JP2011168413A - オゾン含有ハイドレートの製造方法及びその装置 - Google Patents

オゾン含有ハイドレートの製造方法及びその装置 Download PDF

Info

Publication number
JP2011168413A
JP2011168413A JP2010031387A JP2010031387A JP2011168413A JP 2011168413 A JP2011168413 A JP 2011168413A JP 2010031387 A JP2010031387 A JP 2010031387A JP 2010031387 A JP2010031387 A JP 2010031387A JP 2011168413 A JP2011168413 A JP 2011168413A
Authority
JP
Japan
Prior art keywords
hydrate
ozone
gas
cooling water
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010031387A
Other languages
English (en)
Other versions
JP5614999B2 (ja
Inventor
Yasuhiko Mori
康彦 森
Akira Omura
亮 大村
Norito Takeuchi
史人 竹内
Makoto Ozaki
誠 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Plant Construction Co Ltd
Original Assignee
IHI Plant Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Plant Construction Co Ltd filed Critical IHI Plant Construction Co Ltd
Priority to JP2010031387A priority Critical patent/JP5614999B2/ja
Publication of JP2011168413A publication Critical patent/JP2011168413A/ja
Application granted granted Critical
Publication of JP5614999B2 publication Critical patent/JP5614999B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

【課題】オゾンハイドレートを低圧でしかも氷点下近くで連続的に製造できると共に簡単に貯蔵可能なオゾン含有ハイドレートの製造方法及びその装置を提供する。
【解決手段】ハイドレート生成器10内に冷却水14を貯留し、その冷却水14中にオゾンガスとキセノン又は炭酸ガスを吹き込み、水をホストとし、オゾンガスとキセノン又は炭酸ガスをゲストガスとしたハイドレート47を製造するものである。
【選択図】図1

Description

本発明は、高濃度のオゾンを含有したハイドレートの製造方法及びその装置に係り、特に、低圧、0℃以上でオゾンをハイドレート化できるオゾン含有ハイドレートの製造方法及びその装置に関するものである。
オゾンは、殺菌作用を有すると共に時間の経過と共に自己分解して酸素となるため、殺菌後は、塩素系殺菌剤のように有害物が残ることがないため、食品や容器の殺菌、室内の殺菌に広く使用されている。
このオゾンの利用形態としては、オゾンガス、オゾン水、オゾン氷など種々の形態で使用されるが、濃度は約20〜30ppmと低く、しかもオゾンの自己分解作用により長期の保存は困難である。
オゾンの貯蔵方法として、特許文献1に示されるように、オゾンと水又は氷とを接触させながら所定の温度以下にすることによってオゾンを取り込んだ固体状物質を形成することが提案されている。
この特許文献1では、オゾンと水又は氷とを接触させる際の温度圧力条件は、270K(−3℃)以下、2MPa以上、特に248K(−25℃)以下、13MPa以上とすることで、オゾンを取り込んだ固体状物質を製造できることが開示されている。
特開2007−210881号公報
しかしながら、特許文献1では、オゾンが水に包接された固体状物質を製造できるとしているが、水は大気圧下では0℃で凝固し、圧力を高くすれば凝固温度は下げることができるものの、13MPa以上で、−25℃以下の過冷却水で、オゾンと接触させてオゾンハイドレートとするのは、製造上からも困難であり、特許文献1では反応槽内に粉末状の氷を充填し、その反応槽内にオゾンガスを供給することで、オゾンガスが氷に包接されるとされ、現実には、オゾンハイドレートではなく、オゾンガス含有氷が製造されるものと考えられる。
従って、このオゾン含有固体状物質は、氷の中にオゾンガスが閉じこめられたものであり、オゾン分子を包接したハイドレートと違って、貯蔵中にオゾンガスの自己分解は避けられない問題がある。
オゾンハイドレートを生成するには、オゾン水を反応槽内に封入し、その反応槽を高圧にした状態で冷却すればオゾンハイドレートとすることができるが、バッチ式であり、連続してオゾンハイドレートを製造することはできない問題があると共に、反応槽で生成したオゾンハイドレートを他の容器に移し替える際には、圧力と温度を維持したまま移し替えることも困難である。
そこで、本発明の目的は、上記課題を解決し、オゾンハイドレートを低圧でしかも氷点下近くで連続的に製造できると共に簡単に貯蔵可能なオゾン含有ハイドレートの製造方法及びその装置を提供することにある。
上記目的を達成するために請求項1の発明は、ハイドレート生成器内に冷却水を貯留し、その冷却水中にオゾンガスとキセノン又は炭酸ガスを吹き込み、水をホストとし、オゾンガスとキセノン又は炭酸ガスをゲストガスとしたハイドレートを製造することを特徴とするオゾン含有ハイドレートの製造方法である。
請求項2の発明は、上記ハイドレート生成器内の圧力を1〜3MPaに保ち、0℃以下の冷却水を上記ハイドレート生成器内に供給し、その冷却水中に、オゾンガスとキセノン又は炭酸ガスをマイクロバブルで吹き込んでオゾン含有ハイドレートを製造する請求項1記載のオゾン含有ハイドレートの製造方法である。
請求項3の発明は、上記ハイドレート生成器の下部にハイドレート収納容器を接続し、上記ハイドレート生成器内で生成され底部に溜まったオゾン含有ハイドレートを、上記ハイドレート収納容器に流下させて貯蔵する請求項1又は2記載のオゾン含有ハイドレートの製造方法である。
請求項4の発明は、オゾンガスの質量に対して、炭酸ガス又はキセノンを10〜30倍混合して冷却水に吹き込む請求項1〜3いずれかに記載のオゾン含有ハイドレートの製造方法である。
請求項5の発明は、冷却水を貯留するハイドレート生成器と、そのハイドレート生成器内の冷却水中に設けられゲストガスを吹き出す気泡発生器と、気泡発生器にオゾンガスとキセノン又は炭酸ガスを供給するゲストガス供給ラインと、ハイドレート生成器の下部に接続され生成されたオゾン含有ハイドレートを導入して収納するハイドレート収納容器とを備えたことを特徴とするオゾン含有ハイドレートの製造装置である。
請求項6の発明は、上記ゲストガス供給ラインは、オゾン生成器が接続された酸素ガス供給ラインと、オゾン生成器の下流のオゾン含有酸素ラインに接続されるキセノン又は炭酸ガスの混入ガス供給ラインとからなる請求項5記載のオゾン含有ハイドレートの製造装置である。
請求項7の発明は、ハイドレート生成器には、冷却水を抜き出すと共にこれを0℃以下に冷却してハイドレート生成器に戻す冷却水循環ラインが接続される請求項5又は6記載のオゾン含有ハイドレートの製造装置である。
本発明によれば、オゾンハイドレートを生成する際にゲストガスとしてオゾンの他にキセノンや炭酸ガスを混合してハイドレート化することで、冷却水の温度が0℃近傍で、しかも圧力が3MPa以下でハイドレート化できると共にオゾン含有ハイドレートを連続的に生成できるという優れた効果を発揮するものである。
本発明の一実施の形態を示すフロー図である。 図1のA−A線断面図である。 図1においてハイドレート収納容器を保存する状態を示す図である。 本発明において、ハイドレート生成圧力と温度の関係を示す図である。
以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。
図1において、10はハイドレート生成器で、外周が断熱カバー11で覆われて形成される。
ハイドレート生成器10内には、リング状の気泡発生器12が設けられ、その下方に笠状の旋回防止板13が設けられる。
ハイドレート生成器10内には、冷却水14が貯留され、その冷却水14が後述するが冷却水循環ライン15により循環されると共に冷却水14の温度が0℃近傍になるように制御される。
気泡発生器12には、オゾンガスとキセノン又は炭酸ガスを供給するゲストガス供給ライン16が接続される。ゲストガス供給ライン16は、オゾン生成器17が接続された酸素ガス供給ライン18と、オゾン生成器17の下流のオゾン含有酸素ライン19に接続されるキセノン又は炭酸ガスからなる混入ガス供給ライン20とからなる。
酸素ガス供給ライン18には、酸素ボンベなど酸素を高圧で貯蔵する酸素貯蔵容器21が接続され、その酸素貯蔵容器21の出口側の酸素ガス供給ライン18に酸素を所定圧(2.72MPa)で放出する放出弁(PCV−1)22が接続され、その下流側に酸素流量制御計(FIC−1)23、酸素流量調節弁24が接続される。
混入ガス供給ライン20には炭酸ガス又はキセノンガスボンベなど混入ガスを高圧で貯蔵する混入ガス貯蔵容器25が接続され、その混入ガス貯蔵容器25の出口側の混入ガス供給ライン20に混入ガスを所定圧(例えば、後述の原料成分の場合、2.7MPa)で放出する放出弁(PCV−2)26が接続され、その下流側に混入ガス流量制御計(FIC−2)27、混入ガス流量調節弁28が接続される。
冷却水循環ライン15は、旋回防止板13の直下の冷却水を吸引する冷却水導入部30と、旋回防止板13の上部に対向して設けられ、図2に示すようにハイドレート生成器10の内面に冷却水を接線方向に噴射する冷却水噴射ノズル31a、31bとを有し、その冷却水循環ライン15に循環ポンプ33が接続され、導入部30と循環ポンプ33の吸込側の間に温度調節弁32が接続され、循環ポンプ33の吐出側から冷却水噴射ノズル31a、31bにかけて、冷却器34、冷却水流量計35、冷却水量調節弁36が接続されて構成される。
循環ポンプ33と冷却器34間の冷却水循環ライン15には、冷却水供給ライン38が接続される。冷却水供給ライン38には、給水ポンプ40が接続され、給水ポンプ40が補給水タンク41内の補給水を吸引し、補給水流量計42、給水流量調節弁(FCV−4)43を介して冷却水循環ライン15に補給水を供給するようになっている。補給水タンク41には、上水(補給水)が逆止弁44、ボールタップ45を介して常時所定液面となるように補給される。
ハイドレート生成器10の下部には生成したオゾン含有ハイドレート47を排出する排出ライン48が接続され、その排出ライン48にそれぞれハイドレート導入開閉弁49a、49bを介してハイドレート収納容器50a、50bが接続される。ハイドレート収納容器50a、50bは、ハイドレート生成器10と同様に外周が断熱カバー11で断熱されている。
ハイドレート生成器10の頂部には、ゲストガス排出ライン51が接続され、その排出ライン51に気相圧力制御弁(PCV−4)52が接続されると共にその下流側にオゾン分解器53が接続される。
ハイドレート生成器10の上部には、ゲストガス循環ライン54が接続され、ゲストガス循環ライン54にてハイドレート生成器10の気相部のゲストガスが、ゲストガス供給ライン16のオゾン生成器17の下流側に戻される。このゲストガス循環ライン54には、循環ガスブロワー55、循環ガス圧力制御弁56、オゾン再生器57が接続される。
ハイドレート収納容器50a、50bは、質量計51a、51b上に設けられ、収容するハイドレート質量が計測される。またハイドレート収納容器50a、50bには、ハイドレート収容時に収納容器50a、50b内のガスを開閉弁58a、58bを介して気相圧力制御弁52の下流側に排出するガス排出ライン59が接続される。
冷却水循環ライン15の冷却水を冷却する冷却器34は、冷凍サイクル60に組み込まれる。冷凍サイクル60は、冷媒を圧縮する冷媒圧縮機61、圧縮された冷媒を冷却水で冷却する凝縮器62と、凝縮器62からの凝縮冷媒を貯留する凝縮冷媒レシーバ63と、レシーバ63からの冷媒を減圧する膨張弁(TCV−2)64と、減圧された冷媒を導入して冷却水循環ライン15の冷却水を冷却する蒸発器としての冷却器34と、冷却器34で蒸発した冷媒を貯留し、その蒸発ガスを冷媒圧縮機61に循環する吸入ドラム65とで構成される。
冷却器34の下流側の冷却水循環ライン15には、循環水温度調節計66が接続され、その温度が所定温度となるように膨張弁64の弁開度が制御される。
次に図1の制御系について説明する。
酸素流量制御計23は、酸素ガス供給ライン18の酸素流量を検出し、所定流量となるように酸素流量調節弁24を制御し、また混入ガス流量制御計27は、混入ガス供給ライン20の混入ガス(炭酸ガス)流量を検出し、所定流量となるように混入ガス流量調節弁28を制御する。
酸素流量制御計23と混入ガス流量制御計27の検出値は、ゲストガス制御器70に入力され、そのゲストガス制御器70が、冷却水循環ライン15の冷却水流量計35にゲストガス量を出力し、冷却水流量計35が、ゲストガス量に見合った冷却水量となるように、冷却水量調節弁36を制御する。また、ハイドレート生成器10には、冷却水14の温度を検出する冷却水温度調節計71が設けられ、ゲストガス制御器70が、冷却水温度調節計71で検出された冷却水温が所定値となるように温度調節弁32を制御する。
ハイドレート生成器10の下部には生成したオゾン含有ハイドレート47の液面を検出するハイドレート面計測器72が設けられ、そのハイドレート面計測器72で、ハイドレート導入開閉弁49a、49bの何れかを開とするように制御し、ハイドレート生成器10内のオゾン含有ハイドレート47の量が少なくなったときには、開放中のハイドレート導入開閉弁49a(又は49b)を閉じるように制御する。
質量計51a、51bは、ハイドレート収納容器50a、50bの質量を検出し、先ず何れか一方のハイドレート収納容器50a(又は50b)のハイドレート導入開閉弁49a(又は49b)を開くと共に開閉弁58a(又は58b)を開き、オゾン含有ハイドレート47をハイドレート収納容器50aに導入するよう制御し、そのオゾン含有ハイドレート47の導入量が所定質量となったときに、ハイドレート導入開閉弁49aと開閉弁58aを閉じると共に他方のハイドレート導入開閉弁49bと開閉弁58bを開いてハイドレート収納容器50aからハイドレート収納容器50bに切り替える。
ハイドレート生成器10の上部には冷却水液面計73が設けられ、その検出値が補給水制御器74に入力される。この補給水制御器74には、冷却水供給ライン38の補給水流量計42の流量値が入力され、これにより補給水制御器74が給水流量調節弁43を制御して、冷却水循環ライン15に補給する冷却水量を調節し、冷却水液面計73で検出された液面が一定となるように制御する。
ハイドレート生成器10の頂部には、ハイドレート生成器10内の気相部の圧力を検出する気相圧力検出計75が接続され、その検出値が気相圧力制御器76に入力される。気相圧力制御器76は、気相部の圧力が設定値となるように、排気ライン51の気相圧力制御弁52と、ゲストガス循環ライン54の循環ガス圧力制御弁56を制御する。
さらに、ハイドレート生成器10の上部にはその気相部内のオゾン濃度を検出するオゾン分析計77が接続され、そのオゾン分析計77の検出オゾン濃度に応じて、オゾン再生器57を制御してオゾン再生量を調節する。
次に図1に示した装置でオゾン含有ハイドレートを製造する方法を説明する。
先ず本発明は、単位容積当りのオゾン保存量を大量にするために、ハイドレート生成器10内でのハイドレート生成温度を0℃以上でハイドレートのみを製造するために、ゲストガスとしてのオゾンガスに、混入ゲストガスとして、キセノン(Xe)や炭酸ガス(CO2)を添加して、オゾン(O3)をハイドレート化するものである。
ここで、混入ゲストガスとして炭酸ガスを使用した場合について説明する。
先ずハイドレート生成器10にハイドレート生成に必要な冷却水14を貯留し、そのハイドレート生成器10内に、図2に示すように、冷却水循環ライン15の冷却水噴射ノズル31a、31bからハイドレート生成器10の円周壁に沿って冷却水を噴射してハイドレート生成器10内で冷却水14を旋回させる。
このハイドレート生成器10内を旋回している冷却水14に気泡発生器12から混合ガスをゲストガス供給ライン16を介してガスがマイクロバブルとして吹き出される。すなわち酸素ガス供給ライン18から酸素をオゾン生成器17を通しオゾン化してオゾン含有酸素ライン19から酸素とオゾンを、また混入ガス供給ライン20から炭酸ガスをオゾン含有酸素ライン19に供給し、その混合ガスをゲストガス供給ライン16を介して気泡発生器12からマイクロバブル状にして冷却水14中に吹き込む。
バブルの径は反応速度を速くするために約230μm以下の気泡にして、旋回している冷却水14の中心寄りに分散するように噴射してハイドレート生成器10の内周壁に沿って下降するオゾン含有ハイドレート47との衝突を避けるようにする。
冷却水循環ライン15の冷却水噴射ノズル31a、31bからの循環冷却水供給条件は、オゾン含有ハイドレート生成熱を吸収して生成を促進する供給量と温度とする。
例えば、オゾン含有ハイドレート生成条件を圧力2.5MPa以上、温度0〜2℃とした場合、循環冷却水の供給温度は、0℃以下(氷点降下により0℃以下でも氷結しない)にして反応温度を保持できる水量を供給する。
ハイドレート化を、約274K(約1℃)の温度で進めるとすると、反応熱を吸収した未反応の水の温度は、0℃より上昇して供給される循環冷却水(約272.2K、0.2℃)よりも重くなる。
このようにハイドレート反応により温度の高くなった冷却水の比重は、冷却水噴射ノズル31a、31bから噴射される温度の低い冷却水よりも重くなるため、混合ガスの噴射点である気泡発生器12よりも低い位置で循環冷却水を供給すれば、比重差により循環冷却水は、矢印で示したように上昇して噴出気泡と連続的に接触する。
ハイドレート生成器10内のハイドレート生成領域(気泡発生器12の上部)で生成されたオゾン含有ハイドレート47は、冷却水14よりも比重が重いために、循環冷却水の旋回流による遠心力でハイドレート生成器10の内周壁側に押し寄せられながら、ハイドレート47は冷却水14との比重差のために内周壁側を旋回しながら矢印で示したように下降(旋回下降流)する。従って、噴射ノズル31a、31bから噴射された循環冷却水は、中心寄りが旋回しながら上昇(旋回上昇流)する。
ハイドレート生成器10内の冷却水14を旋回する理由は、上記の遠心力による重質成分(ハイドレート)の遠心分離以外に、ハイドレート反応速度に支配的な要因となる伝熱(反応熱の除去)を促進させることにある。即ちマイクロバブルと冷却水が共に上昇流となり通常は共流となるためにバブル周辺の水が随伴して伝熱を阻害するが、冷却水を旋回させることにより、冷却水の水平な流れができるために、マイクロバブルが浮力差で強く上昇しようとするので、バブルとの間に流れの方向にずれが発生する。このためにバブル周辺に随伴する冷却水の量が減り、代りに温度の低い冷却水と接触するので伝熱が促進される。
噴射ノズル31a、31bより下部には旋回流を防止する旋回防止板13が設けられており、これより下部は旋回が止められている。内周壁に沿って下降するハイドレート47は旋回防止板13の下部のハイドレート生成器10の底部に沈下して積層し、またハイドレート化で温度が上昇し比重の重くなった冷却水は、旋回防止板13の下部中心に設けた冷却水導入部30から吸引されて冷却水循環ライン15に導入され、冷却器34で冷却されて、再度噴射ノズル31a、31bから噴射されて循環される。
ハイドレート生成器10の底部に蓄積したオゾン含有ハイドレート47は排出ライン48を介してハイドレート収納容器50a、50bのいずれかに送出される。
ハイドレート生成器10の反応領域の水中を上昇した未反応の混合ガスは、生成器10の頂部の気相部に放出される。放出ガスは多量の炭酸ガス、酸素、オゾンら構成されているので、循環ガスブロワー55で吸引して再度ゲストガス供給ライン16に送入して循環使用する。
この循環ガス中のオゾン濃度は、平衡反応では、ハイドレート生成器10内で、炭酸ガスが多量にハイドレート化されるので、炭酸ガス濃度が下がり、オゾン濃度は上昇するが、循環ガスブロワー55で循環使用を繰返すとオゾン濃度が低下するので、気相部のオゾン濃度をオゾン分析器77で検知し、オゾン濃度が低い場合には、オゾン再生器57を作動させてオゾン濃度を高くしてゲストガス供給ライン16に送入する。
ハイドレート生成器10の気相圧力は、気相圧力検出計75で検出され、その検出圧力が設定値以上に上昇した場合は、気相圧力制御弁52により内部ガスをオゾン分解器53を介して大気に放出する。
ハイドレート生成器10の旋回防止板13の下方で静置によりオゾン含有ハイドレート47から分離した温度の高い水(0℃以上)は、循環ポンプ33で吸引し、冷却器34を経由して必要温度(本実施の形態では約0℃)で冷却されて再度ハイドレート生成器10に循環供給されるが、ハイドレート化で不足する冷却水は、冷却水液面計73で液面を検出して補給水制御器74に入力し、補給水制御器74が、その不足分を冷却水供給ライン38の給水流量調節弁43を制御して適宜不足分の冷却水を冷却水循環ライン15に供給する。
またゲストガスである炭酸ガスと、酸素、オゾンを、オゾン含有ハイドレートの生産量分を、酸素貯蔵容器21、混入ガス貯蔵容器25から供給するが、その際、ゲストガスの供給量を制御するゲストガス制御器70は、冷却水循環ライン15を循環する循環冷却水量を検出する冷却水流量計35の検出値に応じて、ゲストガスの供給量を制御する。
この場合、ハイドレート生成器10で生成されるハイドレート中のオゾン濃度は、例えば圧力2.5MPa、温度0℃の温度条件下では、水1000kgに対して、炭酸ガスが1608kg、酸素が880kg、オゾンが115kgの混合ガスとなるようにゲストガス制御器70が、各ゲストガスの供給量を制御してハイドレート化反応を進めると、オゾン含有ハイドレート47のオゾン濃度は約5400ppmに達する。水との混在を考慮しても約4,000ppmとなり高濃度のオゾン含有ハイドレート47が得られ、従来の生成法に較べて桁違いの濃度で保存できる。
オゾン含有ハイドレート47は、水を一部含んだ状態で流動性を維持してハイドレート生成器10の底部からハイドレート収納容器50a、50bのいずれかに自重差で充填される。
ここで、質量計51aは、ハイドレート収納容器50aの充填が完了した場合、ハイドレート導入開閉弁49aを閉じ、他のハイドレート導入開閉弁49bを開いて、他のハイドレート収納容器50bに切り替える。
このようにハイドレート収納容器50にオゾン含有ハイドレート47を充填した後は、ハイドレート導入開閉弁49を閉じて、そのハイドレート導入開閉弁49からハイドレート収納容器50を取り外す。
この際、図1では示していないが、図3に示すようにハイドレート収納容器50に備えられた開閉弁81を閉じておき、そのハイドレート収納容器50を貯蔵容器80内に保管し、その貯蔵容器80内の温度を冷凍機83に接続した冷却器84で冷却すると共に流量調整弁85で貯蔵容器80内を0℃以下の温度に保持することで、オゾン含有ハイドレートを長期保存することができる。ハイドレートは、オゾンガスの1分子をホストである水が包接した構造であるため、貯蔵中に、ハイドレートを維持できる温度と圧力に保持していれば、オゾンが分解することはなく長期保存が可能となる。
またオゾンの使用の際には、このハイドレート収納容器50を貯蔵容器80から取り出し、開閉弁81を開けて、ハイドレート収納容器50内の圧力を順次開放することで、オゾン含有ハイドレートが分解してオゾンを含むゲストガスを放出することができ、通常のガスボンベと同様にオゾンガスを噴射することが可能となる。
次に、オゾン含有ハイドレートを生成するための圧力と温度について、図4により説明する。
図4は、原料としての成分とそのハイドレート成分を、
成分 H2O CO223
原料(kg/h) 1,000 1,608 880 115
ハイドレート(kg/h) 1,000 307.5 25.5 7.3
3濃度(ppm) 5,474
としたオゾン含有ハイドレートを製造する際の圧力と温度の関係を示したもので、温度が0℃では、2.50MPaで、温度が2℃では、3.10MPaでオゾン含有ハイドレートを製造できることを示したものである。
従来例で説明したようにオゾンガス単独でオゾンハイドレートを製造するとすると、低温・高圧条件下でしか製造できず、そのオゾン濃度も約13ppmと低濃度のものしかできないが、本発明では、オゾンガスに炭酸ガス等を混入したゲストガスでハイドレートを生成することで、0℃近傍でしかも3MPa以下でオゾン濃度約5000ppmの高濃度のオゾン含有ハイドレートとすることが可能となる。
上記の組成(オゾン濃度約5000ppm)は、ハイドレートの相平衡を予測する統計熱力学モデルによる予測である。このモデルでは、オゾンのラングミュア定数(ハイドレート中へのゲスト物質の取り込まれやすさを示す指標となるモデルパラメータ)を酸素のそれの2.5倍としている。これは以下の実験事実に基づき推定した値である。
本発明者等は、オゾンと酸素の混合ガス、水、四塩化炭素を接触させてハイドレートを生成させ、このハイドレート中の組成を測定した実験の結果、オゾンは酸素とくらべると2.5倍程度濃縮されてハイドレート中に取り込まれることを確かめた。この実験によりオゾン濃度約5000ppmのハイドレート化が可能である。
ハイドレート化にあたっては、オゾンガスに対して酸素を含む他のガス量(炭酸ガス、キセノン)は、質量で、5倍以上好ましくは20倍以上がよいが、他のガス量が多くなるとハイドレートガス中のオゾン濃度が少なくなるため、他のガス量は、オゾンガスに対して、10〜30倍程度がよい。
また冷却水に吹き込むゲストガス量は、ハイドレートを形成するホストに対するゲスト量より過剰になるように、水1,000質量部に対して、ゲストガスは100〜400質量部、好ましくは、200〜300質量部が良い。
次に本発明のより具体的な機器構成と原料の圧力、温度、流量について一例を説明する。
1)1m3の水からオゾンハイドレートを製造する場合の仕様
原料と生成成分量;
2O 1,000kg/h
CO2量 307.5kg/h
2量 25.5kg/h
3量 7.3kg/h
水和物生成条件:
圧力 2.5MPa
温度 273K
生成ハイドレートの比重 1,150kg/m3
循環冷却水量 196,000kg/h
圧力 2.8MPa
温度 −1℃
循環ガス量 2,064kg/h
圧力 2.7MPa
温度 25℃
補給水量 1,000kg/h
圧力 2.8MPa
温度 25℃
2)機器仕様
(a)ハイドレート生成器
基数 1基
形式 円筒竪型
設計圧力 3.0MPa
設計温度 0℃
直径 0.8m
生成器高さ 8.4m
(b)気泡発生器
流量 48m3/h
気泡径 0.00023m
密度 54kg/m3
(c)循環ガスブロワー
台数 1台
吸入量 2,490kg/h
吸入圧力 2.50MPa
1段吐出圧力 2.70MPa
圧縮機モータ馬力 7.5kW
(d)酸素貯蔵容器
基数 38基
形式 円筒竪型
設計耐圧 20MPa
最高温度 55℃
直径 0.25m
高さ 0.8m
容量 0.039m3/1基
質量 10kg/m3 1基
密度 263kg/m3
貯蔵時間 12h
(e)炭酸ガス貯蔵容器
基数 477基
形式 円筒竪型
設計圧力 15MPa
最高温度 55℃
直径 0.25m
高さ 0.8m
容量 0.039m3/1基
質量 8kg/m3 1基
密度 197kg/m3
貯蔵時間 12h
(f)オゾン生成器
基数 1基
設計圧力 3MPa
設計温度 55℃
2流量 入口 33kg/h
出口 30kg/h
3流量 3kg/h
圧力 0.106MPa
温度 25℃
(g)オゾン再生器
基数 1基
設計圧力 3MPa
設計温度 0℃
流量 入口 CO2 1,301kg/h
2 862kg/h
3 100kg/h
合計 2,263kg/h
出口 CO2 1,301kg/h
2 855kg/h
3 108kg/h
(h)循環ポンプ
基数 1基
流量 195,670kg/h
差圧 0.39MPa
所要モータ馬力 33kW
(i)水冷却器
基数 1基
交換熱量 195,670kcal/h
循環冷却水量 195,670kg/h
入口温度 0.0℃
出口温度 −10℃
冷却伝面 87m2
冷媒蒸発温度 −5℃
(j)給水ポンプ
流量 1,000kg/h
差圧 ΔP 2.7MPa
所要モータ馬力 1.9kW
(k)補給水タンク
基数 1基
形式 円筒竪型
設計圧力 0.105MPa
温度 35℃
容積 36m3
直径 3m
高さ 5m
(l)ハイドレート収納容器
基数 52基/h
形式 円筒竪型
製造量 ハイドレート 1,340kg/h
水量 50% 670kg/h
合計 2,010kg/h
1.8m3/h
設計圧力 3MPa
温度 −25℃
直径 0.25m
容器高さ 0.8m
容量 0.039m3/1基
(m)冷凍機(冷凍サイクル)
基数 1基
冷媒 R404A
冷媒量 7,801kg/h
圧縮機モータ馬力 170kW
(n)オゾン分解器
基数 1基
流量 入口 O2 25.5kg/h
3 7.3kg/h
出口 O2 32.8kg/h
圧力 0.106MPa
温度 0℃
以上、オゾン含有ハイドレート製造の機器構成と、原料の流量、圧力、温度の具体例について説明したが、本発明は、これに限定されるものではなく、製造するオゾン含有ハイドレート中に含有させるオゾン濃度に応じて各ゲストガスの混合比を変えてもよいことは勿論である。
10 ハイドレート生成器
12 気泡発生器
14 冷却水
15 冷却水循環ライン
16 ゲストガス供給ライン
18 酸素供給ライン
20 混入ガス供給ライン
47 オゾン含有ハイドレート
50a、50b ハイドレート収納容器

Claims (7)

  1. ハイドレート生成器内に冷却水を貯留し、その冷却水中にオゾンガスとキセノン又は炭酸ガスを吹き込み、水をホストとし、オゾンガスとキセノン又は炭酸ガスをゲストガスとしたハイドレートを製造することを特徴とするオゾン含有ハイドレートの製造方法。
  2. 上記ハイドレート生成器内の圧力を1〜3MPaに保ち、0℃以下の冷却水を上記ハイドレート生成器内に供給し、その冷却水中に、オゾンガスとキセノン又は炭酸ガスをマイクロバブルで吹き込んでオゾン含有ハイドレートを製造する請求項1記載のオゾン含有ハイドレートの製造方法。
  3. 上記ハイドレート生成器の下部にハイドレート収納容器を接続し、上記ハイドレート生成器内で生成され底部に溜まったオゾン含有ハイドレートを、上記ハイドレート収納容器に流下させて貯蔵する請求項1又は2記載のオゾン含有ハイドレートの製造方法。
  4. オゾンガスの質量に対して、炭酸ガス又はキセノンを10〜30倍混合して冷却水に吹き込む請求項1〜3いずれかに記載のオゾン含有ハイドレートの製造方法。
  5. 冷却水を貯留するハイドレート生成器と、そのハイドレート生成器内の冷却水中に設けられゲストガスを吹き出す気泡発生器と、気泡発生器にオゾンガスとキセノン又は炭酸ガスを供給するゲストガス供給ラインと、ハイドレート生成器の下部に接続され生成されたオゾン含有ハイドレートを導入して収納するハイドレート収納容器とを備えたことを特徴とするオゾン含有ハイドレートの製造装置。
  6. 上記ゲストガス供給ラインは、オゾン生成器が接続された酸素ガス供給ラインと、オゾン生成器の下流のオゾン含有酸素ラインに接続されるキセノン又は炭酸ガスの混入ガス供給ラインとからなる請求項5記載のオゾン含有ハイドレートの製造装置。
  7. ハイドレート生成器には、冷却水を抜き出すと共にこれを0℃以下に冷却してハイドレート生成器に戻す冷却水循環ラインが接続される請求項5又は6記載のオゾン含有ハイドレートの製造装置。
JP2010031387A 2010-02-16 2010-02-16 オゾン含有ハイドレートの製造方法及びその装置 Active JP5614999B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010031387A JP5614999B2 (ja) 2010-02-16 2010-02-16 オゾン含有ハイドレートの製造方法及びその装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010031387A JP5614999B2 (ja) 2010-02-16 2010-02-16 オゾン含有ハイドレートの製造方法及びその装置

Publications (2)

Publication Number Publication Date
JP2011168413A true JP2011168413A (ja) 2011-09-01
JP5614999B2 JP5614999B2 (ja) 2014-10-29

Family

ID=44682937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010031387A Active JP5614999B2 (ja) 2010-02-16 2010-02-16 オゾン含有ハイドレートの製造方法及びその装置

Country Status (1)

Country Link
JP (1) JP5614999B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016064946A (ja) * 2014-09-24 2016-04-28 株式会社Ihi オゾンハイドレートを用いたオゾン水製造方法及びその装置
JP2016065009A (ja) * 2014-09-24 2016-04-28 株式会社Ihi オゾンハイドレートを用いたオゾン殺菌剤
JP2016064929A (ja) * 2014-09-22 2016-04-28 株式会社Ihi 高濃度オゾンハイドレートの製造方法及びその製造装置並びに高濃度オゾンハイドレート
JP2016199427A (ja) * 2015-04-10 2016-12-01 Ihiプラント建設株式会社 オゾンハイドレート製造装置、および、オゾンハイドレート製造方法
JP2020083701A (ja) * 2018-11-26 2020-06-04 株式会社Ihiプラント オゾンハイドレート製造装置、および、オゾンハイドレートの製造方法
JP2021172551A (ja) * 2020-04-24 2021-11-01 株式会社Ihiプラント ハイドレート包装装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB961115A (en) * 1963-05-02 1964-06-17 British Oxygen Co Ltd Novel ozone inclusion compound
JPH03217294A (ja) * 1990-01-19 1991-09-25 Mitsubishi Heavy Ind Ltd オゾン水、オゾン氷の製造方法
JPH10196895A (ja) * 1997-01-13 1998-07-31 I H I Plantec:Kk 天然ガスのハイドレートによるガス貯蔵設備
JP2003082371A (ja) * 2001-09-07 2003-03-19 Mitsubishi Heavy Ind Ltd ガスハイドレート生成容器、ガスハイドレート製造装置及び製造方法
JP2003294343A (ja) * 2002-04-02 2003-10-15 Masanao Uchiyama 気体含有氷または水和物の製造法及びその装置とその製品
JP2005139015A (ja) * 2003-11-05 2005-06-02 Mitsui Eng & Shipbuild Co Ltd 重水濃縮方法、重水濃縮装置
JP2007225127A (ja) * 2006-01-30 2007-09-06 National Institute Of Advanced Industrial & Technology 気体含有氷の製造方法及び製造装置並びに気体含有氷

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB961115A (en) * 1963-05-02 1964-06-17 British Oxygen Co Ltd Novel ozone inclusion compound
JPH03217294A (ja) * 1990-01-19 1991-09-25 Mitsubishi Heavy Ind Ltd オゾン水、オゾン氷の製造方法
JPH10196895A (ja) * 1997-01-13 1998-07-31 I H I Plantec:Kk 天然ガスのハイドレートによるガス貯蔵設備
JP2003082371A (ja) * 2001-09-07 2003-03-19 Mitsubishi Heavy Ind Ltd ガスハイドレート生成容器、ガスハイドレート製造装置及び製造方法
JP2003294343A (ja) * 2002-04-02 2003-10-15 Masanao Uchiyama 気体含有氷または水和物の製造法及びその装置とその製品
JP2005139015A (ja) * 2003-11-05 2005-06-02 Mitsui Eng & Shipbuild Co Ltd 重水濃縮方法、重水濃縮装置
JP2007225127A (ja) * 2006-01-30 2007-09-06 National Institute Of Advanced Industrial & Technology 気体含有氷の製造方法及び製造装置並びに気体含有氷

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013062241; Sanehiro MUROMACHI et al.: 'Clathrate Hydrates for Ozone Preservation' J. Phys. Chem. B Vol.114, No.35, 20100909, p.11430-11435 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016064929A (ja) * 2014-09-22 2016-04-28 株式会社Ihi 高濃度オゾンハイドレートの製造方法及びその製造装置並びに高濃度オゾンハイドレート
JP2016064946A (ja) * 2014-09-24 2016-04-28 株式会社Ihi オゾンハイドレートを用いたオゾン水製造方法及びその装置
JP2016065009A (ja) * 2014-09-24 2016-04-28 株式会社Ihi オゾンハイドレートを用いたオゾン殺菌剤
JP2016199427A (ja) * 2015-04-10 2016-12-01 Ihiプラント建設株式会社 オゾンハイドレート製造装置、および、オゾンハイドレート製造方法
JP2020083701A (ja) * 2018-11-26 2020-06-04 株式会社Ihiプラント オゾンハイドレート製造装置、および、オゾンハイドレートの製造方法
JP2021172551A (ja) * 2020-04-24 2021-11-01 株式会社Ihiプラント ハイドレート包装装置
JP7364527B2 (ja) 2020-04-24 2023-10-18 株式会社Ihiプラント ハイドレート包装装置

Also Published As

Publication number Publication date
JP5614999B2 (ja) 2014-10-29

Similar Documents

Publication Publication Date Title
JP5614999B2 (ja) オゾン含有ハイドレートの製造方法及びその装置
JP5808948B2 (ja) オゾン含有ハイドレートの製造方法
US7155930B2 (en) Apparatus for producing slush nitrogen and method for producing the same
KR20200123494A (ko) 스파클링 음료를 제조하기 위한 시스템, 방법 및 캡슐
JP4285600B2 (ja) ガスハイドレート製造装置
US7993544B2 (en) Clathrate hydrate with latent heat storing capability, process for producing the same, and apparatus therefor, latent heat storing medium, and method of increasing amount of latent heat of clathrate hydrate and processing apparatus for increasing amount of latent heat of clathrate hydrate
US7591138B2 (en) Process for producing slush fluid and apparatus therefor
US6260361B1 (en) Combination low temperature liquid or slush carbon dioxide ground support system
JP2002356685A (ja) ガスハイドレート製造方法および製造装置
JP4354460B2 (ja) スラッシュ窒素の製造方法及びその製造装置
JP7193316B2 (ja) ハイドレート製造装置、および、ハイドレートの製造方法
JP2008246333A (ja) ガスハイドレート濃度の測定方法及び測定装置と、その測定方法を用いたガスハイドレート生成装置の制御方法及び制御装置
JP2006002000A (ja) メタンハイドレート生成装置及びメタンガス供給システム
JP2002038171A (ja) ハイドレートの製造方法および製造装置、天然ガスの貯蔵方法
JP4620439B2 (ja) ガスハイドレート生成装置および生成方法
JP6557537B2 (ja) オゾンハイドレート製造装置、および、オゾンハイドレート製造方法
JP6723968B2 (ja) 凍結物製造装置
JP2003080056A (ja) ガスハイドレート生成容器、ガスハイドレート製造装置及び製造方法
JP6438720B2 (ja) オゾン発生装置付き移動装置
JP2002356686A (ja) ガスハイドレート製造方法および製造装置
JP6352130B2 (ja) オゾンハイドレートを用いたオゾン水製造方法及びその装置
JP6385772B2 (ja) オゾンハイドレートを用いたオゾン処理方法及びその装置
JPH04156928A (ja) 炭酸水製造方法
JP2000264851A (ja) ハイドレートの製造方法および製造装置
JP6385770B2 (ja) 高濃度オゾンハイドレートの製造方法及びその製造装置並びに高濃度オゾンハイドレート

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140909

R150 Certificate of patent or registration of utility model

Ref document number: 5614999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250