JP2011165691A - Reduced pressure drying method and reduced pressure drying device - Google Patents

Reduced pressure drying method and reduced pressure drying device Download PDF

Info

Publication number
JP2011165691A
JP2011165691A JP2010023045A JP2010023045A JP2011165691A JP 2011165691 A JP2011165691 A JP 2011165691A JP 2010023045 A JP2010023045 A JP 2010023045A JP 2010023045 A JP2010023045 A JP 2010023045A JP 2011165691 A JP2011165691 A JP 2011165691A
Authority
JP
Japan
Prior art keywords
pressure
solvent
chamber
coating film
reduced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010023045A
Other languages
Japanese (ja)
Inventor
Yutaka Aso
豊 麻生
Kazuya Iwanaga
和也 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2010023045A priority Critical patent/JP2011165691A/en
Priority to KR1020110005860A priority patent/KR20110090773A/en
Priority to TW100103096A priority patent/TWI479111B/en
Priority to CN2011100353635A priority patent/CN102193345A/en
Publication of JP2011165691A publication Critical patent/JP2011165691A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/168Finishing the coated layer, e.g. drying, baking, soaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2014Contact or film exposure of light sensitive plates such as lithographic plates or circuit boards, e.g. in a vacuum frame
    • G03F7/2016Contact mask being integral part of the photosensitive element and subject to destructive removal during post-exposure processing
    • G03F7/202Masking pattern being obtained by thermal means, e.g. laser ablation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Drying Of Solid Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reduced pressure drying device, which performs drying processing on a coating film formed on a substrate to be processed, reduces within-wafer nonuniformity of the coating film after the drying processing, and improves uniformity of the remaining film thickness and line width of the coating film in a wiring pattern forming process. <P>SOLUTION: A process, in which the substrate G having the coating film formed thereon is put in a chamber 2 and a pressure-reduced environment is created in the chamber, includes: a step of reducing the pressure in the chamber at a first pressure reducing speed v1 to a first pressure value P1 which is higher than vapor pressure Pe of a solvent and at which at least the solvent never vaporizes in a bumping state; and a step of slowly reducing the pressure from the first pressure value to at least the vapor pressure of the solvent at a second pressure reducing speed v2 lower than the first pressure reducing speed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、塗布液が塗布された被処理基板を減圧環境下に置くことにより、前記基板上の塗布膜に乾燥処理を施す減圧乾燥方法及び減圧乾燥装置に関する。   The present invention relates to a reduced-pressure drying method and a reduced-pressure drying apparatus that apply a drying process to a coating film on a substrate by placing the substrate to be processed coated with a coating solution in a reduced-pressure environment.

例えば、FPD(フラットパネルディスプレイ)の製造においては、いわゆるフォトリソグラフィ工程により回路パターンを形成することが行われている。
前記フォトリソグラフィ工程は、具体的には次のように行われる。
先ず、ガラス基板等の被処理基板に所定の膜を成膜した後、塗布液であるフォトレジスト(以下、レジストと呼ぶ)が塗布されレジスト膜が形成される。そして、回路パターンに対応してレジスト膜が露光され、これが現像処理される。
For example, in manufacturing an FPD (flat panel display), a circuit pattern is formed by a so-called photolithography process.
Specifically, the photolithography process is performed as follows.
First, after forming a predetermined film on a substrate to be processed such as a glass substrate, a photoresist (hereinafter referred to as a resist) as a coating solution is applied to form a resist film. Then, the resist film is exposed corresponding to the circuit pattern and developed.

このようなフォトリソグラフィ工程にあっては、図8(a)に示すようにレジストパターンRに異なる膜厚(厚膜部R1と薄膜部R2)を持たせ、これを利用して複数回のエッチング処理を行うことによりフォトマスク数、及び工程数を低減することが可能である。尚、そのようなレジストパターンRは、1枚で光の透過率が異なる部分を有するハーフトーンマスクを用いるハーフ(ハーフトーン)露光処理によって得ることができる。   In such a photolithography process, as shown in FIG. 8A, the resist pattern R has different film thicknesses (thick film portion R1 and thin film portion R2), and this is used to perform multiple etchings. By performing the treatment, the number of photomasks and the number of steps can be reduced. In addition, such a resist pattern R can be obtained by a half (halftone) exposure process using a halftone mask having a portion with different light transmittance.

このハーフ露光が適用されたレジストパターンRを用いた場合の回路パターン形成工程について図8(a)〜(e)を用いて具体的に説明する。
例えば、図8(a)において、ガラス基板G上に、ゲート電極200、絶縁層201、a−Si層(ノンドープアモルファスSi層)202aとn+a−Si層202b(リンドープアモルファスSi層)からなるSi層202、電極を形成するためのメタル層203が順に積層されている。
また、メタル層205上には、前記ハーフ露光処理、及び現像処理により得られたレジストパターンRが形成される。
A circuit pattern forming process using the resist pattern R to which the half exposure is applied will be specifically described with reference to FIGS.
For example, in FIG. 8A, on a glass substrate G, a Si composed of a gate electrode 200, an insulating layer 201, an a-Si layer (non-doped amorphous Si layer) 202a and an n + a-Si layer 202b (phosphorus-doped amorphous Si layer). A layer 202 and a metal layer 203 for forming an electrode are sequentially stacked.
A resist pattern R obtained by the half exposure process and the development process is formed on the metal layer 205.

このレジストパターンR(厚膜部R1及び薄膜部R2)の形成後、図8(b)に示すように、このレジストパターンRをマスクとして、メタル膜のエッチング(1回目のエッチング)が行われる。
次いで、レジストパターンR全体に対し、プラズマ中でアッシング(灰化)処理が施される。これにより、図8(c)に示すように、膜厚が半分程度に減膜されたレジストパターンR3が得られる。
そして、図8(d)に示すように、このレジストパターンR3をマスクとして利用し、露出するメタル膜203やSi層202に対するエッチング(2回目のエッチング)が行われ、最後に図8(e)に示すようにレジストR3を除去することにより回路パターンが得られる。
After the formation of the resist pattern R (thick film portion R1 and thin film portion R2), as shown in FIG. 8B, the metal film is etched (first etching) using the resist pattern R as a mask.
Next, the entire resist pattern R is subjected to ashing (ashing) in plasma. As a result, as shown in FIG. 8C, a resist pattern R3 having a film thickness reduced to about half is obtained.
Then, as shown in FIG. 8D, using this resist pattern R3 as a mask, etching (second etching) is performed on the exposed metal film 203 and Si layer 202, and finally FIG. 8E. As shown in FIG. 4, a circuit pattern is obtained by removing the resist R3.

ところで、前記レジストパターンRを形成するためのハーフ露光処理の前段工程においては、基板面へのレジスト液の塗布処理後、塗布されたレジスト膜を減圧環境下で乾燥させる減圧乾燥処理が行われる。
この減圧乾燥処理にあっては、レジスト液が塗布された基板をチャンバ内に収容し、チャンバ内をレジスト液中の溶剤の蒸気圧まで減圧し、所定時間の間、レジスト中の溶剤を蒸発させることにより乾燥処理を行うものである。
尚、基板に塗布されたレジスト液などの塗布液を減圧乾燥する減圧乾燥装置については、特許文献1に開示されている。
By the way, in the pre-process of the half exposure process for forming the resist pattern R, after applying the resist solution to the substrate surface, a reduced pressure drying process for drying the applied resist film in a reduced pressure environment is performed.
In this vacuum drying process, the substrate coated with the resist solution is accommodated in the chamber, the inside of the chamber is reduced to the vapor pressure of the solvent in the resist solution, and the solvent in the resist is evaporated for a predetermined time. Thus, a drying process is performed.
A reduced pressure drying apparatus for drying a coating solution such as a resist solution applied to a substrate under reduced pressure is disclosed in Patent Document 1.

特開2004−47797号公報JP 2004-47797 A

しかしながら、本願発明者らは、従来行われている減圧乾燥処理のように、その開始時にチャンバ内の圧力を溶剤の蒸気圧まで減圧すると、図9の測定結果に示すようにレジスト膜から溶剤が突沸的に蒸発し(25sec付近)、これが減圧乾燥後のレジスト膜の均一性に悪影響を及ぼすことを知見した。
更には、前記したようにハーフ露光処理によって厚膜部R1及び薄膜部R2を有するレジストパターンRを形成し、それを図8(c)のようにアッシング処理した場合に、残膜として得られたレジストパターンR3(図8(c))に、前記レジスト膜の不均一性により、ばらつきが生じることを知見するに至った。
具体的には、基板面内において、図10(a)に示すように残膜パターンの膜厚、線幅が小さすぎる部位と、図10(b)に示すように大きすぎる部位とが混在するという課題があった。
However, when the pressure in the chamber is reduced to the vapor pressure of the solvent at the start thereof, as in the conventional vacuum drying process, the inventors of the present application remove the solvent from the resist film as shown in the measurement results of FIG. It has been found that it evaporates suddenly (around 25 seconds), which adversely affects the uniformity of the resist film after drying under reduced pressure.
Further, as described above, when the resist pattern R having the thick film portion R1 and the thin film portion R2 is formed by the half exposure process and the ashing process is performed as shown in FIG. It has been found that the resist pattern R3 (FIG. 8C) varies due to the non-uniformity of the resist film.
Specifically, in the substrate surface, a portion where the film thickness and line width of the remaining film pattern are too small as shown in FIG. 10A and a portion where it is too large as shown in FIG. There was a problem.

本発明は、上記のような従来技術の問題点に鑑みてなされたものであり、被処理基板に形成された塗布膜に乾燥処理を施す減圧乾燥装置において、乾燥処理後の塗布膜の面内均一性を向上し、配線パターン形成過程における前記塗布膜の残膜厚及び線幅の均一性を向上することのできる減圧乾燥方法及び減圧乾燥装置を提供する。   The present invention has been made in view of the above-described problems of the prior art, and in a reduced-pressure drying apparatus that performs a drying process on a coating film formed on a substrate to be processed, the in-plane of the coating film after the drying process Provided are a reduced pressure drying method and a reduced pressure drying apparatus capable of improving uniformity and improving uniformity of the remaining film thickness and line width of the coating film in a wiring pattern forming process.

前記した課題を解決するために、本発明に係る減圧乾燥方法は、塗布膜が形成された被処理基板を減圧環境下に置いて前記塗布膜中の溶剤を蒸発させ、前記塗布膜の乾燥処理を施す減圧乾燥方法であって、塗布膜が形成された前記基板をチャンバに収容し、前記チャンバ内を減圧環境とする工程において、前記チャンバ内の圧力を第一の減圧速度で減圧し、前記溶剤の蒸気圧よりも高く、少なくとも前記溶剤が突沸的に蒸発することのない第一の圧力値とするステップと、前記第一の圧力値から少なくとも前記溶剤の蒸気圧となるまで、前記第一の減圧速度よりも低い第二の減圧速度で緩やかに減圧するステップとを含むことに特徴を有する。
尚、前記チャンバ内の圧力を前記溶剤の蒸気圧とするステップの後、更に、前記第二の減圧速度で減圧し、前記溶剤の蒸気圧よりも低い第二の圧力値とするステップを実施することが望ましい。
In order to solve the above-described problems, the reduced-pressure drying method according to the present invention includes a substrate to be processed on which a coating film is formed in a reduced-pressure environment to evaporate a solvent in the coating film, thereby drying the coating film. A method of drying under reduced pressure, wherein the substrate on which the coating film is formed is housed in a chamber, and in the step of setting the inside of the chamber to a reduced pressure environment, the pressure in the chamber is reduced at a first reduced pressure rate, A first pressure value that is higher than the vapor pressure of the solvent and at least the solvent does not evaporate suddenly, and from the first pressure value to at least the vapor pressure of the solvent. And a step of gently depressurizing at a second depressurization rate lower than the depressurization rate.
In addition, after the step of setting the pressure in the chamber to the vapor pressure of the solvent, a step of further reducing the pressure at the second pressure reduction rate to a second pressure value lower than the vapor pressure of the solvent is performed. It is desirable.

このような方法によれば、チャンバ内の圧力が溶剤の蒸気圧よりも高く、少なくとも前記溶剤が突沸的に蒸発することのない第一の圧力値の時点から、より低速度の緩やかな第二の減圧速度により減圧が行われる。
この制御により、基板面付近における圧力値は、ばらつくことなく面内均一な状態を維持して緩やかに減圧され、溶剤の蒸気圧に達する。
その結果、塗布膜からの溶剤の突沸的な蒸発が抑制され、低速度での溶剤の蒸発を行うことができ、レジストの乾燥状態を均一にすることができる。
また、レジストの乾燥状態が均一になることにより、例えばハーフ露光処理を用いた場合の配線パターン形成過程におけるパターン残膜厚及び線幅の均一性を向上することができる。
According to such a method, the pressure in the chamber is higher than the vapor pressure of the solvent, and at least from the point of the first pressure value at which the solvent does not evaporate suddenly, the second speed is gradually lowered. The pressure is reduced at a reduced pressure rate of
By this control, the pressure value in the vicinity of the substrate surface is gradually reduced while maintaining a uniform state in the surface without variation, and reaches the vapor pressure of the solvent.
As a result, sudden evaporation of the solvent from the coating film is suppressed, the solvent can be evaporated at a low speed, and the dry state of the resist can be made uniform.
In addition, since the dried state of the resist becomes uniform, the uniformity of the pattern residual film thickness and the line width in the wiring pattern formation process when, for example, half exposure processing is used can be improved.

また、前記した課題を解決するために、本発明に係る減圧乾燥装置は、塗布膜が形成された被処理基板を減圧環境下に置いて前記塗布膜中の溶剤を蒸発させ、前記塗布膜の乾燥処理を施す減圧乾燥装置であって、塗布膜が形成された前記基板を収容するチャンバと、前記チャンバ内を排気する排気手段と、前記チャンバからの排気量を調整する排気量調整手段と、前記チャンバ内の圧力を検出する圧力検出手段と、前記圧力検出手段の検出結果に基づき、前記排気量調整手段による排気調整量を制御する制御手段とを備え、前記制御手段は、前記チャンバ内の圧力が、前記溶剤の蒸気圧よりも高く、少なくとも前記溶剤が突沸的に蒸発することのない第一の圧力値となるまでは第一の減圧速度で減圧するよう前記排気量調整手段を制御し、前記第一の圧力値から少なくとも前記溶剤の蒸気圧となるまでは、前記第一の減圧速度よりも低い第二の減圧速度で緩やかに減圧するよう前記排気量調整手段を制御することに特徴を有する。
尚、前記制御手段は、前記チャンバ内の圧力が、前記溶剤の蒸気圧よりも低い第二の圧力値となるまで前記第二の減圧速度で緩やかに減圧するよう前記排気量調整手段を制御することが望ましい。
In order to solve the above-described problem, the reduced-pressure drying apparatus according to the present invention places a substrate to be processed on which a coating film is formed in a reduced-pressure environment to evaporate a solvent in the coating film, A vacuum drying apparatus that performs a drying process, the chamber accommodating the substrate on which a coating film is formed, an exhaust unit that exhausts the inside of the chamber, an exhaust amount adjusting unit that adjusts an exhaust amount from the chamber, Pressure detecting means for detecting the pressure in the chamber; and control means for controlling an exhaust adjustment amount by the exhaust amount adjusting means based on a detection result of the pressure detecting means. The displacement adjustment means is controlled so that the pressure is reduced at a first pressure reduction rate until the pressure is higher than the vapor pressure of the solvent and at least reaches a first pressure value at which the solvent does not evaporate suddenly. ,in front From the first pressure value to at least the vapor pressure of the solvent, the exhaust amount adjusting means is controlled so that the pressure is gradually reduced at a second pressure reduction speed lower than the first pressure reduction speed. .
The control means controls the displacement adjustment means so that the pressure in the chamber is gradually reduced at the second pressure reduction speed until the pressure in the chamber reaches a second pressure value lower than the vapor pressure of the solvent. It is desirable.

このような構成によれば、塗布膜からの溶剤の突沸的な蒸発が抑制され、低速度での溶剤の蒸発を行うことができ、レジストの乾燥状態を均一にすることができる。
また、レジストの乾燥状態が均一になることにより、例えばハーフ露光処理を用いた場合の配線パターン形成過程におけるパターン残膜厚及び線幅の均一性を向上することができる。
According to such a configuration, the sudden evaporation of the solvent from the coating film is suppressed, the solvent can be evaporated at a low speed, and the dry state of the resist can be made uniform.
In addition, since the dried state of the resist becomes uniform, the uniformity of the pattern residual film thickness and the line width in the wiring pattern formation process when, for example, half exposure processing is used can be improved.

本発明によれば、被処理基板に形成された塗布膜に乾燥処理を施す減圧乾燥装置において、乾燥処理後の塗布膜の面内均一性を向上し、配線パターン形成過程における前記塗布膜の残膜厚及び線幅の均一性を向上することのできる減圧乾燥方法及び減圧乾燥装置を得ることができる。   According to the present invention, in a reduced-pressure drying apparatus that performs a drying process on a coating film formed on a substrate to be processed, the in-plane uniformity of the coating film after the drying process is improved, and the coating film remains in the wiring pattern formation process. A vacuum drying method and a vacuum drying apparatus that can improve the uniformity of the film thickness and the line width can be obtained.

図1は、本発明にかかる一実施形態の全体概略構成を示す断面図である。FIG. 1 is a sectional view showing an overall schematic configuration of an embodiment according to the present invention. 図2は、本発明にかかる一実施形態の動作を示すフローである。FIG. 2 is a flowchart showing the operation of the embodiment according to the present invention. 図3は、本発明にかかる一実施形態において、チャンバ内の減圧制御を示すグラフである。FIG. 3 is a graph showing pressure reduction control in the chamber in one embodiment of the present invention. 図4は、本発明にかかる実施例1−4において、チャンバ内の圧力変化を示すグラフである。FIG. 4 is a graph showing the pressure change in the chamber in Example 1-4 according to the present invention. 図5は、本発明にかかる実施例1−4において、レジストの溶剤の蒸発速度の変化を示すグラフである。FIG. 5 is a graph showing changes in the evaporation rate of the resist solvent in Examples 1-4 according to the present invention. 図6は、本発明にかかる実施例5−7において、チャンバ内の圧力変化を示すグラフである。FIG. 6 is a graph showing the pressure change in the chamber in Example 5-7 according to the present invention. 図7は、本発明にかかる実施例5−7において、レジストの溶剤の蒸発速度の変化を示すグラフである。FIG. 7 is a graph showing changes in the evaporation rate of the resist solvent in Examples 5-7 according to the present invention. 図8(a)〜(e)は、ハーフ露光処理を用いた配線パターンの一連の形成工程を説明するための断面図である。8A to 8E are cross-sectional views for explaining a series of steps for forming a wiring pattern using a half exposure process. 図9は、従来の減圧乾燥方法を用いた場合の測定結果であって、チャンバ内の圧力変化、及びレジストの溶剤の蒸発速度の変化を示すグラフである。FIG. 9 is a graph showing measurement results when using a conventional vacuum drying method and showing changes in pressure in the chamber and changes in the evaporation rate of the resist solvent. 図10(a),(b)は、ハーフ露光処理を用いた配線パターンの形成工程において、レジストパターン残膜のばらつきを説明するための断面図である。FIGS. 10A and 10B are cross-sectional views for explaining variations in the resist pattern remaining film in the wiring pattern forming process using the half exposure process.

以下、本発明の減圧乾燥方法及び減圧乾燥装置にかかる一実施形態を、図1乃至図3に基づき説明する。
図1に示すように、この減圧乾燥装置1は、その内部空間を気密に維持するためのチャンバ2を備え、このチャンバ2は、下部チャンバ2aと、その上を覆うように昇降移動可能に設けられた上部チャンバ2bとを備えている。
Hereinafter, an embodiment according to a vacuum drying method and a vacuum drying apparatus of the present invention will be described with reference to FIGS. 1 to 3.
As shown in FIG. 1, this reduced pressure drying apparatus 1 includes a chamber 2 for keeping the internal space hermetically sealed. The chamber 2 is provided so as to be movable up and down so as to cover the lower chamber 2a. And an upper chamber 2b.

下部チャンバ2aには、被処理基板であるガラス基板Gを載置するためのステージ4が設けられ、このステージ4は、基板搬入出を容易にするために、昇降可能なシャフト6によって支持されている。ステージ4上には、基板Gを載置するための複数の固定ピン5が設けられ、これら複数の固定ピン5は、ステージ4上に分散配置されている。尚、この固定ピン5は、基板Gと実質的に同じ材質(本実施形態ではガラス)で形成されていることが好ましい。   The lower chamber 2a is provided with a stage 4 for placing a glass substrate G, which is a substrate to be processed, and this stage 4 is supported by a shaft 6 that can be raised and lowered to facilitate loading and unloading of the substrate. Yes. A plurality of fixing pins 5 for placing the substrate G are provided on the stage 4, and the plurality of fixing pins 5 are distributed on the stage 4. The fixing pin 5 is preferably made of substantially the same material as the substrate G (in this embodiment, glass).

また、下部チャンバ2aの各コーナー部には、4個の排気口10(図1では、そのうち2つを示す)が設けられている。各排気口10には排気管11が連通し、排気管11は排気ポンプ17(排気手段)に接続されている。即ち、下部チャンバ2aに上部チャンバ2bが密着してチャンバ2内が気密状態とされ、排気ポンプ17により排気管11を通じて排気することにより、チャンバ2内が減圧されて所定の真空状態となされるように構成されている。   Further, four exhaust ports 10 (two of which are shown in FIG. 1) are provided at each corner of the lower chamber 2a. An exhaust pipe 11 communicates with each exhaust port 10, and the exhaust pipe 11 is connected to an exhaust pump 17 (exhaust means). That is, the upper chamber 2b is brought into close contact with the lower chamber 2a so that the inside of the chamber 2 is airtight, and exhausted through the exhaust pipe 11 by the exhaust pump 17, so that the inside of the chamber 2 is decompressed to a predetermined vacuum state. It is configured.

排気管11の途中には、流量調整バルブ15(排気量調整手段)とメインバルブ16とが設けられている。前記流量調整バルブ15は、コンピュータからなる制御部20によって、そのバルブ開度が制御され、この開度に応じてチャンバ2内からの排気量が決められる。
また、排気管11には、チャンバ2内の圧力検出を行うための圧力検出部18(圧力検出手段)が設けられており、制御部20は圧力検出部18の検出結果に基づき流量調整バルブ15のバルブ開度を設定するようになされている。
また、制御部20は、チャンバ2内の減圧を一定の制御に基づいて行うために、所定の制御プログラムを記憶し、減圧乾燥処理の開始時にこの制御プログラムが実行されるようになされている。
尚、この制御プログラムは、図3に示すように時間経過に伴い、チャンバ2内の圧力が変化するように制御を行うようになされている。また、この図3に実線で示す圧力線にあっては、直線的に圧力変化するものとしているが、それに限らず一点鎖線で示すように曲線的に変化させる制御を行ってもよい。
A flow rate adjusting valve 15 (exhaust amount adjusting means) and a main valve 16 are provided in the middle of the exhaust pipe 11. The flow rate adjusting valve 15 is controlled by a control unit 20 comprising a computer, and the opening degree of the flow rate adjusting valve 15 is determined according to the opening degree.
Further, the exhaust pipe 11 is provided with a pressure detector 18 (pressure detector) for detecting the pressure in the chamber 2, and the controller 20 controls the flow rate adjusting valve 15 based on the detection result of the pressure detector 18. The valve opening is set.
Further, the control unit 20 stores a predetermined control program in order to perform decompression in the chamber 2 based on constant control, and this control program is executed at the start of the decompression drying process.
Note that this control program performs control so that the pressure in the chamber 2 changes with time as shown in FIG. Further, in the pressure line indicated by the solid line in FIG. 3, the pressure is assumed to change linearly, but the present invention is not limited to this, and control to change in a curve as indicated by a one-dot chain line may be performed.

続いて、前記制御プログラムを用いた減圧乾燥処理について説明する。
前段工程において、基板Gの被処理面に塗布液であるレジスト液が塗布されると、減圧乾燥装置1に前記基板Gが搬入され、ステージ4上に載置される。
また、下部チャンバ2aに対して上部チャンバ2bが閉じられ、気密状態のチャンバ2内に基板Gが収容される(図2のステップS1)。
Subsequently, the reduced-pressure drying process using the control program will be described.
When a resist solution, which is a coating solution, is applied to the surface to be processed of the substrate G in the previous step, the substrate G is loaded into the reduced pressure drying apparatus 1 and placed on the stage 4.
Further, the upper chamber 2b is closed with respect to the lower chamber 2a, and the substrate G is accommodated in the airtight chamber 2 (step S1 in FIG. 2).

チャンバ2内が気密状態となされると、排気ポンプ17が駆動されると共にメインバルブ16が開かれ、図3の時点t0からチャンバ2内の排気が開始される。
ここで先ず制御部20は、流量調整バルブ15の開度を調整することによって、図3に示すようにチャンバ2内を第一の減圧速度v1で減圧し、チャンバ2内の圧力をレジスト液の溶剤(例えばPGMEA)の蒸気圧Peよりも高い第一の圧力値P1(例えば図3の時点t1における400Pa)とする(図2のステップS2)。尚、この第一の圧力値P1は、溶剤が突沸的に蒸発する圧力値よりも高く、前記溶剤が突沸的に蒸発することがない、例えば、溶剤が全く蒸発しない場合、及び多少蒸発する場合(例えば、図5の30sec付近の蒸発速度の場合)を含む圧力値である。また、ここでいう溶剤の蒸気圧とは、減圧環境下における蒸気圧の値を示す。
When the inside of the chamber 2 is brought into an airtight state, the exhaust pump 17 is driven and the main valve 16 is opened, and the exhaust in the chamber 2 is started from the time t0 in FIG.
Here, first, the control unit 20 adjusts the opening of the flow rate adjusting valve 15 to reduce the pressure in the chamber 2 at the first pressure reducing speed v1 as shown in FIG. A first pressure value P1 (for example, 400 Pa at time t1 in FIG. 3) higher than the vapor pressure Pe of the solvent (for example, PGMEA) is set (step S2 in FIG. 2). The first pressure value P1 is higher than the pressure value at which the solvent evaporates suddenly, and the solvent does not evaporate suddenly, for example, when the solvent does not evaporate at all or when it evaporates somewhat. The pressure value includes (for example, the case of the evaporation rate in the vicinity of 30 sec in FIG. 5). Moreover, the vapor pressure of the solvent here refers to the value of the vapor pressure in a reduced pressure environment.

チャンバ2内の圧力が第一の圧力値P1に達すると、制御部20は流量調整バルブ15の開度を閉じる方向に調整し、排気量を減少させることによって、前記第一の減圧速度v1よりも遅い第二の減圧速度v2で緩やかに減圧を行う(図2のステップS3)。   When the pressure in the chamber 2 reaches the first pressure value P1, the control unit 20 adjusts the opening degree of the flow rate adjustment valve 15 in the closing direction and reduces the exhaust amount, thereby reducing the first depressurization speed v1. The pressure is gradually reduced at the slower second pressure reduction speed v2 (step S3 in FIG. 2).

この第二の減圧速度v2による緩やかな減圧制御は、図3に示すように第一の圧力値P1の時点t1から第二の圧力値P2(例えば250Pa)の時点t3となるまで行われる。
尚、前記第二の圧力値P2は、レジストの溶剤の蒸気圧Peよりも低い値であり、前記第二の減圧速度v2により緩やかに減圧を続けた場合にレジスト中の溶剤の蒸発が完了する時点t3での圧力値である。前記第一の圧力値P1、第二の圧力値P2は、溶剤の種類等の諸条件に応じて予め設定されている。
The gentle pressure reduction control at the second pressure reduction speed v2 is performed from the time point t1 of the first pressure value P1 to the time point t3 of the second pressure value P2 (for example, 250 Pa) as shown in FIG.
The second pressure value P2 is lower than the vapor pressure Pe of the solvent of the resist, and when the pressure is gradually reduced by the second pressure reduction speed v2, the evaporation of the solvent in the resist is completed. The pressure value at the time point t3. Said 1st pressure value P1 and 2nd pressure value P2 are preset according to various conditions, such as a kind of solvent.

ここで、制御部20は、チャンバ2内の圧力が第一の圧力値P1から第二の圧力値P2に減圧されるまで間、圧力検出部18の検出結果に基づき、チャンバ2内の減圧速度が前記第二の減速速度v2付近(所定範囲内)にあるか否かを監視する(図2のステップS4)。
そして、チャンバ2内の減圧速度が所定範囲よりも小さい場合には(図2のステップS5)、排気流量が増加するよう流量調整バルブ15の開度を大きくする(図2のステップS6)。一方、チャンバ2内の減圧速度が所定範囲よりも大きい場合には(図2のステップS5)、排気流量が減少するよう流量調整バルブ15の開度を小さくする(図2のステップS7)。
Here, while the pressure in the chamber 2 is reduced from the first pressure value P1 to the second pressure value P2, the controller 20 reduces the pressure reduction speed in the chamber 2 based on the detection result of the pressure detector 18. Is monitored in the vicinity of the second deceleration speed v2 (within a predetermined range) (step S4 in FIG. 2).
When the pressure reduction speed in the chamber 2 is smaller than the predetermined range (step S5 in FIG. 2), the opening degree of the flow rate adjustment valve 15 is increased so that the exhaust flow rate increases (step S6 in FIG. 2). On the other hand, when the pressure reduction speed in the chamber 2 is larger than the predetermined range (step S5 in FIG. 2), the opening degree of the flow rate adjusting valve 15 is decreased so as to reduce the exhaust flow rate (step S7 in FIG. 2).

また、図3に示すように、チャンバ2内の圧力が第一の圧力値P1から第二の圧力値P2に緩やかに減圧される間の時点t2において、チャンバ2内の圧力は溶剤の蒸気圧Peに達する。
このため、チャンバ2内の圧力が緩やかに蒸気圧Peに達する時点t2の少し前から、溶剤の蒸発が(突沸することなく)低速度で開始され、更に第二の圧力P2に達するまでの間、時間をかけて安定した蒸発速度で溶剤の蒸発が進行する。
Also, as shown in FIG. 3, at time t2 during which the pressure in the chamber 2 is gradually reduced from the first pressure value P1 to the second pressure value P2, the pressure in the chamber 2 is the vapor pressure of the solvent. Reach Pe.
For this reason, the evaporation of the solvent starts at a low speed (without bumping) slightly before the time point t2 when the pressure in the chamber 2 gradually reaches the vapor pressure Pe, and further until the second pressure P2 is reached. The evaporation of the solvent proceeds at a stable evaporation rate over time.

そしてチャンバ2内の圧力が第二の圧力値P2まで減圧されると(図2のステップS8)、レジスト中の溶剤の蒸発が略完了し、制御部20は排気ポンプ17の駆動を停止し、減圧乾燥処理を終了する(図2のステップS9)。   When the pressure in the chamber 2 is reduced to the second pressure value P2 (step S8 in FIG. 2), the evaporation of the solvent in the resist is substantially completed, and the control unit 20 stops driving the exhaust pump 17, The reduced-pressure drying process is terminated (step S9 in FIG. 2).

以上のように、本発明に係る実施の形態によれば、チャンバ2内の圧力がレジストの溶剤の蒸気圧よりも高く、少なくとも前記溶剤が突沸的に蒸発することのない第一の圧力値P1の時点t1から、より低速度の緩やかな減圧速度v2により減圧が行われる。
この制御により、基板面付近における圧力は、ばらつくことなく面内均一な状態を維持して緩やかに減圧され、溶剤の蒸気圧に達する。
その結果、レジスト膜からの溶剤の突沸的な蒸発が抑制され、低速度での溶剤の蒸発を行うことができ、レジストの乾燥状態を均一にすることができる。
また、レジストの乾燥状態が均一になることにより、例えばハーフ露光処理を用いた場合の配線パターン形成過程におけるレジストパターンの残膜厚及び線幅の均一性を向上することができる。
As described above, according to the embodiment of the present invention, the pressure in the chamber 2 is higher than the vapor pressure of the resist solvent, and at least the first pressure value P1 at which the solvent does not evaporate suddenly. From time t1, the pressure is reduced at a slower pressure reduction speed v2.
By this control, the pressure in the vicinity of the substrate surface is gradually reduced while maintaining a uniform state in the surface without variation, and reaches the vapor pressure of the solvent.
As a result, sudden evaporation of the solvent from the resist film is suppressed, the solvent can be evaporated at a low speed, and the dry state of the resist can be made uniform.
Further, since the dried state of the resist becomes uniform, it is possible to improve the uniformity of the remaining film thickness and line width of the resist pattern in the wiring pattern forming process when, for example, half exposure processing is used.

尚、前記実施の形態においては、減圧乾燥装置1において排気量調整手段として流量調整バルブ15を設け、その開度を調整することによりチャンバ2からの排気量の制御を行う構成としたが、本発明にあっては、その構成に限定されるものではない。
例えば、流量調整バルブ15に替えて、排気管11内にエアを流し込むエア導入手段(図示せず)を設け、そのエア導入量を調整することにより排気量の制御を行う構成としてもよい。
In the embodiment described above, the flow rate adjusting valve 15 is provided as the exhaust gas amount adjusting means in the vacuum drying apparatus 1 and the exhaust amount from the chamber 2 is controlled by adjusting the opening degree. The invention is not limited to the configuration.
For example, instead of the flow rate adjustment valve 15, an air introduction means (not shown) for flowing air into the exhaust pipe 11 may be provided, and the exhaust amount may be controlled by adjusting the air introduction amount.

また、図3を用いて説明したように、圧力制御にあっては、第一の圧力値P1と第二の圧力値P2とを設定し、それらの圧力値に達するまでの減圧速度を制御するようにしたが、更に圧力値の設定数を増やし、より細かく減圧速度を制御してもよい。
例えば、図3に示すように第一の圧力値P1の付近に、さらに第三の圧力値P3、第四の圧力値P4を追加し、第一の圧力値P1に達するまでの減圧制御をより細かく行ってもよい。また、例えば、第一の気圧値P1と第二の気圧値P2との間に、第五の気圧値P5、第六の気圧値P6を設け、蒸気圧Pe付近の減圧制御をより細かく行ってもよい。
Further, as described with reference to FIG. 3, in the pressure control, the first pressure value P1 and the second pressure value P2 are set, and the pressure reduction speed until the pressure values are reached is controlled. However, the pressure reduction rate may be controlled more finely by increasing the set number of pressure values.
For example, as shown in FIG. 3, a third pressure value P3 and a fourth pressure value P4 are further added in the vicinity of the first pressure value P1, and the pressure reduction control until reaching the first pressure value P1 is further performed. You can go finely. Further, for example, a fifth atmospheric pressure value P5 and a sixth atmospheric pressure value P6 are provided between the first atmospheric pressure value P1 and the second atmospheric pressure value P2, and the decompression control near the vapor pressure Pe is performed more finely. Also good.

また、前記実施の形態においては、チャンバ2内において、基板Gをステージ4上に載置する構成としたが、その構成に限定されるものではなく、例えば、支持ピン、或いは搬送コロ(ローラ)上に載置する構成であってもよい。   In the above embodiment, the substrate G is placed on the stage 4 in the chamber 2. However, the present invention is not limited to this configuration. For example, a support pin or a transport roller (roller) is used. The structure mounted on top may be sufficient.

続いて、本発明に係る塗布膜形成方向及び塗布膜形成装置について、実施例に基づきさらに説明する。
[実施例1−4]
実施例1−4では、レジスト塗布されたガラス基板を気密状態のチャンバ内に収容し、前記実施形態における第一の圧力値P1に相当する圧力値(400Pa)まで減圧した状態から、所定時間をかけて、第二の圧力値P2に相当する所定の圧力値まで減圧した。そして、400Paから第二の圧力値P2まで減圧する間に、溶剤の蒸発速度がどのように変化するか検証した。
尚、レジストにはAZ−SR210(AZ社)、溶剤にはPGMEAを用い、レジスト膜の塗布膜厚は1.5μmとした。
また、前記第二の圧力値P2に相当する圧力値を、実施例1では250Pa、実施例2では200Pa、実施例3では150Pa、実施例4では100Paとした。
Next, the coating film forming direction and the coating film forming apparatus according to the present invention will be further described based on examples.
[Example 1-4]
In Example 1-4, the resist-coated glass substrate is housed in an airtight chamber, and the pressure is reduced to a pressure value (400 Pa) corresponding to the first pressure value P1 in the above embodiment, and a predetermined time is taken. The pressure was reduced to a predetermined pressure value corresponding to the second pressure value P2. Then, it was verified how the evaporation rate of the solvent changed while the pressure was reduced from 400 Pa to the second pressure value P2.
In addition, AZ-SR210 (AZ company) was used for the resist, PGMEA was used for the solvent, and the coating thickness of the resist film was 1.5 μm.
The pressure value corresponding to the second pressure value P2 was 250 Pa in Example 1, 200 Pa in Example 2, 150 Pa in Example 3, and 100 Pa in Example 4.

各実施例1−4におけるチャンバ内の圧力変化を図4に示す。また、そのときのレジスト溶剤の蒸発速度の変化を図5に示す。
図5から、最も減圧速度が緩やかな実施例1(400Pa→250Pa)の場合に、溶剤の蒸発速度の変化が最も少なく、突沸的な蒸発が発生しないため好ましいことが確認された。
FIG. 4 shows the pressure change in the chamber in each of Examples 1-4. FIG. 5 shows the change in the evaporation rate of the resist solvent at that time.
From FIG. 5, it was confirmed that Example 1 (400 Pa → 250 Pa), which has the slowest pressure reduction rate, had the smallest change in the evaporation rate of the solvent and was preferable because no sudden evaporation occurred.

[実施例5−7]
実施例5−7では、前記実施形態における第一の圧力値P1に相当する圧力値を400Paとし、第二の圧力値P2に相当する所定の圧力値を250Paとし、400Paから250Paまで減圧するまでの時間によって溶剤の蒸発速度がどのように変化するか検証した。
尚、レジスト、溶剤、及び塗布膜厚は、実施例1−4と同じとした。
また、400Paから250Paまで減圧するまでの時間を、実施例5では35sec、実施例6では25sec、実施例7では15secとした。
[Example 5-7]
In Example 5-7, the pressure value corresponding to the first pressure value P1 in the embodiment is set to 400 Pa, the predetermined pressure value corresponding to the second pressure value P2 is set to 250 Pa, and the pressure is reduced from 400 Pa to 250 Pa. It was verified how the evaporation rate of the solvent changed with the time of the above.
The resist, solvent, and coating thickness were the same as those in Example 1-4.
The time until the pressure was reduced from 400 Pa to 250 Pa was set to 35 sec in Example 5, 25 sec in Example 6, and 15 sec in Example 7.

各実施例5−7におけるチャンバ内の圧力変化を図6に示す。また、そのときのレジスト溶剤の蒸発速度の変化を図7に示す。
図7から、最も時間をかけることによって減圧速度が緩やかな実施例5の場合に、溶剤の蒸発速度の変化が最も少なく、突沸的な蒸発が発生しないため好ましいことが確認された。
以上の実施例1−7の結果から、少なくともレジスト液の溶剤が突沸的に蒸発することのない第一の圧力値P1から、時間をかけて緩やかに減圧を行うことによって、レジスト膜からの溶剤の突沸的な蒸発が抑制され、低速度での溶剤の蒸発を行うことができると確認した。
FIG. 6 shows the pressure change in the chamber in each Example 5-7. FIG. 7 shows the change in the evaporation rate of the resist solvent at that time.
From FIG. 7, it was confirmed that in Example 5 where the pressure reduction rate was slow by taking the longest time, the change in the evaporation rate of the solvent was the smallest and no sudden evaporation occurred, which was preferable.
From the results of Examples 1-7 above, the solvent from the resist film is gradually reduced over time from the first pressure value P1 at which the solvent of the resist solution does not evaporate suddenly. As a result, it was confirmed that the solvent could be evaporated at a low speed.

[実施例8]
実施例8では、前記実施形態における第一の圧力値P1に相当する圧力値を400Paとし、第二の圧力値P2に相当する所定の圧力値を250Paとし、400Paから250Paまで減圧した。
その結果得られたレジスト膜を用いてハーフ露光処理を行い、得られたレジストパターンのパターン線幅、及び残膜厚について、基板面内の25のポイントで測定を行い、変動幅(ばらつき)を求めた。また、各測定ポイントにおいて、レジストパターン断面のテーパ角度(基板面に対する傾斜角:図8(c)に示すθ角)を測定し、それらの平均値を求めた。
[Example 8]
In Example 8, the pressure value corresponding to the first pressure value P1 in the embodiment was set to 400 Pa, the predetermined pressure value corresponding to the second pressure value P2 was set to 250 Pa, and the pressure was reduced from 400 Pa to 250 Pa.
Using the resulting resist film, half exposure processing is performed, and the pattern line width and remaining film thickness of the obtained resist pattern are measured at 25 points in the substrate surface, and the fluctuation width (variation) is determined. Asked. Further, at each measurement point, the taper angle (inclination angle with respect to the substrate surface: θ angle shown in FIG. 8C) of the resist pattern cross section was measured, and the average value thereof was obtained.

また、比較例1として、従来の減圧乾燥方法、即ちチャンバ内をレジストの溶剤の蒸気圧まで急激に減圧し、その圧力を維持することによって乾燥処理を行った基板について、実施例8と同様に変動幅、及びテーパ角度を求めた。
尚、実施例8及び比較例1におけるレジストにはAZ−SR210、溶剤にはPGMEAを用い、レジスト膜の塗布膜厚は2.2μmとした。
実施例8、及び比較例1の結果を表1に示す。
Further, as Comparative Example 1, a conventional reduced-pressure drying method, that is, a substrate subjected to a drying process by rapidly reducing the inside of the chamber to the vapor pressure of the resist solvent and maintaining the pressure is the same as in Example 8. The fluctuation range and the taper angle were obtained.
In Example 8 and Comparative Example 1, AZ-SR210 was used as the resist, PGMEA was used as the solvent, and the coating thickness of the resist film was 2.2 μm.
The results of Example 8 and Comparative Example 1 are shown in Table 1.

Figure 2011165691
Figure 2011165691

表1に示すように本発明に係る減圧乾燥方法を適用した実施例8によれば、従来方法を適用した比較例1の結果よりもレジストパターンの残膜厚、線幅ともに変動幅(ばらつき)が低減され、従来よりも基板面内での均一性が向上することを確認した。
また、テーパ角度は、実施例8では比較例1よりも小さくなり、この検証結果から、第一の圧力値P1〜蒸気圧Peの傾き(蒸発速度)を制御することでレジストパターンのテーパ角度を任意に制御できることを確認した。
As shown in Table 1, according to Example 8 to which the reduced-pressure drying method according to the present invention was applied, both the remaining film thickness and the line width of the resist pattern varied (variation) than the result of Comparative Example 1 to which the conventional method was applied. It was confirmed that the uniformity in the substrate surface was improved as compared with the prior art.
Further, the taper angle in Example 8 is smaller than that in Comparative Example 1. From this verification result, the taper angle of the resist pattern is controlled by controlling the slope (evaporation rate) of the first pressure value P1 to the vapor pressure Pe. It was confirmed that it can be controlled arbitrarily.

1 減圧乾燥装置
2 チャンバ
2a 下部チャンバ
2b 上部チャンバ
4 ステージ
5 固定ピン
6 昇降シャフト
10 排気口
11 排気管
15 流量調整バルブ(排気量調整手段)
16 メインバルブ
17 排気ポンプ(排気手段)
20 制御部
G ガラス基板(被処理基板)
P1 第一の圧力値
P2 第二の圧力値
Pe 溶剤の蒸気圧
v1 第一の減圧速度
v2 第二の減圧速度
DESCRIPTION OF SYMBOLS 1 Vacuum drying apparatus 2 Chamber 2a Lower chamber 2b Upper chamber 4 Stage 5 Fixing pin 6 Lifting shaft 10 Exhaust port 11 Exhaust pipe 15 Flow rate adjusting valve (exhaust amount adjusting means)
16 Main valve 17 Exhaust pump (exhaust means)
20 Control unit G Glass substrate (substrate to be processed)
P1 First pressure value P2 Second pressure value Pe Vapor pressure of solvent v1 First decompression speed v2 Second decompression speed

Claims (4)

塗布膜が形成された被処理基板を減圧環境下に置いて前記塗布膜中の溶剤を蒸発させ、前記塗布膜の乾燥処理を施す減圧乾燥方法であって、
塗布膜が形成された前記基板をチャンバに収容し、前記チャンバ内を減圧環境とする工程において、
前記チャンバ内の圧力を第一の減圧速度で減圧し、前記溶剤の蒸気圧よりも高く、少なくとも前記溶剤が突沸的に蒸発することのない第一の圧力値とするステップと、
前記第一の圧力値から少なくとも前記溶剤の蒸気圧となるまで、前記第一の減圧速度よりも低い第二の減圧速度で緩やかに減圧するステップとを含むことを特徴とする減圧乾燥方法。
A reduced-pressure drying method in which a substrate to be processed on which a coating film is formed is placed under a reduced pressure environment to evaporate a solvent in the coating film and to perform a drying process on the coating film,
In the step of accommodating the substrate on which the coating film is formed in a chamber and setting the inside of the chamber to a reduced pressure environment,
Depressurizing the pressure in the chamber at a first depressurization rate to a pressure value higher than the vapor pressure of the solvent and at least preventing the solvent from evaporating suddenly;
And a step of gradually reducing the pressure from the first pressure value to at least the vapor pressure of the solvent at a second pressure reduction rate lower than the first pressure reduction rate.
前記チャンバ内の圧力を前記溶剤の蒸気圧とするステップの後、
更に、前記第二の減圧速度で減圧し、前記溶剤の蒸気圧よりも低い第二の圧力値とするステップを実施することを特徴とする請求項1に記載された塗布膜形成方法。
After the step of setting the pressure in the chamber to the vapor pressure of the solvent,
2. The method of forming a coating film according to claim 1, further comprising the step of reducing the pressure at the second pressure reduction rate to obtain a second pressure value lower than the vapor pressure of the solvent.
塗布膜が形成された被処理基板を減圧環境下に置いて前記塗布膜中の溶剤を蒸発させ、前記塗布膜の乾燥処理を施す減圧乾燥装置であって、
塗布膜が形成された前記基板を収容するチャンバと、前記チャンバ内を排気する排気手段と、前記チャンバからの排気量を調整する排気量調整手段と、前記チャンバ内の圧力を検出する圧力検出手段と、前記圧力検出手段の検出結果に基づき、前記排気量調整手段による排気調整量を制御する制御手段とを備え、
前記制御手段は、
前記チャンバ内の圧力が、前記溶剤の蒸気圧よりも高く、少なくとも前記溶剤が突沸的に蒸発することのない第一の圧力値となるまでは第一の減圧速度で減圧するよう前記排気量調整手段を制御し、
前記第一の圧力値から少なくとも前記溶剤の蒸気圧となるまでは、前記第一の減圧速度よりも低い第二の減圧速度で緩やかに減圧するよう前記排気量調整手段を制御することを特徴とする減圧乾燥装置。
A reduced-pressure drying apparatus that places a substrate to be processed on which a coating film is formed in a reduced-pressure environment to evaporate a solvent in the coating film and performs a drying process on the coating film,
A chamber containing the substrate on which the coating film is formed, an exhaust means for exhausting the interior of the chamber, an exhaust amount adjusting means for adjusting the exhaust amount from the chamber, and a pressure detecting means for detecting the pressure in the chamber And control means for controlling the exhaust adjustment amount by the exhaust amount adjustment means based on the detection result of the pressure detection means,
The control means includes
The displacement adjustment is performed so that the pressure in the chamber is higher than the vapor pressure of the solvent and at least a first pressure value at which the solvent does not suddenly evaporate is reduced at a first pressure reduction rate. Control means,
From the first pressure value to at least the vapor pressure of the solvent, the exhaust amount adjusting means is controlled so as to gradually reduce the pressure at a second pressure reduction speed lower than the first pressure reduction speed. A vacuum drying device.
前記制御手段は、
前記チャンバ内の圧力が、前記溶剤の蒸気圧よりも低い第二の圧力値となるまで前記第二の減圧速度で緩やかに減圧するよう前記排気量調整手段を制御することを特徴とする請求項3に記載された減圧乾燥装置。
The control means includes
The exhaust amount adjusting means is controlled so that the pressure in the chamber is gradually reduced at the second pressure reduction rate until the pressure in the chamber reaches a second pressure value lower than the vapor pressure of the solvent. The vacuum drying apparatus described in 3.
JP2010023045A 2010-02-04 2010-02-04 Reduced pressure drying method and reduced pressure drying device Pending JP2011165691A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010023045A JP2011165691A (en) 2010-02-04 2010-02-04 Reduced pressure drying method and reduced pressure drying device
KR1020110005860A KR20110090773A (en) 2010-02-04 2011-01-20 Decompression drying method and decompression drying apparatus
TW100103096A TWI479111B (en) 2010-02-04 2011-01-27 Decompression drying method and decompression drying apparatus
CN2011100353635A CN102193345A (en) 2010-02-04 2011-01-31 Decompression drying method and decompression drying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010023045A JP2011165691A (en) 2010-02-04 2010-02-04 Reduced pressure drying method and reduced pressure drying device

Publications (1)

Publication Number Publication Date
JP2011165691A true JP2011165691A (en) 2011-08-25

Family

ID=44596067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010023045A Pending JP2011165691A (en) 2010-02-04 2010-02-04 Reduced pressure drying method and reduced pressure drying device

Country Status (4)

Country Link
JP (1) JP2011165691A (en)
KR (1) KR20110090773A (en)
CN (1) CN102193345A (en)
TW (1) TWI479111B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016044897A (en) * 2014-08-25 2016-04-04 株式会社Screenホールディングス Pressure reduction dryer, substrate treatment device and pressure reduction drying method
JP2019036654A (en) * 2017-08-18 2019-03-07 株式会社Screenホールディングス Decompression drying device, substrate processing apparatus, and decompression drying method
JP2019163913A (en) * 2018-03-20 2019-09-26 株式会社Screenホールディングス Vacuum dryer, substrate treating device, and vacuum drying method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106597732A (en) * 2017-02-05 2017-04-26 武汉华星光电技术有限公司 Liquid crystal panel and method for forming light resistance pattern thereof
JP7316323B2 (en) * 2021-06-30 2023-07-27 株式会社Screenホールディングス Vacuum drying apparatus and vacuum drying method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047797A (en) * 2002-07-12 2004-02-12 Tokyo Electron Ltd Reduced pressure drying equipment, spreading film formation equipment, and reduced pressure drying method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4049751B2 (en) * 2004-02-05 2008-02-20 東京エレクトロン株式会社 Coating film forming device
JP5280000B2 (en) * 2006-01-31 2013-09-04 東京応化工業株式会社 Vacuum drying processing equipment
JP2008241797A (en) * 2007-03-26 2008-10-09 Nippon Zeon Co Ltd Method for forming resist pattern using new positive photosensitive resin composition
JP2008292549A (en) * 2007-05-22 2008-12-04 Fujifilm Corp Method for manufacturing substrate with coating film, color filter and method for manufacturing the same, and display device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047797A (en) * 2002-07-12 2004-02-12 Tokyo Electron Ltd Reduced pressure drying equipment, spreading film formation equipment, and reduced pressure drying method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016044897A (en) * 2014-08-25 2016-04-04 株式会社Screenホールディングス Pressure reduction dryer, substrate treatment device and pressure reduction drying method
JP2019036654A (en) * 2017-08-18 2019-03-07 株式会社Screenホールディングス Decompression drying device, substrate processing apparatus, and decompression drying method
JP2019163913A (en) * 2018-03-20 2019-09-26 株式会社Screenホールディングス Vacuum dryer, substrate treating device, and vacuum drying method
JP7061489B2 (en) 2018-03-20 2022-04-28 株式会社Screenホールディングス Vacuum drying equipment, substrate processing equipment and vacuum drying method

Also Published As

Publication number Publication date
KR20110090773A (en) 2011-08-10
TW201200830A (en) 2012-01-01
TWI479111B (en) 2015-04-01
CN102193345A (en) 2011-09-21

Similar Documents

Publication Publication Date Title
JP6391362B2 (en) Vacuum drying apparatus, substrate processing apparatus, and vacuum drying method
JP4652140B2 (en) Plasma etching method, control program, computer storage medium
JP6017928B2 (en) Plasma etching method and plasma etching apparatus
JP2008518463A5 (en)
JP2011165691A (en) Reduced pressure drying method and reduced pressure drying device
JPWO2015060069A1 (en) Fine pattern forming method, semiconductor device manufacturing method, substrate processing apparatus, and recording medium
US10115591B2 (en) Selective SiARC removal
JP3913625B2 (en) Vacuum drying apparatus, coating film forming apparatus, and vacuum drying method
TWI485767B (en) Manufacturing method of semiconductor device
EP2568495A1 (en) Method for manufacturing semiconductor device and apparatus for manufacturing semiconductor device
CN108573861B (en) Method for manufacturing semiconductor device, substrate processing apparatus, and recording medium
TWI682481B (en) Vacuum drying device, substrate processing device and vacuum drying method
JP3696164B2 (en) Liquid film processing method and liquid film processing apparatus
JP6560072B2 (en) Vacuum drying apparatus and vacuum drying method
WO2008056614A1 (en) Reflow method, pattern-forming method, and method for manufacturing tft
KR102010267B1 (en) Substrate treating apparatus and substrate treating method
KR20200098386A (en) Dry etching method and dry etching apparatus
JPH08339950A (en) Photoresist pattern formation and photoresist treatment device
WO2019015006A1 (en) Pressure reducing and drying device and pressure reducing and drying method
JP2005211734A (en) Organic material applying apparatus and organic material applying method using the same apparatus
JPH04313215A (en) Low-pressure or vacuum baking apparatus and baking treatment method
JP2019036654A (en) Decompression drying device, substrate processing apparatus, and decompression drying method
JP2002043215A (en) Method for forming resist pattern, semiconductor manufacturing apparatus, semiconductor device, and portable information terminal
KR20090095385A (en) Method for fabricating pattern in semiconductor device using spacer
JPH03131024A (en) Semiconductor etching

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120207