JP2000065702A - Low-voltage discharge-type plasma ion film forming device - Google Patents

Low-voltage discharge-type plasma ion film forming device

Info

Publication number
JP2000065702A
JP2000065702A JP10276359A JP27635998A JP2000065702A JP 2000065702 A JP2000065702 A JP 2000065702A JP 10276359 A JP10276359 A JP 10276359A JP 27635998 A JP27635998 A JP 27635998A JP 2000065702 A JP2000065702 A JP 2000065702A
Authority
JP
Japan
Prior art keywords
sample
plasma
plasma ion
film
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10276359A
Other languages
Japanese (ja)
Other versions
JP3517122B2 (en
Inventor
Hiroshi Akahori
宏 赤堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKU DEVICE KK
Original Assignee
SHINKU DEVICE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKU DEVICE KK filed Critical SHINKU DEVICE KK
Priority to JP27635998A priority Critical patent/JP3517122B2/en
Publication of JP2000065702A publication Critical patent/JP2000065702A/en
Application granted granted Critical
Publication of JP3517122B2 publication Critical patent/JP3517122B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a plasma ion film forming device capable of speedily forming films without damaging samples by lowering the discharge voltage and raising the plasma density in a plasma ion film forming device to form organic synthetic films or osmium films on the surfaces of samples. SOLUTION: By making a cathode 2 a hollow cathode-type and impressing D.C. voltage between the cathode 2 and an opposing anode 3, it is possible to obtain the same discharge current by half a voltage or less in comparison with conventional parallel electrode-type diode discharge. By confining generated plasmas in the cup-shaped cathode, the plasma ion density is raised. By utilizing this, it is possible to implement a plasma ion film forming device to create an organic synthetic film or metal osmium film on the surface of a sample S placed in the hollow cathode efficiently without damaging the ions of the sample.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は走査型電子顕微鏡,
及び透過電子顕微鏡を利用する際の試料の前処理に関
し,具体的には走査電子顕微鏡においては電気の不良導
体試料の表面に導電性被膜の生成,透過電子顕微鏡にお
いては試料支持膜の作成,あるいは表面レプリカ膜の作
成に利用する。
TECHNICAL FIELD The present invention relates to a scanning electron microscope,
And sample pretreatment when using a transmission electron microscope. Specifically, in a scanning electron microscope, a conductive coating is formed on the surface of a poorly conductive conductor sample, in a transmission electron microscope, a sample support film is formed, or Used to create a surface replica film.

【0002】[0002]

【従来の技術】走査電子顕微鏡(SEM)の観察には試
料の表面は電気の良導体であることが条件となる。この
ため生物試料や無機化合物の如き電気の不良導体試料は
表面に数+nmの薄い金属膜,あるいは炭素膜を形成さ
せてから観察を行う。透過電子顕微鏡(TEM)の観察
には微細な試料を支持する薄膜を必要とし,塊状試料の
表面観察は表面を薄膜状に型取り(レプリカ膜)して観
察する。
2. Description of the Related Art A scanning electron microscope (SEM) requires that the surface of a sample be a good conductor of electricity. For this reason, a poorly conductive conductor sample such as a biological sample or an inorganic compound is observed after forming a thin metal film or a carbon film of several nm on the surface. Observation with a transmission electron microscope (TEM) requires a thin film that supports a fine sample, and observation of the surface of a massive sample is performed by molding the surface into a thin film (replica film).

【0003】SEMにおける導体膜被着には真空蒸着装
置,あるいはイオンスパッタリング金属被着装置を利用
して金,白金,炭素などを被着させて観察するが,被着
する金属粒子,あるいは炭素粒子は連続膜とする必要か
らある程度の厚さを必要とするので試料表面の微細構造
は隠蔽され,また被着金属は結晶化して粗大粒子となり
試料表面の構造と混同して正確な判断を阻害している。
[0003] In order to deposit a conductive film in a SEM, gold, platinum, carbon, or the like is deposited using a vacuum evaporation apparatus or an ion sputtering metal deposition apparatus, and observation is performed. Since a certain thickness is required to form a continuous film, the fine structure of the sample surface is concealed, and the deposited metal is crystallized to become coarse particles, confusing with the structure of the sample surface and hindering accurate judgment. ing.

【0004】TEMにおける支持膜はコロジオンなどの
有機化合物を薄膜として利用するが強度的に不足するた
め炭素蒸着を行って補強するが結果的に膜が厚くなり電
子線の干渉を助長して高分解能観察の障害となってい
る。
As a support film in a TEM, an organic compound such as collodion is used as a thin film, but it is reinforced by performing carbon vapor deposition because of insufficient strength, but as a result, the film becomes thick and promotes interference of electron beams to provide high resolution. Obstruction of observation.

【0005】[0005]

【発明が解決しようとしている課題】これらの問題の対
策としてプラズマ放電のエネルギーを利用して有機ガ
ス,あるいは無機化合物ガスを分解再重合させることに
より基板表面,あるいは試料表面に緻密な薄膜,あるい
は金属皮膜を形成させる方法(CVD法)が利用されて
いる。
As a countermeasure to these problems, an organic gas or an inorganic compound gas is decomposed and repolymerized by utilizing the energy of plasma discharge to form a dense thin film or metal on the substrate surface or the sample surface. A method of forming a film (CVD method) is used.

【0006】例えば透過電子顕微鏡試料の支持膜として
はメチレンとエチレンの単独,あるいは混合気体を数P
aないし数+Paの雰囲気とし,対向する電極間に15
00Vないし3000Vの直流を印加してプラズマ放電
を行い,負電極(カソード)上に置いた基板(例えば岩
塩の劈開面)に緻密な薄膜を形成させ,水中で岩塩を溶
解して薄膜を回収し支持膜として利用する。
For example, as a supporting film for a transmission electron microscope sample, methylene and ethylene alone or a mixed gas of several m
a to several + Pa atmosphere, and 15
A plasma discharge is performed by applying a direct current of 00 V to 3000 V to form a dense thin film on a substrate (for example, a cleavage surface of rock salt) placed on a negative electrode (cathode), and the thin film is recovered by dissolving the rock salt in water. Used as a support membrane.

【0007】走査電子顕微鏡用試料に導電性皮膜を形成
させるにはオスミウム酸(OsO)の6ないし8Pa
の雰囲気を作り1300V前後の電圧を印加してプラズ
マ放電を行うとオスミウム酸は解離し,カソード上に置
いた試料表面に金属オスミウムの皮膜が形成され導電性
となる。
To form a conductive film on a sample for a scanning electron microscope, 6 to 8 Pa of osmic acid (OsO 4 ) is used.
When an atmosphere of 1300 V is applied and plasma discharge is performed by applying a voltage of about 1300 V, osmic acid is dissociated, and a film of metal osmium is formed on the surface of the sample placed on the cathode to become conductive.

【0008】しかしこの方法の欠点は放電電圧が極めて
高いため,プラズマ中のプラスイオンは大きい破壊力を
有し,カソード上に置かれた試料(基板表面あるいは試
料表面)はイオンエッチング作用を受け,TEM用支持
膜に於ては平滑性を失い,SEM試料に於ては表面形態
に損傷を蒙る。この欠点を解決し,より厳密な観察に適
応する支持膜の作成,あるいは導電皮膜の生成を可能に
するプラズマイオンCVD装置の開発が発明の目的であ
る。
However, the disadvantage of this method is that since the discharge voltage is extremely high, positive ions in the plasma have a large destructive power, and the sample (substrate surface or sample surface) placed on the cathode is subjected to ion etching. The support film for TEM loses smoothness, and the surface morphology is damaged in SEM samples. It is an object of the present invention to solve this drawback and to develop a plasma ion CVD apparatus capable of forming a support film adapted to more strict observation or generating a conductive film.

【課題を解決するための手段】[Means for Solving the Problems]

【0009】プラズマイオンの衝撃力Fはプラスイオン
の原子量Mと原子の速度vとの積,F=1/2Mv
あり,速度vは放電電圧Vに比例するからF=1/2M
で置き替えられる。プラズマイオン重合で有機皮膜
を作る場合も,試料表面に導電性皮膜を生成させる場合
も原料としての雰囲気ガスの原子量を軽くすることはで
きないから放電電圧を下げる以外イオン衝撃の被害を回
避することはできない。特にオスミウムの如く原子量の
大きい物質を被着させる場合は放電電圧を下げることが
必須の条件となる。
The impact force F of plasma ions is the product of the atomic weight M of positive ions and the velocity v of the atoms, F = 1 / Mv 2. Since the velocity v is proportional to the discharge voltage V, F = 1 / M
It is replaced by V 2. In both cases of forming an organic film by plasma ion polymerization and forming a conductive film on the sample surface, it is not possible to reduce the atomic weight of the atmosphere gas as a raw material. Can not. In particular, when depositing a substance having a large atomic weight such as osmium, it is essential to lower the discharge voltage.

【0010】しかし単に電圧を下げたのみでは安定した
放電を持続させることができない。有機ガスの場合は雰
囲気圧力を上げて数百Paにすれば放電は持続するがプ
ラズマ領域がカソード電極面に近接し過ぎるため立体的
な試料はプラズマ領域の外に出てしまいイオン密度が不
足して成膜速度が遅くなり実用にならない。
However, a stable discharge cannot be maintained simply by lowering the voltage. In the case of an organic gas, discharge is continued if the atmospheric pressure is increased to several hundred Pa, but the plasma region is too close to the cathode electrode surface, so that a three-dimensional sample comes out of the plasma region and the ion density is insufficient. As a result, the film forming speed becomes slow, which is not practical.

【0011】オスミウム酸に於ては常温における蒸気圧
が5Pa程度が限界であるため雰囲気圧力を高くするこ
とが不可能でグロー放電の開始電圧を1000V以下に
することは困難である。
Since the vapor pressure of osmic acid at room temperature is limited to about 5 Pa, it is impossible to increase the atmospheric pressure and it is difficult to reduce the starting voltage of glow discharge to 1000 V or less.

【0012】グロー放電を安定に持続させる方法にホロ
ーカソード法がある。カソード電極を円筒状にすると発
生したプラズマはこの中に閉じ込められ,プラズマの中
の電子は未解離のガス分子の解離を助けてプラズマ化を
促進するためプラズマ密度を高くすることができる。こ
れにより平板電極同士の放電電圧に比べて2分の1から
3分の1の電圧で安定に放電が持続する。しかも円筒内
はプラズマの密度が高くなるので円筒内に置かれた試料
表面では成膜速度が促進される。
There is a hollow cathode method as a method for stably maintaining a glow discharge. When the cathode electrode is formed in a cylindrical shape, the generated plasma is confined therein, and the electrons in the plasma help dissociate undissociated gas molecules to promote the formation of plasma, thereby increasing the plasma density. As a result, the discharge is stably maintained at a voltage that is one half to one third of the discharge voltage between the plate electrodes. In addition, since the plasma density in the cylinder is high, the film forming speed is accelerated on the surface of the sample placed in the cylinder.

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0013】発明はこのホローカソード形電極内に試料
を保持することにより比較的低電圧放電で基板上,ある
いは試料表面に目的とする成膜を行う装置の製作にあ
る。
The present invention resides in the manufacture of an apparatus for forming a target film on a substrate or a sample surface with a relatively low voltage discharge by holding the sample in the hollow cathode electrode.

【0014】図1は実施した発明の詳細を説明する装置
の縦断面図である。1は反応室としての真空槽で真空排
気装置7により雰囲気圧力0.1Pa以下の高真空排気
を可能とする。真空排気装置7はゲートバルブ8を介し
て真空槽1に接続され,必要に応じてゲートバルブ8を
閉じ側路9の調節バルブ10を調節してガス供給量に応
じた排気速度に調節する。雰囲気圧力は真空ゲージ15
にて監視する。真空槽1内には負電極としてのホローカ
ソード形電極2が真空槽底板に絶縁して設置され真空外
より負の電圧が印加される。カソード電極2に対向して
アノード電極3が真空槽1と絶縁して設置され真空外よ
り正の電圧が印加される。カソード電極2,アノード電
極3は静電シールド電極4によって電極背面及び側面で
の不要な放電を防止する。ホローカソード電極2は電極
直径の2分の1程度の高さの側壁を有し,電極底面に絶
縁して試料台5が設置されている。真空槽1には目的に
応じて1系統ないし複数系統の成膜用ガス供給装置11
が接続される。ガス供給装置はガス室12,ストップバ
ルブ13,ニードルバルブ14で構成されている。直流
電源16は最高1000Vまでの任意の電圧が変換可能
に印加できる。
FIG. 1 is a longitudinal sectional view of an apparatus for explaining details of the invention. Reference numeral 1 denotes a vacuum chamber as a reaction chamber, which enables high vacuum evacuation at an atmospheric pressure of 0.1 Pa or less by a vacuum evacuation device 7. The vacuum evacuation device 7 is connected to the vacuum chamber 1 via a gate valve 8, closes the gate valve 8 as needed, and adjusts the adjustment valve 10 on the bypass 9 to adjust the evacuation speed according to the gas supply amount. Atmospheric pressure is vacuum gauge 15
Monitor with. A hollow cathode type electrode 2 as a negative electrode is installed in the vacuum chamber 1 insulated from the bottom plate of the vacuum chamber, and a negative voltage is applied from outside the vacuum. An anode electrode 3 is installed opposite to the cathode electrode 2 insulated from the vacuum chamber 1, and a positive voltage is applied from outside the vacuum. The cathode electrode 2 and the anode electrode 3 prevent unnecessary discharge on the back and side surfaces of the electrode by the electrostatic shield electrode 4. The hollow cathode electrode 2 has a side wall having a height of about half the electrode diameter, and a sample table 5 is installed on the bottom of the electrode insulated. The vacuum chamber 1 may include one or a plurality of gas supply devices 11 for film formation depending on the purpose.
Is connected. The gas supply device includes a gas chamber 12, a stop valve 13, and a needle valve 14. The DC power supply 16 can apply any voltage up to 1000 V so as to be convertible.

【実施例】【Example】

【0015】例として発明者の装置のホローカソード電
極2は直径60mm,側壁の高さ25mm,電極内の試
料設置台5の直径は50mm,カソード電極2とアノー
ド電極3の間隔は50mm,ガス供給装置11は2系統
で真空排気装置7には分子ポンプを使用し10−2Pa
の真空度が得られる。真空槽1は直径150mm,高さ
150mmである。
As an example, the hollow cathode electrode 2 of the inventor's apparatus has a diameter of 60 mm, a side wall height of 25 mm, a diameter of the sample mounting table 5 in the electrode of 50 mm, an interval between the cathode electrode 2 and the anode electrode 3 of 50 mm, and gas supply. The apparatus 11 has two systems, and a molecular pump is used for the vacuum evacuation apparatus 7 at 10 −2 Pa.
Is obtained. The vacuum chamber 1 has a diameter of 150 mm and a height of 150 mm.

【0016】以上の構成に於て成膜手順を説明する。被
着試料としての岩塩等の基板,あるいは走査電子顕微鏡
用試料保持台(スタブ)に固定された試料Sは試料台5
の上に置かれ,真空排気装置7により10−2Pa程度
の圧力まで排気する。ゲートバルブ8を閉じバイパス9
の流量調節バルブ10を調節して高真空を保持する程度
とし,ガス供給装置11のストップバルブ13を開いて
成膜用のガスを真空槽1内に注入する。ニードルバルブ
14を調節して雰囲気圧力を8ないし10Paに保持
し,高電圧を印加して放電電流を5mAないし10mA
に調節する。この時の電圧は600Vないし400V
で,従来の平面電極に比べ2分の1以下である。
The film forming procedure in the above configuration will be described. The sample S fixed to a substrate such as rock salt as a sample to be adhered or a sample holder (stub) for a scanning electron microscope is a sample stage 5
And evacuated to a pressure of about 10 −2 Pa by the vacuum exhaust device 7. Close gate valve 8 and bypass 9
The flow control valve 10 is adjusted to maintain high vacuum, and the stop valve 13 of the gas supply device 11 is opened to inject gas for film formation into the vacuum chamber 1. Adjust the needle valve 14 to maintain the atmospheric pressure at 8 to 10 Pa, apply a high voltage, and reduce the discharge current to 5 to 10 mA.
Adjust to. The voltage at this time is 600V to 400V
Therefore, it is one-half or less as compared with the conventional flat electrode.

【0017】オスミウム酸は常温に置ける蒸気圧が3な
いし4Paが限界である。この圧力ではホローカソード
電極でも安定した放電が得られないので窒素(空気で
可)またはアルゴンガスを加え8ないし10Paにする
と安定して放電が持続し試料表面に金属オスミウム膜が
成膜される。但しオスミウムの生膜速度は雰囲気ガスの
中のオスミウム酸の含有率に比例して遅くなる。
Osmic acid has a limit of a vapor pressure of 3 to 4 Pa at room temperature. At this pressure, a stable discharge cannot be obtained even with a hollow cathode electrode. Therefore, when nitrogen (air is acceptable) or argon gas is added to 8 to 10 Pa, the discharge is stably maintained and a metal osmium film is formed on the sample surface. However, the rate of osmium film formation decreases in proportion to the content of osmate in the atmospheric gas.

【発明の効果】【The invention's effect】

【0018】プラズマ成膜の原理は,原料としてのガス
分子を放電のエネルギーでプラスイオンと電子に分離し
たプラズマ状態を作り,このプラスイオンをカソード側
にある試料表面に衝突させることにより試料表面に新た
な重合膜を形成させることである。この時試料はカソー
ド電極とは絶縁状態で置かれているからカソードの負電
位には左右されず電子も流れ込む。この流入電子で負に
帯電した試料にプラスイオンが衝突するため高電圧放電
では試料損傷がおきる。このイオン衝撃の強さはイオン
の速度v(=放電電圧V)の二乗に比例するから放電電
圧は低いほど試料損傷が少ない。発明のホローカソード
方式は同一の雰囲気圧力で比較すると放電電圧は平板電
極の2分の1以下であるから試料の受ける衝撃力は4分
の1以下となり機械的強度が弱く微細な構造を持つ生物
試料などでも破壊されるこがなく成膜が進行する。
The principle of plasma film formation is that a gas state as a raw material is separated into positive ions and electrons by the energy of discharge to form a plasma state, and the positive ions collide with the sample surface on the cathode side to form a plasma on the sample surface. That is, a new polymer film is formed. At this time, since the sample is placed in an insulated state from the cathode electrode, electrons flow in regardless of the negative potential of the cathode. Since the positive ions collide with the sample negatively charged by the incoming electrons, the sample is damaged by the high voltage discharge. Since the intensity of this ion impact is proportional to the square of the ion velocity v (= discharge voltage V), the lower the discharge voltage, the less the sample is damaged. In the hollow cathode method of the present invention, when compared at the same atmospheric pressure, the discharge voltage is less than one half of that of the flat electrode, so the impact force received by the sample is less than one fourth, and the biological strength is weak and has a fine structure. Film formation proceeds without being destroyed even by a sample or the like.

【0019】試料表面の膜の生成速度は試料を取り巻く
プラズマの密度に比例する。ホローカソード形電極の場
合はカップ状の電極内にプラズマが閉じ込められるため
プラズマ電子が未解離のガスのイオン化を助けプラズマ
密度を上昇さサる。試料は高密度のプラズマの中に浸漬
された状態にあるので成膜速度も促進される。
The rate of film formation on the sample surface is proportional to the density of the plasma surrounding the sample. In the case of a hollow cathode type electrode, plasma is confined in a cup-shaped electrode, so that plasma electrons help ionize undissociated gas to increase the plasma density. Since the sample is in a state of being immersed in the high-density plasma, the deposition rate is also accelerated.

【0020】以上説明する如く,ホローカソード形電極
内に試料を置くプラズマイオン成膜装置は,放電電圧を
下げ,試料周辺のプラズマ密度を上げることにより試料
がイオン損傷を受けること無く,成膜速度を早めること
に大きい効果がある。
As described above, a plasma ion film forming apparatus in which a sample is placed in a hollow cathode electrode reduces the discharge voltage and increases the plasma density around the sample so that the sample is not damaged by ions and the film forming speed is reduced. There is a great effect on hastening.

【0021】[0021]

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は発明の実施例をしめす装置構成の概略断
面図である。
FIG. 1 is a schematic sectional view of an apparatus configuration showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 真空層. 10 排気速度調
節バルブ. 2 ホローカソード形電極. 11 ガス供給装
置. 3 アノード電極. 12 成膜原料ガ
ス容器. 4 静電シールド. 13 ストップバ
ルブ. 5 試料台. 14 ニードルバ
ルブ. S 試料. 15 真空ゲー
ジ. P プラズマ. 16 直流電源装
置. 6 絶縁物. V 電圧計. 7 真空排気装置. mA 電流計. 8 ゲートバルブ. 9 バイパス.
1 vacuum layer. 10 Exhaust speed control valve. 2 Hollow cathode electrode. 11 Gas supply device. 3 Anode electrode. 12 Film source gas container. 4 Electrostatic shield. 13 Stop valve. 5 Sample table. 14 Needle valve. S sample. 15 Vacuum gauge. P plasma. 16 DC power supply. 6 Insulator. V voltmeter. 7 Vacuum exhaust device. mA ammeter. 8 Gate valve. 9 Bypass.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 1/28 F ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G01N 1/28 F

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ダイオード放電プラズマイオン重合成膜装
置に於て,負電極をホローカソード形とし,カソード電
極内にプラズマを閉じ込めることにより比較的低電圧に
よる放電でプラズマ重合を可能としたプラズマイオン成
膜装置。
In a diode discharge plasma ion polymerization film forming apparatus, a negative electrode is formed as a hollow cathode type, and plasma is confined in the cathode electrode to enable plasma polymerization by discharge at a relatively low voltage. Membrane equipment.
【請求項2】上記プラズマイオン成膜装置に於て,ホロ
ーカソード電極内に試料ステージを設けたプラズマイオ
ン成膜装置。
2. The plasma ion deposition apparatus according to claim 1, wherein a sample stage is provided in a hollow cathode electrode.
JP27635998A 1998-08-25 1998-08-25 Low voltage discharge type plasma ion deposition system Expired - Fee Related JP3517122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27635998A JP3517122B2 (en) 1998-08-25 1998-08-25 Low voltage discharge type plasma ion deposition system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27635998A JP3517122B2 (en) 1998-08-25 1998-08-25 Low voltage discharge type plasma ion deposition system

Publications (2)

Publication Number Publication Date
JP2000065702A true JP2000065702A (en) 2000-03-03
JP3517122B2 JP3517122B2 (en) 2004-04-05

Family

ID=17568339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27635998A Expired - Fee Related JP3517122B2 (en) 1998-08-25 1998-08-25 Low voltage discharge type plasma ion deposition system

Country Status (1)

Country Link
JP (1) JP3517122B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011144418A (en) * 2010-01-14 2011-07-28 Filgen Inc Plasma deposition method for conductive thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011144418A (en) * 2010-01-14 2011-07-28 Filgen Inc Plasma deposition method for conductive thin film

Also Published As

Publication number Publication date
JP3517122B2 (en) 2004-04-05

Similar Documents

Publication Publication Date Title
EP0797688B1 (en) Method for deposition of diamondlike carbon films
US4039416A (en) Gasless ion plating
JP2748213B2 (en) Plasma film forming equipment
JPH1125894A (en) Plasma ion shower sample treating device and its method
Wang et al. Formation and wear performance of diamond-like carbon films on 316L stainless steel prepared by cathodic plasma electrolytic deposition
GB2473655A (en) Magnetron sputtering techiques and apparatus
Wang et al. Experimental study on TiN coated racetrack-type ceramic pipe
Harigai et al. Formation of nanofibers on the surface of diamond-like carbon films by RF oxygen plasma etching
JP2000065702A (en) Low-voltage discharge-type plasma ion film forming device
EP0815283B1 (en) Deposition of diffusion blocking layers within a low pressure plasma chamber
Hatada et al. Deposition of diamond-like carbon films on insulating substrates by plasma source ion implantation
Ensinger et al. Coating the inner walls of metal tubes with carbon films by physical vapor deposition at low temperature
MX2008010696A (en) Molecular plasma deposition of colloidal materials.
JPS5832417A (en) Method and apparatus for plasma etching
JP3517153B2 (en) Plasma ion metal deposition equipment
JP2018534437A (en) Method for pretreating a surface for coating
JP4777848B2 (en) Plasma ion metal deposition equipment
Yakovin et al. Synthesis of thin-film Ta₂O₅ coatings by reactive magnetron sputtering
JP2003137521A (en) Deposition method
Yu et al. dc cathodic polymerization of trimethylsilane in a closed reactor system
Emlin et al. Scaling of DLC chemical vapor deposition method with the use of the plasma cathode
Santjojo et al. Plasma intensification in 2 MHz RF glow discharge in carbon film plasma sputtering deposition by means of a hollow cathode
JP3950709B2 (en) Ion implantation method using sputtering method and apparatus therefor
JPH0387373A (en) Formation of thin film by plasma cvd
JP2000143221A (en) Pulse discharge type dlc deposition apparatus

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040122

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100130

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100130

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees