JP2011214736A - ヒートポンプ式給湯装置、および、ヒートポンプ式給湯装置の制御方法 - Google Patents

ヒートポンプ式給湯装置、および、ヒートポンプ式給湯装置の制御方法 Download PDF

Info

Publication number
JP2011214736A
JP2011214736A JP2010080791A JP2010080791A JP2011214736A JP 2011214736 A JP2011214736 A JP 2011214736A JP 2010080791 A JP2010080791 A JP 2010080791A JP 2010080791 A JP2010080791 A JP 2010080791A JP 2011214736 A JP2011214736 A JP 2011214736A
Authority
JP
Japan
Prior art keywords
hot water
control
compressor
refrigerant
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010080791A
Other languages
English (en)
Inventor
Kazunobu Hosogai
和伸 細貝
Kiyoshi Koyama
清 小山
Sadahiro Takizawa
禎大 滝澤
Yasuhiro Kobori
康博 小堀
Takashi Ando
隆史 安藤
Hideji Hibi
秀二 日比
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2010080791A priority Critical patent/JP2011214736A/ja
Publication of JP2011214736A publication Critical patent/JP2011214736A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

【課題】運転開始時における冷媒回路の圧力の上昇を抑制できるヒートポンプ式給湯装置を提供する。
【解決手段】圧縮機2、冷媒対水熱交換器3、電動膨張弁5及び蒸発器6を順次接続して形成した冷媒回路1Aと、冷媒対水熱交換器3にて加熱された温水を貯湯する貯湯タンク4と、を備えたヒートポンプ式給湯装置1を制御して、加熱運転開始から所定時間は電動膨張弁5の開度を予め設定された開度に維持する起動時制御を行い、所定時間の経過後に、圧縮機2の吐出温度に基づいて電動膨張弁5の開度を制御する通常制御に移行する。
【選択図】図1

Description

本発明は、ヒートポンプ式給湯装置、および、ヒートポンプ式給湯装置の制御方法に関する。
従来、冷媒対水熱交換器によって湯を沸き上げてタンクに貯湯するヒートポンプ式給湯装置において、冷媒対水熱交換器からタンクに低温の湯が出湯されないように、運転開始時に冷媒温度が上昇するまで、冷媒対水熱交換器に流れる水量を抑えるものが知られている(例えば、特許文献1参照)。
特開2005−140439号公報
ところが、冷媒対水熱交換器の水量が抑えられている間は冷媒が熱交換されずに圧縮機に戻るので、圧縮機の吐出圧力が高圧になりやすい。このため、冷媒温度が上昇して冷媒対水熱交換器の水量が増えた後でも、吐出圧力が過度に上昇し、ヒートポンプ式給湯装置が停止してしまうことがあった。特に、経年変化により冷媒対水熱交換器を含む水回路にスケールが蓄積して圧力損失が増している場合は、冷媒対水熱交換器の水量を増加させるために時間がかかる。このため、冷媒対水熱交換器で冷媒を放熱させることにより圧縮機の吐出圧力の上昇を抑えることができず、吐出圧力の過度の上昇を起こしやすいという問題があった。
本発明は、上述した事情に鑑みてなされたものであり、運転開始時における冷媒回路の圧力の上昇を抑制できるヒートポンプ式給湯装置を提供することを目的とする。
上記目的を達成するために、本発明は、圧縮機、冷媒対水熱交換器、膨張弁及び蒸発器を順次接続して形成した冷媒回路と、前記冷媒対水熱交換器にて加熱された温水を貯湯する貯湯槽と、前記膨張弁の開度を制御する制御部と、を備え、前記制御部は、加熱運転開始から所定時間は前記膨張弁の開度を予め設定された開度に維持する起動時制御を行い、前記所定時間の経過後に、前記圧縮機の吐出温度に基づいて前記膨張弁の開度を制御する通常制御に移行すること、を特徴とする。
上記ヒートポンプ式給湯装置において、前記起動時制御における前記膨張弁の開度が、外気温に基づいて少なくとも複数段階に設定され、前記制御部は外気温を検出可能に構成され、前記起動時制御において前記膨張弁の開度を、検出した外気温に応じて予め設定された開度に維持する構成としてもよい。
また、上記ヒートポンプ式給湯装置において、前記起動時制御における前記膨張弁の開度が、外気温が高いほど開度が小さくなるよう複数段階に設定されていてもよい。
また、上記ヒートポンプ式給湯装置において、前記圧縮機は回転数可変に構成され、前記制御部は前記圧縮機の回転数を制御可能に構成され、通常動作中は前記圧縮機を予め設定された通常動作回転数で回転させ、前記起動時制御の実行中は、通常動作回転数より低回転で前記圧縮機を回転させる構成としてもよい。
さらにまた、上記ヒートポンプ式給湯装置において、前記制御部は、前記起動時制御が終了してから通常動作に移行する間に、前記圧縮機を、予め設定された通常動作回転数より低回転で、かつ前記起動時制御の実行中より高回転で回転させるものとしてもよい。
また、上記目的を達成するために、本発明は、圧縮機、冷媒対水熱交換器、膨張弁及び蒸発器を順次接続して形成した冷媒回路と、前記冷媒対水熱交換器にて加熱された温水を貯湯する貯湯槽と、を備えたヒートポンプ式給湯装置を制御して、加熱運転開始から所定時間は前記膨張弁の開度を予め設定された開度に維持する起動時制御を行い、前記所定時間の経過後に、前記圧縮機の吐出温度に基づいて前記膨張弁の開度を制御する通常制御に移行すること、を特徴とする。
本発明によれば、加熱運転開始から所定時間は膨張弁の開度を予め設定された開度に維持するので、冷媒対水熱交換器で冷媒が十分に放熱しない状態が続いても圧縮機の吐出圧力の異常上昇を防止できるので、冷媒対水熱交換器における圧力損失が大きく水量を増加しにくい場合であっても、吐出圧力の異常上昇を防止できる。
本発明の実施の形態に係るヒートポンプ式給湯装置の冷媒回路図である。 電動膨張弁の開度制御と吐出圧の変化を示す図表である。 圧縮機の回転数制御と吐出圧の変化を示す図表である。
以下、図面を参照して本発明の実施の形態を詳述する。
図1は本発明の実施の形態に係るヒートポンプ式給湯装置1の冷媒回路図である。この図に示すように、ヒートポンプ式給湯装置1は、圧縮機2、冷媒対水熱交換器3、電動膨張弁5(膨張弁)、蒸発器6、内部熱交換器7、及びアキュムレータ8を接続して構成される冷媒回路1Aと、貯湯タンク4(貯湯槽)とを備えている。
冷媒回路1Aは、通常、屋外に設置されるヒートポンプを構成し、屋内に設置される貯湯タンク4に湯を供給する。貯湯タンク4は、冷媒回路1Aによって加熱された湯を貯湯するタンクであり、下部から市水が供給され、貯湯タンク4内部の湯はタンク上部から建物の給湯蛇口等へ供給される。
貯湯タンク4内の湯は、循環ポンプ41を備えた水配管42によってタンク下部から引き出され、冷媒回路1Aと熱交換されて高温の湯となって、タンク上部に戻る。このため、貯湯タンク4内には上層ほど高温で下層ほど低温となるグラデーション状の温度帯が形成されており、より高温の湯がタンク上部から供給されるようになっている。
冷媒回路1Aには、自然冷媒である二酸化炭素(CO)冷媒が充填されて使用され、る。圧縮機2は二酸化炭素冷媒を超臨界域まで圧縮する二段式のロータリー圧縮機である。圧縮機2の吐出管21には、マフラー11を介して冷媒対水熱交換器3(ガスクーラー)が接続されている。冷媒対水熱交換器3は、圧縮機2が吐出した高温の冷媒と、循環ポンプ41が送出する貯湯タンク4内の水(湯)とを熱交換させ、湯を沸き上げる。冷媒対水熱交換器3は、その内部で圧縮機2の吐出冷媒と貯湯タンク4の水とが逆方向に流れるよう構成されている。
冷媒対水熱交換器3の冷媒出口につながれた冷媒配管24には内部熱交換器7がつながれ、内部熱交換器7は二重管式熱交換器として構成され、冷媒対水熱交換器3の出口冷媒と、後述する蒸発器6を出て圧縮機2の吸込管22に戻る冷媒とを熱交換させる。これにより、冷媒対水熱交換器3を出た冷媒の熱を吸込管22側に回収して吸込冷媒の温度を上昇させ、圧縮機2の吐出温度をより効率よく上昇させる。
内部熱交換器7の出口にはストレーナ12を介して電動膨張弁5が接続され、電動膨張弁5により減圧された冷媒は冷媒配管25を通って蒸発器6に流入する。蒸発器6は二段式のフィンアンドチューブ型熱交換器として構成され、冷媒配管25を流れる冷媒は蒸発器6の手前で分岐して各段に流れる。蒸発器6でほぼ完全にガス化された冷媒は内部熱交換器7を経てアキュムレータ8に流入し、アキュムレータ8から圧縮機2の吸込管22に戻る。
また、ヒートポンプ式給湯装置1は、冷媒回路1Aの各部を制御する制御部10を備えている。図1中の破線は制御部10につながる制御線を示す。圧縮機2は、図示しないインバータ回路を備えた回転数可変型のモータによって駆動され、制御部10の制御により、上記モータの起動、停止及び回転数が制御される。また、制御部10には電動膨張弁5が接続され、制御部10によって電動膨張弁5の開度制御を実行可能である。
ヒートポンプ式給湯装置1は、圧縮機2の吐出管21に設けられて圧縮機2が吐出した冷媒の温度(吐出温度)を検出する温度センサ51と、蒸発器6の出口冷媒の温度を検出する温度センサ52と、蒸発器6の温度を検出する温度センサ53と,圧縮機2の吐出管21に設けられ、冷媒圧力が所定値を超えた場合に作動する高圧スイッチ55とを備え、これらは制御部10に接続されている。制御部10は、各温度センサ51、52、53が検出した温度および高圧スイッチ55の作動状態を取得して、取得した値に基づいて、圧縮機2の回転数、および電動膨張弁5の開度を制御する。
制御部10は、ヒートポンプ式給湯装置1の動作時間帯として、図示しないコントローラーの操作により設定された時間帯に、圧縮機2を含む冷媒回路1Aを動作させる。ヒートポンプ式給湯装置1の動作時間帯は、時間帯別電力料金契約または深夜電力契約に基づいて電力料金が安価となる時間帯に設定され、制御部10は、この動作時間帯のうちに指定された温度の湯を貯湯タンク4いっぱいに沸き上げるために必要な運転時間を求め、この運転時間から逆算した時刻にヒートポンプ式給湯装置1の運転を開始する。そして、貯湯タンク4内部の湯量及び湯温がいずれも設定値に達した場合に、貯湯タンク4の循環ポンプ41を含む各部を制御するタンク制御部(図示略)が、制御部10に対して制御信号を送信し、この制御信号を受信した制御部10はヒートポンプ式給湯装置1を停止する。
ところで、ヒートポンプ式給湯装置1の加熱運転を開始した直後は、冷媒回路1Aを流れる冷媒の温度が、設定された湯温に対して低いため、循環ポンプ41の水量が少量に抑えられる。これは、冷媒温度が低温の状態で冷媒対水熱交換器3に水を流しても水が十分に加熱されないので循環ポンプ41の消費電力が無駄になってしまい、さらに、低温の水が貯湯タンク4の上部に戻ることで貯湯タンク4内部の温度帯を乱してしまうからである。このため、ヒートポンプ式給湯装置1の運転開始後は、温度センサ51により検出される吐出温度が予め設定された温度になってから、循環ポンプ41の流量が増大して湯の沸き上げが開始される。
しかしながら、循環ポンプ41の水量が抑えられている間は、吐出冷媒が冷媒対水熱交換器3で放熱しないまま吸込管22に戻るので、吐出冷媒の温度および圧力の上昇が速い。このため、吐出温度が設定温度に達した後で循環ポンプ41が循環水量を増大させても、冷媒圧力の上昇が続いてオーバーシュートし、高圧スイッチ55が作動してしまうことがある。
ヒートポンプ式給湯装置1においては、経年変化によって冷媒対水熱交換器3を含む水回路にスケールが付着して圧力損失が増大することがあるが、この圧力損失が増大すると冷媒対水熱交換器3の流量の立ち上がりに時間がかかる。この場合、冷媒対水熱交換器3で冷媒が十分に冷えないため、上述したように冷媒圧力の上昇が続いて高圧スイッチ55が作動しやすくなる。
高圧スイッチ55が作動した場合、回路保護のためヒートポンプ式給湯装置1が停止され、手動でヒートポンプ式給湯装置1の再起動をする必要がある。また、高圧スイッチ55が作動した後の再起動時に、また上記のように高圧スイッチ55が作動することもあり、複数回連続して高圧スイッチ55が動作するとエラーとなって、メンテナンス作業者がエラーをリセットする必要がある。このような停止やメンテナンスの負担を軽減するため、冷媒対水熱交換器3を含む水回路の圧力損失が軽度である間は、高圧スイッチ55が作動しにくくなるような対策が望まれる。
そこで、本実施形態に係るヒートポンプ式給湯装置1は、制御部10により、加熱運転開始から所定時間(例えば、3分間)は電動膨張弁5の開度を予め設定された開度に維持し、所定時間が経過した後に、通常の電動膨張弁5の開度制御に移行する。通常運転中、制御部10は、温度センサ51が検出した吐出温度が設定温度より高く、かつ、圧縮機2の定格値を超えないように電動膨張弁5の開度を制御する。
図2は、ヒートポンプ式給湯装置1の除霜運転終了後の加熱運転開始時に、制御部10による電動膨張弁5の開度制御を行った場合の圧縮機2の吐出圧力の変化を示す図表である。図2の縦軸は圧力または温度であり、図中Bは制御部10が制御する電動膨張弁5の目標開度を示し,図中Pは吐出圧力を示し,図中THは高圧スイッチ55の作動圧力を示し,図中Dは吐出温度を示す。横軸は時間の経過を示し,時刻T1はヒートポンプ式給湯装置1の運転開始時を示し、時刻T2は設定時間(この例では3分)経過時を示す。また、時刻T0の左側の時間帯は、この加熱運転開始(T1)前の加熱運転を示し、時刻T0〜T1間は、この加熱運転時に蒸発器に付着した霜を溶かすいわゆる除霜運転時間である。この除霜運転終了後(T1)に、この加熱運転が行われる。除霜運転中は電動膨張弁5がほぼ全開にされることで比較的高温の冷媒が蒸発器6に流入して霜が融ける一方、冷媒の圧力及び吐出温度が低下する。
時刻T1でヒートポンプ式給湯装置1が運転を開始してから、起動時制御を行う期間として設定された時間(例えば、3分)が経過する時刻T2までの間、制御部10は、電動膨張弁5の開度を、予め設定された初期値に固定する。
例えば、電動膨張弁5の開度が45step(全閉)〜450step(全開)の範囲で調整可能な構成において、制御部10は、圧縮機2の運転開始から3分間は電動膨張弁5の開度を350stepで固定し、3分経過後に、温度センサ51の検出温度に基づく電動膨張弁5の開度制御に移行する。350stepの開度は、電動膨張弁5が比較的大きく開いた状態であり、冷媒回路1Aの圧力差はあまり大きくならない。このため、図2に示すように吐出温度Dの上昇は若干ゆるやかになっているが、確実に上昇しており、吐出圧力Pも緩やかに上昇している。この過程で吐出温度Dが目標温度に達すると、循環ポンプ41の水量(図示略)が増大するが、図2中の吐出圧力Pには大きな変動はなく高圧スイッチ55が作動することもない。そして、設定された時間(3分)が経過して時刻T1で電動膨張弁5が閉鎖方向に制御されても、吐出圧力Pが急変することはなく、高圧スイッチ55を作動させずに通常動作状態に移行している。
このように、制御部10は、ヒートポンプ式給湯装置1の運転開始から所定時間は、電動膨張弁5の開度を、予め設定された開度に維持し、所定時間が経過してから通常の電動膨張弁5の開度制御に移行するので、運転開始後の圧縮機2の吐出圧力の立ち上がりを抑制することで、冷媒回路1Aの冷媒圧力を正常範囲内に抑え、高圧スイッチ55の作動を防止できる。特に経年変化等により冷媒対水熱交換器3の圧力損失が大きくなっている状態で、冷媒対水熱交換器3における湯の水量を増加させることが難しい状態であっても、高圧スイッチ55を作動しにくくすることができ、ヒートポンプ式給湯装置1の運転停止を回避して可用性を高めることができる。
ここで、ヒートポンプ式給湯装置1の運転開始から所定時間に設定する電動膨張弁5の開度は、常に同じ値であってもよいが、外気温度に基づいて変化させてもよい。すなわち、制御部10は、起動時制御における電動膨張弁5の開度として複数の値を記憶し、各々の値は外気温度の温度帯に対応付けられており、制御部10は、ヒートポンプ式給湯装置1の運転開始時の外気温度を検出し、検出した外気温度に対応する値を電動膨張弁5の目標開度とする。
外気温が高いときに電動膨張弁5の開度が大きいと、冷媒の温度を上昇させるために長時間を要する。このため、外気温が高いほど電動膨張弁5の開度が小さくなり、外気温が低いほど電動膨張弁5の開度が大きくなるように、外気温度または外気温度の温度帯に対応付けて複数の開度の値を用意しておく。これにより、電動膨張弁5の開度を、加熱運転開始時の外気温度に対応する開度に調整することで、外気温度が高い場合に冷媒温度が上昇しないといった問題、及び、吐出圧力が異常値となって高圧スイッチ55を作動させてしまう問題の両方を解決できる。このように、ヒートポンプ式給湯装置1の運転開始後の起動時制御における電動膨張弁5の開度を、外気温に応じて複数段階に分けることで、外気温度が高い場合も速やかに冷媒温度を上昇させることが可能で、外気温度が低い場合も吐出圧力の異常上昇を回避できる。
なお、制御部10は、外気温度を検出するための温度センサ(図示略)を備え、この温度センサの検出値に基づいて外気温を検出してもよいし、ヒートポンプ式給湯装置1の停止中における温度センサ53の検出値を外気温度として取得してもよい。
また、制御部10は、ヒートポンプ式給湯装置1の運転開始時に吐出圧力の上昇を抑えるため、運転開始から所定時間(例えば、3分間)、圧縮機2の回転数を抑制する制御を行うこともできる。
図3は、ヒートポンプ式給湯装置1の除霜運転終了後の加熱運転開始時に、制御部10による圧縮機2の回転速度制御を行った場合の圧縮機2の吐出圧力の変化を示す図表である。図3の縦軸は圧力または温度であり、図中Sは制御部10が制御する圧縮機2の目標回転数を示し,図中Pは吐出圧力を示し,図中Dは吐出温度を示す。横軸は時間の経過を示し,時刻T1はヒートポンプ式給湯装置1の運転開始時を示し、時刻T2は設定時間(この例では5分)経過時を示し、時刻T2は2番目の設定時間(この例では1分)経過時を示す。また、時刻T0の左側の時間帯は、この加熱運転開始(T1)前の加熱運転を示し、時刻T0〜T1間は、この加熱運転時に蒸発器に付着した霜を溶かすいわゆる除霜運転時間である。この除霜運転終了後(T1)に、この加熱運転が行われる。
時刻T1でヒートポンプ式給湯装置1が運転を開始してから、起動時制御を行う期間として設定された時間(例えば、5分)が経過する時刻T2までの間、制御部10は、圧縮機2の目標回転数を、通常動作時の目標回転数より低い回転数に設定する。ヒートポンプ式給湯装置1において圧縮機2の回転数は通常一定であり、その回転数は予め制御部10に設定され、制御部10は起動時制御の間、設定された目標回転数から所定値(本実施の形態では10Hz)を減算した目標回転数で圧縮機2を維持する。なお、時刻T1で運転を開始した直後に、短時間、圧縮機2の目標回転数を、より低い値にしてもよい。
さらに、制御部10は、2番目の起動時制御を行う期間として設定された時間(例えば、1分)が経過する時刻T3までの間、圧縮機2の目標回転数を、起動時制御より高く、通常動作時の目標回転数より低い回転数に設定する。本実施の形態では、設定された通常動作時の目標回転数から5Hz低くしている。そして、2番目の起動時制御を行う期間が経過した時刻T3で、制御部10は、通常動作時の制御に移行し、圧縮機2の目標回転数を設定回転数にする。
ヒートポンプ式給湯装置1の運転開始後に圧縮機2の回転数を低くした場合、図3に示すように、吐出圧力Pは速やかに上昇して低めの圧力で安定する。その後、圧縮機2の目標回転数が、時刻T2及びT3で段階的に増速しても、吐出圧力Pの大きな変化は無く、安定した値となっている。一方、吐出温度Dは確実に上昇して、湯の沸き上げが可能になる。また、吐出温度Dが目標温度に達すると、循環ポンプ41の水量(図示略)が増大するが、図3中の吐出圧力Pには大きな変動はなく、高圧スイッチ55を作動させることなく通常動作状態に移行している。
このように、制御部10は、ヒートポンプ式給湯装置1の運転開始から所定時間は、圧縮機2の目標回転数を通常動作時の目標回転数より低い値で維持し、所定時間が経過してから通常の目標回転数に移行するので、運転開始時の圧縮機2の吐出圧力の急峻な立ち上がりを抑制して高圧スイッチ55の作動を防止できる。このため、特に経年変化等により冷媒対水熱交換器3の圧力損失が大きくなっている状態で、冷媒対水熱交換器3における湯の水量を増加させることが難しい状態であっても、高圧スイッチ55が作動しにくくなり、ヒートポンプ式給湯装置1の運転停止を回避して可用性を高めることができる。
ここで、図3に示したように圧縮機2の回転数を、最初の5分間と次の1分間との2段階に変化させることにより、圧縮機2の吐出圧力Pの変動を緩和し、より確実に、高圧スイッチ55を作動しにくくすることができる。
また、図3に例示した圧縮機2の回転数の制御は、図2を参照して説明した電動膨張弁5の開度制御と組み合わせて、同時に行ってもよいし、電動膨張弁5の開度制御と、圧縮機2の回転数の制御とのいずれか一方のみを行う構成としてもよい。これらのいずれの場合においても、ヒートポンプ式給湯装置1の運転開始時に循環ポンプ41の循環水量が少ない状態で圧縮機2が起動し、吐出温度が上昇してから循環ポンプ41の循環水量が増大する場合に、循環水量の変化が遅く圧縮機2の吐出圧力が異常上昇する事態を回避し、高圧スイッチ55の作動を避けることができる。
さらに、図2及び図3を参照して説明した電動膨張弁5の開度制御と圧縮機2の回転数制御は、ヒートポンプ式給湯装置1の設置後、ヒートポンプ式給湯装置1の運転を開始する毎に毎回行うようにしてもよいが、冷媒対水熱交換器3の圧力損失が極めて小さい場合起動直後から通常の動作を行う方が効率がよい。このため、電動膨張弁5の開度制御及び/又は圧縮機2の回転数制御は、高圧スイッチ55の作動によりヒートポンプ式給湯装置1が停止した後、或いは、高圧スイッチ55の作動が所定回数以上続いた後に、ヒートポンプ式給湯装置1の運転開始時に毎回行うようにしてもよい。或いは、高圧スイッチ55の作動によりヒートポンプ式給湯装置1が停止した直後の再起動時のみ、行うようにしてもよい。この場合、冷媒対水熱交換器3の圧力損失が原因で高圧スイッチ55が作動しやすくなったと思われる場合のみ電動膨張弁5の開度制御及び/又は圧縮機2の回転数制御を行うので、ヒートポンプ式給湯装置1の運転開始から能力が安定するまでの時間を徒に延長しなくて済むという利点がある。
また、ヒートポンプ式給湯装置1が、高圧スイッチ55の作動によりエラーとなった場合に、メンテナンス作業者の手動操作により、運転開始時に上記の電動膨張弁5の開度制御及び/又は圧縮機2の回転数制御を行うよう設定してもよい。
なお、上述した実施の形態は、あくまでも本発明の一態様を示すものであり、本発明の範囲内において任意に変形可能である。例えば、図2及び図3には、除霜運転後の加熱運転開始時に、起動時制御として、電動膨張弁5の開度調整または圧縮機2の回転数の制御を行う場合を例に挙げて説明したが、本発明はこれに限定されるものではなく、圧縮機2の吐出冷媒の温度が設定された温度より低い状態から湯を沸き上げる加熱運転を開始するときには、どのような場合であっても上記起動時制御を実行可能である。具体的には、ヒートポンプ式給湯装置1が完全に停止した状態から運転を開始する場合にも、何らかの理由で一時停止していたヒートポンプ式給湯装置1が運転を再開する場合にも、本発明を適用して起動時制御を実行可能である。
また、例えば、本実施の形態のヒートポンプ式給湯装置1は、制御部10により、ヒートポンプ式給湯装置1の運転開始から所定時間が経過した後の通常動作時には、電動膨張弁5の開度を圧縮機2の吐出温度に基づいて制御するものとして説明したが、本発明はこれに限定されず、圧縮機2の吐出温度以外の温度や圧力に基づいて制御を行うことも勿論可能である。また、上記実施の形態では温度センサ51,52、52及び高圧スイッチ55の検出値に基づいて制御を行う構成を例に挙げて説明したが、温度センサとしては、圧縮機2のケース温度を検出する温度センサ、冷媒対水熱交換器3の出口における冷媒温度を検出する温度センサ、貯湯タンク4内部の温度を検出する温度センサ等、より多くのセンサを設けて制御を行うことが可能であり、圧力センサについても同様であって、その他、貯湯タンク4内の湯量を検出するセンサを設けてもよく、これら各センサの検出値に基づく制御を行う構成としてもよい。さらに、ヒートポンプ式給湯装置1は、冷媒回路1Aを制御する制御部10に加え、貯湯タンク4の循環ポンプ41、貯湯タンク4に市水を給水する給水弁(図示略)を制御するタンク制御部を備えた構成としてもよいし、タンク制御部の機能を制御部10が兼ねる構成としてもよい。その他の細部構成や本発明を適用するヒートポンプ式給湯装置の具体的構成については、任意に変更可能である。
1 ヒートポンプ式給湯装置
1A 冷媒回路
2 圧縮機
3 冷媒対水熱交換器
4 貯湯タンク(貯湯槽)
5 電動膨張弁(膨張弁)
6 蒸発器
7 内部熱交換器
10 制御部
41 循環ポンプ
42 水配管
55 高圧スイッチ

Claims (6)

  1. 圧縮機、冷媒対水熱交換器、膨張弁及び蒸発器を順次接続して形成した冷媒回路と、前記冷媒対水熱交換器にて加熱された温水を貯湯する貯湯槽と、前記膨張弁の開度を制御する制御部と、を備え、
    前記制御部は、加熱運転開始から所定時間は前記膨張弁の開度を予め設定された開度に維持する起動時制御を行い、前記所定時間の経過後に、前記圧縮機の吐出温度に基づいて前記膨張弁の開度を制御する通常制御に移行すること、
    を特徴とするヒートポンプ式給湯装置。
  2. 前記起動時制御における前記膨張弁の開度が、外気温に基づいて少なくとも複数段階に設定され、
    前記制御部は外気温を検出可能に構成され、前記起動時制御において前記膨張弁の開度を、検出した外気温に応じて予め設定された開度に維持すること、を特徴とする請求項1記載のヒートポンプ式給湯装置。
  3. 前記起動時制御における前記膨張弁の開度が、外気温が高いほど開度が小さくなるよう複数段階に設定されていること、を特徴とする請求項2記載のヒートポンプ式給湯装置。
  4. 前記圧縮機は回転数可変に構成され、
    前記制御部は前記圧縮機の回転数を制御可能に構成され、通常動作中は前記圧縮機を予め設定された通常動作回転数で回転させ、前記起動時制御の実行中は、通常動作回転数より低回転で前記圧縮機を回転させること、を特徴とする請求項1から3のいずれかに記載のヒートポンプ式給湯装置。
  5. 前記制御部は、前記起動時制御が終了してから通常動作に移行する間に、前記圧縮機を、予め設定された通常動作回転数より低回転で、かつ前記起動時制御の実行中より高回転で回転させること、を特徴とする請求項4記載のヒートポンプ式給湯装置。
  6. 圧縮機、冷媒対水熱交換器、膨張弁及び蒸発器を順次接続して形成した冷媒回路と、前記冷媒対水熱交換器にて加熱された温水を貯湯する貯湯槽と、を備えたヒートポンプ式給湯装置を制御して、
    加熱運転開始から所定時間は前記膨張弁の開度を予め設定された開度に維持する起動時制御を行い、前記所定時間の経過後に、前記圧縮機の吐出温度に基づいて前記膨張弁の開度を制御する通常制御に移行すること、
    を特徴とするヒートポンプ式給湯装置の制御方法。
JP2010080791A 2010-03-31 2010-03-31 ヒートポンプ式給湯装置、および、ヒートポンプ式給湯装置の制御方法 Pending JP2011214736A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010080791A JP2011214736A (ja) 2010-03-31 2010-03-31 ヒートポンプ式給湯装置、および、ヒートポンプ式給湯装置の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010080791A JP2011214736A (ja) 2010-03-31 2010-03-31 ヒートポンプ式給湯装置、および、ヒートポンプ式給湯装置の制御方法

Publications (1)

Publication Number Publication Date
JP2011214736A true JP2011214736A (ja) 2011-10-27

Family

ID=44944668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010080791A Pending JP2011214736A (ja) 2010-03-31 2010-03-31 ヒートポンプ式給湯装置、および、ヒートポンプ式給湯装置の制御方法

Country Status (1)

Country Link
JP (1) JP2011214736A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013194982A (ja) * 2012-03-19 2013-09-30 Sanden Corp ヒートポンプ装置
WO2014102939A1 (ja) * 2012-12-26 2014-07-03 三菱電機株式会社 冷凍サイクル装置、及び冷凍サイクル装置の制御方法
WO2014102940A1 (ja) * 2012-12-26 2014-07-03 三菱電機株式会社 冷凍サイクル装置、及び冷凍サイクル装置の制御方法
WO2014203364A1 (ja) * 2013-06-20 2014-12-24 三菱電機株式会社 ヒートポンプ装置
JPWO2015121992A1 (ja) * 2014-02-14 2017-03-30 三菱電機株式会社 冷凍サイクル装置
WO2020230203A1 (ja) * 2019-05-10 2020-11-19 三菱電機株式会社 蓄熱システム
CN115451622A (zh) * 2022-08-23 2022-12-09 青岛海尔空调电子有限公司 用于故障检测的方法及装置、烘干系统、存储介质

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013194982A (ja) * 2012-03-19 2013-09-30 Sanden Corp ヒートポンプ装置
WO2014102939A1 (ja) * 2012-12-26 2014-07-03 三菱電機株式会社 冷凍サイクル装置、及び冷凍サイクル装置の制御方法
WO2014102940A1 (ja) * 2012-12-26 2014-07-03 三菱電機株式会社 冷凍サイクル装置、及び冷凍サイクル装置の制御方法
US10465964B2 (en) 2012-12-26 2019-11-05 Mitsubishi Electric Corporation Refrigeration cycle apparatus and control method of refrigeration cycle apparatus
CN104884876A (zh) * 2012-12-26 2015-09-02 三菱电机株式会社 制冷循环装置及制冷循环装置的控制方法
JP5875707B2 (ja) * 2012-12-26 2016-03-02 三菱電機株式会社 冷凍サイクル装置、及び冷凍サイクル装置の制御方法
EP2940405A4 (en) * 2012-12-26 2016-08-17 Mitsubishi Electric Corp REFRIGERATION CYCLE DEVICE AND METHOD FOR CONTROLLING REFRIGERATION CYCLE DEVICE
JP6021945B2 (ja) * 2012-12-26 2016-11-09 三菱電機株式会社 冷凍サイクル装置、及び冷凍サイクル装置の制御方法
US9863680B2 (en) 2013-06-20 2018-01-09 Mitsubishi Electric Corporation Heat pump apparatus
JPWO2014203364A1 (ja) * 2013-06-20 2017-02-23 三菱電機株式会社 ヒートポンプ装置
WO2014203364A1 (ja) * 2013-06-20 2014-12-24 三菱電機株式会社 ヒートポンプ装置
JPWO2015121992A1 (ja) * 2014-02-14 2017-03-30 三菱電機株式会社 冷凍サイクル装置
WO2020230203A1 (ja) * 2019-05-10 2020-11-19 三菱電機株式会社 蓄熱システム
JPWO2020230203A1 (ja) * 2019-05-10 2021-11-25 三菱電機株式会社 蓄熱システム
CN113785162A (zh) * 2019-05-10 2021-12-10 三菱电机株式会社 蓄热系统
EP3967948A4 (en) * 2019-05-10 2022-09-14 Mitsubishi Electric Corporation THERMAL STORAGE SYSTEM
JP7140276B2 (ja) 2019-05-10 2022-09-21 三菱電機株式会社 蓄熱システム
CN113785162B (zh) * 2019-05-10 2023-02-17 三菱电机株式会社 蓄热系统
AU2019445991B2 (en) * 2019-05-10 2023-03-30 Mitsubishi Electric Corporation Heat Storage System
CN115451622A (zh) * 2022-08-23 2022-12-09 青岛海尔空调电子有限公司 用于故障检测的方法及装置、烘干系统、存储介质
CN115451622B (zh) * 2022-08-23 2024-02-23 青岛海尔空调电子有限公司 用于故障检测的方法及装置、烘干系统、存储介质

Similar Documents

Publication Publication Date Title
JP2011214736A (ja) ヒートポンプ式給湯装置、および、ヒートポンプ式給湯装置の制御方法
JP4836212B2 (ja) 空気調和機
JP4215735B2 (ja) ヒートポンプ給湯機
JP5226384B2 (ja) 貯湯式給湯装置及び貯湯式給湯暖房装置
JP6977332B2 (ja) 貯湯給湯装置
JP2009036485A (ja) 給湯装置
JP2008241173A (ja) ヒートポンプ給湯装置
JP2018136099A (ja) ヒートポンプ式給湯装置
KR101613374B1 (ko) 급탕장치
JP4954684B2 (ja) 自動製氷機の運転方法
JP4726573B2 (ja) ヒートポンプ給湯床暖房装置
JP6721116B2 (ja) 熱媒循環システム
JP6438765B2 (ja) 熱機器
JP6428373B2 (ja) ヒートポンプ式暖房給湯装置
JP2012007851A (ja) ヒートポンプサイクル装置
JP6533717B2 (ja) 給湯システム
JP2008224067A (ja) ヒートポンプ給湯装置
JP5097054B2 (ja) ヒートポンプ式給湯機
JP5585245B2 (ja) 冷凍装置
JP5413328B2 (ja) 給湯装置
JP2010054145A (ja) ヒートポンプ給湯機
JP2016048126A (ja) 給水加温システム
JP6301847B2 (ja) ヒートポンプ式給湯装置
JP2012247079A (ja) ヒートポンプ式給湯装置
JP2011153790A (ja) ヒートポンプ式給湯機