JP2011214436A - 多気筒エンジンの排気装置 - Google Patents

多気筒エンジンの排気装置 Download PDF

Info

Publication number
JP2011214436A
JP2011214436A JP2010080944A JP2010080944A JP2011214436A JP 2011214436 A JP2011214436 A JP 2011214436A JP 2010080944 A JP2010080944 A JP 2010080944A JP 2010080944 A JP2010080944 A JP 2010080944A JP 2011214436 A JP2011214436 A JP 2011214436A
Authority
JP
Japan
Prior art keywords
exhaust
valve
cylinder
catalyst
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010080944A
Other languages
English (en)
Other versions
JP5515972B2 (ja
Inventor
Naoyuki Yamagata
直之 山形
Kazuya Yokota
和也 横田
Motokimi Fujii
幹公 藤井
Tatsunori Sasaki
達範 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2010080944A priority Critical patent/JP5515972B2/ja
Publication of JP2011214436A publication Critical patent/JP2011214436A/ja
Application granted granted Critical
Publication of JP5515972B2 publication Critical patent/JP5515972B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Silencers (AREA)
  • Characterised By The Charging Evacuation (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

【課題】エゼクタ効果を利用してエンジン出力を高めることができるとともに、触媒をより早期に活性させることができる多気筒エンジンの排気装置を提供する。
【解決手段】各排気ポート18にそれぞれ接続される独立排気通路53と、独立排気通路53の流路面積を変更可能な流路面積可変バルブ58と、流路面積可変バルブ駆動手段58bとを設け、低速領域R1において、吸気バルブ19と排気バルブ20のオーバーラップ期間中に排気バルブ20を開弁させ、かつ、高速側通路53の流路面積を絞るとともに、この低速領域R1において触媒の未活性時は吸気が気筒12を通過して排気ポート18に吹き抜けるように吸気バルブ19と排気バルブ20とをオーバーラップさせる一方、触媒の活性時はこの未活性時よりもオーバーラップ期間を小さくする。
【選択図】 図11

Description

本発明は、触媒を備えた多気筒エンジンの排気装置に関する。
従来、自動車等において、エンジン本体の下流に設けられた触媒を早期に活性化させることを目的とした装置の開発が行なわれている。
例えば、特許文献1には、排気通路に触媒設けられたエンジンの排気装置であって、排気通路のうち触媒の上流部分に接続されてこの触媒の上流に空気を供給するための空気供給装置と、この空気供給装置から触媒上流に供給する空気量を調整するための制御バルブとを備えたものが開示されている。この装置では、前記空気供給装置により触媒上流部分に空気ひいては酸素を供給することで、排気中の一酸化炭素の酸化反応を促進させて触媒の活性化を図っている。
特開平5−59937号公報
前記従来の装置では、触媒の上流に別途空気供給装置および制御バルブ等を設けねばならず、構造が複雑である。
本発明は、このような事情に鑑み、簡単な構成で触媒を早期に活性化させることのできる多気筒エンジンの排気装置の提供を目的とする。
上記課題を解決するために、本発明は、吸気ポートおよび排気ポートがそれぞれ形成されるとともに前記吸気ポートを開閉可能な吸気バルブと前記排気ポートを開閉可能な排気バルブとが設けられた複数の気筒を有する多気筒エンジンの排気装置であって、1つの気筒あるいは排気順序が互いに連続しない複数の気筒の排気ポートにそれぞれ接続される独立排気通路と、前記各独立排気通路の下流端に接続されて、当該各独立排気通路を通過するガスが集合する集合部と、前記集合部よりも下流に設けられて、前記各気筒から排出された排気を浄化可能な触媒装置と、前記集合部の上流側に設けられて、前記各独立排気通路の流路面積を変更可能な流路面積可変バルブと、前記流路面積可変バルブを駆動可能な流路面積可変バルブ駆動手段と、前記各気筒の吸気バルブの開弁期間と排気バルブの閉弁時期の少なくとも一方を変更可能なバルブタイミング可変機構を有するとともに前記各気筒の吸気バルブおよび排気バルブを駆動可能なバルブ駆動手段とを備え、前記流路面積可変バルブ駆動手段は、エンジンの回転数が予め設定された基準回転数よりも低い低速領域において、少なくともエンジンに対する要求トルクが高い高負荷領域では、前記各独立排気通路の流路面積が最大面積よりも小さくなるように前記流路面積可変バルブを駆動し、前記バルブ駆動手段は、前記低速領域の少なくとも前記高負荷領域において、前記各気筒の吸気バルブの開弁期間と排気バルブの開弁期間とが所定のオーバーラップ期間重複し、かつ、排気順序が連続する気筒間において一方の気筒の前記オーバーラップ期間中に他方の気筒の排気バルブが開弁するように各気筒の吸気バルブおよび排気バルブを駆動するとともに、前記低速領域の少なくとも前記高負荷領域において、前記触媒の未活性時は、前記吸気ポートから流入した吸気が前記気筒を通過して前記排気ポートに吹き抜けるような大きいオーバーラップ期間、前記各気筒の吸気バルブの開弁期間と排気バルブの開弁期間とが重複するように、各気筒の吸気バルブおよび排気バルブを駆動し、前記バルブタイミング可変機構は、前記エンジンの回転数が前記基準回転数よりも高い高速領域において、前記オーバーラップ期間が前記低速領域におけるオーバーラップ期間よりも小さくなるように、この低速領域と高速領域とで、前記各気筒の吸気バルブの開弁時期と排気バルブの閉弁時期の少なくとも一方を変更するとともに、前記低速領域の少なくとも前記高負荷領域において、前記触媒の活性時の方が前記触媒の未活性時に比べて前記オーバーラップ期間が小さくなるように、この触媒の活性時と触媒の未活性時とで、前記各気筒の吸気バルブの開弁時期と排気バルブの閉弁時期の少なくとも一方を変更することを特徴とする多気筒エンジンの排気装置を提供する。
本装置によれば、触媒上流側に別途空気を導入するための装置を設けることなく、エゼクタ効果により掃気を促進して吸気効率を高めてこれによりエンジン出力を高めることができるとともに、触媒未活性時において触媒をより早期に活性させつつ触媒活性後の過渡時において吸気バルブあるいは排気バルブの追従性が悪化するのを抑制することができる。
すなわち、この装置では、低速領域のうち少なくとも高負荷領域において、前記流路面積可変バルブにより独立排気通路の流路面積が縮小されてエンジンから排出された排気がこの独立排気通路を高速で通過するよう構成されており、所定の独立排気通路から高速の排気が噴出されることで、エゼクタ効果により他の独立排気通路内のガスが吸い出される。ここで、低速領域のうち少なくとも高負荷領域では、所定の気筒のオーバーラップ期間中に他の気筒の排気バルブが開弁しており、この排気バルブの開弁に伴って所定の独立排気通路から高速の排気が噴出することで前記エゼクタ効果によって前記オーバーラップ期間にある気筒内のガスが吸い出されるため、このオーバーラップ期間にある気筒内の掃気が促進されて吸気効率が高められる。一方、高速領域では、排気流量が多くなり背圧が高くなり、前記オーバーラップ期間が大きいと排気ポート側の排気が気筒内に逆流するおそれがある。これに対して、この高速領域では前記オーバーラップ期間が小さくされており、高速領域においても吸気効率が高く維持される。
そして、触媒の未活性には、前記オーバーラップ期間が大きく確保されて前記エゼクタ効果による吸出し力が気筒内に長い時間作用することで吸気ポート内のガスすなわち空気が排気ポート側に吹き抜けるよう構成されており、この空気によって、排気ポートから触媒上流までの部分および触媒内での酸化反応が促進されるため、触媒をより早期に活性化させることができる。
一方、低速領域においてオーバーラップ期間を大きくしすぎると、高速領域とのオーバーラップ期間の差が大きくなり低速領域から高速領域あるいはその逆方向の過渡時において吸気バルブあるいは排気バルブの応答性が悪化するおそれがある。これに対して、本装置では、低速領域において触媒の活性時には触媒の未活性時に比べて前記オーバーラップ期間が小さくされており、触媒活性時において前記応答性の悪化が抑制される。
本発明において、前記各気筒内に燃料を供給可能な燃料供給手段を備え、前記燃料供給手段は、前記低速領域の少なくとも前記高負荷領域において、前記触媒の未活性時は、前記気筒内の混合気の空気過剰率λがλ<1となる量の燃料を前記気筒内に供給するのが好ましい(請求項2)。
このようにすれば、触媒の未活性時において未燃燃料が気筒から触媒側に排出されて、前記気筒から触媒側に吹き抜けた空気とこの未燃燃料とが、排気ポートから触媒上流までの部分および触媒内で反応するため、触媒温度をより早期に高めて触媒をより早期に活性化させることができる。
前記構成において、前記燃料供給手段は、前記低速領域の少なくとも前記高負荷領域において、前記触媒の未活性時は、前記集合部内の混合気の空気過剰率λがλ=1となるような量の燃料を前記気筒内に供給するのが好ましい(請求項3)。
このようにすれば、排気ポートから触媒上流までの部分および触媒内において未燃燃料と空気とをより確実に過不足なく反応させることができ、過剰な空気あるいは未燃燃料が触媒内あるいは触媒下流側に流出するのを抑制することができる。
また、本発明において、前記気筒内の混合気に点火可能な点火手段を備え、前記点火手段は、前記低速領域の少なくとも前記高負荷領域において、前記触媒の未活性時は、当該触媒の活性時よりも遅角側の時期で前記混合気に点火するのが好ましい(請求項4)。
このように、より遅角側において混合気に点火されれば、気筒からより多くの未燃燃料が排出されて排気ポートから触媒上流までの部分および触媒内における酸化反応が促進されるとともにより高温の排気が排出されるため、触媒をより確実に早期に活性化させることができる。
また、本発明において、前記排気バルブ駆動手段は、前記低速領域の少なくとも前記高負荷領域において、前記触媒の活性時は、前記オーバーラップ期間がエンジン出力が最大となるオーバーラップ期間のうち最も小さい期間となるように、前記吸気バルブと前記排気バルブとを駆動する一方、前記触媒の未活性時は、前記オーバーラップ期間が充填効率が最大となるオーバーラップ期間となるように前記吸気バルブと前記排気バルブとを駆動するのが好ましい(請求項5)。
この構成によれば、触媒の活性時には、オーバーラップ期間が小さくされることで過渡時の応答性の悪化を抑制しつつ最大エンジン出力を得ることができるとともに、触媒の未活性時には、充填効率を最大として触媒側に流入する空気量が多くされることで触媒をより早期に活性化させることができる。
以上のように、本発明によれば、エゼクタ効果を利用してエンジン出力を高めることができるとともに、触媒をより早期に活性させることができる。
本発明の実施形態に係る多気筒エンジンの排気装置を備えたエンジンシステムの概略構成図である。 図1に示すエンジン本体1の下流側の部分を下から見た図である。 図2に示すエンジン本体1の下流側の部分の側面図である。 図3のIV−IV線断面図である。 低速側通路および高速側通路の集合部分の構成を説明するための図である。 各気筒の吸気バルブおよび排気バルブのバルブタイミングを説明するための図である。 流路面積可変バルブの開度マップを示した図である。 吸気バルブおよび排気バルブのオーバーラップ期間のマップを示した図である。 排気バルブのバルブタイミングを説明するための図である。 回転数の変化に伴う吸気バルブおよび排気バルブのバルブタイミングの変化を示した図である。 本発明の他の実施形態に係る多気筒エンジンの排気装置における吸気バルブおよび排気バルブのバルブタイミングの変化を示した図である。 本発明の他の実施形態に係る多気筒エンジンの排気装置における吸気バルブおよび排気バルブの開弁時期および閉弁時期を説明するための図である。
本発明に係る多気筒エンジンの排気装置の実施形態について図面を参照しながら説明する。
図1は前記多気筒エンジンの排気装置を備えたエンジンシステム100の概略構成図である。このエンジンシステム100は、シリンダヘッド9およびシリンダブロックを有するエンジン本体1と、エンジン制御用のECU2と、エンジン本体1に接続される排気マニホールド5と、排気マニホールド5に接続される触媒装置6とを備えている。
前記シリンダヘッド9およびシリンダブロックの内部にはピストンがそれぞれ嵌挿された複数の気筒12が形成されている。本実施形態では、4つの気筒12、具体的には、図1の右から順に第1気筒12a,第2気筒12b,第3気筒12c,第4気筒12dが形成されている。前記シリンダヘッド9には、ピストンの上方に区画された燃焼室内に臨むようにそれぞれ点火プラグ(点火手段)15およびインジェクタ(燃料供給手段)16が設置されている。前記点火プラグ15は図示しない点火装置により駆動され、インジェクタ16は図示しない噴射装置により駆動される。また、前記シリンダブロックには、エンジン水温を計測するためのエンジン水温センサ70が取り付けられている。
前記エンジン本体1は4サイクルエンジンであって、図6に示すように、各気筒12a〜12dにおいて、180℃Aずつずれたタイミングで前記点火プラグ15による点火が行われて、吸気行程、圧縮行程、膨張行程、排気行程がそれぞれ180℃Aずつずれるように構成されている。本実施形態では、第1気筒12a→第3気筒12c→第4気筒12d→第2気筒12bの順に点火が行われてこの順に排気行程等が実施される。
各気筒12の上部には、それぞれ燃焼室に向かって開口する2つの吸気ポート17および2つの排気ポート18が設けられている。吸気ポート17は、各気筒12内に吸気を導入するためのものである。排気ポート18は、各気筒12内から排気を排出するためのものである。各吸気ポート17には、これら吸気ポート17を開閉して吸気ポート17と気筒12内部とを連通あるいは遮断するための吸気バルブ19が設けられている。各排気ポート18には、これら排気ポート18を開閉してこれら排気ポート18と気筒12内部とを連通あるいは遮断するための排気バルブ20が設けられている。前記吸気バルブ19は吸気バルブ駆動機構(バルブ駆動手段)30により駆動されることで、所定のタイミングで吸気ポート17を開閉する。また、前記排気バルブ20は、排気バルブ駆動機構(バルブ駆動手段)40により駆動されて、所定のタイミングで排気ポート18を開閉する。
前記吸気バルブ駆動機構30は、吸気バルブ19に連結された吸気カムシャフト31と吸気VVT(バルブタイミング可変機構)32とを有している。吸気カムシャフト31は、周知のチェーン/スプロケット機構等の動力伝達機構を介してクランクシャフトに連結されており、クランクシャフトの回転に伴い回転して、吸気バルブ19を開閉駆動する。
前記吸気VVT32は、吸気バルブ19のバルブタイミングを変更するためのものである。この吸気VVT32は、吸気カムシャフト31と同軸に配置されてクランクシャフトにより直接駆動される所定の被駆動軸と吸気カムシャフト31との間の位相差を変更して、これによりクランクシャフトと前記吸気カムシャフト31との間の位相差を変更することで、吸気バルブ19のバルブタイミングを変更する。吸気VVT32の具体的構成としては、例えば、前記被駆動軸と前記吸気カムシャフト31との間に周方向に並ぶ複数の液室を有し、これら液室間に圧力差を設けることで前記位相差を変更する液圧式機構や、前記被駆動軸と前記吸気カムシャフト31との間に設けられた電磁石を有し、前記電磁石に電力を付与することで前記位相差を変更する電磁式機構等が挙げられる。この吸気VVT32は、ECU2で算出された吸気バルブ19の目標バルブタイミングに基づいて前記位相差を変更する。
前記排気バルブ駆動機構40は、前記吸気バルブ駆動機構30と同様の構造を有している。すなわち、排気バルブ駆動機構40は、排気バルブ20およびクランクシャフトに連結された排気カムシャフト41と、この排気カムシャフト41とクランクシャフトとの位相差を変更することで排気バルブ20のバルブタイミングを変更する排気VVT42(バルブタイミング可変機構)とを有している。排気VVT42は、ECU2で算出された排気バルブ20の目標バルブタイミングに基づいて、前記位相差を変更する。そして、排気カムシャフト41は、この位相差の下でクランクシャフトの回転に伴って回転して排気バルブ20を前記目標バルブタイミングで開閉駆動する。
なお、本実施形態では、前記吸気VVT32および排気VVT42は、吸気バルブ19および排気バルブ20の開弁期間及びリフト量つまりバルブ・プロファイルをそれぞれ一定に保ったまま、吸気バルブ19および排気バルブ20の開弁時期と閉弁時期とをそれぞれ変更する。
前記各気筒12の排気ポート18は、その下流側において独立排気通路52に接続されている。前記気筒12のうち第1気筒12aの排気ポート18と第4気筒12dの排気ポート18とは、それぞれ個別に独立排気通路52a、52dに接続されている。一方、排気行程が隣り合わず排気順序が連続しない第2気筒12bと第3気筒12cの排気ポート18は、1つの独立排気通路52bに接続されている。これら独立排気通路52は、互いに独立しており、第2気筒12bあるいは第3気筒12cから排出された排気と、第1気筒12aから排出された排気と、第4気筒12dから排出された排気とは、互いに独立して各独立排気通路52内を通って下流側に排出される。本実施形態では、これら独立排気通路52の上流部分は前記シリンダヘッド9内に形成されており、これら独立排気通路52の下流部分は前記排気マニホールド5に設けられている。
前記排気マニホールド5は、前述のように前記排気ポート18に接続される3つの独立排気通路52に加えて、3つの流路面積可変バルブ58と、低速側集合部56とを備えている。
前記独立排気通路52は、その下流側、本実施形態では前記排気マニホールド5の上流端付近、において、それぞれ高速側通路53と低速側通路54とに分離している。本実施形態では、図2および図3に示すように、高速側通路53は、それぞれシリンダヘッド9に形成された独立排気通路52の上流側部分から直線的に後方に延びた後下方に湾曲する形状を有しており、低速側通路54は、前記排気マニホールド5の上流端付近から下方に湾曲した後高速側通路53の下方を通りこれら高速側通路53と同様に直線的に後方に延びた後下方に湾曲する形状を有している。
前記各高速側通路53の断面積すなわち流路面積は互いに同一に設定されており、各低速側通路54の断面積すなわち流路面積は、互いに同一に設定されている。また、各高速側通路53の流路面積は低速側通路54の流路面積よりも大きく設定されている。
前記流路面積可変バルブ58は、前記各高速側通路53の流路面積を変更し、これにより各独立排気通路52の流路面積を変更するためのものである。これら流路面積可変バルブ58は各高速側通路53内にそれぞれ1つずつ設けられている。本実施形態では、これら流路面積可変バルブ58は、高速側通路53内の上流端付近であって高速側通路53内と低速側通路54とが分離する付近に設けられている。
前記流路面積可変バルブ58は、その中央に設けられた回動軸58aが回動駆動されるに伴いこの回動軸58aを中心として回動する。本実施形態では、各流路面積可変バルブ58に、共通の回動軸58aが固定されており、3つの流路面積可変バルブ58は一体に回動する。各流路面積可変バルブ58は、排気の流れ方向と略平行な方向に広がる全開位置(図3の破線)と、排気の流れ方向と略垂直な方向に広がる全閉位置(図3の実線)との間で回動し、高速側通路53を開閉して高速側通路53の流路面積を変更する。なお、図3では、流路面積可変バルブ58の全開位置と全閉位置とをより明確に示すために、高速側通路53内に配置されて破線で示されるべき流路面積可変バルブ58を全閉位置にある状態で実線で示している。
前記回動軸58aは、その端部に設けられたバルブアクチュエータ(流路面積可変バルブ駆動手段)58bにより回動駆動される。このバルブアクチュエータ58bは、ECU2で算出された流路面積可変バルブの目標開度に応じて、前記回動軸58aを回動させて流路面積可変バルブ58を全閉あるいは全開位置に駆動する。このバルブアクチュエータ58bは前記回動軸58aを回動駆動して前記流路面積可変バルブ58を回動可能なものであればどのようなものであってもよい。
前記低速側集合部56は、前記低速側通路54の下流側に設けられる部分である。この低速側集合部56は、各低速側通路54と連通した状態で各低速側通路54の下流端に接続されており、各低速側通路54を通過したガスはこの低速側集合部56に流入してこの低速側集合部56にて集合する。この低速側集合部56において、前記3つの低速側通路54の下流端は互いに隣接する位置に配置されている。
前記低速側集合部56は略円筒状であって、その上流端の断面は略円形を有している。各低速側通路54は、上流側では断面がそれぞれ略円形であって略円筒状をなす一方、下流端付近55では断面が円形から下流に向かうに従って徐々に扇形となっている。そして、これら低速側通路54は、扇形をなす各下流端が全体として略円形断面を形成するように集合して前記低速側集合部56の円形断面の上流端に接続されており、低速側集合部56の上流端の断面形状および断面積と3つの低速側通路54の下流端全体の断面形状および断面積とはほぼ同一に設定されている。すなわち、各通路の構成を模式的に示した図5において、3×A1(低速側通路54の下流端の断面積の合計)=S10(低速側集合部56の上流端の断面積)に設定されている。
そして、前記低速側集合部56は、その上流端から下流に向かうに従って縮径してその断面積すなわち流路面積が下流に向かうに従って縮小する形状を有しており、低速側集合部56の下流端の断面積S11が上流端の断面積S10よりも小さく(S11<S10=3×A1)設定されている。このように流路面積が絞られるように構成された低速側集合部56に、各低速側通路54から排気が高速で流入する。
前記低速側集合部56の下流端には前記触媒装置6の後述するケーシング62が接続されており、前記低速側通路54に流入した排気はこの低速側集合部56を高速で通過した後、前記ケーシング62内に流入する。
前記触媒装置6は、エンジン本体1から排出された排気を浄化するための装置である。この触媒装置6は、CO、HC、NOxを浄化可能な三元触媒からなる触媒本体64とこの触媒本体64を収容するケーシング62とを備えている。ケーシング62は排気の流れ方向と平行に延びる略円筒状を有している。前記触媒本体64は、前記ケーシング62の下流部分に収容されており、このケーシング62の上流部分には、ケーシング62に流入したガスが混合可能な所定の空間が形成されている。
前記触媒装置6のケーシング62は、前記低速側集合部56および各高速側通路53と連通した状態でこれら低速側集合部56の下流端および各高速側通路53の下流端に接続されている。従って、前記低速側集合部56を通過した排気および各高速側通路53を通過した排気はこのケーシング62に流入してこのケーシング62の上流部分にて集合する。このように、本実施形態では、触媒装置6のケーシング62の上流部分62aが、各独立排気通路を通過したガスが集合する集合部として機能する。そして、前記低速側通路54に流入した排気は前記低速側集合部56に流入した後このケーシング62に流入する一方、高速側通路53に流入したガスは途中で集合することなくこのケーシング62に流入してこのケーシング62にて集合する。
本実施形態では、前記3つの高速側通路53は前記ケーシング62の上流端において互いに隣接する位置に配置されている。
このケーシング62の上流部分62aは、その上端の断面積S20が前記低速側集合部56の下流端の断面積S11および各高速側通路53の下流端の断面積A2の合計面積よりも大きく、かつ、その上流端から所定距離の間、下流に向かうに従って拡径する形状を有している。すなわち、図5において、3×A2+S11(高速側通路53の下流端の断面積A2の合計3×A2と低速側集合部56の下流端の断面積S11との和)>S20(ケーシング62の上流端の断面積)に設定されているとともに、S20<S21(ケーシング62の下流側の断面積)に設定されている。各高速側通路53を通過した排気は、このように断面積が大きく容積の大きいケーシングに流入する。従って、各高速側通路53を通過する排気は、その背圧が小さく抑えられて排気抵抗が少ない状態で円滑にケーシング62内に流入する。
前記ケーシング62には、触媒本体64の上流側であって前記集合部として機能する上流部分72aに、空燃比センサ66が取り付けられている。この空燃比センサ66は、排ガス中の酸素濃度に基づき排気の空燃比を計測するためのものである。この空燃比センサ66は、排気の空燃比が理論空燃比以上であって空気過剰率λが1以上の場合は、0V付近の信号を出力し、排気の空燃比が理論空燃比よりも小さく空気過剰率λが1未満の場合は、1V付近の信号を出力する。この空燃比センサ66の信号は、前記ECU2に送信される。
前記ECU2は、周知のマイクロコンピュータをベースとするコントローラであって、プログラムを実行するためのCPUと、RAMやROMからなりプログラム及びデータを格納するメモリと、各種信号の入出力を行なうI/Oバスとを備えている。このECU2は、前記I/Oバスを介して各種センサからの信号を受け、この信号に基づき種々の演算を行う。
ECU2は、運転条件に応じて、吸気バルブ19および排気バルブ20の目標バルブタイミングを演算するとともに、前記流路面積可変バルブ58の目標開度を演算して、吸気バルブ19および排気バルブ20のバルブタイミング、流路面積可変バルブの開度がこれら目標値になるように、吸気VVT32および排気VVT42、前記バルブアクチュエータ58bを駆動する。また、ECU2は、運転条件に応じて、燃料噴射量および点火時期を演算して、これらに応じた信号を前記噴射装置および前記点火装置に送信する。
まず、前記目標バルブタイミングおよび流路面積可変バルブ58の目標開度の演算について説明する。
前記ECU2には、運転条件に応じて予め設定された目標バルブタイミング、具体的には、吸気バルブ19と排気バルブ20の目標バルブタイミングのマップが記憶されており、ECU2は、このマップから運転条件に応じて目標バルブタイミングを抽出する。また、ECU2には、運転条件に応じて予め設定された流路面積可変バルブ58の目標開度のマップが記憶されており、ECU2は、このマップから運転条件に応じて流路面積可変バルブ58の目標開度を抽出する。
前記目標バルブタイミングおよび流路面積可変バルブ58の目標開度の設定について、次に説明する。
エンジン本体1から下流側の排気系が前記のように構成された本エンジンシステム100では、所定の気筒12(以下、適宜、排気行程気筒12という)の排気バルブ20が開弁すると、この気筒12の排気ポート18から対応する前記独立排気通路52に排気が流入する。このとき、前記高速側通路53を遮断して独立排気通路52のうち低速側通路54のみを開放した場合には、前記排気は前記低速側通路54にのみ流入する。前述のように、この低速側通路54の流路面積は独立排気通路52さらには高速側通路53よりも小さく設定されている。さらに、低速側通路54の下流に設けられた前記低速側集合部56は、下流に向かうほど流路面積が小さくなっている。従って、前記排気は、前記低速側集合部56を高速で通過する。
このようにして、低速側集合部56に所定の低速側通路54から高速の排気が噴出されると、この排気の周囲に発生した負圧作用すなわちエゼクタ効果により低速側集合部56に連通している他の低速側通路54に、その内部のガスを下流側へと吸い出す力が作用する。
そのため、前記排気行程気筒12の排気バルブ20の開弁時において、排気順序がこの排気行程気筒12の1つ前に設定された他の気筒12(以下、適宜、吸気行程気筒12という)の排気バルブ20と吸気バルブ19とをいずれも開弁させておけば、前記吸出し力が、この吸気行程気筒12に接続された低速側通路54を介して吸気行程気筒12内のガスに作用し、この吸出し力により吸気行程気筒12内の残留ガスが多量に気筒12内から吸い出される結果、吸気行程気筒12内に吸気ポート17から吸気バルブ19を介して多量に吸気を流入させることができる。
しかしながら、エンジン回転数が高く排気流量が大きい場合に、前記のように排気を流路面積の小さい低速側通路54のみに流入させると、背圧が高くなることでかえって気筒12からの残留ガスの排出が小さく抑えられてしまう。
そこで、本エンジンシステム100では、エンジン回転数が第1基準回転数N1よりも低い低中速領域R10(図7参照)において、図6に示すように、前記流路面積可変バルブの目標開度を全閉に設定して、吸気バルブ19と排気バルブ20の両方がTDC(上死点)を挟んで所定のオーバーラップ期間T_O/L開弁するように、すなわち、排気バルブ20の開弁期間と吸気バルブ19の開弁期間とがオーバーラップするように、かつ、排気バルブ20が、排気行程が連続する他の気筒12の前記オーバーラップ期間T_O/L中、より詳細には、BDC(下死点)付近で、開弁を開始するように設定する。そして、前記エゼクタ効果により低中速領域R10の吸気量を増大させる。
具体的には、第1気筒12aの吸気バルブ19と排気バルブ20とがオーバーラップしている期間中に第3気筒12cの排気バルブ20が開弁を開始し、第3気筒12cの吸気バルブ19と排気バルブ20とがオーバーラップしている期間中に第4気筒12dの排気バルブ20が開弁を開始し、第4気筒12dの吸気バルブ19と排気バルブ20とがオーバーラップしている期間中に第2気筒12bの排気バルブ20が開弁を開始し、第2気筒12bの吸気バルブ19と排気バルブ20とがオーバーラップしている期間中に第1気筒12aの排気バルブ20が開弁を開始するよう設定されている。
一方、エンジン回転数が前記第1基準回転数N1よりも高い高速領域R3(図7参照)では、前記流路面積可変バルブの目標開度を全開に設定する。これにより、高速領域R3では、排気行程中の気筒12から独立排気通路に流入した排気は、前記低速側通路に加えて流路面積が低速側通路54の流路面積よりも大きく設定された高速側通路53に流入した後、前記触媒装置6ケーシング62に流入する。ここで、これら高速側通路53を通過したガスが集合するこのケーシング62の上流部分62aは、その流路面積が各高速側通路53の下流端の合計面積よりも大きく設定されているとともに、下流に向かうほど拡径する形状を有している。そのため、各高速側通路53を通過したガスはこのケーシング62の上流部分62aにおいて膨張し、各高速側通路53の背圧は低く抑えられて、前記排気は少ない抵抗でこの高速側通路53を円滑に通過し、排気の流量が確保されて、吸気が円滑に気筒12内に流入し、吸気量が確保される。
また、前記高速領域R3では、排気バルブ20と吸気バルブ19オーバーラップ期間T_O/Lは、中低速領域R10での値よりも小さく設定されている。具体的には、図7および図8に示すように、中低速領域R10よりも排気バルブ20の閉弁時期EVCが進角側に設定されて吸気バルブ19の開弁時期IVOが遅角側に設定されている。
排気流量が多い高速領域R3では、オーバーラップ期間中に、排気行程側の気筒12から排出された排気が吸気行程側の気筒12に逆流するおそれがある。これに対して、前記のようにオーバーラップ期間が小さく設定されることでこの逆流が確実に回避されて、吸気量が確保されるようになっている。また、エンジン回転数NEが高くなると吸気慣性により気筒12に吸気が流入するタイミングは遅角側に移行して、気筒12に流入する吸気量が最大となる時期は遅角側に移行するが、吸気バルブ19の開弁時期がより遅角側に設定されていることによっても吸気量が確保される。
次に、前記低中速領域R10におけるオーバーラップ期間のより詳細な設定について説明する。
図9に、エンジン回転数NE=1000rpm、1500rpm、2000rpmそれぞれについて、オーバーラップ期間T_O/Lを変化させた際の充填効率ηcの変化を示す。また、図10に、これら各エンジン回転数NEにおいて、オーバーラップ期間T_O/Lを変化させた際の図示平均有効圧BMEPすなわちエンジン出力の変化を示す。図9における充填効率ηcは、吸気ポート17側において測定した吸気量すなわち、吸気ポート側から気筒12内に流入したガス量を、気筒12の容積で割った値である。
図9に示されるように、オーバーラップ期間T_O/Lを大きくしていくと、それに応じて充填効率ηcは増加していく。
しかしながら、エンジン回転数NEが比較的高い2000rpmでは、オーバーラップ期間T_O/Lが所定量以上になると吸気量が減少していく。これは、低中速領域R10においても、エンジン回転数NEが高い側では、排気流量が大きくなることで背圧が高くなるとともに吸気バルブ19の閉弁時期が遅角側に移行して吸気が気筒12に十分に流入する前に吸気バルブ19が閉じることにより、オーバーラップ期間T_O/Lを大きくしすぎると気筒12への吸気の流入が小さく抑えられるためと考えられる。
そこで、本エンジンシステム100では、低中速領域R10のうち、第2基準回転数(基準回転数)N2よりエンジン回転数NEの高い中速領域R2では、低速領域R1よりもオーバーラップ期間を小さくする。具体的には、中速領域R2では、低速領域R1よりも排気バルブ20の閉弁時期EVCが進角側に設定されて吸気バルブ19の開弁時期IVOが遅角側に設定されている。
一方、エンジン回転数NEが前記基準回転数N2より低いエンジン回転数NEでは、オーバーラップ期間T_O/Lを大きくすればするほど充填効率ηcは増加していく。しかしながら、図10に示されるように、オーバーラップ期間T_O/Lが所定値以上では図示平均有効圧は増加しない。すなわち、オーバーラップ期間を充填効率ηcが100%以上となる期間以上の条件では、吸気は気筒12を吹き抜けて排気マニホールド側に吹き抜けており、エンジン出力の増加に寄与していない。
そのため、エンジン出力の増加の観点からは、オーバーラップ期間を充填効率ηcが100%となる期間以上に大きくする必要はない。また、オーバーラップ期間を大きくしすぎると、オーバーラップ期間が比較的小さく設定された前記中速領域R2および高速領域R3とのオーバーラップ期間の差が大きくなり、低速領域R1からこれら領域へあるいはその逆方向の過渡時において、吸気バルブ19および排気バルブ20が十分に追従できず、吸気性能等が悪化するおそれがあり、このような観点においても、オーバーラップ期間を充填効率が100%となる期間以上に大きくする必要はない。
一方、吸気すなわち空気が排気マニホールド5側に吹き抜ければ、排気マニホールド5、前記ケーシング62内および触媒本体64内での酸化反応が促進されて、触媒を早期に活性化させることができる。このように、触媒の早期活性化の観点からは、オーバーラップ期間を充填効率ηcが100%以上であってより多くの空気が吹き抜けるのが望ましい。
そこで、本エンジンシステム100では、低速領域R1において、触媒本体64の未活性時すなわち触媒の未活性時は、オーバーラップ期間を吸気が気筒12を吹き抜ける期間であって充填効率ηcが最大となる期間に設定する。一方、触媒本体64の活性時すなわち触媒の活性時は、オーバーラップ期間を、充填効率ηcが100%以上となりエンジン出力が最大となる期間のうち最も短い期間に設定して、前記触媒の未活性時の期間よりも小さくする。
これにより、触媒の未活性時は、より多くの空気が排気マニホールド5等および触媒本体64内に流入して触媒が早期に活性化されるとともに、触媒の活性時は、エンジン出力が高くされつつ吸気バルブ19および排気バルブ20等の応答性の悪化を抑制することができる。
以上のようにして、前記吸気バルブ19および排気バルブ20の目標バルブタイミングは、少なくともエンジン回転数NEに応じてそれぞれ異なる値に設定されるとともに、前記低速領域R1では触媒未活性時と触媒活性時とにおいて目標バルブタイミングが異なる値に設定されており、ECU2には、この触媒未活性用のマップと触媒活性用のマップとが記憶されている。また、エンジン回転数NEに応じて前記流路面積変更バルブ58の目標開度が設定されており、ECU2には、このエンジン回転数NEに対する目標開度のマップが記憶されている。
例えば、前記第1基準回転数N1は2000rpm、第2基準回転数N2は1500rpm、低速領域R1において、触媒未活性時のオーバーラップ期間は110℃A、触媒活性時におけるオーバーラップ期間は80℃A、中速領域R2におけるオーバーラップ期間は60℃A、高速領域R3におけるオーバーラップ期間は40℃A以下に設定されている。
なお、本エンジンシステム100において、前記吸気バルブ19および排気バルブ20の開弁時期、閉弁時期とは、それぞれ、図12に示すように、各バルブのリフトカーブにおいてバルブのリフトが急峻に立ち上がるあるいは立ち下がる時期であり、例えば0.4mmリフトの時期をいう。
次に、噴射量の演算について説明する。
前記ECU2には、エンジン回転数NEとエンジン負荷とに応じて予め設定された基準噴射量のマップが記憶されている。ECU2は、運転条件に応じてこのマップから基準噴射量を抽出する。そして、ECU2は、この基準噴射量に対して、触媒上流における排気の空気過剰率λがλ=1となるように補正を行い、最終噴射量を決定する。具体的には、前記空燃比センサ66の信号が0.5V未満であって前記排気の空気過剰率λが1.0以上であると検出された場合は、前記基準噴射量に対して所定量増量させた値を最終噴射量とし、前記空燃比センサ66の信号が0.5V以上であって前記排気の空気過剰率λが1.0未満であると検出された場合は、前記基準噴射量に対して所定量減量させた値を最終噴射量とする。
この噴射量の演算は運転条件によらず実施されており、本エンジンシステム100では、運転条件によらず触媒本体62の上流において排気の空気過剰率λがλ=1.0付近とされる。
ここで、本エンジンシステム100では、低速領域R1において触媒の未活性時には、空気が気筒12を吹き抜けるように構成されている。そのため、前記排気の空気過剰率λがλ=1.0となる条件では、気筒12にはこの吹き抜けた空気量と吹き抜けずに気筒12内に留まった空気量に対して空燃比が理論空燃比となる噴射量が噴射され、気筒12内の空気過剰率λはλ<1.0となり、未燃燃料が排気ポート18から排出される。このように、排気ポートから多くの未燃燃料が排出されると、触媒までの間で、気筒12を吹きぬけた空気とこの未燃燃料とが酸化反応することにより排気の温度が上昇し、触媒がより早期に活性化される。特に、前記三元触媒は、空気過剰率λ=1.0付近においてCO、HC,NOxのいずれをも高い浄化率で浄化することができるものである。従って、このように排気の空気過剰率λが1.0付近とされることで、排気性能が良好に維持される。
次に、点火時期の演算について説明する。
前記ECU2には、エンジン回転数NEとエンジン負荷とに応じて予め設定された触媒活性時用の点火時期のマップと触媒未活性時用の点火時期のマップとが記憶されている。ECU2は、触媒活性時には、触媒活性時用のマップから運転条件に応じて点火時期を抽出し、触媒未活性時には、触媒未活性時用のマップから運転条件に応じて点火時期を抽出する。前記触媒活性時用のマップでは、点火時期としてエンジン出力が最大となる点火時期いわゆるMBTが設定されており、前記触媒未活性時用のマップでは、点火時期として、前記MBTよりも遅角側の時期が設定されている。このように、触媒未活性時には、より遅角側において点火がなされ、これにより、未燃燃料がより多く触媒本体62側に排出される。このように、未燃燃料が多く触媒本体62に排出されることで、触媒上流あるいは触媒本体62内での酸化反応が促進され、触媒は早期に活性化される。
ECU2の演算の全体の流れを図11のフローチャートに基づいて説明する。
まず、ステップS1にて、前記エンジン水温センサ70で検出されたエンジン水温Tw、クランク角センサ等の値に基づき算出されたエンジン回転数NE、およびエンジン回転数NEとアクセル開度とに基づき算出されたエンジン負荷を読み込む。ここで、エンジン水温Twが高くエンジンの始動後十分に時間が経過していれば触媒は活性している。そこで、本実施形態では、エンジン水温Twに基づき触媒の活性状態を判定する。具体的には、エンジン水温Twが予め設定された触媒活性水温Tw1以上の場合を触媒活性時とし、エンジン水温Twが触媒活性水温Tw1未満の場合を触媒未活性時とする。
次に、ステップS2にて、前記エンジン水温Twが前記触媒活性水温Tw1以上であるかどうかを判定する。この判定がYESであってエンジン水温Twが触媒活性水温Tw1以上であり触媒が活性状態にある場合は、ステップS3に進み、前記触媒活性用の点火時期のマップからエンジン回転数NEおよびエンジン負荷に基づき点火時期を抽出する。また、ステップS6にて、前記触媒活性用の目標バルブタイミングのマップからエンジン回転数NEに基づき吸気バルブ19および排気バルブ20の目標バルブタイミングを抽出する。
一方、ステップS2にてNOと判定されて触媒が未活性状態にある場合は、ステップS4に進む。ステップS4では、前記触媒未活性用の点火時期のマップからエンジン回転数NEおよびエンジン負荷に基づき前記MBTよりも遅角側に設定された点火時期を抽出する。その後、ステップS5に進む。
ステップS5では、エンジン回転数NEが前記第2基準回転数N2以上であるかどうか、すなわち、現在の運転領域が前記中速領域R2あるいは高速領域R3であるかどうかが判定される。この判定がYESの場合はステップS6に進む。すなわち、中速領域R2および高速領域R3では、触媒の活性状態によらず同一の目標バルブタイミングが抽出される。一方、この判定がNOであって現在の運転領域が前記低速領域R1である場合には、ステップS7に進む。
ステップS7では、前記触媒未活性用の目標バルブタイミングのマップからエンジン回転数NEに基づき、前記触媒活性用の目標バルブタイミングよりもオーバーラップ期間が長くなるように設定された、吸気バルブ19および排気バルブ20の目標バルブタイミングを抽出する。その後、ステップS8に進む。
ステップS8では、前記基本噴射量のマップからエンジン回転数NEおよびエンジン負荷に基づき基本噴射量を抽出する。
次に、ステップS9にて、前記空燃比センサ66が活性しているかどうかを判定する。具体的には、エンジン始動後所定時間(例えば2s)経過していれば空燃比センサ66が活性していると判定する。この判定がNOの場合すなわち空燃比センサ66が活性していない場合は、ステップS13に進む。
一方、この判定がYESの場合はステップS10に進み、この空燃比センサ66の値が0.5V以上であるかどうか、すなわち、触媒本体62の上流の排気の空気過剰率λが1.0未満であるかどうかを判定する。この判定がYESの場合は、ステップS11に進み、基本噴射量を所定量減量補正して最終噴射量を算出する。一方、このステップS10での判定がNOの場合は、ステップS12に進み基本噴射量を所定量増量補正して最終噴射量を算出する。その後、ステップS13に進む。
ステップS13では、算出された各点火時期、目標バルブタイミング、最終噴射量に基づき、点火装置、吸気VVT32および排気VVT42、噴射装置を駆動する。
以上のようにして、本エンジンシステム100では、触媒未活性時には排気バルブ20と吸気バルブ19のオーバーラップ期間を大きくして排気ポート18から触媒上流までの間および触媒内に多くの空気を導入してこれらの領域における酸化反応を促進させることで、触媒を早期に活性化させることができるとともに、触媒活性時には前記オーバーラップ期間をエンジン出力が最大となる範囲において小さくして他の領域への過渡時に排気バルブ20あるいは吸気バルブ19の追従性が悪化するのを抑制することができる。
ここで、前記空燃比センサ66およびこの空燃比センサ66を用いて噴射量を補正する制御は省略可能である。ただし、前記のように、空燃比センサ66を用いて排気のλ=1.0となるように噴射量を補正すれば、触媒の未活性時において前記気筒12を吹き抜けた空気に対して適切な燃料を供給することができ、触媒上流側において酸化反応を促進させて触媒を早期に活性化させることができるとともに、未燃燃料が触媒をすり抜けて大気中に放出される、あるいは、触媒内の空気が過剰となることで触媒の温度上昇が抑制されるという事態をより確実に回避することができる。
また、触媒の未活性時においても、点火時期をMBTとしてもよい。ただし、前記のように、触媒の未活性時に点火時期をより遅角側にすれば、排気の温度を高めることができるとともにより多くの未燃燃料を触媒側に排出することができ、触媒上流等での酸化反応を促進することができる。
また、前記実施形態では前記低速領域R1において前記流路面積可変バルブ58が全閉位置に駆動される場合について説明したが、この低速領域R1における流路面積可変バルブ58の位置は全閉位置に限らず、全開位置よりも閉じ側、すなわち、高速側通路53の流路面積が最大面積よりも縮小される位置であればよい。
また、低速領域R1において、前記流路面積可変バルブ58を全開位置と全閉位置との間で段階的あるいは連続的に変化するようにしてもよい。この場合には、エンジン回転数が高くなるほど高速側通路53の流路面積が大きくなるように前記流路面積可変バルブ58を駆動するのが好ましい。このようにすれば、エンジン回転数NEが低く排気の流量が少ない領域では高速側通路53の流路面積を絞ることでエゼクタ効果により掃気性能を高めることができる一方、エンジン回転数NEが高く排気の流量が多い領域では高速側通路の流路面積を大きくすることで排気抵抗を小さく抑えることにより掃気性能を高めることができる。
また、前記実施形態では、前記各独立排気通路52が低速側通路54と高速側通路53とに分離しており、流路面積可変バルブ58が高速側通路53を開閉することで独立排気通路52の流路面積が変更される場合について示したが、独立排気通路52の流路面積を変更するための構成はこれに限らない。例えば、独立排気通路52を低速側通路54と高速側通路53とに分離せず、独立排気通路52内にその流路面積を変更可能な流路面積可変バルブを設けてもよい。
また、触媒の位置は前記に限らない。ただし、本エンジンシステム100によれば、エゼクタ効果により吸気効率を高めることができるため、ターボ過給機を有しないエンジンシステムにおいて有用である。そして、このようにターボ過給機を有しない場合には、触媒を前記実施形態のように各独立排気通路に直接接続されるようなより上流側の位置に配置することができ、これにより触媒に流入する排気の温度を高く維持して触媒を早期に活性させることができる。
また、低速領域R1のうちエンジン負荷の低い低負荷領域では、吸気の圧力が小さく、吸気バルブ19と排気バルブ20のオーバーラップ期間が大きいと排気が吸気側に逆流するおそれがあるため、このような場合には、吸気バルブ19と排気バルブ20のオーバーラップ期間を小さくするとともに、流路面積可変バルブ58を全開としてもよい。
1 エンジン本体
5 排気マニホールド
6 触媒装置
15 点火プラグ(点火手段)
16 インジェクタ(燃料供給手段)
17 吸気ポート
18 排気ポート
19 吸気バルブ
20 排気バルブ
30 吸気バルブ駆動機構(バルブ駆動手段)
32 吸気VVT(バルブタイミング可変機構)
40 排気バルブ駆動機構(バルブ駆動手段)
42 排気VVT(バルブタイミング可変機構)
52 独立排気通路
58 流路面積可変バルブ
58b バルブアクチュエータ(流路面積可変バルブ駆動手段)
62a ケーシング上流部分(集合部)
64 触媒本体(触媒)

Claims (5)

  1. 吸気ポートおよび排気ポートがそれぞれ形成されるとともに前記吸気ポートを開閉可能な吸気バルブと前記排気ポートを開閉可能な排気バルブとが設けられた複数の気筒を有する多気筒エンジンの排気装置であって、
    1つの気筒あるいは排気順序が互いに連続しない複数の気筒の排気ポートにそれぞれ接続される独立排気通路と、
    前記各独立排気通路の下流端に接続されて、当該各独立排気通路を通過するガスが集合する集合部と、
    前記集合部よりも下流に設けられて、前記各気筒から排出された排気を浄化可能な触媒装置と、
    前記集合部の上流側に設けられて、前記各独立排気通路の流路面積を変更可能な流路面積可変バルブと、
    前記流路面積可変バルブを駆動可能な流路面積可変バルブ駆動手段と、
    前記各気筒の吸気バルブの開弁期間と排気バルブの閉弁時期の少なくとも一方を変更可能なバルブタイミング可変機構を有するとともに前記各気筒の吸気バルブおよび排気バルブを駆動可能なバルブ駆動手段とを備え、
    前記流路面積可変バルブ駆動手段は、エンジンの回転数が予め設定された基準回転数よりも低い低速領域において、少なくともエンジンに対する要求トルクが高い高負荷領域では、前記各独立排気通路の流路面積が最大面積よりも小さくなるように前記流路面積可変バルブを駆動し、
    前記バルブ駆動手段は、前記低速領域の少なくとも前記高負荷領域において、前記各気筒の吸気バルブの開弁期間と排気バルブの開弁期間とが所定のオーバーラップ期間重複し、かつ、排気順序が連続する気筒間において一方の気筒の前記オーバーラップ期間中に他方の気筒の排気バルブが開弁するように各気筒の吸気バルブおよび排気バルブを駆動するとともに、前記低速領域の少なくとも前記高負荷領域において、前記触媒の未活性時は、前記吸気ポートから流入した吸気が前記気筒を通過して前記排気ポートに吹き抜けるような大きいオーバーラップ期間、前記各気筒の吸気バルブの開弁期間と排気バルブの開弁期間とが重複するように、各気筒の吸気バルブおよび排気バルブを駆動し、
    前記バルブタイミング可変機構は、前記エンジンの回転数が前記基準回転数よりも高い高速領域において、前記オーバーラップ期間が前記低速領域におけるオーバーラップ期間よりも小さくなるように、この低速領域と高速領域とで、前記各気筒の吸気バルブの開弁時期と排気バルブの閉弁時期の少なくとも一方を変更するとともに、前記低速領域の少なくとも前記高負荷領域において、前記触媒の活性時の方が前記触媒の未活性時に比べて前記オーバーラップ期間が小さくなるように、この触媒の活性時と触媒の未活性時とで、前記各気筒の吸気バルブの開弁時期と排気バルブの閉弁時期の少なくとも一方を変更することを特徴とする多気筒エンジンの排気装置。
  2. 請求項1に記載の多気筒エンジンの排気装置であって、
    前記各気筒内に燃料を供給可能な燃料供給手段を備え、
    前記燃料供給手段は、前記低速領域の少なくとも前記高負荷領域において、前記触媒の未活性時は、前記気筒内の混合気の空気過剰率λがλ<1となる量の燃料を前記気筒内に供給することを特徴とする多気筒エンジンの排気装置。
  3. 請求項2に記載の多気筒エンジンの排気装置であって、
    前記燃料供給手段は、前記低速領域の少なくとも前記高負荷領域において、前記触媒の未活性時は、前記集合部内の混合気の空気過剰率λがλ=1となるような量の燃料を前記気筒内に供給することを特徴とする多気筒エンジンの排気装置。
  4. 請求項1〜3のいずれかに記載の多気筒エンジンの排気装置であって、
    前記気筒内の混合気に点火可能な点火手段を備え、
    前記点火手段は、前記低速領域の少なくとも前記高負荷領域において、前記触媒の未活性時は、当該触媒の活性時よりも遅角側の時期で前記混合気に点火することを特徴とする多気筒エンジンの排気装置。
  5. 請求項1〜4のいずれかに記載の多気筒エンジンの排気装置であって、
    前記排気バルブ駆動手段は、前記低速領域の少なくとも前記高負荷領域において、前記触媒の活性時は、前記オーバーラップ期間がエンジン出力が最大となるオーバーラップ期間のうち最も小さい期間となるように、前記吸気バルブと前記排気バルブとを駆動する一方、前記触媒の未活性時は、前記オーバーラップ期間が充填効率が最大となるオーバーラップ期間となるように前記吸気バルブと前記排気バルブとを駆動することを特徴とする多気筒エンジンの排気装置。
JP2010080944A 2010-03-31 2010-03-31 多気筒エンジンの排気装置 Expired - Fee Related JP5515972B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010080944A JP5515972B2 (ja) 2010-03-31 2010-03-31 多気筒エンジンの排気装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010080944A JP5515972B2 (ja) 2010-03-31 2010-03-31 多気筒エンジンの排気装置

Publications (2)

Publication Number Publication Date
JP2011214436A true JP2011214436A (ja) 2011-10-27
JP5515972B2 JP5515972B2 (ja) 2014-06-11

Family

ID=44944438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010080944A Expired - Fee Related JP5515972B2 (ja) 2010-03-31 2010-03-31 多気筒エンジンの排気装置

Country Status (1)

Country Link
JP (1) JP5515972B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013068094A (ja) * 2011-09-20 2013-04-18 Mitsubishi Motors Corp エンジンの制御装置
JP2013160169A (ja) * 2012-02-07 2013-08-19 Mazda Motor Corp 多気筒エンジンの吸排気装置
JP2013185446A (ja) * 2012-03-06 2013-09-19 Mazda Motor Corp 多気筒エンジンの排気装置
JP2017072049A (ja) * 2015-10-06 2017-04-13 株式会社日本自動車部品総合研究所 内燃機関の排気浄化制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001041027A (ja) * 1999-07-28 2001-02-13 Toyota Motor Corp 内燃機関の排気浄化装置
JP2003201838A (ja) * 2001-10-29 2003-07-18 Mitsubishi Motors Corp 排圧上昇装置
JP2009197758A (ja) * 2008-02-25 2009-09-03 Mazda Motor Corp 過給機付エンジンシステム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001041027A (ja) * 1999-07-28 2001-02-13 Toyota Motor Corp 内燃機関の排気浄化装置
JP2003201838A (ja) * 2001-10-29 2003-07-18 Mitsubishi Motors Corp 排圧上昇装置
JP2009197758A (ja) * 2008-02-25 2009-09-03 Mazda Motor Corp 過給機付エンジンシステム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013068094A (ja) * 2011-09-20 2013-04-18 Mitsubishi Motors Corp エンジンの制御装置
JP2013160169A (ja) * 2012-02-07 2013-08-19 Mazda Motor Corp 多気筒エンジンの吸排気装置
JP2013185446A (ja) * 2012-03-06 2013-09-19 Mazda Motor Corp 多気筒エンジンの排気装置
JP2017072049A (ja) * 2015-10-06 2017-04-13 株式会社日本自動車部品総合研究所 内燃機関の排気浄化制御装置

Also Published As

Publication number Publication date
JP5515972B2 (ja) 2014-06-11

Similar Documents

Publication Publication Date Title
JP4306642B2 (ja) 内燃機関の制御システム
JP5967296B2 (ja) 内燃機関の制御装置
JP5515977B2 (ja) 多気筒エンジンの排気装置
JPH1082333A (ja) 内燃機関の排気浄化装置
JP4952732B2 (ja) 内燃機関の制御方法および内燃機関の制御システム
JP5471720B2 (ja) 多気筒エンジンの排気装置
JP5515972B2 (ja) 多気筒エンジンの排気装置
US9228476B2 (en) Intake and exhaust device of multi-cylinder engine
JP5979031B2 (ja) 火花点火式エンジン
JP4479774B2 (ja) 内燃機関の制御装置
JP6107859B2 (ja) エンジンの制御装置
CN105164390B (zh) 内燃机的控制装置
JP5447095B2 (ja) 多気筒エンジンの排気装置
JP4985465B2 (ja) 内燃機関の制御方法および内燃機関の制御システム
JP5407992B2 (ja) 多気筒エンジンの排気装置
JP2007132284A (ja) 内燃機関の吸気装置
JP5794037B2 (ja) 多気筒エンジンの吸排気装置
JP5472050B2 (ja) 多気筒エンジンの排気装置
JP2008223519A (ja) 内燃機関の制御装置
JP2007046505A (ja) 内燃機関の制御装置
JP2009127485A (ja) 内燃機関
JP5412755B2 (ja) 車両用エンジンの制御装置及び制御方法
JP5759512B2 (ja) 内燃機関の制御装置
JP4661792B2 (ja) 内燃機関の排気異音抑制装置
JP2011214456A (ja) 多気筒エンジンシステム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R150 Certificate of patent or registration of utility model

Ref document number: 5515972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees