JP2011187746A - 反射型マスクブランクス、反射型マスク、およびその製造方法 - Google Patents

反射型マスクブランクス、反射型マスク、およびその製造方法 Download PDF

Info

Publication number
JP2011187746A
JP2011187746A JP2010052364A JP2010052364A JP2011187746A JP 2011187746 A JP2011187746 A JP 2011187746A JP 2010052364 A JP2010052364 A JP 2010052364A JP 2010052364 A JP2010052364 A JP 2010052364A JP 2011187746 A JP2011187746 A JP 2011187746A
Authority
JP
Japan
Prior art keywords
layer
reflective
mask
inspection
hard mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010052364A
Other languages
English (en)
Inventor
Tsukasa Abe
司 安部
Tadahiko Takigawa
忠彦 滝川
Yuichi Inazuki
友一 稲月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2010052364A priority Critical patent/JP2011187746A/ja
Publication of JP2011187746A publication Critical patent/JP2011187746A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】 本発明は、吸収体層のエッチング後の工程検査で、ハードマスク層を除去することなく欠陥検査することを可能にし、さらに、この工程検査で黒欠陥が見つかった場合でも、複雑な工程を要することなく、容易に欠陥修正が可能なEUV露光用の反射型マスクブランクス、反射型マスク、およびその製造方法を提供することを目的とするものである。
【解決手段】 吸収体層エッチング後のハードマスク層表面とバッファ層表面との段差を、欠陥検査に使用する検査光の1/4波長の奇数倍の大きさに調整し、検査光を垂直に照射した際の、ハードマスク層表面からの反射光と、バッファ層表面からの反射光の位相差によるエッジ遮光効果を利用して欠陥検査を行うことにより、上記課題を解決する。
【選択図】 図1

Description

本発明は、極端紫外光(Extreme Ultra Violet:以後、EUVと記す)を用いてマスクパターンをウェハ上に転写するためのEUV露光用の反射型マスクブランクス及び反射型マスク、その製造方法、並びに検査方法に関する。
半導体デバイスの微細化に伴い、現在、ArFエキシマレーザを用いた光学式の投影露光装置により、フォトマスクを用いてウェハ上にパターン転写する露光方法が行なわれている。しかし、これらの光学式の投影露光装置による露光方法では、いずれ解像限界に達するため、電子線描画装置による直描やインプリントリソグラフィやEUVリソグラフィのような新しいパターン形成方法が提案されている。
これらの新しいリソグラフィ技術の中でも、紫外線露光の短波長化の極限と見なされているEUV露光は、エキシマレーザよりもさらに短波長である波長13.5nm程度のEUV光を用いて通常1/4程度に縮小して露光する技術であり、半導体デバイス用の次世代リソグラフィ技術として注目されている。EUV露光においては、短波長のために屈折光学系が使用できないため、反射光学系が用いられ、マスクとしては反射型マスクが提案されている(例えば、特許文献1)。
従来のフォトマスクが、主に、光の透過部と遮光部でマスクパターンを形成していたのに対し、EUV露光用の反射型マスクは、EUV光を反射する反射部とEUV光を吸収する吸収部とでマスクパターンを形成するマスクである。
ここで、この反射型マスクにおいては、吸収部にマスクパターンを形成した後、この吸収部のパターンが欠陥無く設計通りに形成されているかどうかを検査している。上記のパターンの欠陥検査は、通常、257nm、あるいは193nm〜199nmの検査光をマスク表面に照射し、パターン形成した吸収部の表面と、パターニングによって露出した反射部の表面との反射率の差により得られる反射光の強度差をもとに、欠陥検出している。
上記の検査における反射光の強度差を大きくするために、吸収部上には低反射層が設けられている(例えば、特許文献2)。
図11は、従来のEUV露光用の反射型マスクの一例を示す断面図である。
図11に示す反射型マスク100は、基板101上に多層膜構造でEUV光を反射する反射層102を有し、その上に反射層102の酸化防止やマスク洗浄時における保護層として作用するキャッピング層103を有し、その上にマスクパターン形成時のエッチングダメージを防止するためのバッファ層104が設けられ、さらにその上に吸収体層105を有し、この吸収体層105の上には、マスクパターンの検査に使用する検査光の吸収体からなる低反射層106を有した構造からなっている。
例えば、低反射層106は、Ta(タンタル)とB(ホウ素)とO(酸素)とを含む材料で構成されている。
図12は、従来の反射型マスクの検査方法について例示する説明図であり、(a)は従来の反射型マスクの構成例と検査光の反射の様子を示す図であり、(b)は(a)における反射光の強度分布を示す図である。
図12(a)に示すように、反射型マスク100の表面に、検査光110を入射させた場合、反射型マスク100の吸収体層105の表面には低反射層106が設けられているため、その反射光の強度は、図12(b)に示すように、反射型マスク100の反射部の表面に形成されたキャッピング層103からの反射光の強度より小さくなる。
従来の反射型マスクの検査方法においては、この各々の表面の反射率の差から生じる反射光の強度差を検出して欠陥検査を行っている。
また、マスクパターンの微細化のためにはレジストを薄膜化する必要があるが、レジストの薄膜化につれ、マスクパターン形成のための吸収体層のエッチング工程で、レジストの一部または全てが消失してしまう恐れが増すことになる。このため、レジスト層の下にハードマスク層(例えば、CrN)を形成することが必要となる。
図13は、従来の反射型マスクの製造工程における検査方法について例示する説明図であり、(a)は従来の反射型マスクの製造工程における構成例と検査光の反射の様子を示す図であり、(b)は(a)における反射光の強度分布を示す図である。
図13に示すように、ハードマスク層107をパターン状にエッチングして、低反射層106の所望の部位を露出させた後に行う欠陥検査(工程検査)では、ハードマスク層107は通常、検査光110に対して高反射率を有する材料(例えば、CrN)からなるため、ハードマスク層107からの反射光の強度と低反射層106からの反射光の強度には差が生じ、反射光の強度差を利用する従来の検査を用いることが可能であった。
特開昭63−201656号公報 特開2005−347777号公報 特開昭58−173744号公報 特開平9−230577号公報 特開平4−127150号公報
反射型マスクの製造においては、上記のハードマスク層107のエッチングに続いて、低反射層106および吸収体層105をエッチングしてバッファ層104を露出させることになる。そして、この吸収体層105のエッチングは、マスクパターンを形成する重要な工程であり、エッチング後には欠陥検査が必要になる。
しかしながら、バッファ層104も通常、検査光110に対して高反射率を有する材料(例えば、CrN)からなるため、反射率の差を利用する従来の検査方法では、欠陥検査することが困難であった。
図14は、吸収体層105をエッチングした後の、従来の反射型マスクの製造工程における検査方法について例示する説明図であり、(a)は従来の反射型マスクの製造工程における構成例と検査光の反射の様子を示す図であり、(b)は(a)における反射光の強度分布を示す図である。
図14に示すように、パターン状にエッチングしたハードマスク層107をマスクに用いて低反射層106および吸収体層105をエッチングして、バッファ層104を露出させた後に行う欠陥検査(工程検査)では、ハードマスク層107、バッファ層104ともに、検査光110に対して高反射率を有する材料(例えば、CrN)からなるため、ハードマスク層107からの反射光の強度とバッファ層104からの反射光の強度には差が生じ難く、反射光の強度差を利用する従来の検査を用いることが困難である。
それゆえ、従来の、反射率の差により得られる反射光の強度差を利用する検査では、このハードマスク層を除去してから検査する必要があった。
しかし、この工程検査で黒欠陥(主に吸収部がエッチングで除去されずに残留した欠陥)が見つかった場合、黒欠陥をエッチング除去する欠陥修正を行うには、もう一度、ハードマスク層を形成し、修正箇所以外の吸収部を保護するようにレジスト製版してハードマスク層をエッチング加工する必要があり、大変な手間であった。
本発明は上記問題点に鑑みてなされたものであり、本発明の目的は、吸収体層のエッチング後の工程検査で、ハードマスク層を除去することなく欠陥検査することを可能にし、さらに、この工程検査で黒欠陥が見つかった場合に、再びハードマスク層を形成し、修正箇所以外の吸収部を保護するようにレジスト製版してハードマスク層をエッチング加工するといった一連の複雑な工程を要することなく、容易に欠陥修正が可能なEUV露光用の反射型マスクブランクス、反射型マスク、およびその製造方法を提供することである。
本発明者は、種々研究した結果、吸収体層エッチング後のハードマスク層表面とバッファ層表面との段差を、欠陥検査に使用する検査光の1/4波長の奇数倍の大きさに調整し、検査光を垂直に照射した際の、ハードマスク層表面からの反射光と、バッファ層表面からの反射光の位相差によるエッジ遮光効果を利用して欠陥検査を行うことにより、上記課題を解決できることを見出して本発明を完成したものである。
すなわち、本発明の請求項1に係る発明は、基板の一方の主面上に、EUV光を反射する多層膜からなる反射層と、前記反射層の上に反射層を保護するためのバッファ層と、前記バッファ層の上に前記EUV光を吸収する吸収体層と、を少なくとも設けてなるEUV露光用の反射型マスクブランクスであって、前記吸収体層の上には、欠陥検査に使用する検査光を吸収する低反射層が設けられており、さらに前記低反射層の上には、前記低反射層および前記吸収体層をエッチングする際のマスクとして作用するハードマスク層が設けられており、前記ハードマスク層の厚さと前記低反射層の厚さと前記吸収体層の厚さを合わせた大きさが、欠陥検査に使用する検査光の1/4波長の奇数倍の大きさに調整されていることを特徴とする反射型マスクブランクスである。
また、本発明の請求項2に係る発明は、基板の一方の主面上に、EUV光を反射する多層膜からなる反射層と、前記反射層の上に反射層を保護するためのバッファ層と、前記バッファ層の上に前記EUV光を吸収する吸収体層と、を少なくとも設けてなるEUV露光用の反射型マスクブランクスであって、前記吸収体層の上には、欠陥検査に使用する検査光を吸収する低反射層が設けられており、前記低反射層の上には、前記検査光の波長に応じて厚みを調整する位相差調整層が設けられており、さらに前記位相差調整層の上には、前記位相差調整層、前記低反射層、および前記吸収体層をエッチングする際のマスクとして作用するハードマスク層が設けられており、前記ハードマスク層の厚さと前記位相差調整層の厚さと前記低反射層の厚さと前記吸収体層の厚さを合わせた大きさが、欠陥検査に使用する検査光の1/4波長の奇数倍の大きさに調整されていることを特徴とする反射型マスクブランクスである。
また、本発明の請求項3に係る発明は、前記バッファ層を構成する材料と前記ハードマスク層を構成する材料が同じであることを特徴とする請求項1〜2のいずれかに記載の反射型マスクブランクスである。
また、本発明の請求項4に係る発明は、請求項1から請求項3のいずれかに記載の反射型マスクブランクスの低反射層、吸収体層、およびバッファ層をパターン状に形成して、マスクパターンを形成したことを特徴とする反射型マスクである。
また、本発明の請求項5に係る発明は、請求項1から請求項3のいずれかに記載の反射型マスクブランクスを準備し、前記ハードマスク層をパターン状にエッチングし、前記パターン状にエッチングしたハードマスク層をマスクに用いて前記吸収体層をエッチングして前記バッファ層を露出させた後に、検査光を垂直に照射して、前記ハードマスク層の表面からの反射光と、前記バッファ層の表面からの反射光との位相差によるエッジ遮光効果を用いて欠陥検査することを特徴とする反射型マスクの製造方法である。
また、本発明の請求項6に係る発明は、請求項5に記載の反射型マスクの製造方法において、検出された欠陥部分の吸収体層を、前記パターン状のハードマスク層を再びマスクに用いてエッチングすることにより除去し、欠陥修正することを特徴とする反射型マスクの製造方法である。
また、本発明の請求項7に係る発明は、前記欠陥部分の吸収体層をエッチングした後に、前記ハードマスク層と前記バッファ層を同時にエッチング除去することを特徴とする請求項7に記載の反射型マスクの製造方法である。
本発明に係る反射型マスクブランクスによれば、ハードマスク層の厚さと低反射層の厚さと吸収体層の厚さを合わせた大きさ、若しくはハードマスク層の厚さと位相差調整層の厚さと低反射層の厚さと吸収体層の厚さを合わせた大きさが、反射型マスクの製造工程における欠陥検査に使用する検査光の1/4波長の奇数倍の大きさであるため、この反射型マスクブランクスを用いて前記ハードマスク層をパターン状にエッチングし、このハードマスク層をマスクに用いて前記吸収体層をエッチングして前記バッファ層を露出させた後に、工程検査として欠陥検査を行う場合、前記ハードマスク層の表面からの反射光と、前記バッファ層の表面からの反射光との位相差によるエッジ遮光効果を用いて検査することができ、ハードマスク層を残したままで高い検査感度を得ることができる。
そして、欠陥が検出された場合には、前記ハードマスク層を再びマスクとして用いて吸収体層をエッチングして欠陥修正することができるため、従来のように、もう一度、ハードマスク層を形成し、修正箇所以外の吸収体層を保護するようにレジスト製版してハードマスク層をエッチング加工する一連の工程を経る必要は無く、大幅に工程を削減することができる。
本発明に係る反射型マスクによれば、ハードマスク層の厚さと低反射層の厚さと吸収体層の厚さを合わせた大きさ、若しくはハードマスク層の厚さと位相差調整層の厚さと低反射層の厚さと吸収体層の厚さを合わせた大きさが、反射型マスクの製造工程における欠陥検査に使用する検査光の1/4波長の奇数倍の大きさであるため、前記欠陥検査を行う場合に、前記ハードマスク層の表面からの反射光と、前記バッファ層の表面からの反射光との位相差によるエッジ遮光効果を用いて検査することができ、ハードマスク層を残したままで高い検査感度を得ることができる。
そして、欠陥が検出された場合には、前記ハードマスク層を再びマスクとして用いて吸収体層をエッチングして欠陥修正することができるため、従来のように、もう一度、ハードマスク層を形成し、修正箇所以外の吸収体層を保護するようにレジスト製版してハードマスク層をエッチング加工する一連の工程を経る必要は無く、大幅に工程を削減することができる。
それゆえ、短時間で歩留まり良く、無欠陥の反射型マスクを得ることができる。
本発明に係る反射型マスクの製造方法によれば、パターニングしたハードマスク層をマスクとして吸収体層をエッチングした後に、前記ハードマスク層を残したまま、前記ハードマスク層の表面からの反射光と、バッファ層の表面からの反射光との位相差によるエッジ遮光効果を用いて欠陥検査するために、ハードマスク層の表面とバッファ層の表面との反射率の差を必要とせずに高い検査感度を得ることができ、検査精度と検査速度の向上を図ることができる。
そして、欠陥が検出された場合には、前記パターニングしたハードマスク層を再びマスクに用いて吸収体層をエッチングして欠陥修正することができるため、従来のように、もう一度、ハードマスク層を形成し、修正箇所以外の吸収体層を保護するようにレジスト製版してハードマスク層をエッチング加工する一連の工程を経る必要は無く、大幅に工程を削減することができる。
本発明に係る反射型マスクの製造工程における検査方法について例示する説明図であり、(a)は反射型マスクの製造工程における構成例と検査光の反射の様子を示す図であり、(b)は(a)における反射光の強度分布を示す図である。 本発明に係る欠陥修正方法を用いた反射型マスクの製造方法について例示する説明図である。 本発明に係る反射型マスクブランクスの一実施形態を示す概略断面図である。 本発明に係る反射型マスクブランクスの他の実施形態を示す概略断面図である。 本発明に係る反射型マスクの一実施形態を示す概略断面図である。 本発明に係る反射型マスクの製造方法の一例を示す模式的工程図である。 図6に続く本発明に係る反射型マスクの製造方法の一例を示す模式的工程図である。 本発明に係る反射型マスクの製造方法の他の例を示す模式的工程図である。 図8に続く本発明に係る反射型マスクの製造方法の他の例を示す模式的工程図である。 図9に続く本発明に係る反射型マスクの製造方法の他の例を示す模式的工程図である。 従来のEUV露光用反射型マスクの一例を示す断面図である。 従来の反射型マスクの検査方法について例示する説明図であり、(a)は従来の反射型マスクの構成例と検査光の反射の様子を示す図であり、(b)は(a)における反射光の強度分布を示す図である。 従来の反射型マスクの製造工程における検査方法について例示する説明図であり、(a)は従来の反射型マスクの製造工程における構成例と検査光の反射の様子を示す図であり、(b)は(a)における反射光の強度分布を示す図である。 従来の反射型マスクの製造工程における検査方法について例示する説明図であり、(a)は従来の反射型マスクの製造工程における他の構成例と検査光の反射の様子を示す図であり、(b)は(a)における反射光の強度分布を示す図である。 従来のフォトマスクの構成と作用を説明するための図である。 位相シフトフォトマスクの原理を説明するための図である。 透過型位相シフトフォトマスクの構成と作用を説明するための図である。
以下、本発明に係る反射型マスクブランクス、反射型マスク、およびその製造方法について詳細に説明する。
<検査方法>
まず、本発明に係る反射型マスクの製造工程における検査方法について説明する。
本発明に係る反射型マスクの製造工程における検査方法は、製造工程中の反射型マスク中間品の表面に検査光を垂直に照射して、その反射光の位相差によるエッジ遮光効果を利用することにより、高い検査感度を得ることができるものである。
本発明に係る反射光の位相差によるエッジ遮光効果について以下詳しく説明する。
光の位相差を利用して解像力を向上させる技術として、フォトマスクの分野において、位相シフト法が知られている(特許文献3、4)。
図15は従来のフォトマスクの構成と作用を説明する図であり、図16は位相シフトフォトマスクの原理を説明する図である。
図15および図16において、(a)は各フォトマスクの断面図、(b)は(a)のフォトマスク上の光の振幅、(c)は被転写体であるウェハ面上の光の振幅、(d)はウェハ面上の光強度をそれぞれ示し、201は石英等からなる透明基板、202はクロム等からなる遮光パターン、203は位相シフター、204は入射光を示す。
従来法においては、図15(a)に示すように、入射光204が透明基板201の背後から垂直に入射した場合、近接する3つの遮光パターン202の間の2つの開口部からは、位相の揃った光の波が送り出される(図15(b))。
この波は像面であるウェハ面上に結像されるが、上記の遮光パターン202の間隔が狭い場合、2つの開口部からの光は同位相のため、その振幅分布は像面で互いに重なる形となり(図15(c))、その結果、高低差の小さい光強度分布となってしまう(図15(d))。この場合、2つの開口部の像を分離した形で解像することは困難である。
一方、位相シフト法では、図16(a)に示すように、片方の開口部に位相シフター203を設けているため、位相シフター203の無い開口部を通った光と、位相シフター203のある開口部を通った光とは、光強度は同じであるが、位相が180度ずれていることになる(図16(b))。
そして、各開口部からの光の波は、裾の部分で振幅が逆方向となり、互いに打ち消し合うことになる(図16(c))。その結果、像面でパターンの間に光強度が零となる部分ができ、従来法では分解できなかった近接開口部の像を位相シフト法では分解可能とすることができる(図16(d))。
また、位相シフト法には、図17に示すような手法も提案されている。
図17における透過型位相シフトフォトマスクは、図17(a)に示すように、透明基板201上の露光領域内に位相シフター203のみからなるパターンが設けられている。
このような構成のフォトマスクに、入射光204を透明基板201の背後から垂直に入射させた場合、フォトマスクを通って送り出される透過光の振幅は、位相シフター203で位相が180度反転するようになっているため(図17(b))、結像面上の光の振幅は、位相シフター203のエッジ部分で位相が0度から180度まで急激に変化することになる(図17(c))。その結果、結像面では、位相シフター203のエッジ部分で光強度が零となり、エッジ部分とそれ以外の部分で高低差の大きい光強度分布を得ることができる(図17(d))。
ここで、上述の位相シフトの現象は、透過光のみならず、反射光においても作用する。
例えば、入射光の波長の1/4の大きさに相当する段差を有する基板の表面に、垂直に光を入射させた場合、段差の下段の表面からの反射光と段差の上段の表面からの反射光とは、その光路差が1/2波長となるため、段差のエッジ部分では、位相が180度反転することになる。
それゆえ、反射光の強度は段差のエッジ部分で零となり(この効果を、エッジ遮光効果と呼ぶ)、エッジ部分とそれ以外の部分で高低差の大きい強度分布を得ることができる。
なお、上述のエッジ遮光効果は、各反射光の光路差が1/2波長の場合の他に、例えば、波長の3/2の大きさや、5/2の大きさなど、光路差が1/2波長の奇数倍であれば得られるものである。言い換えれば、基板の段差が、入射光の波長の1/4の大きさの奇数倍(例えば、1/4波長、3/4波長、5/4波長など)に相当する大きさであれば、その効果を奏することができる。
本発明は、上述の現象を利用するものであり、製造工程中の反射型マスク中間品において、段差上段の表面に相当するハードマスク層表面からの検査光の反射光と、段差下段の表面に相当するバッファ層表面からの検査光の反射光の位相差によるエッジ遮光効果を利用して、欠陥検査を行うものである。
次に、本発明に係る反射型マスクの製造工程における検査方法について、図面を用いて具体的に説明する。
図1は、本発明に係る反射型マスクの製造工程における検査方法について例示する説明図であり、(a)は反射型マスクの製造工程における構成例と検査光の反射の様子を示す図であり、(b)は(a)における反射光の強度分布を示す図である。
図1(a)における反射型マスク中間品は、バッファ層14の上にパターン状の吸収体層15、低反射層16、およびハードマスク層17が形成されており、この吸収体層15、低反射層16、およびハードマスク層17を合わせた厚さが検査光40の1/4波長の奇数倍の大きさに調整されている。
この反射型マスク中間品の表面に垂直に検査光40を入射させた場合、バッファ層14の表面からの反射光の強度と、ハードマスク層17の表面からの反射光の強度は、同程度になる。
しかし、パターン状のハードマスク層17のエッジ部分では、その段差が検査光40の1/4波長の奇数倍の大きさであるため、エッジ部分を挟んで反射光の位相が180度反転することになる。
それゆえ、図1(b)に示すように、反射光の強度は段差のエッジ部分で零となり、エッジ部分とそれ以外の部分で高低差の大きい強度分布を得ることができる。
本発明に係る反射型マスクの製造工程における検査方法においては、上述のように、反射光の位相差によるエッジ遮光効果を利用して、段差のエッジ部分とそれ以外の部分で高低差の大きい光強度分布を得ることができ、その強度差を検出して欠陥検査するため、段差の上段の表面と下段の表面との反射率の差を必要とせず、反射型マスク中間品の表面にハードマスク層を残したまま、高い検査感度を得ることができる。
そして、欠陥が検出された場合には、前記ハードマスク層17を再びマスクとして用いて欠陥の吸収体層をエッチングして欠陥修正することができる。
<欠陥修正方法>
次に、本発明に係る反射型マスクの製造工程における欠陥修正方法について説明する。
図2は、本発明に係る欠陥修正方法を用いた反射型マスクの製造方法について例示する説明図である。
図2(a)に示すように、吸収体層15のエッチング工程の直前に、異物50が付着した場合、吸収体層15のエッチング後の形状は図2(b)に示すように、パターニングされたハードマスク層17から突出した黒欠陥を有する状態となる。
ここで、従来であれば、この黒欠陥を工程検査で検出するためには、ハードマスク層17を除去する必要があったが、本発明においては、上述のとおり、ハードマスク層17を残したまま欠陥検査を行うことができる。
例えば、本発明において検査光の反射光強度は、予め設計された所定の位置のエッジ部分で零となるところ、上述のような黒欠陥がある場合には、所定の位置のエッジ部分で零とならなくなり、反射光の強度波形が黒欠陥の無い場合の波形と相違する。本発明においては、この波形の違いから、欠陥検出することができる。
そして、本発明においては、欠陥が検出された場合には、図2(c)に示すように、前記ハードマスク層17を再びマスクとして用いて欠陥の吸収体層をエッチングして欠陥修正することができる。
そして、その後の欠陥検査で欠陥が無いことが確認されれば、ハードマスク層17を除去し、バッファ層14をドライエッチングしてキャッピング層13を露出させて反射型マスク10を得る(図2(d))。
上述のとおり、本発明によれば、ハードマスク層17を残したまま欠陥検査を行うことができ、欠陥が検出された場合には、前記ハードマスク層17を再びマスクとして用いて欠陥の吸収体層をエッチングして欠陥修正することができるため、従来のように、もう一度、ハードマスク層を形成し、修正箇所以外の吸収体層を保護するようにレジスト製版してハードマスク層をエッチング加工する一連の工程を経る必要は無く、大幅に工程を削減することができる。
<反射型マスクブランクス>
次に、本発明に係る反射型マスクブランクスについて説明する。
1.第1の実施形態
図3は、本発明に係る反射型マスクブランクスの第1の実施形態を示す概略断面図である。
図3に示すように、本実施形態における反射型マスクブランクス1は、基板11の一方の主面上に、多層膜構造でEUV光を反射する反射層12を有し、その上に反射層12の酸化防止やマスク洗浄時における保護のための保護層として作用するキャッピング層13が設けられ、次いでマスクパターン形成時のエッチング停止層として作用するバッファ層14が設けられ、その上にEUV光を吸収する吸収体層15を有し、その上に欠陥検査に使用する検査光を吸収する低反射層16を有し、さらにその上にハードマスク層17を有した構成になっている。
そして、本実施形態における反射型マスクブランクスにおいては、ハードマスク層17の厚さと低反射層16の厚さと吸収体層15の厚さを合わせた大きさが、反射型マスクの製造工程における欠陥検査に使用する検査光の1/4波長の奇数倍の大きさに調整されている。
このような構成とすることにより、本実施形態における反射型マスクブランクス1のハードマスク層17、低反射層16、および吸収体層15をパターン状にエッチング加工してバッファ層14を露出させ、その表面に検査光を垂直に照射した場合、バッファ層14からの検査光の反射光と、ハードマスク層17からの検査光の反射光の位相が180度ずれた状態となる。
そして、この反射光の位相差によるエッジ遮光効果を利用することにより、反射型マスクの工程検査における欠陥検査において、ハードマスク層を残したままで高い検査感度を得ることができ、検査精度と検査速度の向上を図ることができる。
ここで、一般に、上述の位相シフトフォトマスクにおける効果は、反射光の位相差が180度の場合に最も効果が発揮されるものであるが、この位相差180度に対して±20%の範囲であれば十分な効果を得ることができる(特許文献5)。
すなわち、上述のエッジ遮光効果を有効に利用するためには、ハードマスク層17の厚さと前記低反射層16の厚さと前記吸収体層15の厚さを合わせた大きさが、反射型マスクの欠陥検査に使用する検査光の1/4波長の奇数倍の大きさに調整されている必要があるが、目標とする大きさの±20%の範囲内、好ましくは±10%の範囲内であればその効果を得ることができる。
例えば、検査光に257nmの波長の光を用いる場合に、ハードマスク層17の厚さと低反射層16の厚さと吸収体層15の厚さを合わせた大きさを検査光の1/4波長の大きさに調整するには、目標の大きさである64.25nmに対し、概ね51nm〜77nm、好ましくは58nm〜70nmの範囲になるようにハードマスク層17と低反射層16と吸収体層15を形成すればよい。
そして、欠陥が検出された場合には、前記ハードマスク層17を再びマスクとして用いて欠陥部分の吸収体層をエッチングして欠陥修正することができるため、従来のように、もう一度、ハードマスク層を形成し、修正箇所以外の吸収体層を保護するようにレジスト製版してハードマスク層をエッチング加工する一連の工程を経る必要は無く、大幅に工程を削減することができる。
また、本実施形態における反射型マスクブランクス1において、バッファ層14を構成する材料と前記ハードマスク層17を構成する材料を同じ材料にしておけば、上述の修正後に、ハードマスク層17を除去する工程と、開口部のバッファ層14をエッチングしてキャッピング層13を露出させる工程を、同じエッチング条件で同時に行うことができ、各々を別の工程で行うことに比べ、工程削減することができることになる。
2.第2の実施形態
図4は、本発明に係る反射型マスクブランクスの第2の実施形態を示す概略断面図である。
図4に示すように、本実施形態における反射型マスクブランクス2は、基板11の一方の主面上に、多層膜構造でEUV光を反射する反射層12を有し、その上に反射層12の酸化防止やマスク洗浄時における保護のための保護層として作用するキャッピング層13が設けられ、次いでマスクパターン形成時のエッチング停止層として作用するバッファ層14が設けられ、その上にEUV光を吸収する吸収体層15、次いで欠陥検査に使用する検査光を吸収する低反射層16を有し、その上に前記検査光の波長に応じて厚みを調整する位相差調整層18が設けられ、さらにその上にハードマスク層17を有した構成になっている。
そして、本実施形態における反射型マスクブランクス2においては、ハードマスク層17の厚さと位相差調整層18の厚さと低反射層16の厚さと吸収体層15の厚さを合わせた大きさが、反射型マスクの製造工程における欠陥検査に使用する検査光の1/4波長の奇数倍の大きさに調整されている。
このような構成とすることにより、本実施形態における反射型マスクブランクス2のハードマスク層17、位相差調整層18、低反射層16、および吸収体層15をパターン状にエッチング加工してバッファ層14を露出させ、その表面に検査光を垂直に照射した場合、バッファ層14からの検査光の反射光と、ハードマスク層17からの検査光の反射光の位相が180度ずれた状態となる。
そして、この反射光の位相差によるエッジ遮光効果を利用することにより、反射型マスクの工程検査における欠陥検査において、ハードマスク層を残したままで高い検査感度を得ることができ、検査精度と検査速度の向上を図ることができる。
また、本実施形態における反射型マスクブランクス2では、位相差調整層18の厚さを調整することで、ハードマスク層17、位相差調整層18、低反射層16、および吸収体層15を合わせた厚さを、欠陥検査に使用する検査光の1/4波長の奇数倍の大きさに調整できるため、吸収体層15の厚さを、検査光の波長に制限されること無く、自由に設計することが可能となる。
位相差調整層18は、例えば、Arガス雰囲気下で、Siをスパッタ成膜することで設けることができる。
<反射型マスク>
次に、本発明に係る反射型マスクについて説明する。図5は、本発明に係る反射型マスクの一実施形態を示す概略断面図である。
図5に示すように、本実施形態における反射型マスク10は、基板11の一方の主面上に、反射層12を有し、その上にキャッピング層13が設けられ、その上に、マスクパターン状に加工されたバッファ層14と吸収体層15と低反射層16をこの順で有した構成になっている。
本実施形態における反射型マスク10は、上述の反射型マスクブランクス1または反射型マスクブランクス2を用いて、低反射層16、吸収体層15、およびバッファ層14をパターン状に形成して、マスクパターンを形成したことを特徴とする反射型マスクである。
それゆえ、例えば、反射型マスクブランクス1を加工して反射型マスク10が製造された場合には、反射型マスク10の吸収体層15の厚さと低反射層16の厚さを合わせた大きさに、反射型マスクブランクス1のハードマスク層17の厚さを加えた大きさは、欠陥検査に使用する検査光の1/4波長の奇数倍の大きさになる。
一方、反射型マスクブランクス2を加工して反射型マスク10が製造された場合には、反射型マスク10の吸収体層15の厚さと低反射層16の厚さを合わせた大きさに、反射型マスクブランクス2のハードマスク層17の厚さと位相差調整層18の厚さを加えた大きさは、欠陥検査に使用する検査光の1/4波長の奇数倍の大きさになる。
上述のように、本実施形態における反射型マスク10は、上述の反射型マスクブランクス1または反射型マスクブランクス2を用いて、低反射層16、吸収体層15、およびバッファ層14をパターン状に形成して、マスクパターンを形成したことを特徴とする反射型マスクである。
それゆえ、反射型マスク10の製造工程においては、上述の反射型マスクブランクスの説明において詳述した欠陥検査や欠陥修正を行うことができ、短時間で歩留まり良く、無欠陥の反射型マスクを得ることができる。
なお、本実施形態における反射型マスク10は、上述のハードマスク層17および位相差調整層18を最終的に除去した形態で製品となるため、反射型マスク10の欠陥検査(出荷検査)は、従来と同じ検査方法を用いることができる。
すなわち、反射型マスク10のEUV光吸収部の表面は低反射層16であり、一方、EUV光反射部の表面はキャッピング層13であり、低反射層16は検査光に対する反射率が低く、キャッピング層13は逆に反射率が高いため、表面の反射率の差から生じる反射光の強度差を検出して欠陥検査を行うことができる。
したがって、反射型マスク10の欠陥検査(出荷検査)には、実績のある従来の検査方法を用いることができる。
<反射型マスクの製造方法>
次に、本発明に係る反射型マスクの製造方法について説明する。
1.第1の実施形態
図6および図7は、図3に示す本発明に係る反射型マスクブランクス1を用いた反射型マスクの製造方法の例を示す模式的工程図である。
まず、図6(a)に示すように、本発明に係る反射型マスクブランクス1を準備し、レジストパターン30を形成し(図6(b))、ハードマスク層17をパターン状にエッチングする(図6(c))。
その後、レジストパターン30を除去し(図7(d))、洗浄後、ハードマスク層17と低反射層16との反射率の差を利用する従来の検査方法で欠陥検査する(図13参照)。
そして欠陥が検出された場合には、例えば、FIB(収束イオンビーム)による修正等、従来のフォトマスクで用いられている欠陥修正方法を用いて修正する。なお、FIBによる修正方法では、下地である低反射層16にイオン源であるガリウムイオン等が打ち込まれ、低反射層16に損傷を与えてしまうが、本発明においては、次の工程で、露出した低反射層16をエッチング除去するため、問題にはならない。
次に、パターン状にエッチングされたハードマスク層17をマスクに用いて、低反射層16、吸収体層15の順にドライエッチングし、バッファ層14を露出させる(図7(e)〜(f))。
洗浄後、ハードマスク層17表面からの反射光と、バッファ層14表面からの反射光の位相差によるエッジ遮光効果を利用した本発明に係る検査方法を用いて欠陥検査を行う(図1参照)。
ここでハードマスク層17表面とバッファ層14表面の段差は、検査光の1/4波長の奇数倍の大きさであるため、エッジ部分を挟んで反射光の位相が180度反転することになる。
それゆえ、反射光の強度は段差のエッジ部分で零となり、エッジ部分とそれ以外の部分で高低差の大きい強度分布を得ることができ、本発明においては、その強度差を検出して欠陥検査するため、反射型マスク中間品の表面にハードマスク層17を残したまま、高い検査感度を得ることができる。
そして、欠陥が検出された場合には、前記ハードマスク層17を再びマスクとして用いて欠陥の吸収体層をエッチングして欠陥修正することができる(図2参照)。
一方、欠陥が無いことを確認した後は、ハードマスク層17を除去し、バッファ層14をドライエッチングしてキャッピング層13を露出させて反射型マスク10を得る(図7(g))。反射型マスク10の欠陥検査(出荷検査)には、実績のある従来の検査方法を用いることができる。
なお、バッファ層14を構成する材料と、前記ハードマスク層17を構成する材料に、同じ材料を用いておけば、上述のハードマスク層17を除去する工程と、開口部のバッファ層14をエッチングしてキャッピング層13を露出させる工程を、同じエッチング条件で同時に行うことができる。
2.第2の実施形態
図8〜図10は、図4に示す本発明に係る反射型マスクブランクス2を用いた反射型マスクの製造方法の例を示す模式的工程図である。
まず、図8(a)に示すように、本発明に係る反射型マスクブランクス2を準備し、レジストパターン30を形成し(図8(b))、ハードマスク層17および位相差調整層18をパターン状にエッチングする(図8(c)〜図9(d))。
その後、レジストパターン30を除去し(図9(e))、洗浄後、ハードマスク層17と低反射層16との反射率の差を利用する従来の検査方法で欠陥検査する。
欠陥が検出された場合には、従来のフォトマスクで用いられている欠陥修正方法等を用いて修正する。
次に、パターン状にエッチングされたハードマスク層17をマスクに用いて、低反射層16、吸収体層15の順にドライエッチングし、バッファ層14を露出させる(図9(f)〜図10(g))。
洗浄後、ハードマスク層17表面からの反射光と、バッファ層14表面からの反射光の位相差によるエッジ遮光効果を利用した本発明に係る検査方法を用いて欠陥検査を行う(図1参照)。
ここでハードマスク層17表面とバッファ層14表面の段差は、検査光の1/4波長の奇数倍の大きさであるため、エッジ部分を挟んで反射光の位相が180度反転することになる。
それゆえ、反射光の強度は段差のエッジ部分で零となり、エッジ部分とそれ以外の部分で高低差の大きい強度分布を得ることができ、本発明においては、その強度差を検出して欠陥検査するため、反射型マスク中間品の表面にハードマスク層17を残したまま、高い検査感度を得ることができる。
そして、欠陥が検出された場合には、前記ハードマスク層17を再びマスクとして用いて欠陥の吸収体層をエッチングして欠陥修正することができる(図2参照)。
一方、欠陥が無いことを確認した後は、ハードマスク層17および位相差調整層18を除去し、バッファ層14をドライエッチングしてキャッピング層13を露出させて反射型マスク10を得る(図10(h)〜(i))。反射型マスク10の欠陥検査(出荷検査)には、実績のある従来の検査方法を用いることができる。
なお、バッファ層14を構成する材料と、前記ハードマスク層17を構成する材料に、同じ材料を用いておけば、上述のハードマスク層17を除去する工程と、開口部のバッファ層14をエッチングしてキャッピング層13を露出させる工程を、同じエッチング条件で同時に行うことができる。
<反射型マスクブランクスの構成要素>
次に、本実施形態に係る反射型マスクブランクスを構成する要素について説明する。
(基板)
本発明の反射型マスクブランクスを構成する基板11としては、パターン位置精度を高精度に保持するために低熱膨張係数を有し、高反射率および転写精度を得るために平滑性、平坦度が高く、マスク製造工程の洗浄などに用いる洗浄液への耐性に優れたものが好ましく、石英ガラス、SiO2−TiO2系の低熱膨張ガラス、β石英固溶体を析出した結晶化ガラスなどのガラス基板、さらにはシリコンを用いることもできる。マスクブランクスの平坦度としては、例えば、パターン領域において50nm以下が求められている。
(反射層)
反射層12は、EUV露光に用いられるEUV光を高い反射率で反射する材料が用いられ、Mo(モリブデン)層とSi(シリコン)層からなる多層膜が多用されており、例えば、2.8nm厚のMo層と4.2nm厚のSi層を各40層積層した多層膜よりなる反射層が挙げられる。それ以外には、特定の波長域で高い反射率が得られる材料として、Ru/Si、Mo/Be、Mo化合物/Si化合物、Si/Nb周期多層膜、Si/Mo/Ru周期多層膜、Si/Mo/Ru/Mo周期多層膜およびSi/Ru/Mo/Ru周期多層膜なども用いることができる。ただし、材料によって最適な膜厚は異なる。Mo層とSi層からなる多層膜の場合、DCマグネトロンスパッタ法により、まずSiターゲットを用いて、Arガス雰囲気下でSi層を成膜し、その後、Moターゲットを用いて、Arガス雰囲気下でMo層を成膜し、これを1周期として、30〜60周期、好ましくは40周期積層されて、多層膜の反射層が得られる。上記のように、EUV光を高い反射率で反射させるために、13.5nmのEUV光を入射角6.0度で入射したときの反射層12の反射率は、通常、60%以上を示すように設定されている。
(キャッピング層)
反射層12の反射率を高めるには屈折率の大きいMo層を最上層とするのが好ましいが、Moは大気で酸化され易く、反射率が低下するので、酸化防止やマスク洗浄時における保護のための保護層として、スパッタリング法などによりSiやRu(ルテニウム)を成膜し、キャッピング層13を設けることが行われている。例えば、キャッピング層13としてRuを用いる場合は、反射層12の最上層に2.5nmの厚さで設けられる。
(バッファ層)
EUV露光に用いられるEUV光を吸収する吸収体層15をドライエッチングなどの方法でパターンエッチングするときに、下層の反射層12に損傷を与えるのを防止するために、通常、反射層12と吸収層15との間にバッファ層14が設けられる。バッファ層14の材料としてはSiO2、Al23、Cr、CrNなどが用いられる。CrNを用いる場合は、RFマグネトロンスパッタ法によりCrターゲットを用いて窒素ガス雰囲気下で、上記の反射層の上にCrN膜を5nm〜15nm程度の膜厚で成膜するのが好ましい。
(吸収体層)
マスクパターンを形成し、EUV光を吸収する吸収体層15の材料としては、Ta、TaB、TaBNなどのTaを主成分とする材料、Cr、Crを主成分としN、O、Cから選ばれる少なくとも1つの成分を含有する材料などが、膜厚20nm〜100nm程度の範囲で用いられる。
(低反射層)
低反射層16は、反射率の差を利用する従来の検査方法を用いる場合に必要となるものであり、その材料としては、例えば、タンタルの酸化物(TaO)、酸窒化物(TaNO)、ホウ素酸化物(TaBO)、ホウ素酸窒化物(TaBNO)などの酸素を含むタンタル化合物が挙げられ、膜厚5nm〜30nm程度の範囲で用いられる。
(位相差調整層)
位相差調整層18は、例えば、吸収体層15の厚さを、検査光の波長に制限されずに自由に設計したい場合に、ハードマスク層17の厚さと低反射層16の厚さと吸収体層15の厚さを合わせた厚さに位相差調整層18の厚さを加えた大きさが、欠陥検査に使用する検査光の1/4波長の奇数倍の大きさになるように調整する目的で設けられる。
位相差調整層18は、例えば、Arガス雰囲気下で、Siをスパッタ成膜することで設けることができる。位相差調整層18の膜厚は、例えば、5nm〜30nm程度の範囲で用いられる。
(ハードマスク層)
ハードマスク層17の材料としては、吸収体層15のエッチングに耐性をもつものであって、反射型マスクの転写パターンに応じた微細加工に適したものを用いる必要がある。例えば、Cr(クロム)、Zr(ジルコニウム)、Hf(ハフニュウム)およびその窒化物、酸化物などである。
また、ハードマスク層17の材料は、バッファ層14と同一の材料であることが好ましい。この場合、吸収体層15のエッチングの後に、ハードマスク層17の除去とバッファ層14の除去とを同一工程で除去できる。
ハードマスク層17の厚さは、その材料のエッチング耐性や転写パターンのサイズに応じた加工精度にもよるが、例えば5nm〜15nmである。
ハードマスク層17は、例えば、Arと窒素の混合ガス雰囲気下で、Crをスパッタ成膜することで、CrNからなるハードマスク層17を設けることができる。
(導電層)
基板11の一方の主面上に設けられたマスクパターンと相対する他方の主面上には、導電層が形成されていてもよい。この導電層は、反射型マスクの裏面を静電吸着するために、設けられるものである。この導電層は、導電性を示す金属や金属窒化物などの薄膜であって、例えば、Cr(クロム)やCrN(窒化クロム)などを厚さ20nm〜150nm程度に成膜して用いられる。
以上、本発明に係る反射型マスクブランクス、反射型マスク、およびその製造方法について説明したが、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と、実質的に同一の構成を有し、同様な作用効果を奏するものは、いかなる場合であっても本発明の技術的範囲に包含される。
以下、実施例を用いて、本発明をさらに具体的に説明する。
(実施例1)
基板11として、光学研磨された大きさ6インチ角(厚さ0.25インチ)の合成石英基板を用い、その一方の主面(表面)上に、DCマグネトロンスパッタ法により、Arガス雰囲気下で、Siターゲットを用いてSi膜を4.2nm成膜し、続いてMoターゲットを用いてMo膜を2.8nm成膜し、これを1周期として40周期積層してMoとSiの多層膜よりなる反射層12を形成した後、Ru膜を2.5nm成膜してキャッピング層13を形成した。
次に、上記のSi膜の上に、RFマグネトロンスパッタ法によりCrターゲットを用いて窒素雰囲気下で、CrN膜を10nmの厚さに成膜しバッファ層14とした。
続いて、上記のCrN膜上に、DCマグネトロンスパッタ法により、TaおよびBを含むターゲットを用いて、Arと窒素の混合ガス雰囲気下で、TaBN膜を40nmの厚さで形成し、EUV光を吸収する吸収体層15とし、この吸収体層15上にTaBO膜を15nmの厚さで成膜し、低反射層16とした。
この低反射層16上にCrN膜を10nmの厚さに成膜しハードマスク層17とし、反射型マスクブランクス1を得た。
次に、この反射型マスクブランクス1を用い、EBレジストを塗布し、EB描画してレジストパターン30を形成した。このレジストパターン30をエッチングマスクにして、CrN膜を塩素と酸素との混合ガスでドライエッチングし、その後、レジストパターン30を除去し、洗浄した。
この洗浄後の反射型マスク中間品の欠陥検査を、波長257nmの検査光を用いて、従来の検査方法で欠陥検査したところ、ハードマスク層17のCrN膜と低反射層16のTaBO膜との反射率の差により、良好に欠陥検査することができた。
次に、ハードマスク層17のCrN膜パターンをマスクにして低反射層16のTaBO膜をフッ素ガスによりドライエッチングし、続いて吸収体層15のTaBN膜を塩素ガスによりドライエッチングし、バッファ層14のCrN膜を露出させ、段差状のパターンを形成した。
この反射型マスク中間品を洗浄後、波長257nmの検査光を用いて、本発明に係る検査方法を用いて欠陥検査を行ったところ、ハードマスク層17のCrN膜表面からの反射光と、バッファ層14のCrN膜表面からの反射光の位相差によるエッジ遮光効果により、パターン段差のエッジ部分とそれ以外の部分で高低差の大きい光強度分布を得ることができ、良好に欠陥検査することができた。
次に、ハードマスク層17のCrNと、バッファ層14の露出したCrNを、同一工程で塩素と酸素との混合ガスでドライエッチングして、反射型マスク10を得た。
この反射型マスク10の欠陥検査を、波長257nmの検査光を用いて、従来の検査方法で行ったところ、キャッピング層13のRu膜と低反射層16のTaBO膜との反射率の差により、良好に欠陥検査することができた。
(実施例2)
基板11として、光学研磨された大きさ6インチ角(厚さ0.25インチ)の合成石英基板を用い、その一方の主面(表面)上に、DCマグネトロンスパッタ法により、Arガス雰囲気下で、Siターゲットを用いてSi膜を4.2nm成膜し、続いてMoターゲットを用いてMo膜を2.8nm成膜し、これを1周期として40周期積層してMoとSiの多層膜よりなる反射層12を形成した後、Ru膜を2.5nm成膜してキャッピング層13を形成した。
次に、上記のSi膜の上に、RFマグネトロンスパッタ法によりCrターゲットを用いて窒素雰囲気下で、CrN膜を10nmの厚さに成膜しバッファ層14とした。
続いて、上記のCrN膜上に、DCマグネトロンスパッタ法により、TaおよびBを含むターゲットを用いて、Arと窒素の混合ガス雰囲気下で、TaBN膜を30nmの厚さで形成し、EUV光を吸収する吸収体層15とし、この吸収体層15上にTaBO膜を15nmの厚さで成膜し、低反射層16とした。
この低反射層16上に、Si膜を10nmの厚さで成膜して位相差調整層18を形成し、さらにその上に、CrN膜を10nmの厚さに成膜しハードマスク層17とし、反射型マスクブランクス2を得た。
次に、この反射型マスクブランクス2を用い、EBレジストを塗布し、EB描画してレジストパターン30を形成した。このレジストパターン30をエッチングマスクにして、CrN膜を塩素と酸素との混合ガスでドライエッチングし、次いで、位相差調整層18のSiをフッ素系ガスでドライエッチングし、その後、レジストパターン30を除去し、洗浄した。
この洗浄後の反射型マスク中間品の欠陥検査を、波長257nmの検査光を用いて、従来の検査方法で欠陥検査したところ、ハードマスク層17のCrN膜と低反射層16のTaBO膜との反射率の差により、良好に欠陥検査することができた。
次に、ハードマスク層17のCrN膜パターンをマスクにして低反射層16のTaBO膜をフッ素ガスによりドライエッチングし、続いて吸収体層15のTaBN膜を塩素ガスによりドライエッチングし、バッファ層14のCrN膜を露出させ、段差状のパターンを形成した。
この反射型マスク中間品を洗浄後、波長257nmの検査光を用いて、本発明に係る検査方法を用いて欠陥検査を行ったところ、ハードマスク層17のCrN膜表面からの反射光と、バッファ層14のCrN膜表面からの反射光の位相差によるエッジ遮光効果により、パターン段差のエッジ部分とそれ以外の部分で高低差の大きい光強度分布を得ることができ、良好に欠陥検査することができた。
次に、ハードマスク層17のCrNと、バッファ層14の露出したCrNを、同一工程で塩素と酸素との混合ガスでドライエッチングし、位相差調整層18のSiをフッ素系ガスでドライエッチングして除去し、反射型マスク10を得た。
この反射型マスク10の欠陥検査を、波長257nmの検査光を用いて、従来の検査方法で行ったところ、キャッピング層13のRu膜と低反射層16のTaBO膜との反射率の差により、良好に欠陥検査することができた。
(実施例3)
実施例1で作製した反射型マスクブランクス1を用い、EBレジストを塗布し、EB描画してレジストパターン30を形成した。ここで、レジストパターン30には意図的に黒欠陥を生じさせる目的で、設計欠陥のパターンも形成した。
このレジストパターン30をエッチングマスクにして、CrN膜を塩素と酸素との混合ガスでドライエッチングし、次いで、低反射層16のTaBO膜をフッ素ガスによりドライエッチングし、次いで、吸収体層15のTaBNを塩素ガスでドライエッチングし、バッファ層14のCrNを露出させた。
その後、レジストパターン19を除去し、次いで、前記設計欠陥の部分のCrNを、FIB修正装置を用いて除去し、露出した低反射層16のTaBO膜をフッ素ガスによりドライエッチングして吸収体層15のTaBNを露出させ、その後洗浄した。
この反射型マスク中間品の欠陥検査を、波長257nmの検査光を用いて、本発明に係る検査方法を用いて行ったところ、欠陥の無い部分では、ハードマスク層17のCrN膜表面からの反射光と、バッファ層14のCrN膜表面からの反射光の位相差によるエッジ遮光効果により、パターン段差のエッジ部分とそれ以外の部分で高低差の大きい光強度分布を得ることができた。
一方、黒欠陥がある部分では、所定の位置で光強度は零とならず、反射光の強度波形が黒欠陥の無い場合の波形と相違し、欠陥検出することができた。
次に、表面のCrN膜をエッチングマスクとして、上記のTaBNを塩素ガスでドライエッチングし、洗浄後、再び上記と同様に欠陥検査を行ったところ、設計した黒欠陥は無くなっており、設計欠陥を修正できることが確認できた。
次に、ハードマスク層17のCrNと、バッファ層14の露出したCrNを、同一工程で塩素と酸素との混合ガスでドライエッチングして、設計欠陥を除去修正した反射型マスク10を得た。
1、2 反射型マスクブランクス
10 反射型マスク
11 基板
12 反射層
13 キャッピング層
14 バッファ層
15 吸収体層
16 低反射層
17 ハードマスク層
18 位相差調整層
30 レジストパターン
40 検査光
50 異物
100 反射型マスク
101 基板
102 反射層
103 キャッピング層
104 バッファ層
105 吸収体層
106 低反射層
107 ハードマスク層
110 検査光
201 透明基板
202 遮光パターン
203 位相シフター
204 入射光

Claims (7)

  1. 基板の一方の主面上に、
    EUV光を反射する多層膜からなる反射層と、
    前記反射層の上に反射層を保護するためのバッファ層と、
    前記バッファ層の上に前記EUV光を吸収する吸収体層と、
    を少なくとも設けてなるEUV露光用の反射型マスクブランクスであって、
    前記吸収体層の上には、欠陥検査に使用する検査光を吸収する低反射層が設けられており、
    さらに前記低反射層の上には、前記低反射層および前記吸収体層をエッチングする際のマスクとして作用するハードマスク層が設けられており、
    前記ハードマスク層の厚さと前記低反射層の厚さと前記吸収体層の厚さを合わせた大きさが、欠陥検査に使用する検査光の1/4波長の奇数倍の大きさに調整されていることを特徴とする反射型マスクブランクス。
  2. 基板の一方の主面上に、
    EUV光を反射する多層膜からなる反射層と、
    前記反射層の上に反射層を保護するためのバッファ層と、
    前記バッファ層の上に前記EUV光を吸収する吸収体層と、
    を少なくとも設けてなるEUV露光用の反射型マスクブランクスであって、
    前記吸収体層の上には、欠陥検査に使用する検査光を吸収する低反射層が設けられており、
    前記低反射層の上には、前記検査光の波長に応じて厚みを調整する位相差調整層が設けられており、
    さらに前記位相差調整層の上には、前記位相差調整層、前記低反射層、および前記吸収体層をエッチングする際のマスクとして作用するハードマスク層が設けられており、
    前記ハードマスク層の厚さと前記位相差調整層の厚さと前記低反射層の厚さと前記吸収体層の厚さを合わせた大きさが、欠陥検査に使用する検査光の1/4波長の奇数倍の大きさに調整されていることを特徴とする反射型マスクブランクス。
  3. 前記バッファ層を構成する材料と前記ハードマスク層を構成する材料が同じであることを特徴とする請求項1〜2のいずれかに記載の反射型マスクブランクス。
  4. 請求項1から請求項3のいずれかに記載の反射型マスクブランクスの低反射層、吸収体層、およびバッファ層をパターン状に形成して、マスクパターンを形成したことを特徴とする反射型マスク。
  5. 請求項1から請求項3のいずれかに記載の反射型マスクブランクスを準備し、
    前記ハードマスク層をパターン状にエッチングし、
    前記パターン状にエッチングしたハードマスク層をマスクに用いて
    前記吸収体層をエッチングして前記バッファ層を露出させた後に、
    検査光を垂直に照射して、
    前記ハードマスク層の表面からの反射光と、前記バッファ層の表面からの反射光との位相差によるエッジ遮光効果を用いて欠陥検査することを特徴とする反射型マスクの製造方法。
  6. 請求項5に記載の反射型マスクの製造方法において、検出された欠陥部分の吸収体層を、前記パターン状のハードマスク層を再びマスクに用いてエッチングすることにより除去し、欠陥修正することを特徴とする反射型マスクの製造方法。
  7. 前記欠陥部分の吸収体層をエッチングした後に、前記ハードマスク層と前記バッファ層を同時にエッチング除去することを特徴とする請求項7に記載の反射型マスクの製造方法。
JP2010052364A 2010-03-09 2010-03-09 反射型マスクブランクス、反射型マスク、およびその製造方法 Withdrawn JP2011187746A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010052364A JP2011187746A (ja) 2010-03-09 2010-03-09 反射型マスクブランクス、反射型マスク、およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010052364A JP2011187746A (ja) 2010-03-09 2010-03-09 反射型マスクブランクス、反射型マスク、およびその製造方法

Publications (1)

Publication Number Publication Date
JP2011187746A true JP2011187746A (ja) 2011-09-22

Family

ID=44793666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010052364A Withdrawn JP2011187746A (ja) 2010-03-09 2010-03-09 反射型マスクブランクス、反射型マスク、およびその製造方法

Country Status (1)

Country Link
JP (1) JP2011187746A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013083933A (ja) * 2011-09-28 2013-05-09 Hoya Corp マスクブランク、転写用マスク、転写用マスクの製造方法および半導体デバイスの製造方法
JP2013088814A (ja) * 2011-10-17 2013-05-13 S&S Tech Corp ブランクマスク及びこれを用いたフォトマスク
JP2014033173A (ja) * 2012-07-11 2014-02-20 Dainippon Printing Co Ltd ナノインプリントリソグラフィ用マスクおよびその製造方法
JP2016046370A (ja) * 2014-08-22 2016-04-04 Hoya株式会社 反射型マスクブランク及びその製造方法、反射型マスクの製造方法、並びに半導体装置の製造方法
JP2021067787A (ja) * 2019-10-23 2021-04-30 凸版印刷株式会社 反射型フォトマスク及び反射型フォトマスクブランク
JP2022064956A (ja) * 2019-02-28 2022-04-26 Hoya株式会社 反射型マスクブランク、反射型マスク及びその製造方法、並びに半導体装置の製造方法
WO2022210334A1 (ja) * 2021-03-29 2022-10-06 Hoya株式会社 反射型マスクブランク、反射型マスク、反射型マスクの製造方法、及び半導体装置の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013083933A (ja) * 2011-09-28 2013-05-09 Hoya Corp マスクブランク、転写用マスク、転写用マスクの製造方法および半導体デバイスの製造方法
JP2013088814A (ja) * 2011-10-17 2013-05-13 S&S Tech Corp ブランクマスク及びこれを用いたフォトマスク
JP2014033173A (ja) * 2012-07-11 2014-02-20 Dainippon Printing Co Ltd ナノインプリントリソグラフィ用マスクおよびその製造方法
JP2016046370A (ja) * 2014-08-22 2016-04-04 Hoya株式会社 反射型マスクブランク及びその製造方法、反射型マスクの製造方法、並びに半導体装置の製造方法
JP2022064956A (ja) * 2019-02-28 2022-04-26 Hoya株式会社 反射型マスクブランク、反射型マスク及びその製造方法、並びに半導体装置の製造方法
JP7268211B2 (ja) 2019-02-28 2023-05-02 Hoya株式会社 反射型マスクブランク、反射型マスク及びその製造方法、並びに半導体装置の製造方法
JP2021067787A (ja) * 2019-10-23 2021-04-30 凸版印刷株式会社 反射型フォトマスク及び反射型フォトマスクブランク
JP7339845B2 (ja) 2019-10-23 2023-09-06 株式会社トッパンフォトマスク 反射型フォトマスク及び反射型フォトマスクブランク
WO2022210334A1 (ja) * 2021-03-29 2022-10-06 Hoya株式会社 反射型マスクブランク、反射型マスク、反射型マスクの製造方法、及び半導体装置の製造方法

Similar Documents

Publication Publication Date Title
JP4663749B2 (ja) 反射型マスクの検査方法および製造方法
US8367279B2 (en) Reflective mask blank, reflective mask, and method of manufacturing the same
JP5935804B2 (ja) 反射型マスクブランク及び反射型マスクブランクの製造方法
US8216744B2 (en) Exposure mask and method for manufacturing same and method for manufacturing semiconductor device
JP2015128183A (ja) 反射型マスク、反射型マスクブランク及びその製造方法
JP2004039884A (ja) 反射型マスクブランクス及び反射型マスク並びに反射型マスクの製造方法
JP2011187746A (ja) 反射型マスクブランクス、反射型マスク、およびその製造方法
JP4792147B2 (ja) 反射型マスクブランクス及び反射型マスク
JP7500828B2 (ja) 多層反射膜付き基板、反射型マスクブランク、反射型マスク、及び半導体装置の製造方法
JP2011197375A (ja) 反射型マスクの製造方法および該製造に用いられる反射型マスクブランク
JP5218190B2 (ja) パターン形成方法、極端紫外露光用マスク、極端紫外露光用マスクの製造方法および極端紫外露光用マスクの修正方法
JP5549264B2 (ja) 反射型マスクブランクス及び反射型マスク、その製造方法、並びに検査方法
JP5790073B2 (ja) 反射型マスクブランクの製造方法
JP5707696B2 (ja) 反射型マスクの製造方法
JP5943306B2 (ja) 反射型マスクの製造方法およびマスクブランクの製造方法
JP5874299B2 (ja) 反射型マスクの欠陥修正方法および製造方法
JP2013065739A (ja) 反射型マスク、反射型マスクブランクス、および反射型マスクの製造方法
JP5685951B2 (ja) 反射型マスク、およびその製造方法
JP2016152356A (ja) 反射型マスク、反射型マスクの製造方法、および反射型マスクの修正方法
JP5742300B2 (ja) 反射型マスクブランク及びその製造方法、反射型マスク
JP5339085B2 (ja) 反射型マスクおよびその製造方法ならびにマスクパターン検査方法
JP2010034179A (ja) 反射型マスクおよび半導体デバイスの製造方法
JP2012124196A (ja) Euv露光用反射型位相シフトマスクの製造方法
TWI808103B (zh) 附多層反射膜之基板、反射型光罩基底、反射型光罩、及半導體裝置之製造方法
JP2014090131A (ja) 反射型マスクの製造方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130604