JPS5832417A - Method and apparatus for plasma etching - Google Patents

Method and apparatus for plasma etching

Info

Publication number
JPS5832417A
JPS5832417A JP13018781A JP13018781A JPS5832417A JP S5832417 A JPS5832417 A JP S5832417A JP 13018781 A JP13018781 A JP 13018781A JP 13018781 A JP13018781 A JP 13018781A JP S5832417 A JPS5832417 A JP S5832417A
Authority
JP
Japan
Prior art keywords
electrodes
electrode
parallel
magnetic field
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13018781A
Other languages
Japanese (ja)
Other versions
JPH0311542B2 (en
Inventor
Takashi Hirao
孝 平尾
Koshiro Mori
森 幸四郎
Masatoshi Kitagawa
雅俊 北川
Shinichiro Ishihara
伸一郎 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13018781A priority Critical patent/JPS5832417A/en
Publication of JPS5832417A publication Critical patent/JPS5832417A/en
Publication of JPH0311542B2 publication Critical patent/JPH0311542B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To carry out a highly accurate processing, by a method wherein a gas is introduced into a vacuum container, and a magnetic field is overlapped with the electric field between electrodes to induce plasma, and then a part of the plasma particles is employed to etch a substrate or thin film disposed in the gap between the electrodes. CONSTITUTION:A stainless steel container 1 is evacuated 19, and an etching gas is introduced 27 thereinto. An Al plate 20 (made to float, if necessary) as one of parallel electrodes, a cylindrical Al parallel plate electrode 21 supporting a mesh electrode 22, and another cylindrical anode electrode 23 are supported by a quartz cylinder 23'. A sample 25 is supported by a holder 24 which can be cooled. The holder 24 cna be set at a desired potential and has a variable distance (d) from the electrode 22 and moreover is supplied with a magnetic field by means of an electromagnet 26. In a high-vacuum region, e.g., 5X10<-3>Torr, the electrode 23 is taken as an anode, while the electrodes 20, 21 and the holder 24 are grounded, and the distance (d) and the gas flow rate are properly selected. Thereby, the total current from the anode and the substrate-ground current largely change in accordance with the magnetic field intensity. Accordingly, it is possible to select anisotropic and isotropic etchings with a small gas flow rate. In addtion, selection of the voltage applied between the electrodes permits the kinetic energy of ions to be set at will.

Description

【発明の詳細な説明】 コン或いは金属、半導体、絶縁体基板上薄膜の新規なド
ライエツチング装置ならびにドライエツチング方法を提
供することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION An object of the present invention is to provide a novel dry etching apparatus and dry etching method for thin films on conductor, metal, semiconductor, or insulator substrates.

近年、特に半導体集積回路の高密度化につれ・ぞター.
,ン寸法が小さくなってきた。それに伴ない基板例えば
シリコン或いは金属、半導体及び絶縁体等薄膜のエツチ
ングとして化学薬品を用いたウェットエツチングに代っ
てドライエツチング法が主流となってきた。ドライエツ
チング法として1)高周波を用いたプラズマエツチング
法、2)高周波を用いたりアクティブエツチング法、3
)有磁場マイクロ波プラズマエツチング法、4)アルゴ
ン等のイオンビームによるイオンエツチング法がある。
In recent years, especially with the increasing density of semiconductor integrated circuits,
, dimensions have become smaller. Along with this, dry etching has become mainstream in place of wet etching using chemicals for etching thin films of substrates such as silicon, metals, semiconductors, and insulators. Dry etching methods include 1) plasma etching method using high frequency, 2) active etching method using high frequency, 3.
) magnetic field microwave plasma etching method; and 4) ion etching method using an ion beam of argon or the like.

l)のプラズマエツチング法としては装置として種々の
形式のものがあり、被エツチング材料も多結晶S++S
t02+Sl5N4+PSG或いはAt.1等多岐に亘
る。しかしゾラズマ内の反応に寄与する活性種(中性ラ
ジカル)は放電が行なわれる真空域(〜I Torr 
)でランダム・モーションとなる為、一般的には等方性
エツチングとなって所謂サイドエツチングが発生、微細
・ぞターンの加工精度は限界がある。一方3)のエツチ
ング法で磁場中での電子のサイクロトロン運動とマイク
ロ波との共鳴現象を用い低い放電ガス圧力でも、プラズ
マ密度を低下させることなくしかもイオンエネルギーは
低い状態でエツチングできるようにしたもので、垂直エ
ツチングが可能となったことが発表されている。しかし
この方法では装置構成が複雑で装置自体の価格も高い。
There are various types of equipment for plasma etching method l), and the material to be etched is polycrystalline S++S.
t02+Sl5N4+PSG or At. A wide variety of first class awards. However, the active species (neutral radicals) that contribute to the reactions within Zolazma are present in the vacuum region (~I Torr) where the discharge takes place.
), resulting in random motion, generally resulting in isotropic etching and so-called side etching, which limits the machining accuracy of minute turns. On the other hand, the etching method (3) uses the resonance phenomenon between the cyclotron motion of electrons in a magnetic field and microwaves to enable etching even at low discharge gas pressure without reducing plasma density and with low ion energy. It was announced that vertical etching became possible. However, this method requires a complicated device configuration and is expensive.

4)はアルゴンイオン等を加速してその衝撃によってス
バ,タリングさせて、サイドエツチングの少ないエツチ
ングを行なう方法で材料によるエツチング速度の差即ち
遺択比が大きくない。又エツチング速度が小さくイオン
衝撃による素子の損傷も大きい。2)は微小・ぐターン
の加工法として有力視されているドライエツチング技術
で、平行平板電極を用いそれに高周波を印加して電極間
にプラズマを誘起し平行電極上に置いた試料を加工する
4) is a method in which argon ions or the like are accelerated and etched by the impact thereof to perform etching with little side etching, and the difference in etching rate depending on the material, that is, the selection ratio is not large. Furthermore, the etching rate is low and the element is seriously damaged by ion bombardment. 2) is a dry etching technique that is considered to be a promising method for processing microscopic patterns, and uses parallel plate electrodes and applies high frequency to them to induce plasma between the electrodes and process a sample placed on the parallel electrodes.

第1図は平行平板形電極構造のドライエツチング装置の
概略図である。lは下部電極でこの電極は5,6で示す
水冷管により水冷されている。3はこの電極1上に置か
れた試料である。4は13.56MHzの高周波電源で
上部電極2及び下部電極lの間に印加され、電極間にプ
ラズマを誘起する。9はエツチング速度の導入管で7,
8は排気管である。本ドライエ,チング法は従来のガス
プラズマエツチング法と比べるとガス圧力が低く、所謂
ラジカルによる等方的エッチングに加え、イオン衝撃に
よるス・ぐツタエツチング的要素も加味されている為、
方丙性エッチングが行なわれ得る。このため超LSIの
高精度な微細加工の有力な手段として活発な研究開発が
なされている。しかしながら陰極近傍に形成されるイオ
ンシース内で加速されるイオン衝撃による損傷を試料に
与える事、しかもこのイオンエネルギーの大きさはなか
なか同定し難く又その制御が難かしい等難点があり、又
特にklに対して充分なスルーグツトを得るだめにはエ
ツチングに用いる塩素系化合物ガスの流量を大きくする
必要があり、装置のメインティナシス上大きな問題にな
っている。イオン衝撃による損傷の低減のため第2図に
示しているように、カソード電極に第3番目の電極を設
けたドライエツチング装置を用いて、セルフバイアスの
低減化をはかる方法が提案されている。第2図IOは容
器で11は該容器を真空に排気するだめの真空システム
に連なる排気口である。12はガス導入管で、13、1
4はそれぞれ従来の二極型ドライエツチング装置のカソ
ード及びアノードである。試料17は水冷されたカソー
ド電極上に置かれ、近接して第3番目の電極l5が設け
られ、その電極には多数の穴が設けられておりカソード
電極とはアルミナの絶縁がイシl6で間隔を保っている
。電極15は浮遊電位になっていて高周波電源は135
6MT( zでカソードに印加されている。本方法によ
り従来の二極型よりも加工精度がすぐれダメー2の量が
減少することが明らかにされた。しかしながら使用がス
例えばCCI4等塩素を含むガスの流量は従来例と変わ
らないし、スルーグツトも増加しない。
FIG. 1 is a schematic diagram of a dry etching apparatus having a parallel plate electrode structure. 1 is a lower electrode, and this electrode is water-cooled by water-cooled tubes shown at 5 and 6. 3 is a sample placed on this electrode 1. 4 is a high frequency power source of 13.56 MHz, which is applied between the upper electrode 2 and the lower electrode 1 to induce plasma between the electrodes. 9 is the etching speed introduction pipe 7,
8 is an exhaust pipe. This dry etching method uses a lower gas pressure than the conventional gas plasma etching method, and in addition to so-called isotropic etching using radicals, it also takes into account the element of suction etching due to ion bombardment.
Directional etching can be performed. For this reason, active research and development is being carried out as a powerful means for high-precision microfabrication of VLSIs. However, there are drawbacks such as damage to the sample due to ion bombardment accelerated within the ion sheath formed near the cathode, and the magnitude of this ion energy is difficult to identify and control. In order to obtain sufficient throughput for etching, it is necessary to increase the flow rate of the chlorine-based compound gas used for etching, which poses a major problem in terms of maintenace of the apparatus. In order to reduce damage caused by ion bombardment, a method has been proposed in which self-bias is reduced by using a dry etching device in which a third electrode is provided on the cathode electrode, as shown in FIG. In FIG. 2, IO is a container, and 11 is an exhaust port connected to a vacuum system for evacuating the container. 12 is a gas introduction pipe, 13, 1
4 are a cathode and an anode, respectively, of a conventional bipolar dry etching apparatus. The sample 17 is placed on a water-cooled cathode electrode, and a third electrode l5 is provided adjacent to it, which has a number of holes and is separated from the cathode by an alumina insulator separated by an interval l6. is maintained. The electrode 15 is at a floating potential and the high frequency power source is 135
6MT (z) is applied to the cathode. It has been shown that this method has better processing accuracy than the conventional bipolar type and reduces the amount of damage. However, it is difficult to use gases containing chlorine, such as CCI4. The flow rate is the same as in the conventional example, and the throughput does not increase.

又セルフバイアスは外部入力、その他エッチング・ぞラ
メータに依存して二次的に決まり、設定条件が制限され
たものになってしまう等の大きな欠点がある。
Furthermore, the self-bias is determined secondarily depending on external inputs and other etching parameters, and there are major drawbacks such as the setting conditions being limited.

本発明は、上記欠点を克服する全く新規な高精度加工可
能なドライエツチング装置及びドライエツチング方法を
提供するものであり放電ノラズマとしては所謂PIG放
電をエツチングに適用するものである。その構成原理を
第3図に従って述べることにする。第3図18はステン
レス容器、19は該ステンレス容器内を真空にする為の
排気口、27はエツチングガスの導入管、20は一方の
平行電極で例えばステンレス円板或いはアルミニウム円
板である。又本電極は必要に応じて電気的に浮かせるよ
うになっている。21は平行電極で他の電極となるメツ
シー状電極22を支える円筒状のアルミニウム或いはス
テンレスで形成されている。もちろんこの部分は多数の
穴を有する円板であってもよい。23は例えば円筒状或
いは中空の円板で他の陽極電極となるもので、図には円
筒状の電極の場合が示されている。23′は該電極を支
える絶縁材料で例えば石英の円筒である。24は冷却可
能な試料25を保持するだめのホルダーで、電気的に任
意の電位に設定できるようになっている。又メツシー状
電極22と該試料ホルダー24との距離dは可変である
。26は前記容器18外におかれた電磁石である。第3
図に於いて真空用0リンダ等は図面の簡略化のため省略
しである。
The present invention provides a completely new dry etching apparatus and dry etching method capable of high-precision machining that overcomes the above-mentioned drawbacks, and uses so-called PIG discharge as the discharge nolasma for etching. The principle of its construction will be described with reference to FIG. 3, 18 shows a stainless steel container, 19 an exhaust port for evacuating the interior of the stainless steel container, 27 an etching gas introduction pipe, and 20 one parallel electrode, which is, for example, a stainless steel disk or an aluminum disk. Moreover, this electrode can be made to float electrically if necessary. 21 is a parallel electrode made of cylindrical aluminum or stainless steel that supports a mesh-like electrode 22 serving as another electrode. Of course, this part may also be a disk with a number of holes. Reference numeral 23 is, for example, a cylindrical or hollow disk serving as another anode electrode, and the figure shows the case of a cylindrical electrode. 23' is an insulating material that supports the electrode, and is a cylinder made of quartz, for example. Reference numeral 24 denotes a holder for holding a coolable sample 25, which can be electrically set to an arbitrary potential. Further, the distance d between the mesh-shaped electrode 22 and the sample holder 24 is variable. 26 is an electromagnet placed outside the container 18. Third
In the figure, vacuum cylinders and the like are omitted to simplify the drawing.

第4図は大型の放電装置に関する構成実施例で、以下そ
の幾何学的寸法と放電実施例について述べる。28は直
径40011mのガラスベルツヤ−で、29は6インチ
の拡散ポンダ及び油回転ポンプにつながる排気口である
。30はがス導入系で、本実施例では平行陰極電極31
を支えるパイプ状金属31′内にガスを送り込み放電空
間に供給されるようになっている。31“は陰極電極3
1に設けた開孔である。陰極電極31は直径220龍の
アルミニウム製とした。32は凹状の金属で、他方の平
行陰極となるべき開口を有する金属電極33(例えば本
実施例ではメツシュ状金属)を保持し一体となって他方
の平行陰極電極を構成する。凹状の下部の円形部は直径
220關φで開孔は200關φとした。該凹状金属32
」二にステンレス製メッンユ金属を置いている。又該陰
極間距離は5σとした。34は外径240Ilφ、内径
230酊φ、高さ10011Mの円筒状陽極電極でアル
ミニウムを用いている。35は基板36を保持するホル
ダーで基板36を冷却する機構を有している。本実施例
では水冷とした。37はベルツヤ−の外部に設けられた
電磁石で、それによって生ずる磁束の方向は前記平行陰
極面に垂直方向である。N2ffスを導入管30を通じ
て放電空間に流し、ケ゛−トパルブ38の開きを調節し
て圧力をlO〜10  Torrの範囲に調節する。例
えば基板電極とメツシー電極間距離を約1OII肩とし
圧力を0.005 Torrに設定したときの例につい
て説明する。陽極電極34に450 V、陰極電極を接
地電位ケし、磁場強度を約100Gとしたとき、前記電
極間のみに非常に0、06 W/crn2に対応する(
片方のメツシュ状電極上に接して金属プレートを置いた
とき)。次に金属プレートを除外し第4図の構成で陽極
電極、陰極電極間電流100 mAとし、基板電極、グ
ランド間に約6.8にΩ挿入したとき基板電極、グラン
ド間に約10 mAの電流が流れた。この時基板、グラ
ンド間に陽極電圧の約Aの電圧が生ずることが判った。
FIG. 4 shows a configuration example of a large-sized discharge device, and its geometric dimensions and discharge embodiment will be described below. 28 is a glass belt gear with a diameter of 40011 m, and 29 is an exhaust port connected to a 6-inch diffusion ponder and an oil rotary pump. 30 is a gas introduction system, and in this example, parallel cathode electrodes 31
Gas is fed into the pipe-shaped metal 31' supporting the gas and is supplied to the discharge space. 31" is cathode electrode 3
This is the opening provided in 1. The cathode electrode 31 was made of aluminum and had a diameter of 220mm. A concave metal 32 holds a metal electrode 33 (for example, mesh-shaped metal in this embodiment) having an opening to serve as the other parallel cathode, and together constitutes the other parallel cathode. The lower circular part of the concave shape had a diameter of 220 mm and the opening had a diameter of 200 mm. The concave metal 32
``Secondly, there is a stainless steel menyu metal. Further, the distance between the cathodes was set to 5σ. 34 is a cylindrical anode electrode with an outer diameter of 240Ilφ, an inner diameter of 230φ, and a height of 10011M, and is made of aluminum. A holder 35 holds the substrate 36 and has a mechanism for cooling the substrate 36. In this example, water cooling was used. Reference numeral 37 denotes an electromagnet provided outside the belt wheel, and the direction of the magnetic flux generated thereby is perpendicular to the parallel cathode planes. N2ff gas is flowed into the discharge space through the introduction tube 30, and the pressure is adjusted to a range of 10 to 10 Torr by adjusting the opening of the gate valve 38. For example, an example will be described in which the distance between the substrate electrode and the mesh electrode is approximately 1 OII, and the pressure is set to 0.005 Torr. When the anode electrode 34 is placed at 450 V, the cathode electrode is placed at ground potential, and the magnetic field strength is approximately 100 G, there is a voltage of 0.06 W/crn2 only between the electrodes (corresponding to 0.06 W/crn2).
(When a metal plate is placed in contact with one mesh-like electrode). Next, with the metal plate removed, the current between the anode and cathode electrodes was set to 100 mA using the configuration shown in Figure 4, and when approximately 6.8 Ω was inserted between the substrate electrode and ground, the current between the substrate electrode and ground was approximately 10 mA. flowed. At this time, it was found that a voltage of about A, which is the anode voltage, was generated between the substrate and the ground.

基板−グランド間電圧及び電流はその間の抵抗値を変え
ることによってかなりコントロールすることができる。
Substrate-to-ground voltages and currents can be significantly controlled by varying the resistance values therebetween.

従ってプラズマ中の荷電粒子が基板に飛び込むときのエ
ネルギーをコントロールできることになる。一般的にエ
ツチング速度は陽極電圧、基板−グラウンド間の抵抗値
等により任意にかえ得る。又陽極電極から流れ出る全電
流及び基板−グラウンド電流は特に0.O05Torr
のような高真空域で磁場強度によって犬きく変化する。
Therefore, it is possible to control the energy when charged particles in the plasma fly into the substrate. Generally, the etching rate can be arbitrarily changed by adjusting the anode voltage, the resistance value between the substrate and the ground, etc. Also, the total current flowing from the anode electrode and the substrate-to-ground current are particularly 0. O05Torr
It changes drastically depending on the magnetic field strength in high vacuum areas such as .

例えば磁場50 Gaussで50 mAが、100 
Gaussで80mAとなる。今度の例では陽極電極に
正電圧を印加し、陰極電極を接地電位にしたが、陽極電
極に正電位を又陰極電極に負電位を与え、該電極間に放
電ゾラズマを誘起し、かつ基板を接地或いは正或いは負
の電位を与えることによって基板上に薄膜を堆積させる
事も可能であることは言うまでもない。例えば陽極電圧
+200vで陰極電圧250■とほぼ同様な放電が得ら
れ、プラズマ−基板間電位差はこの電位の与え方で自由
又前記平行陰極電極は同電位でなく直流の電位差、を与
えることにより、基板上への粒子の運動エネルギーを容
易にコントロールすることができる。メツシュ状金属上
に接して金属板を置き、例えばメソノー状金属に対し+
100Vの電位を与え他方を接地し、陽極電圧として+
450V、磁場100G。
For example, 50 mA with a magnetic field of 50 Gauss is 100
Gauss gives 80mA. In this example, a positive voltage was applied to the anode electrode and the cathode electrode was set to ground potential. However, by applying a positive potential to the anode electrode and a negative potential to the cathode electrode, a discharge zolazma is induced between the electrodes, and the substrate is It goes without saying that it is also possible to deposit a thin film on the substrate by applying a ground or positive or negative potential. For example, with an anode voltage of +200 V, almost the same discharge as with a cathode voltage of 250 V can be obtained, and the potential difference between the plasma and the substrate is free depending on how this potential is applied, and by applying a direct current potential difference instead of the same potential to the parallel cathode electrodes, The kinetic energy of particles onto the substrate can be easily controlled. Place a metal plate in contact with a mesh-like metal, for example, for a mesonor-like metal
Apply a potential of 100V and ground the other end, and set + as the anode voltage.
450V, magnetic field 100G.

真空度0.005 Torrの下で放電を観察すると非
対称的な放電を生じ、前記陰極電圧値により該陰極直下
のイオンシースの幅も自由にコントロールされることが
明らかになった。
When the discharge was observed under a vacuum of 0.005 Torr, it was revealed that an asymmetrical discharge occurred and that the width of the ion sheath directly under the cathode was freely controlled by the cathode voltage value.

以上の例では、開口を有する電極例えばメツシュ状金属
を一方の電極として用い、それに対向して基板が置かれ
ている場合の構成を実施例及び放電実験例について述べ
た次両方を開口を有する金属電極とし、それらに対向し
て基板ホルダーを有する場合を第5図に示す。第5図に
おいて39は例えばステンレス製の真空容器で、40は
拡散ボン7D40’及び油回転ポンプ40〃に連がる真
空容器39の排気口である。41及び42はメ、/、状
電極、43は例えば円筒状陽極電極で、44は外部電磁
石である。該電極間にガス導入管51により所要のガス
を導入し電極間で放電プラズマを生成し、前記メッンユ
状電極41.42に対向した基板ホルダー45及び46
上に置かれた基板47にプラズマ粒子を導きエツチング
する。このように両メツシュ状電極に対向して両側に基
板を設置できる為、従来例に比べて二倍程度の堆積処理
能力を有することが可能となる。50は前記電極間に生
じた放電プラズマ状態を観察する為の窓である。又48
及び49はデートバルブ、51はベローズで前記ケ°−
トパルブと一体となり放電空間の真空を破ることなく基
板ホルダー45.46を大気中に取り出し、基′:・板
をつけかえするだめの機構を構成する。
In the above example, an electrode having an opening, for example, a mesh-like metal, is used as one electrode, and a structure in which a substrate is placed opposite to it is described in connection with the embodiment and the discharge experiment example. FIG. 5 shows a case in which electrodes are used and a substrate holder is provided facing them. In FIG. 5, 39 is a vacuum container made of stainless steel, for example, and 40 is an exhaust port of the vacuum container 39 connected to the diffusion bomb 7D40' and the oil rotary pump 40. 41 and 42 are metal-shaped electrodes, 43 is, for example, a cylindrical anode electrode, and 44 is an external electromagnet. A required gas is introduced between the electrodes through the gas introduction pipe 51 to generate discharge plasma between the electrodes, and the substrate holders 45 and 46 facing the menyu-shaped electrodes 41 and 42 are
Plasma particles are introduced into the substrate 47 placed above to etch it. In this way, since the substrates can be placed on both sides facing both mesh-like electrodes, it is possible to have a deposition processing capacity that is approximately twice that of the conventional example. 50 is a window for observing the discharge plasma state generated between the electrodes. Also 48
and 49 is a date valve, and 51 is a bellows.
It forms a mechanism for taking out the substrate holder 45, 46 into the atmosphere and replacing the substrate without breaking the vacuum in the discharge space by integrating with the top valve.

本発明を基板或いは基板上の薄膜の微細加工に応用する
場合についてその効果について述べる。
The effects of the present invention when applied to microfabrication of a substrate or a thin film on a substrate will be described.

第3図に示す装置を用い多結晶のエツチングレイトを調
べる実験を行なった。用いたガスはC3F8で圧力は5
 X 10−5Torrで陽極電極23に例えば+50
0V%陰極電極20及び21を接地電位、基板ホルダー
24を接地電位とし陰極電極21及び基板ホルダー24
の間隔を20朋、ガス流量を308CCM、陽極電流と
して80 mA (電力密度としては一方の電極あたり
0.1 W/cm2)としたときほぼ5000 X/m
inのエツチングレイトが得られた。
An experiment was conducted to investigate the etching rate of polycrystals using the apparatus shown in FIG. The gas used was C3F8 and the pressure was 5
For example, +50 to the anode electrode 23 at X 10-5 Torr.
0V% cathode electrodes 20 and 21 are at ground potential, substrate holder 24 is at ground potential, cathode electrode 21 and substrate holder 24
When the interval between electrodes is 20 mm, the gas flow rate is 308 CCM, and the anode current is 80 mA (power density is 0.1 W/cm2 per one electrode), it is approximately 5000 X/m.
An etching rate of in was obtained.

このデータをもとにレジストをマスクにして1μm幅の
多結晶St (厚さ0.4μm)形成実験を行なった所
はぼボッ型しジス) ノfタンに忠実な幅に加工できる
ことがわかった。又この時レノストはエツチング用マス
クとして十分耐え得ることが明らかになった。本発明は
多結晶Stのエツチングにとどまらず半導体集積回路を
構成する他の薄膜例えば5i02膜、PSG膜、アルミ
ニウム膜のドライエツチングに適した技術である。アル
ミニウムをエツチングする場合、ガスとしては塩素化合
物例えばCCl4とかBCl3が使われる。
Based on this data, we conducted an experiment to form a 1 μm wide polycrystalline St (0.4 μm thick) using a resist as a mask, and found that it was possible to process the polycrystalline St into a width that was faithful to the width of the nof tan. . It was also revealed at this time that Lennost could withstand sufficiently as an etching mask. The present invention is a technique suitable not only for etching polycrystalline St but also for dry etching other thin films constituting semiconductor integrated circuits, such as 5i02 film, PSG film, and aluminum film. When etching aluminum, a chlorine compound such as CCl4 or BCl3 is used as the gas.

この場合エツチング時のガス流量の多少は装置の保守上
も極めて重大な問題である。本発明によるとガス流量は
従来法に比べ大幅に少なくできる為この点からみても非
常に有効と考えられる。又一般に金属配線例えばアルミ
ニウムは凹凸の多いところに形成されるため方向性エツ
チングの強い方式では段差部の所でエツチングされずに
残る可能性がある。しかし本方式によるとエネルギーラ
ノカルコントロール以外に条件次第で方向性、等方性エ
ツチングの両方が可能であり、又、電極間の電圧を変え
る事によりイオンの運動エネルギーを任意に設定できる
等従来方式では成し得なかった領域に於けるドライエツ
チングを可能ならしめた本発明は半導体集積回路、半導
体素子その他高精度な微細加工を要する分野のデバイス
の開発・製造にきわめて大きなイン・やストを与えるも
のである。
In this case, the amount of gas flow rate during etching is an extremely serious problem in terms of equipment maintenance. According to the present invention, the gas flow rate can be significantly reduced compared to conventional methods, so it is considered to be very effective from this point of view. Furthermore, since metal wiring, such as aluminum, is generally formed in areas with many irregularities, there is a possibility that step portions may remain unetched if a method that requires strong directional etching is used. However, with this method, in addition to energy lanocal control, it is possible to perform both directional and isotropic etching depending on the conditions, and the kinetic energy of the ions can be set arbitrarily by changing the voltage between the electrodes. The present invention, which enables dry etching in areas that could not be achieved previously, will provide an extremely large amount of investment and cost to the development and manufacture of semiconductor integrated circuits, semiconductor elements, and other devices in fields that require high-precision microfabrication. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の2極型リアクティブエッチング装置、 第2図は改良されたりアクティブエツチング装置、 第3図は本発明の基本構成概念図、 第4図は放電実験に用いた装置構成例、第5図は平行陰
極の両方に基板を置く例を示す図である。 l・・・下部電極、2・・・上部電極、3・・・被エツ
チング試料、4・・・高周波電源、5,6・・・水冷管
、7゜8・・・排気管、9・・・ガス導入管、10・・
・真空容器、11・・・排気口、12・・・ガス導入管
、13・・・カノード、14・・アノード、15・・・
電極、16・・・絶縁ガイシ(アルミナ)、17・・試
料、18・・・真空容器、19・・・排気口、20・・
平行電極の一方、21・・・他の平行電極(例えばメツ
シュ状電極のホルダー)、22・・・メツシュ状電極、
23・・・円筒状電極、23′・・・電極23を保持す
る為の石英円筒、24・・・ホルダー、25・・・試料
、26・・電磁石、・27・・・ガス導入管、28・・
ガラスベルツヤ−129・・・排気口、30・・ガス導
入管、31・・・平行陰極電極、31′・・・・Pイゾ
状金属、311! ・平行陰極電極31に設けた開口、
32・・・他方の平行陰極電極、33・・・メツシュ状
電極、34・・・陽袷電極、35・・基板ホルダー、3
6・・基板、37・・・外部電磁石、38・・バルブ、
39・・・真空容器、40・・排気口、40′・・・拡
散ポンダ、40〃・・・油回転ポンダ、41.42・・
・メツシュ状電極、43・・・陽極電極、44・・外部
電磁石、45.46・・・基板ホルダー、47・被エツ
チング試料、48.49・・・ケ゛−トパルブ、50・
・・放電のぞき窓、51・・・ベローズ。 第3図 第4図
Fig. 1 shows a conventional two-pole reactive etching device, Fig. 2 shows an improved active etching device, Fig. 3 shows a conceptual diagram of the basic configuration of the present invention, and Fig. 4 shows an example of the device configuration used in the discharge experiment. , FIG. 5 is a diagram showing an example in which substrates are placed on both parallel cathodes. 1... Lower electrode, 2... Upper electrode, 3... Sample to be etched, 4... High frequency power supply, 5, 6... Water cooling pipe, 7° 8... Exhaust pipe, 9...・Gas introduction pipe, 10...
・Vacuum container, 11...Exhaust port, 12...Gas introduction pipe, 13...Canode, 14...Anode, 15...
Electrode, 16... Insulating insulator (alumina), 17... Sample, 18... Vacuum container, 19... Exhaust port, 20...
One of the parallel electrodes, 21...another parallel electrode (for example, a holder for a mesh-like electrode), 22... a mesh-like electrode,
23... Cylindrical electrode, 23'... Quartz cylinder for holding the electrode 23, 24... Holder, 25... Sample, 26... Electromagnet, 27... Gas introduction tube, 28・・・
Glass Beltsya - 129...Exhaust port, 30...Gas inlet pipe, 31...Parallel cathode electrode, 31'...P iso-shaped metal, 311! - An opening provided in the parallel cathode electrode 31,
32...Other parallel cathode electrode, 33...Mesh-like electrode, 34...Positive electrode, 35...Substrate holder, 3
6... Board, 37... External electromagnet, 38... Valve,
39...Vacuum container, 40...Exhaust port, 40'...Diffusion ponder, 40...Oil rotary ponder, 41.42...
- Mesh-like electrode, 43... Anode electrode, 44... External electromagnet, 45.46... Substrate holder, 47. Sample to be etched, 48.49... Case plate, 50.
...Discharge peephole, 51...Bellows. Figure 3 Figure 4

Claims (6)

【特許請求の範囲】[Claims] (1)容器内の圧力を減圧状態にする為の排気手段と、
該容器中にガスを導入する手段と該容器内に配置された
複数の電極を備え、該電極間に印加した電界及び前記容
器外戚いは内部に設置された磁界発生器による磁界を励
起源として前記電極間に放電プラズマを誘起させ、前記
電極間に生じたプラズマ粒子の一部により前記電極間隙
外に設置した基板ホルダー上の基板或いは基板上の薄膜
をエツチングすることを特徴とするプラズマエツチング
装置。
(1) Exhaust means for reducing the pressure inside the container,
A device comprising a means for introducing gas into the container and a plurality of electrodes arranged in the container, and using an electric field applied between the electrodes and a magnetic field from a magnetic field generator installed outside or inside the container as an excitation source. A plasma etching apparatus characterized in that a discharge plasma is induced between the electrodes, and a part of the plasma particles generated between the electrodes etches a substrate on a substrate holder installed outside the electrode gap or a thin film on the substrate. .
(2)複数の電極が平行電極及び該電極面に垂直及び平
行な電界成分を与える他の電極(陽極電極)と、前記平
行電極面に垂直な磁界を与える磁界発生器を有すること
を特徴とする特許請求の範囲第(1) 項記載のプラズ
マエツチング装置。
(2) The plurality of electrodes include parallel electrodes, another electrode (anode electrode) that provides electric field components perpendicular and parallel to the electrode surface, and a magnetic field generator that provides a magnetic field perpendicular to the parallel electrode surface. A plasma etching apparatus according to claim (1).
(3)  平行陰極電極に同じ電位を与え、他の電極に
正電位を与えることを特徴とする特許請求の範囲= (
1)項記載のプラズマエツチング装置。
(3) Claim characterized in that the same potential is applied to the parallel cathode electrodes and a positive potential is applied to the other electrodes = (
1) The plasma etching apparatus described in item 1).
(4)  平行陰極電極に電位差を与え、且つ他の電極
に正の電位を与えることを特徴とする特許請求の範囲第
(1)項記載のプラズマエツチング装置。
(4) The plasma etching apparatus according to claim (1), characterized in that a potential difference is applied to the parallel cathode electrodes, and a positive potential is applied to the other electrodes.
(5)減圧状態にした容器内に、平行陰極電極及び該陰
極電極面に対し垂直及び平行な電界成分を与える他の陽
極電極を配し、これら電極間に電圧を与え原料ガスを供
給しながら、前記平行陰極面に垂直な磁場を印加させて
該電極間に放電プラズマを誘起し、該プラズマ粒子を前
記電極間外に置かれた基板に導きエツチングすることを
特徴とするプラズマエツチング方法。
(5) A parallel cathode electrode and another anode electrode that provide electric field components perpendicular and parallel to the cathode electrode surface are arranged in a container under reduced pressure, and while applying a voltage between these electrodes and supplying raw material gas, A plasma etching method characterized in that a magnetic field perpendicular to the parallel cathode surfaces is applied to induce discharge plasma between the electrodes, and the plasma particles are guided to a substrate placed outside between the electrodes for etching.
(6)  平行陰極電極の少なくとも一方は開孔を有す
る電極であり、かつ該平行陰極電極に接地電位もしくは
負の直流電位を与え、他の陽極に正電位を与えることを
特徴とする特許請求の範囲第(5)項記載のプラズマエ
ツチング方法。
(6) At least one of the parallel cathode electrodes is an electrode having an opening, and a ground potential or a negative DC potential is applied to the parallel cathode electrode, and a positive potential is applied to the other anode. The plasma etching method according to scope (5).
JP13018781A 1981-08-21 1981-08-21 Method and apparatus for plasma etching Granted JPS5832417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13018781A JPS5832417A (en) 1981-08-21 1981-08-21 Method and apparatus for plasma etching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13018781A JPS5832417A (en) 1981-08-21 1981-08-21 Method and apparatus for plasma etching

Publications (2)

Publication Number Publication Date
JPS5832417A true JPS5832417A (en) 1983-02-25
JPH0311542B2 JPH0311542B2 (en) 1991-02-18

Family

ID=15028151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13018781A Granted JPS5832417A (en) 1981-08-21 1981-08-21 Method and apparatus for plasma etching

Country Status (1)

Country Link
JP (1) JPS5832417A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58225637A (en) * 1982-06-23 1983-12-27 Sony Corp Ion beam apparatus
JPS6214429A (en) * 1985-07-12 1987-01-23 Hitachi Ltd Bias impression etching and device thereof
WO1999035667A1 (en) * 1998-01-09 1999-07-15 E.I. Du Pont De Nemours And Company Plasma treatment for producing electron emitters
WO2003003403A1 (en) * 2001-06-29 2003-01-09 Lam Research Corporation Configurable plasma volume etch chamber
US7459098B2 (en) 2002-08-28 2008-12-02 Kyocera Corporation Dry etching apparatus, dry etching method, and plate and tray used therein
US7556741B2 (en) 2002-08-28 2009-07-07 Kyocera Corporation Method for producing a solar cell
US7556740B2 (en) 2002-08-27 2009-07-07 Kyocera Corporation Method for producing a solar cell
JP2010087009A (en) * 2008-09-29 2010-04-15 Kyocera Corp Etching apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58225637A (en) * 1982-06-23 1983-12-27 Sony Corp Ion beam apparatus
JPH0481325B2 (en) * 1982-06-23 1992-12-22 Sony Corp
JPS6214429A (en) * 1985-07-12 1987-01-23 Hitachi Ltd Bias impression etching and device thereof
WO1999035667A1 (en) * 1998-01-09 1999-07-15 E.I. Du Pont De Nemours And Company Plasma treatment for producing electron emitters
WO2003003403A1 (en) * 2001-06-29 2003-01-09 Lam Research Corporation Configurable plasma volume etch chamber
US6527911B1 (en) 2001-06-29 2003-03-04 Lam Research Corporation Configurable plasma volume etch chamber
CN1309000C (en) * 2001-06-29 2007-04-04 兰姆研究有限公司 Configurable plasma volume etch chamber
US7556740B2 (en) 2002-08-27 2009-07-07 Kyocera Corporation Method for producing a solar cell
US7459098B2 (en) 2002-08-28 2008-12-02 Kyocera Corporation Dry etching apparatus, dry etching method, and plate and tray used therein
US7556741B2 (en) 2002-08-28 2009-07-07 Kyocera Corporation Method for producing a solar cell
JP2010087009A (en) * 2008-09-29 2010-04-15 Kyocera Corp Etching apparatus

Also Published As

Publication number Publication date
JPH0311542B2 (en) 1991-02-18

Similar Documents

Publication Publication Date Title
US4371412A (en) Dry etching apparatus
US4431473A (en) RIE Apparatus utilizing a shielded magnetron to enhance etching
US4826585A (en) Plasma processing apparatus
EP0084970B1 (en) Magnetically enhanced plasma process and apparatus
TWI333225B (en) Method and apparatus to confine plasma and to enhance flow conductance
US4521286A (en) Hollow cathode sputter etcher
US4277304A (en) Ion source and ion etching process
JPH1055983A (en) Inductively coupled plasma reactor having faraday sputter shield
JP2000269196A (en) Method and apparatus for plasma treatment
JPS5832417A (en) Method and apparatus for plasma etching
JPH1012597A (en) Plasma-etching equipment and plasma etching method
JPS6136589B2 (en)
US6096176A (en) Sputtering method and a sputtering apparatus thereof
JP2006253190A (en) Neutral particle beam processing apparatus and method of neutralizing charge
KR101124178B1 (en) Method and apparatus for producing gas atom containing fullerene, and gas atom containing fullerene
JP2761172B2 (en) Plasma generator
JPS5822381A (en) Method and apparatus for plasma etching
JPS6348826A (en) Dry etching apparatus
GB2049560A (en) Plasma etching
JPS6094724A (en) Dry etching device
JP3220528B2 (en) Vacuum processing equipment
JP2929150B2 (en) Plasma equipment
JP3668535B2 (en) Etching equipment
Wickramanayaka et al. Magnetically Enhanced Dual Frequency Capacitively Coupled Plasma Source for Large-area Wafer Processing
JPS6127463B2 (en)