JP2011144418A - Plasma deposition method for conductive thin film - Google Patents

Plasma deposition method for conductive thin film Download PDF

Info

Publication number
JP2011144418A
JP2011144418A JP2010005435A JP2010005435A JP2011144418A JP 2011144418 A JP2011144418 A JP 2011144418A JP 2010005435 A JP2010005435 A JP 2010005435A JP 2010005435 A JP2010005435 A JP 2010005435A JP 2011144418 A JP2011144418 A JP 2011144418A
Authority
JP
Japan
Prior art keywords
gas
thin film
conductive thin
reaction vessel
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010005435A
Other languages
Japanese (ja)
Other versions
JP5419723B2 (en
Inventor
Haruo Tajima
晴雄 田島
Masafumi Niwa
雅文 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FILGEN Inc
Original Assignee
FILGEN Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FILGEN Inc filed Critical FILGEN Inc
Priority to JP2010005435A priority Critical patent/JP5419723B2/en
Publication of JP2011144418A publication Critical patent/JP2011144418A/en
Application granted granted Critical
Publication of JP5419723B2 publication Critical patent/JP5419723B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma deposition method for a conductive thin film, which is highly excellent in deposition workability, is capable of stably depositing the conductive thin film with a film thickness of several nm order avoiding instant flow of excessive current when applying a direct current at high voltage between an anode and a cathode, is excellent in reproducibility and is capable of depositing the conductive thin film with a film thickness of several nm by extending application time of the direct current at high voltage. <P>SOLUTION: The plasma deposition method of the conductive thin film includes steps of: (1) introducing a trace amount of a raw material gas when pressure inside a reaction vessel reaches a prescribed vacuum pressure and applying the direct current at high voltage to both electrodes; (2) depositing a conductive metal the same onto a sample surface, when the introduction of the trace amount of the raw material gas results in a low concentration of the raw material gas inside the reaction vessel so as to enable conduction of a low electric current between both electrodes, by inducing glow discharge between both electrodes so as to convert conductive metal molecules into plasma while controlling the amount of the raw material gas introduced so as to maintain the low current state; and (3) maintaining the low concentration of the raw material gas and the low current state for a prescribed period of time so as to deposit the conductive metal molecules onto the sample surface and forming the conductive thin film with a thickness of nm order. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、例えば電子顕微鏡、特に走査型電子顕微鏡(SEM)で検鏡される試料の表面を導電性薄膜で成膜する導電性薄膜のプラズマ成膜方法に関する。   The present invention relates to a plasma film forming method for a conductive thin film in which a surface of a sample to be examined with an electron microscope, particularly a scanning electron microscope (SEM), is formed with a conductive thin film.

例えばSEMにより検鏡する試料が絶縁物の場合には、照射される電子線による二次電子の放出を可能にするため、試料表面に導電性膜を成膜する必要がある。試料の表面に導電性膜を成膜する技術として、例えば特許文献1に示すプラズマ成膜装置を使用した成膜方法が知られている。   For example, when the sample to be examined by SEM is an insulator, it is necessary to form a conductive film on the sample surface in order to enable emission of secondary electrons by the irradiated electron beam. As a technique for forming a conductive film on the surface of a sample, for example, a film forming method using a plasma film forming apparatus disclosed in Patent Document 1 is known.

即ち、特許文献1のプラズマ成膜装置は、陽電極及び試料が載置される陰電極が所定の間隔をおいて相対配置された反応容器内を真空吸引して所定の真空度に形成した後に、該反応容器内に金属化合物ガスを導入して所定の真空度にした状態で陽電極及び陰電極間に直流高電圧を印加してグロー放電を発生させることにより陰電極上の試料の表面に導電性金属分子を堆積させて導電性膜を成膜している。   That is, in the plasma film forming apparatus of Patent Document 1, the positive electrode and the negative electrode on which the sample is placed are vacuum-sucked to form a predetermined degree of vacuum in a reaction vessel in which the positive electrode and the negative electrode are placed at a predetermined interval. In the state where a metal compound gas is introduced into the reaction vessel and a predetermined degree of vacuum is applied, a direct current high voltage is applied between the positive electrode and the negative electrode to generate a glow discharge on the surface of the sample on the negative electrode. A conductive film is formed by depositing conductive metal molecules.

具体的には、反応容器内を真空吸引して0.9Paに真空形成した後、四酸化オスミウム等の昇華ガスを導入して反応容器内を9paに形成した状態で陽電極及び陰電極間に直流高電圧を印加して2〜4mAの電流でグロー放電を発生させてオスミウム分子をプラズマ化して試料の表面に堆積させることにより約10nmの膜厚からなるオスミウム膜を成膜している。   Specifically, after vacuuming the inside of the reaction vessel to form 0.9 Pa, a sublimation gas such as osmium tetroxide is introduced to form the inside of the reaction vessel at 9 pa between the positive electrode and the negative electrode. An osmium film having a thickness of about 10 nm is formed by applying a direct current high voltage to generate glow discharge with a current of 2 to 4 mA to convert osmium molecules into plasma and depositing it on the surface of the sample.

しかしながらSEMにより試料を検鏡する際に、成膜されたオスミウム膜も同時に高倍率化されて検鏡されるため、試料のみを観察したり、分析したりする際に、厚い膜厚のオスミウム膜が障害になっている。この障害を回避するには、試料の表面に成膜されるオスミウム膜を数nmの膜厚で成膜する必要があるが、上記した従来の成膜方法で数nmオーダーの膜厚でオスミウム膜を成膜する場合には、以下の問題を有している。   However, when observing a sample by SEM, the formed osmium film is also magnified at the same time, and therefore, when observing or analyzing only the sample, a thick osmium film is used. Is an obstacle. In order to avoid this obstacle, it is necessary to form an osmium film formed on the surface of the sample with a film thickness of several nanometers, but the osmium film with a film thickness of several nanometers by the conventional film formation method described above. When the film is formed, the following problems occur.

第1に、反応容器内に昇華ガスを導入して高濃度化した状態で陽電極及び陰電極間に直流高電圧を印加すると、瞬間的に過大電流が流れて成膜品質を悪くすることがあり、数nmオーダーの膜厚で導電性薄膜を安定的に成膜できず、再現性が悪かった。 First, when a high DC voltage is applied between the positive electrode and the negative electrode while introducing a sublimation gas into the reaction vessel and increasing the concentration, an excessive current may flow instantaneously, resulting in poor film quality. The conductive thin film could not be stably formed with a film thickness on the order of several nm, and the reproducibility was poor.

第2に、直流高電圧の印加時間を制御して数nmオーダーの膜厚で導電性薄膜を成膜するには、直流高電圧の印加時間を数秒単位の極めて短い時間で制御しなければならず、数nmオーダーの膜厚で導電性薄膜を成膜するには、作業性が悪かった。   Second, in order to control the DC high voltage application time to form a conductive thin film with a film thickness on the order of several nanometers, the DC high voltage application time must be controlled in a very short time of several seconds. In order to form a conductive thin film with a film thickness on the order of several nm, workability was poor.

特開2002-4056号公報JP 2002-4056 A

解決しようとする問題点は、反応容器内に昇華ガスを導入して高濃度化した状態で陽電極及び陰電極間に直流高電圧を印加すると、瞬間的に過大電流が流れて成膜品質を低下させる恐れがあり、数nmオーダーの膜厚で導電性薄膜を安定的に成膜することができず、再現性が悪い点にある。また、数nmオーダーの膜厚で導電性薄膜を成膜するには、直流高電圧の印加時間を数秒単位の極めて短い時間で制御しなければならず、導電性薄膜を安定的に成膜するには、作業性が悪い点にある。 The problem to be solved is that when a high DC voltage is applied between the positive electrode and the negative electrode in a state where a sublimation gas is introduced into the reaction vessel and the concentration is increased, an excessive current instantaneously flows and the film quality is reduced. The conductive thin film cannot be stably formed with a film thickness on the order of several nm, and the reproducibility is poor. In addition, in order to form a conductive thin film with a thickness on the order of several nanometers, it is necessary to control the DC high voltage application time in an extremely short time of several seconds, and the conductive thin film can be stably formed. However, the workability is bad.

本発明の請求項1は、所定の間隔をおいて陽電極及び陰電極が対向配置された反応容器内の空気を真空排気手段により排気して高真空状態に形成しながら導電性金属分子を含有した原料ガスを供給し、両電極間に印加される直流高電圧によりグロー放電を発生させて導電性金属分子をプラズマ化して陰電極上の試料表面に堆積させて導電性薄膜を成膜するプラズマ成膜方法において、(1).反応容器内の圧力が所定の真空圧になった際に原料ガスを微量流入させながら両電極間に直流高電圧を印加する、(2).原料ガスの微量流入により反応容器内における原料ガス濃度が、両電極間を低電流値で導通させる低濃度状態になった際に、該低電流状態を維持するように原料ガスの微小流入量を制御しながら両電極間に発生するグロー放電により導電性金属分子をプラズマ化して試料表面に堆積させる、(3).上記(2)による原料ガスの低濃度状態及び低電流状態を所定時間の間、維持して試料表面に堆積される導電性金属分子により導電性薄膜をnmオーダーで成膜する、上記(1)乃至(3)の工程からなることを特徴とする。   Claim 1 of the present invention contains conductive metal molecules while forming a high vacuum state by evacuating the air in the reaction vessel in which the positive electrode and the negative electrode are arranged to face each other at a predetermined interval. Plasma that forms a conductive thin film by supplying glowing source gas and generating glow discharge by direct current high voltage applied between both electrodes to turn conductive metal molecules into plasma and deposit it on the sample surface on the negative electrode In the film forming method, (1). A high DC voltage is applied between both electrodes while a small amount of raw material gas is introduced when the pressure in the reaction vessel reaches a predetermined vacuum pressure (2). When the raw material gas concentration in the reaction vessel becomes a low concentration state where both electrodes are connected at a low current value due to a small amount of raw material gas inflow, the minute inflow amount of the raw material gas is reduced so as to maintain the low current state. (3). Conductive metal molecules are turned into plasma by glow discharge generated between both electrodes while being controlled, and are deposited on the sample surface. The conductive thin film is formed on the order of nm by conductive metal molecules deposited on the sample surface while maintaining the low concentration state and low current state of the source gas according to (2) for a predetermined time, (1) It is characterized by comprising the steps of (3) to (3).

請求項4は、所定の間隔をおいて陽電極及び陰電極が対向配置された反応容器内の空気を真空排気手段により排気して高真空状態に形成しながら導電性金属分子を含有した原料ガスを供給し、両電極間に印加される直流高電圧によりグロー放電を発生させて導電性金属分子をプラズマ化して陰電極上の試料表面に堆積させて導電性薄膜を成膜するプラズマ成膜方法において、(1).反応容器内の圧力が所定の真空圧になった際に不活性ガスにより希釈された原料ガスを流入させる、(2).希釈された原料ガスの流入により反応容器内の圧力が上昇して原料ガス濃度が所要の低濃度状態になった際に、両電極間にて直流高電圧を印加し、両電極間を低電流値で導通させる、(3).上記低電流値状態を維持するように希釈された原料ガスの流入を制御しながら両電極間にて低電流値で発生するグロー放電により導電性金属分子をプラズマ化して試料表面に堆積させる、(4).上記(3)による原料ガスの低濃度状態及び低電流状態を所定時間の間、維持して試料表面に堆積される導電性金属分子により導電性薄膜をnmオーダーで成膜する、上記(1)乃至(4)の工程からなることを特徴とする。 According to a fourth aspect of the present invention, a raw material gas containing conductive metal molecules is formed in a high vacuum state by exhausting air in a reaction vessel having a positive electrode and a negative electrode facing each other at a predetermined interval by a vacuum exhaust means. Film formation method of forming a conductive thin film by generating glow discharge by a direct current high voltage applied between both electrodes and converting conductive metal molecules into plasma and depositing on the sample surface on the negative electrode (1). Flowing a source gas diluted with an inert gas when the pressure in the reaction vessel reaches a predetermined vacuum pressure (2). When the pressure in the reaction vessel rises due to the inflow of diluted source gas and the source gas concentration reaches the required low concentration state, a DC high voltage is applied between both electrodes, and a low current is applied between both electrodes. Conduct by value (3). Conductive metal molecules are converted into plasma by glow discharge generated at a low current value between both electrodes while controlling the inflow of the source gas diluted so as to maintain the low current value state, and deposited on the sample surface ( 4). The conductive thin film is formed in nm order with conductive metal molecules deposited on the surface of the sample while maintaining the low concentration state and the low current state of the source gas according to the above (3) for a predetermined time. It is characterized by comprising the steps (4) to (4).

本発明は、陽電極及び陰電極間に直流高電圧を印加した際に、瞬間的に過大電流が流れるのを回避し、数nmオーダーの膜厚で導電性薄膜を安定的に成膜し、優れた再現性を実現することができる。また、直流高電圧の印加時間を長くして数nmオーダーの膜厚で導電性薄膜を安定的に成膜することができ、作業性に優れている。   In the present invention, when a direct current high voltage is applied between the positive electrode and the negative electrode, an excessive current is prevented from flowing instantaneously, and a conductive thin film is stably formed with a film thickness on the order of several nm. Excellent reproducibility can be achieved. In addition, it is possible to stably form a conductive thin film with a film thickness on the order of several nanometers by extending the DC high voltage application time, which is excellent in workability.

実施例1に係る本発明方法を実施する際に使用するプラズマ成膜装置の概略を示す断面説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional explanatory view showing an outline of a plasma film forming apparatus used when carrying out a method of the present invention according to Example 1. 実施例2に係る本発明方法を実施する際に使用するプラズマ成膜装置の概略を示す断面説明図である。FIG. 6 is a cross-sectional explanatory view showing an outline of a plasma film forming apparatus used when carrying out the method of the present invention according to Example 2.

本発明は、反応容器内における原料ガスの低濃度状態及び低電流状態を所定時間の間、維持して試料表面に堆積される導電性金属分子により導電性薄膜をnmオーダーで成膜することを最良の形態とする。   The present invention is to form a conductive thin film on the order of nm with conductive metal molecules deposited on a sample surface while maintaining a low concentration state and a low current state of a source gas in a reaction vessel for a predetermined time. The best form.

以下、実施例を示す図に従って本発明を説明する。
先ず、請求項1に対応する本発明方法を実施する際に使用するプラズマ成膜装置1を説明すると、図1に示すようにプラズマ製膜装置1の反応容器3は、耐圧ガラス製で、上部に天板部5が、また下部に基板部7がそれぞれ着脱可能で、気密状に取り付けられる。上記天板部5の中心部下面には陽電極9が電気的絶縁状態で取り付けられると共に陽電極9の周りに位置する天板部5の下面には昇華室11が設けられる。上記天板部5には上記昇華室11内に原料ガスを導入する原料ガス導入部13が設けられる。また、上記昇華室11には反応容器3内に原料ガスを導入させる原料ガス導出部15が設けられる。
The present invention will be described below with reference to the drawings showing examples.
First, the plasma film forming apparatus 1 used when carrying out the method of the present invention corresponding to claim 1 will be described. As shown in FIG. 1, the reaction vessel 3 of the plasma film forming apparatus 1 is made of pressure-resistant glass and has an upper portion. The top plate portion 5 and the substrate portion 7 are detachably attached to the lower portion, and are attached in an airtight manner. A positive electrode 9 is attached to the lower surface of the central portion of the top plate 5 in an electrically insulated state, and a sublimation chamber 11 is provided on the lower surface of the top plate 5 located around the positive electrode 9. The top plate part 5 is provided with a source gas introduction part 13 for introducing a source gas into the sublimation chamber 11. The sublimation chamber 11 is provided with a source gas outlet 15 for introducing source gas into the reaction vessel 3.

原料ガス導入部13の中空部内には、有機又は無機の金属化合物結晶粉末が気密状に収容され、中空部内にて昇華した原料ガスを昇華室11内へ導入させる。金属化合物の金属としては、例えば周期律表のI族(Au、Ag、Cu)、II族(Mg、Zn、Cd)、III族(B、Al、Ga、In、Y)、IV族(Ti、Si、Ge、Sn、Pb)、V族(V、Nb、Ta、As、Sb、Bi)、VI族(Cr、Mo、W、Se)、VII族(Mn)、VIII族(Os、Ir、Pt、Pd、Rh、Co、Ni、Fe)等が挙げられる。本実施形態の原料ガスとしては、四酸化オスミウム(OsO4)が好適であるため、以下においては、オスミウム昇華ガスにより説明する。 An organic or inorganic metal compound crystal powder is housed in an airtight manner in the hollow portion of the raw material gas introducing portion 13, and the raw material gas sublimated in the hollow portion is introduced into the sublimation chamber 11. Examples of the metal of the metal compound include Group I (Au, Ag, Cu), Group II (Mg, Zn, Cd), Group III (B, Al, Ga, In, Y), and Group IV (Ti , Si, Ge, Sn, Pb), Group V (V, Nb, Ta, As, Sb, Bi), Group VI (Cr, Mo, W, Se), Group VII (Mn), Group VIII (Os, Ir Pt, Pd, Rh, Co, Ni, Fe) and the like. Since osmium tetroxide (OsO 4 ) is suitable as the source gas of the present embodiment, the following description will be made using osmium sublimation gas.

また、原料ガス導出部15はニードル弁等の流量可変部材17により反応容器3に対する昇華室11の開口度を調整可能な構造で、流量可変部材17の回動操作により反応容器3内に導入されるオスミウム昇華ガスの濃度、従って反応容器3内の圧力を調整可能にする。 The source gas outlet 15 has a structure in which the opening degree of the sublimation chamber 11 with respect to the reaction vessel 3 can be adjusted by a flow rate variable member 17 such as a needle valve, and is introduced into the reaction vessel 3 by rotating the flow rate variable member 17. The concentration of the osmium sublimation gas and thus the pressure in the reaction vessel 3 can be adjusted.

基板部7の中心部上面には陰電極19が電気的絶縁状態で取り付けられる。該陰電極19の上面には、試料台21が設けられ、該試料台21上に載置された試料23を後述する負グロー層(陰電極上面から約1〜6mm)の領域内に位置させる。 A negative electrode 19 is attached to the upper surface of the central portion of the substrate portion 7 in an electrically insulated state. A sample stage 21 is provided on the upper surface of the negative electrode 19, and the sample 23 placed on the sample stage 21 is positioned in a region of a negative glow layer (about 1 to 6 mm from the upper surface of the negative electrode) described later. .

上記基板部7には真空吸引装置(図示せず)に接続された排気管25が反応容器3の内部と連通するように設けられ、真空吸引装置の駆動により反応容器3内を所定の真空圧(0.9Pa)に真空形成する。また、陽電極9は図示しない直流電源装置の(+)極に、また陰電極19は直流電源装置の(−)極に夫々接続され、陽電極9及び陰電極19間に約0.6〜3kVの直流高電圧を印加して直流グロー放電を発生させる。 The substrate section 7 is provided with an exhaust pipe 25 connected to a vacuum suction device (not shown) so as to communicate with the inside of the reaction vessel 3, and the inside of the reaction vessel 3 is driven to a predetermined vacuum pressure by driving the vacuum suction device. A vacuum is formed at (0.9 Pa). The positive electrode 9 is connected to the (+) electrode of a DC power supply device (not shown), and the negative electrode 19 is connected to the (−) electrode of the DC power supply device. A DC glow discharge is generated by applying a DC high voltage of 3 kV.

なお、反応容器3内または排気間25内には、真空圧センサー(図示せず)が設けられ、反応容器3内の真空圧を検出する。 A vacuum pressure sensor (not shown) is provided in the reaction vessel 3 or between the exhausts 25 to detect the vacuum pressure in the reaction vessel 3.

次に、上記プラズマ成膜装置1を使用した導電性薄膜の成膜方法を説明すると、試料台21上にSEM検鏡用の試料23をセットした状態で反応容器3内を気密化すると共に四酸化オスミウム結晶が収容された原料ガス導入部13をセットし、昇華室11内にて四酸化オスミウム結晶を昇華させてオスミウム昇華ガスを発生させる。 Next, a method for forming a conductive thin film using the plasma film forming apparatus 1 will be described. The inside of the reaction vessel 3 is hermetically sealed with a sample 23 for SEM microscopy set on a sample stage 21 and four. The source gas introduction part 13 in which the osmium oxide crystal is accommodated is set, and the osmium tetroxide crystal is sublimated in the sublimation chamber 11 to generate osmium sublimation gas.

上記状態にて真空排気装置を駆動して反応容器3内を、例えば0.9Paに真空形成した後、真空排気状態を継続しながら直流電源装置をONして陽電極9及び陰電極19間に直流高電圧を印加すると共に流量可変部材17を微小操作して昇華室11内のオスミウム昇華ガスを反応容器3内へ微小量で流入させる。このとき、反応容器3内にオスミウム昇華ガスが流入されていない状態においては、陽電極9及び陰電極19間が真空により電気的絶縁状態に保たれ、両電極間に電流が流れない。 In the above state, the vacuum evacuation device is driven to form a vacuum in the reaction vessel 3 at, for example, 0.9 Pa, and then the DC power supply device is turned on while the evacuation state is continued, so A high DC voltage is applied, and the flow rate variable member 17 is finely operated to allow the osmium sublimation gas in the sublimation chamber 11 to flow into the reaction vessel 3 in a small amount. At this time, in a state where the osmium sublimation gas is not flowing into the reaction vessel 3, the space between the positive electrode 9 and the negative electrode 19 is kept in an electrically insulated state by a vacuum, and no current flows between the two electrodes.

そして反応容器3内に流入されるオスミウム昇華ガスが所定の濃度、従って反応容器3内の圧力が所定の圧力(約3Pa)になると、両電極間におけるオスミウム分子の存在により電流が流れて両電極間に直流グロー放電を発生させる。このとき、反応容器3内におけるオスミウム昇華ガスの濃度が低いため、両電極間に流れる電流も低電流になり、微小量のオスミウム分子をプラズマ化して試料23の表面に堆積させる。 When the osmium sublimation gas flowing into the reaction vessel 3 has a predetermined concentration, and therefore the pressure in the reaction vessel 3 reaches a predetermined pressure (about 3 Pa), an electric current flows due to the presence of osmium molecules between both electrodes, and both electrodes A direct current glow discharge is generated between them. At this time, since the concentration of the osmium sublimation gas in the reaction vessel 3 is low, the current flowing between both electrodes also becomes a low current, and a minute amount of osmium molecules is converted into plasma and deposited on the surface of the sample 23.

そして両電極間の電流値が上記低電流状態を維持するように流量可変部材17を操作して反応容器3内に流入されるオスミウム昇華ガスの流入量を制御しながらグロー放電状態を所定時間、維持して試料23の表面に数nmオーダーの膜厚からなるオスミウム薄膜を成膜させる。 Then, the glow discharge state is maintained for a predetermined time while controlling the inflow amount of the osmium sublimation gas flowing into the reaction vessel 3 by operating the flow rate variable member 17 so that the current value between both electrodes maintains the low current state. Then, an osmium thin film having a thickness of the order of several nm is formed on the surface of the sample 23.

即ち、本実施例は、両電極間における電流値が低電流値になるように反応容器3内に流入されるオスミウム昇華ガスの流入量、従って濃度を制御することにより試料23に対してオスミウム分子を微量で堆積させることにより数nmオーダーの膜厚からなるオスミウム薄膜の成膜を可能にすると共に両電極間に過大電流が過渡的に流れるのを回避し、数nmオーダーの膜厚からなるオスミウム薄膜を均一に成膜させる。 That is, in this embodiment, the amount of osmium sublimation gas flowing into the reaction vessel 3 and the concentration thereof are controlled so that the current value between the electrodes becomes a low current value, thereby controlling the osmium molecule relative to the sample 23. Osmium thin film with a film thickness of several nm order can be formed by depositing a small amount of osmium, and excessive current can be prevented from flowing transiently between both electrodes, and osmium film with a film thickness of several nm order. A thin film is formed uniformly.

以下に本実施例方法により膜厚が1nmのオスミウム薄膜を成膜する具体例を表1に、また膜厚が2nmのオスミウム薄膜を成膜する具体例を表2に示す。

Figure 2011144418
Figure 2011144418
Specific examples of forming an osmium thin film having a thickness of 1 nm by the method of this embodiment are shown in Table 1, and specific examples of forming an osmium thin film having a thickness of 2 nm are shown in Table 2.
Figure 2011144418
Figure 2011144418

上記表1及び2に示すオスミウム薄膜の膜厚は、成膜されたオスミウム薄膜の膜厚を実際に測定したものではなく、従来のプラズマ成膜装置で1nmの膜厚を成膜する際の時間・電流積から換算した値である。 The film thickness of the osmium thin film shown in Tables 1 and 2 above is not the actual measurement of the film thickness of the formed osmium thin film, but the time for forming a film thickness of 1 nm with a conventional plasma film forming apparatus.・ The value converted from the current product.

上記表1及び2における「流量可変部材回転数」は、反応容器3内に対する流量可変部材17の開度を表し、「0」が閉じた状態で、回転数が多くなるに連れて開度が大きくなって流量が多くなることを示す。 The “flow rate variable member rotational speed” in the above Tables 1 and 2 represents the opening degree of the flow rate variable member 17 with respect to the inside of the reaction vessel 3, and when “0” is closed, the opening degree increases with the rotational speed. Indicates that the flow rate increases as the volume increases.

上記表1及び2における電流値「0〜1断続」は、両電極間の電流値が0mAと1mAの間で断続し、グロー放電状態が点滅することを示す。 The current values “0 to 1 intermittent” in Tables 1 and 2 indicate that the current value between both electrodes is intermittent between 0 mA and 1 mA, and the glow discharge state flashes.

上記表1及び2における電流値「0〜1」は、両電極間におけるグロー放電の開始時が0nAで、最終値が1mAであることを示す。 The current values “0 to 1” in Tables 1 and 2 indicate that the start of glow discharge between both electrodes is 0 nA and the final value is 1 mA.

上記表1及び2から明らかなように、グロー放電開始時及び終了時において反応容器3内の真空度がほぼ一定(3Pa)になるように保ち、オスミウム昇華ガスの流入量を徐々に多くすると、両電極間に流れる電流値が徐々に多くなり、成膜時間が短くなる。 As is clear from Tables 1 and 2 above, the degree of vacuum in the reaction vessel 3 is kept substantially constant (3 Pa) at the start and end of glow discharge, and the inflow amount of osmium sublimation gas is gradually increased. The value of current flowing between both electrodes gradually increases and the film formation time is shortened.

なお、上記説明は、反応容器3内を高真空度(0.9Pa)に真空形成した状態で両電極間に直流高電圧を印加したが、本発明は、反応容器3内にオスミウム昇華ガスを流入させた後であって、グロー放電が始まる前の高真空状態、例えば1Paに達した際に両電極間に直流高電圧を印加してもよい。 In the above description, a DC high voltage was applied between the electrodes while the inside of the reaction vessel 3 was vacuum-formed at a high degree of vacuum (0.9 Pa). However, the present invention applies osmium sublimation gas to the reaction vessel 3. A DC high voltage may be applied between the two electrodes when the high vacuum state, for example, 1 Pa, is reached after the inflow and before the glow discharge starts.

また、両電極間に印加する直流高電圧の印加時間については、反応容器3内の真空度と反応容器3内に対するオスミウム昇華ガスの流量、従って流量可変部材17による開度との関係でプログラミングし、該プログラムにより印加時間を制御することにより数nmオーダーの膜厚からなるオスミウム薄膜を自動成膜する方法であってもよい。 The application time of the DC high voltage applied between the electrodes is programmed according to the relationship between the degree of vacuum in the reaction vessel 3 and the flow rate of the osmium sublimation gas into the reaction vessel 3, and thus the opening degree by the flow rate variable member 17. A method of automatically forming an osmium thin film having a film thickness on the order of several nm by controlling the application time by the program may be used.

請求項2に対応する本発明方法を実施する際に使用するプラズマ成膜装置51は、実施例1で説明したプラズマ成膜装置1に以下の構成を追加した。   A plasma film forming apparatus 51 used for carrying out the method of the present invention corresponding to claim 2 has the following configuration added to the plasma film forming apparatus 1 described in the first embodiment.

即ち、図2に示すようにプラズマ成膜装置51の基板部7の一部には、不活性ガス導入用配管53が反応容器3内と連通するように設けられる。該不活性ガス導入用配管53は、電磁弁等の開閉弁55及び流量調整器57を介して、例えば窒素ガス、アルゴンガス、ヘリウムガス等の不活性ガスが充填されたガスボンベ等の供給源59に接続され、開閉弁55の開閉に伴って流量調整器57により流量調整された不活性ガスを反応容器3内へ導入させる。 That is, as shown in FIG. 2, an inert gas introduction pipe 53 is provided in part of the substrate portion 7 of the plasma film forming apparatus 51 so as to communicate with the inside of the reaction vessel 3. The inert gas introduction pipe 53 is connected to a supply source 59 such as a gas cylinder filled with an inert gas such as nitrogen gas, argon gas, or helium gas via an opening / closing valve 55 such as a solenoid valve and a flow rate regulator 57. The inert gas whose flow rate has been adjusted by the flow rate regulator 57 as the on-off valve 55 is opened and closed is introduced into the reaction vessel 3.

これにより流量可変部材17により流量調整されて反応容器3内に流入されたオスミウム昇華ガスに対して流量制御された不活性ガスを導入して所望の割合で希釈させる。 As a result, the inert gas whose flow rate is controlled with respect to the osmium sublimation gas that has been adjusted in flow rate by the flow rate variable member 17 and has flowed into the reaction vessel 3 is introduced and diluted at a desired ratio.

なお、他の構成については、実施例1のプラズマ成膜装置1と同一であるため、同一の部材については、実施例1と同一の符号を付して詳細な説明を省略する。 Since other configurations are the same as those of the plasma film forming apparatus 1 of the first embodiment, the same members are denoted by the same reference numerals as those of the first embodiment and detailed description thereof is omitted.

次に、上記プラズマ成膜装置51を使用した本実施例方法による導電性薄膜の成膜方法を説明すると、試料台21上にSEM検鏡用の試料23をセットした状態で反応容器3内を気密化すると共に四酸化オスミウム結晶が収容された原料ガス導入部13をセットし、昇華室11内にて四酸化オスミウム結晶を昇華させてオスミウム昇華ガスを発生させる。 Next, a method for forming a conductive thin film by the method of this embodiment using the plasma film forming apparatus 51 will be described. Inside the reaction vessel 3 with the sample 23 for the SEM speculum set on the sample stage 21. The source gas introduction part 13 that is hermetically sealed and contains osmium tetroxide crystals is set, and the osmium tetroxide crystals are sublimated in the sublimation chamber 11 to generate osmium sublimation gas.

上記状態にて真空排気装置を駆動して反応容器3内を、例えば0.9Paに真空形成した後、真空排気状態を維持しながら流量可変部材17を操作して昇華室11内のオスミウム昇華ガスを反応容器3内へ流入させると共に開閉弁55を開閉作動して流量調整された不活性ガスを反応容器3内へ導入し、反応容器3内に流入したオスミウム昇華ガスを導入される不活性ガス量に応じた割合で希釈させる。 The vacuum evacuation apparatus is driven in the above state to form a vacuum in the reaction vessel 3 at, for example, 0.9 Pa, and then the flow variable member 17 is operated while maintaining the vacuum evacuation state so that the osmium sublimation gas in the sublimation chamber 11 is maintained. Is introduced into the reaction vessel 3, the opening / closing valve 55 is opened and closed to introduce the inert gas whose flow rate is adjusted into the reaction vessel 3, and the osmium sublimation gas flowing into the reaction vessel 3 is introduced into the reaction vessel 3. Dilute in proportions according to volume.

なお、反応容器3内における不活性ガスによるオスミウム昇華ガスの希釈割合は、後述する両電極間の電流値、成膜時間に基づいて決定される。即ち、両電極間を流れる電流値を一定にして成膜時間を長くするには、オスミウム昇華ガスの希釈割合を高め、反対に成膜時間を短くする場合には、希釈割合を低くする。 In addition, the dilution ratio of the osmium sublimation gas with the inert gas in the reaction vessel 3 is determined based on a current value between both electrodes, which will be described later, and a film formation time. That is, in order to lengthen the film formation time while keeping the current value flowing between both electrodes constant, the dilution ratio of the osmium sublimation gas is increased. On the other hand, when the film formation time is shortened, the dilution ratio is decreased.

そして反応容器3内の真空圧が、例えば上記した従来の成膜方法と同様の真空圧(9Pa)に達した際に、陽電極9及び陰電極19間に直流高電圧を印加する。このとき、反応容器3内のオスミウム昇華ガスが不活性ガスにより希釈されてオスミウム昇華ガスの濃度が従来の成膜方法に比べて低いため、両電極間には、比較的低電流(0〜1mA)しか流れない。 Then, when the vacuum pressure in the reaction vessel 3 reaches, for example, the same vacuum pressure (9 Pa) as in the conventional film forming method described above, a DC high voltage is applied between the positive electrode 9 and the negative electrode 19. At this time, since the osmium sublimation gas in the reaction vessel 3 is diluted with an inert gas and the concentration of the osmium sublimation gas is lower than that of the conventional film formation method, a relatively low current (0 to 1 mA) is present between both electrodes. ) Only flows.

このため、反応容器3内においては、実施例1と同様に低電流でグロー放電し、オスミウム分子をプラズマ化して試料23の表面に堆積させる。そして低濃度のオスミウム昇華ガスを低電流でグロー放電される状態を所定の時間、継続することにより試料23の表面にオスミウム薄膜を数nmオーダーで成膜させる。 For this reason, in the reaction vessel 3, glow discharge is performed at a low current in the same manner as in Example 1, and osmium molecules are turned into plasma and deposited on the surface of the sample 23. Then, the state in which the low concentration osmium sublimation gas is glow-discharged at a low current is continued for a predetermined time to form an osmium thin film on the surface of the sample 23 on the order of several nm.

上記実施例1,2においては、原料ガスとしてオスミウム昇華ガスを使用して試料23の表面にオスミウム薄膜を数nmオーダーで成膜する方法としたが、原料ガスとしては、上記した金属を含む化合物を昇華させたり、加熱してガス化したものであってもよい。 In Examples 1 and 2 described above, a method of forming an osmium thin film on the surface of the sample 23 on the surface of the sample 23 using the osmium sublimation gas as the source gas was used. May be sublimated or gasified by heating.

上記実施例1及び2の説明においては、天板部5に原料ガス導入部13をセットして昇華室11内にてオスミウム昇華ガスを発生させる方法としたが、発生するオスミウム昇華ガスの濃度は、昇華室内の温度や、原料ガス導入部13内に収容される四酸化オスミウム結晶の量により大きく左右されて安定しない傾向がある。本発明においては、反応容器3内におけるオスミウム昇華ガスの濃度を安定化させるため、昇華室11を使用した供給態様とせず、天板部5または基板部7にガス導入配管を設け、該ガス導入配管を、電磁弁等の開閉弁を介してオスミウムが充填されたガスボンベに接続し、ガスボンベから供給される一定濃度のオスミウムガスを開閉弁により流量調整して反応容器3内へ流入させてもよい。
上記のように反応容器3内に対してガスボンベから原料ガスを導入する場合、天板部または基板部に、反応容器3の内部と連通する1本の導入管に対し、ガスボンベに接続されたガス導入配管及びガス供給源に接続された不活性ガス導入用配管を並列接続し、反応容器3内に対し、不活性ガスにより所望の割合で希釈された希釈原料ガスを導入するようにすればよい。
In the description of Examples 1 and 2, the source gas introduction unit 13 is set on the top plate unit 5 and the osmium sublimation gas is generated in the sublimation chamber 11, but the concentration of the generated osmium sublimation gas is as follows. The temperature in the sublimation chamber and the amount of osmium tetroxide crystals accommodated in the raw material gas inlet 13 tend to be largely unstable and not stable. In the present invention, in order to stabilize the concentration of the osmium sublimation gas in the reaction vessel 3, a gas introduction pipe is provided in the top plate part 5 or the substrate part 7 without using the sublimation chamber 11, and the gas introduction is performed. The pipe may be connected to a gas cylinder filled with osmium through an on-off valve such as a solenoid valve, and the osmium gas at a constant concentration supplied from the gas cylinder may be flow-regulated by the on-off valve to flow into the reaction vessel 3. .
When the source gas is introduced into the reaction vessel 3 from the gas cylinder as described above, the gas connected to the gas cylinder with respect to one introduction pipe communicating with the inside of the reaction vessel 3 to the top plate portion or the substrate portion. The inert gas introduction pipe connected to the introduction pipe and the gas supply source may be connected in parallel so that the diluted raw material gas diluted with the inert gas at a desired ratio is introduced into the reaction vessel 3. .

1 プラズマ成膜装置
3 反応容器
5 天板部
7 基板部
9 陽電極
11 昇華室
13 原料ガス導入部
15 原料ガス導出部
17 流量可変部材
19 陰電極
21 試料台
23 試料
25 排気管
51 プラズマ成膜装置
53 不活性ガス導入用配管
55 開閉弁
57 流量調整器
59 供給源
DESCRIPTION OF SYMBOLS 1 Plasma film-forming apparatus 3 Reaction container 5 Top plate part 7 Substrate part 9 Positive electrode 11 Sublimation chamber 13 Raw material gas introduction part 15 Raw material gas outlet part 17 Flow variable member 19 Negative electrode 21 Sample stand 23 Sample 25 Exhaust pipe 51 Plasma film formation Device 53 Pipe for introducing inert gas 55 On-off valve 57 Flow regulator 59 Supply source

Claims (7)

所定の間隔をおいて陽電極及び陰電極が対向配置された反応容器内の空気を真空排気手段により排気して高真空状態に形成しながら導電性金属分子を含有した原料ガスを供給し、両電極間に印加される直流高電圧によりグロー放電を発生させて導電性金属分子をプラズマ化して陰電極上の試料表面に堆積させて導電性薄膜を成膜するプラズマ成膜方法において、
(1).反応容器内の圧力が所定の真空圧になった際に原料ガスを微量流入させながら両電極間に直流高電圧を印加する、
(2).原料ガスの微量流入により反応容器内における原料ガス濃度が、両電極間を低電流値で導通させる低濃度状態になった際に、該低電流状態を維持するように原料ガスの微小流入量を制御しながら両電極間に発生するグロー放電により導電性金属分子をプラズマ化して試料表面に堆積させる、
(3).上記(2)による原料ガスの低濃度状態及び低電流状態を所定時間の間、維持して試料表面に堆積される導電性金属分子により導電性薄膜をnmオーダーで成膜する、
上記(1)乃至(3)の工程からなる導電性薄膜のプラズマ成膜方法。
A source gas containing conductive metal molecules is supplied while the inside of the reaction vessel in which the positive electrode and the negative electrode are opposed to each other at a predetermined interval is exhausted by a vacuum exhaust means to form a high vacuum state. In a plasma film forming method for forming a conductive thin film by generating a glow discharge by a direct current high voltage applied between electrodes to make conductive metal molecules into plasma and depositing on a sample surface on a negative electrode,
(1). When a pressure in the reaction vessel reaches a predetermined vacuum pressure, a DC high voltage is applied between both electrodes while flowing a small amount of raw material gas.
(2). When the raw material gas concentration in the reaction vessel becomes a low concentration state where both electrodes are connected at a low current value due to a small amount of raw material gas inflow, the minute inflow amount of the raw material gas is reduced so as to maintain the low current state. Conductive metal molecules are turned into plasma by glow discharge generated between both electrodes while being controlled, and deposited on the sample surface.
(3). A conductive thin film is formed on the order of nm by conductive metal molecules deposited on the sample surface while maintaining the low concentration state and low current state of the source gas according to (2) for a predetermined time.
A plasma film forming method for a conductive thin film comprising the steps (1) to (3).
請求項1において、原料ガスをオスミウム昇華ガスとした導電性薄膜のプラズマ成膜方法。 The method for forming a conductive thin film according to claim 1, wherein the source gas is an osmium sublimation gas. 請求項1において、原料ガスは、ガスボンベから供給される一定濃度のオスミウムガスとした導電性薄膜のプラズマ成膜方法。 2. The method of claim 1, wherein the source gas is an osmium gas having a constant concentration supplied from a gas cylinder. 所定の間隔をおいて陽電極及び陰電極が対向配置された反応容器内の空気を真空排気手段により排気して高真空状態に形成しながら導電性金属分子を含有した原料ガスを供給し、両電極間に印加される直流高電圧によりグロー放電を発生させて導電性金属分子をプラズマ化して陰電極上の試料表面に堆積させて導電性薄膜を成膜するプラズマ成膜方法において、
(1).反応容器内の圧力が所定の真空圧になった際に不活性ガスにより希釈された原料ガスを流入させる、
(2).希釈された原料ガスの流入により反応容器内の圧力が上昇して原料ガス濃度が所要の低濃度状態になった際に、両電極間にて直流高電圧を印加し、両電極間を低電流値で導通させる、
(3).上記低電流値状態を維持するように希釈された原料ガスの流入を制御しながら両電極間にて低電流値で発生するグロー放電により導電性金属分子をプラズマ化して試料表面に堆積させる、
(4).上記(3)による原料ガスの低濃度状態及び低電流状態を所定時間の間、維持して試料表面に堆積される導電性金属分子により導電性薄膜をnmオーダーで成膜する、
上記(1)乃至(4)の工程からなる導電性薄膜のプラズマ成膜方法。
A source gas containing conductive metal molecules is supplied while the inside of the reaction vessel in which the positive electrode and the negative electrode are opposed to each other at a predetermined interval is exhausted by a vacuum exhaust means to form a high vacuum state. In a plasma film forming method for forming a conductive thin film by generating a glow discharge by a direct current high voltage applied between electrodes to make conductive metal molecules into plasma and depositing on a sample surface on a negative electrode,
(1). When the pressure in the reaction vessel reaches a predetermined vacuum pressure, a source gas diluted with an inert gas is allowed to flow in,
(2). When the pressure in the reaction vessel rises due to the inflow of diluted source gas and the source gas concentration reaches the required low concentration state, a DC high voltage is applied between both electrodes, and a low current is applied between both electrodes. Conducting by value,
(3). Conductive metal molecules are plasmatized and deposited on the sample surface by glow discharge generated at a low current value between both electrodes while controlling the inflow of the source gas diluted so as to maintain the low current value state.
(4). A conductive thin film is formed on the order of nm with conductive metal molecules deposited on the sample surface while maintaining the low concentration state and low current state of the source gas according to (3) for a predetermined time.
A plasma film forming method for a conductive thin film comprising the steps (1) to (4).
請求項4において、原料ガスをオスミウム昇華ガスとした導電性薄膜のプラズマ成膜方法。 5. The method for forming a conductive thin film according to claim 4, wherein the source gas is osmium sublimation gas. 請求項4において、原料ガスは、ガスボンベから供給される一定濃度のオスミウムガスとした導電性薄膜のプラズマ成膜方法。 5. The plasma deposition method for a conductive thin film according to claim 4, wherein the source gas is an osmium gas having a constant concentration supplied from a gas cylinder. 請求項4において、不活性ガスは、窒素ガス、アルゴンガス、ヘリウムガスの少なくともいずれかとした導電性薄膜のプラズマ成膜方法。 5. The plasma deposition method for a conductive thin film according to claim 4, wherein the inert gas is at least one of nitrogen gas, argon gas, and helium gas.
JP2010005435A 2010-01-14 2010-01-14 Plasma deposition method for conductive thin film Active JP5419723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010005435A JP5419723B2 (en) 2010-01-14 2010-01-14 Plasma deposition method for conductive thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010005435A JP5419723B2 (en) 2010-01-14 2010-01-14 Plasma deposition method for conductive thin film

Publications (2)

Publication Number Publication Date
JP2011144418A true JP2011144418A (en) 2011-07-28
JP5419723B2 JP5419723B2 (en) 2014-02-19

Family

ID=44459521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010005435A Active JP5419723B2 (en) 2010-01-14 2010-01-14 Plasma deposition method for conductive thin film

Country Status (1)

Country Link
JP (1) JP5419723B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06330295A (en) * 1993-05-24 1994-11-29 Nippon Laser Denshi Kk Plasma film forming device
JPH1125894A (en) * 1997-06-30 1999-01-29 Shinku Device:Kk Plasma ion shower sample treating device and its method
JP2000065702A (en) * 1998-08-25 2000-03-03 Shinku Device:Kk Low-voltage discharge-type plasma ion film forming device
JP2000121518A (en) * 1998-10-13 2000-04-28 Ulvac Japan Ltd Coating method
JP2000266653A (en) * 1999-03-19 2000-09-29 Shinku Device:Kk Plasma ion metal-applying apparatus
JP2002004056A (en) * 2000-06-21 2002-01-09 Nippon Laser & Electronics Lab Plasma enhanced film deposition system for conductive metallic thin film
JP2002060941A (en) * 2000-08-11 2002-02-28 Daiwa Techno Systems:Kk Coating treatment method and diaphragm plate
JP2003055772A (en) * 2001-08-10 2003-02-26 Shinku Device:Kk Ac discharge plasma cvd film deposition apparatus
JP2008056994A (en) * 2006-08-31 2008-03-13 Shinku Device:Kk Plasma ion metal deposition apparatus
JP2010002355A (en) * 2008-06-23 2010-01-07 Filgen Inc Metal thin film forming method for microscopic observation sample for scanning electron microscope

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06330295A (en) * 1993-05-24 1994-11-29 Nippon Laser Denshi Kk Plasma film forming device
JPH1125894A (en) * 1997-06-30 1999-01-29 Shinku Device:Kk Plasma ion shower sample treating device and its method
JP2000065702A (en) * 1998-08-25 2000-03-03 Shinku Device:Kk Low-voltage discharge-type plasma ion film forming device
JP2000121518A (en) * 1998-10-13 2000-04-28 Ulvac Japan Ltd Coating method
JP2000266653A (en) * 1999-03-19 2000-09-29 Shinku Device:Kk Plasma ion metal-applying apparatus
JP2002004056A (en) * 2000-06-21 2002-01-09 Nippon Laser & Electronics Lab Plasma enhanced film deposition system for conductive metallic thin film
JP2002060941A (en) * 2000-08-11 2002-02-28 Daiwa Techno Systems:Kk Coating treatment method and diaphragm plate
JP2003055772A (en) * 2001-08-10 2003-02-26 Shinku Device:Kk Ac discharge plasma cvd film deposition apparatus
JP2008056994A (en) * 2006-08-31 2008-03-13 Shinku Device:Kk Plasma ion metal deposition apparatus
JP2010002355A (en) * 2008-06-23 2010-01-07 Filgen Inc Metal thin film forming method for microscopic observation sample for scanning electron microscope

Also Published As

Publication number Publication date
JP5419723B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
TWI406809B (en) Manufacturing device and manufacturing method of carbon structure
US8992880B2 (en) Method of manufacturing onion-like carbon
JP5052954B2 (en) CNT growth method
JPS63230866A (en) Vacuum vapor deposition method and apparatus by arc discharge between anode and cathode
TW201938829A (en) Method for manufacturing gallium nitride thin film
Ayesh et al. Mechanisms of Ti nanocluster formation by inert gas condensation
CN106011745A (en) Device and method for preparing amorphous carbon and nitrogen thin films on surface of silicon
JP2008231456A (en) Plasma film deposition system
JP5419723B2 (en) Plasma deposition method for conductive thin film
JP5224347B2 (en) Method for forming metal thin film on spectroscopic sample for scanning electron microscope
JP2791424B2 (en) Semiconductor processing equipment
JP5736102B2 (en) Polycrystalline silicon film forming method, polycrystalline silicon film forming apparatus, and substrate on which polycrystalline silicon film is formed
JP2011135010A (en) Apparatus for processing substrate
JP2870774B2 (en) Method for forming single crystal film
JPH11335832A (en) Ion implantation and ion implantation device
JP5742059B2 (en) Electron generation method
JP3855051B2 (en) Method of forming low contact resistance electrode on n-type conductive zinc oxide
JP2005211730A (en) Method for manufacturing nanoparticle and nanoparticle manufacturing apparatus
JP2004011007A (en) Film deposition method
JP2646582B2 (en) Plasma CVD equipment
JP5191842B2 (en) Carbon deposition equipment
JP2010131558A (en) Method of manufacturing target substance-containing liquid, method of forming target substance-containing thin film, and target substance-containing liquid
JP2001143894A (en) Plasma generator and apparatus for producing thin film
JP2002030432A (en) System and method for sputtering
JP2010232496A (en) METHOD AND APPARATUS FOR MANUFACTURING SILICON NITRIDE SUBSTRATE HAVING Si3N4 HETEROEPITAXIAL BUFFER LAYER ON SILICON SUBSTRATE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131119

R150 Certificate of patent or registration of utility model

Ref document number: 5419723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250