测。在计算工序S02,针对光缆长度方向的各区间的振动波形,算出其振幅的标准偏差。在解析工序S03中,将振幅的标准偏差比其他区间的标准偏差大的区间确定为线缆松弛区间。
图3是说明在光纤反射测量部11测定的架空线缆的振动分布(A),和在标准偏差解析部13的计算电路13a根据振动分布算出的平均值(B)以及标准偏差(C)的图。在振动的平均值的波形中没有发现由有无松弛引起的差异,但是在标准偏差的波形中发现差异,因此能够确定松弛区间。
在此,说明解析电路13b所进行的确定具体的松弛区间的方法。
(确定方法1)对各点的振动的标准偏差进行平均化,将比其平均值大之处设为松弛区间。即,在解析工序S03中,将所述标准偏差大于将所述架空光缆的沿长度方向的各位置的所述标准偏差进行平均化的值的区间设为所述线缆松弛区间。
(确定方法2)将各点的振动的标准偏差的波动较大之处设为松弛区间。即,在解析工序S03中,在所述架空光缆的沿长度方向的任意区间,在被包含在所述任意区间的各位置的所述标准偏差的方差大于预设的阈值的情况下,将所述任意区间设为所述线缆松弛区间。例如,在图3的情况下,由于距离为1962~2035m的区间与距离为2035~2100m的区间相比标准偏差的波动较大,因此将该区间设为松弛区间。
(确定方法3)对标准偏差设置阈值,将比阈值大的标准偏差之处设为松弛区间。即,在解析工序S03中,将所述标准偏差大于预设的阈值的区间设为所述线缆松弛区间。
(发明的效果)
本发明的架空光缆松弛区间的确定方法,相对于现有技术1具有以下的优势。在现有技术1中,线缆松弛和光纤振动感测结果的关系并未明确,用于确定线缆松弛而测定的物理量不清楚。在本发明中,通过用线缆松弛使光纤的振动的标准偏差增加,能够确定线缆松弛区间。
符号说明
1:光纤振动感测装置
2:光缆
3:光纤
11:光纤反射测量部
12:数据存储部
13:标准偏差解析部
13a:计算电路
13b:解析电路

Claims (3)

1.架空光缆检查方法,其特征在于,进行:
获取工序,用光纤反射测量器接收入射到测量对象架空光缆的试验光的后方散射光,获取来自自然环境的外部干扰引起的振动在所述架空光缆的沿长度方向的振动分布;
计算工序,算出用数学式C1表示的、所述振动分布的各位置处的振幅的标准偏差;和,
解析工序,基于所述标准偏差来确定所述架空光缆松弛的线缆松弛区间;
在所述解析工序中,
将所述标准偏差大于将所述架空光缆的沿长度方向的各位置的所述标准偏差进行平均化的值的区间设为所述线缆松弛区间,或者,
在所述架空光缆的沿长度方向的任意区间,在被包含在所述任意区间的各位置的所述标准偏差的方差大于预设的阈值的情况下,将所述任意区间设为所述线缆松弛区间,或者,
将所述标准偏差大于预设的阈值的区间设为所述线缆松弛区间;
【数学式C1】
其中,x表示所述架空光缆的长度方向的位置,d表示所述架空光缆的松弛度的最大值,l表示架设所述架空光缆的杆间距离,和/>分别为/>和/>的方差值,/>和/>分别表示位置x处从平衡状态朝x方向和与地面垂直的z方向的位移所引起的变形量。
2.架空光缆检查装置,其特征在于,包括:
光纤反射测量部,接收入射到测量对象架空光缆的试验光的后方散射光,获取来自自然环境的外部干扰引起的振动在所述架空光缆的沿长度方向的振动分布;
计算电路,输入所述振动分布,并算出用数学式C1表示的、所述振动分布的各位置处的振辐的标准偏差;和
解析电路,基于所述标准偏差确定所述架空光缆松弛的线缆松弛区间;
在所述解析电路中,
将所述标准偏差大于将所述架空光缆的沿长度方向的各位置的所述标准偏差进行平均化的值的区间设为所述线缆松弛区间,或者,
在所述架空光缆的沿长度方向的任意区间,在被包含在所述任意区间的各位置的所述标准偏差的方差大于预设的阈值的情况下,将所述任意区间设为所述线缆松弛区间,或者,
将所述标准偏差大于预设的阈值的区间设为所述线缆松弛区间;
【数学式C1】
其中,x表示所述架空光缆的长度方向的位置,d表示所述架空光缆的松弛度的最大值,l表示架设所述架空光缆的杆间距离,和/>分别为/>和/>的方差值,/>和/>分别表示位置x处从平衡状态朝x方向和与地面垂直的z方向的位移所引起的变形量。
3.程序,用于使计算机作为权利要求2所述的架空光缆检查装置而起作用。
CN202080010119.0A 2019-02-12 2020-01-29 架空光缆检查方法、架空光缆检查装置以及程序 Active CN113348352B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019022951A JP7211134B2 (ja) 2019-02-12 2019-02-12 架空光ファイバケーブル検査方法、架空光ファイバケーブル検査装置及びプログラム
JP2019-022951 2019-02-12
PCT/JP2020/003106 WO2020166330A1 (ja) 2019-02-12 2020-01-29 架空光ファイバケーブル検査方法、架空光ファイバケーブル検査装置及びプログラム

Publications (2)

Publication Number Publication Date
CN113348352A CN113348352A (zh) 2021-09-03
CN113348352B true CN113348352B (zh) 2024-03-19

Family

ID=72045608

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080010119.0A Active CN113348352B (zh) 2019-02-12 2020-01-29 架空光缆检查方法、架空光缆检查装置以及程序

Country Status (5)

Country Link
US (1) US20220107218A1 (zh)
EP (1) EP3926320B1 (zh)
JP (1) JP7211134B2 (zh)
CN (1) CN113348352B (zh)
WO (1) WO2020166330A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210318166A1 (en) * 2020-04-14 2021-10-14 Nec Laboratories America, Inc. Continuous aerial cable monitoring using distributed acoustic sensing (das) and operational modal analysis (oma)
US20240118126A1 (en) 2021-02-17 2024-04-11 Nippon Telegraph And Telephone Corporation Positioning method of electric pole and estimating method of the state of overhead optical fiber cable
EP4325192A1 (en) * 2021-04-14 2024-02-21 Nippon Telegraph And Telephone Corporation Cable test system, analysis device, cable test method, and program
WO2024075153A1 (ja) * 2022-10-03 2024-04-11 日本電信電話株式会社 杭位置変化検知システム及び杭位置変化検知方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221684A (ja) * 2000-02-08 2001-08-17 Fujikura Ltd 光ファイバケーブルを用いた振動検出判定方法及び振動検出判定装置並びに振動検出判定システム
JP2011109743A (ja) * 2009-11-13 2011-06-02 Railway Technical Res Inst パンタグラフの摺り板の段付摩耗検知方法及び装置
JP2011244663A (ja) * 2010-05-21 2011-12-01 Railway Technical Research Institute パンタグラフの摺り板の局所的凹部検知方法及び装置
JP2012008645A (ja) * 2010-06-22 2012-01-12 Nippon Telegr & Teleph Corp <Ntt> ケーブル弛み検知装置、ケーブル弛み検知方法およびケーブル弛み検知プログラム
CN103925984A (zh) * 2013-11-05 2014-07-16 国家电网公司 光纤振动传感器及应用其的输电线路微风振动监测系统
JP2017035973A (ja) * 2015-08-10 2017-02-16 公益財団法人鉄道総合技術研究所 架線状態診断装置
WO2017036304A1 (zh) * 2015-09-02 2017-03-09 同方威视技术股份有限公司 分布式光纤周界安防系统、声音还原系统及方法
CN108801437A (zh) * 2018-04-20 2018-11-13 南京曦光信息科技有限公司 基于扰动信号特征提取的分布式光纤振动传感定位方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7376326B2 (en) * 2006-07-20 2008-05-20 Verizon New Jersey Inc. Fiber optic cable stack measuring device
US20120250010A1 (en) * 2011-03-31 2012-10-04 Richard Charles Hannay Aerial Inspection System(s) and Method(s)
CN104125010B (zh) * 2013-04-25 2016-12-28 中国移动通信集团河北有限公司 一种光缆故障定位的方法及装置
JP6494459B2 (ja) * 2015-07-24 2019-04-03 日本電信電話株式会社 振動分布測定方法及び振動分布測定装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221684A (ja) * 2000-02-08 2001-08-17 Fujikura Ltd 光ファイバケーブルを用いた振動検出判定方法及び振動検出判定装置並びに振動検出判定システム
JP2011109743A (ja) * 2009-11-13 2011-06-02 Railway Technical Res Inst パンタグラフの摺り板の段付摩耗検知方法及び装置
JP2011244663A (ja) * 2010-05-21 2011-12-01 Railway Technical Research Institute パンタグラフの摺り板の局所的凹部検知方法及び装置
JP2012008645A (ja) * 2010-06-22 2012-01-12 Nippon Telegr & Teleph Corp <Ntt> ケーブル弛み検知装置、ケーブル弛み検知方法およびケーブル弛み検知プログラム
CN103925984A (zh) * 2013-11-05 2014-07-16 国家电网公司 光纤振动传感器及应用其的输电线路微风振动监测系统
JP2017035973A (ja) * 2015-08-10 2017-02-16 公益財団法人鉄道総合技術研究所 架線状態診断装置
WO2017036304A1 (zh) * 2015-09-02 2017-03-09 同方威视技术股份有限公司 分布式光纤周界安防系统、声音还原系统及方法
CN108801437A (zh) * 2018-04-20 2018-11-13 南京曦光信息科技有限公司 基于扰动信号特征提取的分布式光纤振动传感定位方法及装置

Also Published As

Publication number Publication date
EP3926320A1 (en) 2021-12-22
WO2020166330A1 (ja) 2020-08-20
EP3926320A4 (en) 2022-11-09
JP2020134142A (ja) 2020-08-31
CN113348352A (zh) 2021-09-03
JP7211134B2 (ja) 2023-01-24
EP3926320B1 (en) 2024-02-21
US20220107218A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
CN113348352B (zh) 架空光缆检查方法、架空光缆检查装置以及程序
CN108519175B (zh) 基于布拉格光纤光栅的可变量程的土体压力测量方法
Bernauer et al. Rotational sensors—A comparison of different sensor types
CN103278279A (zh) 一种索力测量方法与装置
Bogachkov et al. Study of bend influences of optical fibers on Brillouin reflectograms
Shan-chao et al. Study of Three‐Component FBG Vibration Sensor for Simultaneous Measurement of Vibration, Temperature, and Verticality
RU2644032C2 (ru) Способ измерения избыточной длины оптического волокна в модульной трубке оптического кабеля
CN116194740A (zh) 振动分布测量装置及其方法
Zhang et al. Real-time tension estimation in the spinning process based on the natural frequencies extraction of the Polyester Filament Yarn
Nöther et al. Distributed Brillouin Sensing for Geotechnical Infrastructure: Capabilities and Challenges.
Lenke et al. Distributed humidity sensing based on Rayleigh scattering in polymer optical fibers
CN112461146B (zh) 绝缘子形变测量方法、装置和系统
You et al. Inverse Unit Load Method for Full-Field Reconstruction of Bending Stiffness in Girder Bridges
Tasič Interdependent quality control of collocated seismometer and accelerometer
Santoso et al. Evaluation of Cable Tension Using Static and Dynamic Test on RH Fisabilillah Cable-Stayed Bridge, Batam-Indonesia
de Paz et al. Assessment of wood utility poles’ deterioration through natural frequency measurements
Steinbauer et al. Lighting pole health monitoring for predictive maintenance
Bogachkov Improved data processing algorithms in Brillouin reflectometers for determining the strain of optical fibers
CN113302852A (zh) 光纤路径搜索方法、光纤路径搜索装置和程序
Kalizhanova et al. Bridge Vibration Analysis Using Fiber-Optic Bragg Sensors with an Inclined Grid
Liehr et al. Distributed perfluorinated POF strain sensor using OTDR and OFDR techniques
He et al. Analysis on the effects of fiber end face scratches on return loss performance of optical fiber connectors
Yang et al. Noise reduction for time-domain sensing signal of Brillouin scattering based on time series analysis and Kalman filter algorithm
CN203216658U (zh) 一种索力测量装置
Nöther et al. Industry challenges on resolution, linearity and optical budget of high-accuracy distributed Brillouin sensing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant