JPH0387373A - Formation of thin film by plasma cvd - Google Patents

Formation of thin film by plasma cvd

Info

Publication number
JPH0387373A
JPH0387373A JP22371589A JP22371589A JPH0387373A JP H0387373 A JPH0387373 A JP H0387373A JP 22371589 A JP22371589 A JP 22371589A JP 22371589 A JP22371589 A JP 22371589A JP H0387373 A JPH0387373 A JP H0387373A
Authority
JP
Japan
Prior art keywords
thin film
substrate
plasma cvd
vacuum chamber
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22371589A
Other languages
Japanese (ja)
Inventor
Takashi Shibata
尚 柴田
Yoshiro Ishii
芳朗 石井
Kuniaki Kobayashi
小林 邦明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAIMUZU KK
Original Assignee
RAIMUZU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RAIMUZU KK filed Critical RAIMUZU KK
Priority to JP22371589A priority Critical patent/JPH0387373A/en
Publication of JPH0387373A publication Critical patent/JPH0387373A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To make it possible to form a thin film having satisfactory adhesion and mechanical properties at a low temp. by impressing a specified negative potential to a substrate in a vacuum chamber. CONSTITUTION:A substrate 11 is set on a lower electrode 3 in a vacuum chamber 1 and this chamber 1 is evacuated by working a vacuum pump 6. Hydrogen is fed from a ring nozzle 7, -2,500 to -5,000V DC voltage is impressed on the electrode 3 from a DC power source 4 to generate plasma in the chamber 1 and the surface of the substrate 11 is cleaned with the plasma. A gaseous mixture of TiCl2, N2, H2, etc., is then fed into the chamber 1 through a pipe 8 at a flow rate regulated with mass flow controllers 10 and a thin film of TiN, etc., is formed on the surface of the substrate 11 by plasma CVD.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、プラズマCVD薄膜の形成法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for forming plasma CVD thin films.

[従来の技術と課題] 従来、薄膜を形成する方法として熱CVD法が採用され
ている。この方法は、原料気体を真空チャンバー内で熱
エネルギーにより化学反応を起こさせて該チャンバー内
に配置した基体上に薄膜を形成する方法である。こうし
た熱CVD法は、基体上に強靭な薄膜を密着性よく、か
つ付き四り性よく形成できる特徴を有する。
[Prior Art and Problems] Conventionally, a thermal CVD method has been adopted as a method for forming a thin film. This method is a method in which a chemical reaction is caused in a raw material gas using thermal energy in a vacuum chamber to form a thin film on a substrate placed in the chamber. Such a thermal CVD method has the characteristic that a strong thin film can be formed on a substrate with good adhesion and good adhesion.

ところで、薄膜形成に必要な化学反応は通常1000℃
以上の高温で行われる事が多い為、基体を構成する材料
が制約される。例えば、熱的損傷が生じやすい材料や寸
法変化が生じやすい材料からなる基体には、前記熱CV
D法を適用することは困難となる。
By the way, the chemical reaction required to form a thin film is usually at 1000°C.
Since this process is often carried out at higher temperatures, there are restrictions on the materials that can be used to form the base. For example, the thermal CV
It becomes difficult to apply method D.

こうしたことから、近年、イオンブレーティング等の物
理蒸着性(PVD法)が開発され、低温での薄膜形成が
可能となった。しかしながら、PVD法では立体基体に
対する蒸着物質の付き回り性が低いという問題があった
For these reasons, in recent years, physical vapor deposition (PVD method) such as ion blating has been developed, making it possible to form thin films at low temperatures. However, the PVD method has a problem in that the coverage of the vapor deposited substance to the three-dimensional substrate is low.

そこで、CVD法の良好な付き回り性とPVD法の低温
での薄膜形成という両者の長所を兼ね備えたプラズマC
VD法が開発された。このプラズマCVD法は、原料気
体の化学反応に必要な熱エネルギーの一部又は大部分を
電気エネルギーにより代替することによって低温での薄
膜形成を可能としたものである。プラズマCVD法では
、真空チャンバー内に原料気体を供給し直流又は高周波
を印加する事によりグロー放電を起こさせてプラズマを
発生させ、基体は該プラズマ中に設置される。この時、
チャンバー内に供給された原料気体はプラズマ中を通過
する際にイオン、ラジカル、原子、分子等の活性な励起
種となり、これらの励起種は低温で反応が進行するため
、基体上に低温で薄膜が形成されると考えられる。従っ
て、プラズマCVD法では基体上に付き回り性が良好な
薄膜を低温で形成する事が可能となる。
Therefore, plasma C
The VD method was developed. This plasma CVD method makes it possible to form thin films at low temperatures by substituting part or most of the thermal energy required for the chemical reaction of raw material gases with electrical energy. In the plasma CVD method, raw material gas is supplied into a vacuum chamber and direct current or high frequency is applied to cause glow discharge to generate plasma, and the substrate is placed in the plasma. At this time,
When the raw material gas supplied into the chamber passes through the plasma, it becomes active excited species such as ions, radicals, atoms, molecules, etc. These excited species undergo reactions at low temperatures, so they form a thin film on the substrate at low temperatures. is thought to be formed. Therefore, in the plasma CVD method, it is possible to form a thin film with good coverage on a substrate at a low temperature.

しかし、上述した従来のプラズマCVD法により形成し
た薄膜は低温で形成することは可能であるが、熱CVD
法やイオンブレーティング法により形成した薄膜と比較
して基体との密着性があまり良好ではないという問題を
有する。また、TiNやTiCのような硬質セラミック
ス薄膜を形成する場合には、上記密着性の低下と同時に
通常400℃以下の温度範囲で形成した薄膜については
硬度などの機械的性質が劣ることや薄膜中の不純物が多
いことなどの問題も有するため、プラズマCVD法の実
質的な適用は困難であった。
However, although thin films formed by the conventional plasma CVD method described above can be formed at low temperatures, thermal CVD
The problem is that the adhesion to the substrate is not as good as that of thin films formed by the ion-blating method or the ion-blating method. In addition, when forming a hard ceramic thin film such as TiN or TiC, at the same time as the above-mentioned decrease in adhesion, thin films formed at temperatures below 400°C usually have poor mechanical properties such as hardness, and However, it has been difficult to practically apply the plasma CVD method due to problems such as a large amount of impurities.

本発明は上記事情に鑑みてなされたもので、低温で密着
性の良い薄膜を形成でき、また400℃以下の温度範囲
においても機械的性質が良好な硬質セラミックス薄膜が
形成しえるプラズマCVD薄膜の形成法を提供すること
を目的とする。
The present invention has been made in view of the above circumstances, and is a plasma CVD thin film that can form a thin film with good adhesion at low temperatures and a hard ceramic thin film with good mechanical properties even in a temperature range of 400°C or less. The purpose is to provide a formation method.

[課題をM決するための手段と作用] 本発明は、プラズマCVD法により真空チャンバー内の
基体表面に薄膜を形成する方法において、真空チャンバ
ーに対して前記基体に一2500Vから−5000Vの
負電位を印加する事を特徴とするプラズマCVD薄膜の
形成法である。
[Means and effects for solving the problem] The present invention provides a method for forming a thin film on the surface of a substrate in a vacuum chamber by plasma CVD, in which a negative potential of -2500V to -5000V is applied to the substrate with respect to the vacuum chamber. This is a method of forming a plasma CVD thin film characterized by applying a voltage.

本発明において、上記負電位の電圧波形は任意の形状の
ものを用いる事ができる。例えば、連続波、矩形波、三
角波などの公知の波形が使用可能である。
In the present invention, the voltage waveform of the negative potential can have any shape. For example, known waveforms such as continuous waves, rectangular waves, and triangular waves can be used.

前述した従来のプラズマCVD法では、プラズマを発生
する手段として直流または高周波のいずれかを利用する
場合が多い。ここに、直流を利用する場合には基体に通
常真空チャンバーに対して500Vから一1500Vの
範囲の負電位を印加し、高周波を用いる場合には基体に
通常真空チャンバーに対して0から一500vの範囲の
負電位を印加する。このような条件でプラズマCVDを
行っても前述のような問題点はあるものの、基体上に薄
膜を形成することは可能である。上記従来のプラズマC
VD法における問題点の原因は種々考えられるため明確
に断定する事は困難であるが、プラズマ中での励起種、
特にイオンの量が不足していることが大きな原因の一つ
であると推定された。
In the conventional plasma CVD method described above, either direct current or high frequency is often used as a means for generating plasma. When using direct current, a negative potential in the range of 500V to -1500V is applied to the substrate with respect to the vacuum chamber, and when high frequency is used, a negative potential of 0 to -1500V is applied to the substrate with respect to the vacuum chamber. Apply a range of negative potentials. Even if plasma CVD is performed under such conditions, although there are problems as described above, it is possible to form a thin film on the substrate. The above conventional plasma C
It is difficult to definitively determine the causes of problems in the VD method because there are various possible causes, but excited species in the plasma,
In particular, it was assumed that one of the major causes was a lack of ions.

そこで、本発明者らは、上記プラズマCVD法の条件で
薄膜形成する際の空間中の励起種分布を質ヱ分析装置、
発光分光分析装置を用いて測定し次のような知見を得た
。即ち、プラズマ中に供給された原料気体は主として基
体表面近傍のカソードシース内で急速に励起・イオン化
が進行するという事実である。二〇カソードシース内で
の電圧勾配の大きさは、基体と真空チャンバーとの電位
差が大きい程大きく、また他の成膜パラメータの影響は
あまり受けないと考えられる。従って、他の成膜パラメ
ーターは一定にしても、基体と真空チャンバーとの電位
差を大きくすることのみにより、カソードシース内で励
起・イオン化が進行するため、前述のような問題点を克
服する可能性がある事が推論された。
Therefore, the present inventors analyzed the distribution of excited species in the space when forming a thin film under the conditions of the plasma CVD method described above using an analyzer,
The following findings were obtained by measuring using an emission spectrometer. That is, the source gas supplied into the plasma is rapidly excited and ionized mainly within the cathode sheath near the substrate surface. 20 The magnitude of the voltage gradient within the cathode sheath increases as the potential difference between the substrate and the vacuum chamber increases, and it is thought that it is not affected much by other film-forming parameters. Therefore, even if other film-forming parameters are held constant, excitation and ionization will proceed within the cathode sheath simply by increasing the potential difference between the substrate and the vacuum chamber, making it possible to overcome the above-mentioned problems. It was inferred that there is.

しかし、プラズマCVDmにより薄膜を形成する場合、
基体にA空チャンバーに対して一2000V以上の負電
位を印加した例は皆無てあり文献などにもその報告例は
全く無い。本発明者らはこの点に着目し、基体に真空チ
ャンバーに対して一2000■以上の負電位を印加して
プラズマCVDを行った場合、得られる薄膜の特性につ
いて鋭意研究を行った結果、以下のような新たな現象を
発見した。
However, when forming a thin film by plasma CVDm,
There are no examples of applying a negative potential of 12,000 V or more to the substrate with respect to the empty chamber A, and there are no reports of this in the literature. The present inventors focused on this point and conducted intensive research on the characteristics of the thin film obtained when plasma CVD is performed by applying a negative potential of 12,000 μm or more to the substrate with respect to the vacuum chamber. As a result, we found the following. discovered a new phenomenon.

即ち、基体に真空チャンバーに対して一2500Vから
−5000Vの負電位を印加してプラズマCVDを行な
った場合、低温で密着性の良い薄膜の形成が可能であり
、さらに400℃以下の温度範囲においても機械的性質
の良好な硬質セラミ・ソクス薄膜の形成が可能である。
That is, when plasma CVD is performed by applying a negative potential of -2,500V to -5,000V to the substrate with respect to a vacuum chamber, it is possible to form a thin film with good adhesion at low temperatures, and furthermore, it is possible to form a thin film with good adhesion at a temperature of 400°C or less. It is also possible to form a hard ceramic thin film with good mechanical properties.

こうした事実の原因は現時点では明らかではない。しか
し、基体に真空チャンバーに対して−2500Vから−
5000Vの負電位を印加した場合、質量分析装置、発
光分光分析装置を用いてプラズマ中、特にカソードシー
ス内での励起種の測定を行なったところ、基体表面近傍
のカソードシース内での励起・イオン化が従来よりも格
段に進行していることを確認した。こうした事から、イ
オンの量が格段に増えた事により打ち込み効果が増すた
めに低温で薄膜形成した場合の密着性が改善される。同
時に熱エネルギーから電気エネルギーへの変換が進行し
ているために400℃以下の温度範囲においても機械的
性質の良好な砂質セラミックス薄膜の形成が可能である
と推定される。
The cause of these facts is not clear at this time. However, from -2500V to the vacuum chamber on the substrate -
When a negative potential of 5000 V was applied, excited species in the plasma, especially in the cathode sheath, were measured using a mass spectrometer and an emission spectrometer, and it was found that excitation and ionization occurred in the cathode sheath near the substrate surface. It was confirmed that the progress was much greater than before. For these reasons, the implantation effect is increased due to a marked increase in the amount of ions, which improves the adhesion when forming a thin film at a low temperature. At the same time, it is presumed that because the conversion from thermal energy to electrical energy is progressing, it is possible to form a sandy ceramic thin film with good mechanical properties even in a temperature range of 400° C. or lower.

本発明において、印加する負電位が一2500V未満の
場合、上述のような効果が十分には発揮されない為、従
来広と同様な問題点を有する。又、印加する負電位が一
5000Vを越えた場合、放電がアク放電に移行しやす
く安定な放電を得難くなるために実用上の新たな問題を
生じる。
In the present invention, when the applied negative potential is less than 12,500 V, the above-mentioned effects are not fully exhibited, and therefore there are problems similar to the conventional wide one. Furthermore, if the applied negative potential exceeds 15,000 V, the discharge tends to shift to an active discharge, making it difficult to obtain a stable discharge, resulting in a new practical problem.

以下、本発明の実施例について比較例とともに説明する
Examples of the present invention will be described below along with comparative examples.

[実施例1] まず、本発明に係る平行平板型プラズマCVD装置につ
いて第1図を参照して説明する。
[Example 1] First, a parallel plate type plasma CVD apparatus according to the present invention will be described with reference to FIG.

図中の1は真空チャンバーであり、アース電位にある。1 in the figure is a vacuum chamber, which is at ground potential.

この真空チャンバー1山には、平板状の上部電極2.下
部電極3が互いに平行に対向配置されている。前記下部
電極3には、DC電lJ7.4が接続されている。前記
真空チャンバー1の下部付近には、排気管5が設けられ
ている。この排気管5の他端には、真空ポンプ6が連結
されている。
This vacuum chamber has a flat upper electrode 2. Lower electrodes 3 are arranged parallel to each other and facing each other. A DC voltage IJ7.4 is connected to the lower electrode 3. An exhaust pipe 5 is provided near the bottom of the vacuum chamber 1. A vacuum pump 6 is connected to the other end of the exhaust pipe 5.

また、前記下部電極3の上方には内周面に多数のガス噴
出口(図示せず)を開孔したリングノズル7が配置され
ている。このリングノズル7には、ガス導入管8が連結
されている。この導入管8は前記真空チャン・く−1の
外部において3本に分岐され、各々バルブ9.マスフロ
ーコントローラlOが介装されている。
Further, above the lower electrode 3, a ring nozzle 7 having a large number of gas ejection ports (not shown) formed on the inner circumferential surface is arranged. A gas introduction pipe 8 is connected to this ring nozzle 7 . This introduction pipe 8 is branched into three pipes outside the vacuum chamber 1, each with a valve 9. A mass flow controller IO is interposed.

次に、上記プラズマCVD装置を用いた薄膜形成法につ
いて説明する。
Next, a thin film forming method using the plasma CVD apparatus described above will be explained.

まず、下部電極3上に20X 20X 2 m mの寸
法の5KH51製の基板11を10枚設置した。つづい
て、真空ポンプ6を作動して排気管5を通して真空チャ
ンバー1内のガスを排気し、リングノズル7から水素を
真空チャンバー1内に供給した状態で下部電極3にDC
電源4から一3000Vの直流を印加し、チャンバー1
内にプラズマを発生させて基板11の表面を清浄化した
。次いで、マスフローコントローラ10で流量調節され
たT i CN 4 、N2、N2の混合基体(T i
 CD 4  ; 50secm、 N2;150sc
c口、N2; 4000scca+)を導入管8を通し
てリングノズル7から真空チャンバー1内に供給し温度
500℃の条件でプラズマCVDを行って基板11表面
に3μmのTiN薄膜を形成した。
First, ten substrates 11 made of 5KH51 and having dimensions of 20×20×2 mm were placed on the lower electrode 3. Next, the vacuum pump 6 is operated to exhaust the gas in the vacuum chamber 1 through the exhaust pipe 5, and while hydrogen is supplied into the vacuum chamber 1 from the ring nozzle 7, DC is applied to the lower electrode 3.
Apply 13000V DC from power supply 4 to chamber 1.
The surface of the substrate 11 was cleaned by generating plasma inside. Next, a mixed substrate of T i CN 4 , N2, and N2 (T i
CD4; 50sec, N2; 150sc
N2; 4000 scca+) was supplied into the vacuum chamber 1 from the ring nozzle 7 through the introduction tube 8, and plasma CVD was performed at a temperature of 500° C. to form a 3 μm thick TiN thin film on the surface of the substrate 11.

得られたTiN薄膜の密着性をスクラッチテスターによ
り測定した。10枚の基板についてAl1定したところ
、臨界荷重の平均値は35Nであった。
The adhesion of the obtained TiN thin film was measured using a scratch tester. When Al1 was determined for 10 substrates, the average critical load was 35N.

[実施例2コ 実施例1と同様の方法により裁板U表面に3μmのTi
N薄膜を形成した。但し、真空チャンバ1はアース電位
とし、基板には−3000Vの負電位を印加した。又、
薄膜形成温度は350℃とした。
[Example 2] A layer of 3 μm of Ti was applied to the surface of the cutting board U by the same method as in Example 1.
A N thin film was formed. However, the vacuum chamber 1 was at ground potential, and a negative potential of -3000V was applied to the substrate. or,
The thin film forming temperature was 350°C.

得られたTiN薄膜は黄金色を呈した。TiN薄膜の高
度をマイクロヴイッカース硬度=1により荷重logで
測定したところ、平均値は2200であった。又、Ti
N薄膜中のCga度をE P MAにより測定したとこ
ろ、平均値は4 w t%であった。
The obtained TiN thin film exhibited a golden color. When the height of the TiN thin film was measured by the log load using a micro-Vickers hardness of 1, the average value was 2200. Also, Ti
When the Cga degree in the N thin film was measured by EPMA, the average value was 4 wt%.

[比較例1] 実施例1と同様の方法により基板11表面に3μmのT
iN薄膜を形成した。但し、真空チャンバーはアース電
位とし、基板には−1[100Vの負電位を印加した。
[Comparative Example 1] A 3 μm thick T layer was applied to the surface of the substrate 11 by the same method as in Example 1.
An iN thin film was formed. However, the vacuum chamber was at ground potential, and a negative potential of -1[100V was applied to the substrate.

また、薄膜形成温度は500℃とした。Further, the thin film forming temperature was 500°C.

得られたTiN薄膜の密着性をスクラッチテスターによ
り測定した。10枚の基板について、;1+11定した
ところ、臨界荷重の平均値は2ONであった。
The adhesion of the obtained TiN thin film was measured using a scratch tester. When 1+11 was determined for 10 substrates, the average value of the critical load was 2ON.

[比較例2] 実施例1と同様の方法により基板11表面に3μmのT
iN薄膜を形成した。但し、真空チャンバーはアース電
位とし、基板には−tooovの負電位を印加した。ま
た、薄膜形成温度は350 ℃とした。
[Comparative Example 2] A 3 μm thick T layer was applied to the surface of the substrate 11 by the same method as in Example 1.
An iN thin film was formed. However, the vacuum chamber was at ground potential, and a negative potential of -tooov was applied to the substrate. Further, the thin film forming temperature was 350°C.

肖られたTiN薄膜は光沢の鈍い褐色の薄膜となった。The TiN thin film that was exposed became a brown thin film with dull luster.

XRDによりTiN相が存在することは確認されたが、
EPMAによる測定では薄膜中のC9濃度の平均値は3
0wL%であった。さらに、薄膜の硬度をマイクロヴイ
ッカース硬度計により測定したところ、平均値は100
0であった。
Although the existence of a TiN phase was confirmed by XRD,
As measured by EPMA, the average C9 concentration in the thin film was 3.
It was 0wL%. Furthermore, when the hardness of the thin film was measured using a micro-Vickers hardness meter, the average value was 100.
It was 0.

なお、上記実施例ではTiN薄膜の形成に適用した例に
ついて説明したが、他の金属、金属窒化物、金属炭化物
などの薄膜形成に適用しても同様な効果を得る事ができ
た。
In the above embodiment, an example in which the present invention was applied to the formation of a TiN thin film was described, but similar effects could be obtained when applied to the formation of thin films of other metals, metal nitrides, metal carbides, and the like.

[発明の効果] 以上詳述した如く本発明によれば、低温で密着性の良い
薄膜の形成が可能であり、さらに400℃以下の温度範
囲においても機械的性質の良好な硬質セラミックス薄膜
の形成が可能であるプラズマCVD薄膜の形成法を提供
できる。、
[Effects of the Invention] As detailed above, according to the present invention, it is possible to form a thin film with good adhesion at low temperatures, and furthermore, it is possible to form a hard ceramic thin film with good mechanical properties even in a temperature range of 400°C or less. It is possible to provide a method for forming a plasma CVD thin film that is possible. ,

【図面の簡単な説明】 第1図は本発明の実施例で用いたプラズマCVD装置の
説明図である。 1・・・真空チャンバー 2・・・上部電極、3・・・
下部電極、4・・・DC電源、5・・・排気管、6・・
・真空ポンプ、7・・・リングノズル、8・・・ガス導
入管、9・・・バルブ、10・・・マスフローコントロ
ーラー 11゛°・基板。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram of a plasma CVD apparatus used in an embodiment of the present invention. 1... Vacuum chamber 2... Upper electrode, 3...
Lower electrode, 4... DC power supply, 5... Exhaust pipe, 6...
・Vacuum pump, 7...Ring nozzle, 8...Gas introduction pipe, 9...Valve, 10...Mass flow controller 11゛°・Board.

Claims (1)

【特許請求の範囲】[Claims]  プラズマCVD法により真空チャンバー内の基体表面
に薄膜を形成する方法において、真空チャンバーに対し
て前記基体に−2500Vから−5000Vの負電位を
印加することを特徴とするプラズマCVD薄膜の形成法
A method for forming a thin film on the surface of a substrate in a vacuum chamber by plasma CVD, the method comprising applying a negative potential of -2500V to -5000V to the substrate with respect to the vacuum chamber.
JP22371589A 1989-08-30 1989-08-30 Formation of thin film by plasma cvd Pending JPH0387373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22371589A JPH0387373A (en) 1989-08-30 1989-08-30 Formation of thin film by plasma cvd

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22371589A JPH0387373A (en) 1989-08-30 1989-08-30 Formation of thin film by plasma cvd

Publications (1)

Publication Number Publication Date
JPH0387373A true JPH0387373A (en) 1991-04-12

Family

ID=16802537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22371589A Pending JPH0387373A (en) 1989-08-30 1989-08-30 Formation of thin film by plasma cvd

Country Status (1)

Country Link
JP (1) JPH0387373A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07503888A (en) * 1991-12-23 1995-04-27 カミル アクチボラゲット Isolation structures and methods for preventing foam formation
US6410454B1 (en) 1997-06-10 2002-06-25 Mitsubishi Denki Kabushiki Method and apparatus for removing contaminants from the surface of a semiconductor wafer
JP2008255467A (en) * 2007-03-12 2008-10-23 Kochi Prefecture Sangyo Shinko Center Plasma cvd apparatus and film deposition method
US8307782B2 (en) 2007-12-26 2012-11-13 Kochi Industrial Promotion Center Deposition apparatus and deposition method
KR101678319B1 (en) * 2015-12-21 2016-11-21 한국공항공사 Bird strike prevention device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07503888A (en) * 1991-12-23 1995-04-27 カミル アクチボラゲット Isolation structures and methods for preventing foam formation
US6410454B1 (en) 1997-06-10 2002-06-25 Mitsubishi Denki Kabushiki Method and apparatus for removing contaminants from the surface of a semiconductor wafer
JP2008255467A (en) * 2007-03-12 2008-10-23 Kochi Prefecture Sangyo Shinko Center Plasma cvd apparatus and film deposition method
US8307782B2 (en) 2007-12-26 2012-11-13 Kochi Industrial Promotion Center Deposition apparatus and deposition method
KR101678319B1 (en) * 2015-12-21 2016-11-21 한국공항공사 Bird strike prevention device

Similar Documents

Publication Publication Date Title
US11875976B2 (en) Plasma source utilizing a macro-particle reduction coating and method of using a plasma source utilizing a macro-particle reduction coating for deposition of thin film coatings and modification of surfaces
GB2055403A (en) Method for depositing hard wear-resistant coatings on substrates
EP0936284A3 (en) Method and apparatus for producing thin films
Hubička et al. Deposition of hematite Fe2O3 thin film by DC pulsed magnetron and DC pulsed hollow cathode sputtering system
EP2383366A1 (en) Method for producing diamond-like carbon membrane
JP2005511893A (en) Coating method and coating body
Pedersen et al. A novel high-power pulse PECVD method
Koerner et al. Influence of RF plasma reactor setup on carboxylated hydrocarbon coatings
JPH0387373A (en) Formation of thin film by plasma cvd
JPH03183781A (en) Method and device for forming thin membrane
JP2004217975A (en) Carbon thin film and manufacturing method therefor
Peter et al. Determination of mass and energy distribution of ions in glow discharges
JPS61194180A (en) Hollow electric discharge vapor deposition device
JP5792986B2 (en) Surface treatment apparatus and surface treatment method
Dekempeneer et al. Rf plasma-assisted chemical vapour deposition of diamond-like carbon films on complex geometries
US20200240002A1 (en) Arrangement for coating substrate surfaces by means of electric arc discharge
JPH0892746A (en) Plasma chemical vapor deposition and device therefor
Šı́cha et al. Low-pressure RF multi-plasma-jet system for deposition of alloy and composite thin films
JPS55164072A (en) Coating
Tao et al. Anode magnetron enhanced DC glow discharge processes for plasma surface cleaning and polymerization
JP3397835B2 (en) Hard carbon film coating method
Zhukeshov et al. THE STUDY OF THE PROPERTIES OF COATINGS OBTAINED BY VACUUM ARC TREATMENT
JPS63195260A (en) Coating material and its production
JPH0246668B2 (en)
RU2118206C1 (en) Process of manufacture of alloyed of diamond-like coats