JPH0246668B2 - - Google Patents

Info

Publication number
JPH0246668B2
JPH0246668B2 JP57045710A JP4571082A JPH0246668B2 JP H0246668 B2 JPH0246668 B2 JP H0246668B2 JP 57045710 A JP57045710 A JP 57045710A JP 4571082 A JP4571082 A JP 4571082A JP H0246668 B2 JPH0246668 B2 JP H0246668B2
Authority
JP
Japan
Prior art keywords
substrate
processed
vacuum container
metal compound
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57045710A
Other languages
Japanese (ja)
Other versions
JPS58164777A (en
Inventor
Takeshi Yasui
Masahiko Hirose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP4571082A priority Critical patent/JPS58164777A/en
Publication of JPS58164777A publication Critical patent/JPS58164777A/en
Publication of JPH0246668B2 publication Critical patent/JPH0246668B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/503Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using dc or ac discharges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、均一美麗な被膜を大量の基体上に形
成できる金属化合物被膜の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for forming a metal compound film that can form a uniform and beautiful film on a large amount of substrates.

[発明の技術的背景とその問題点] 従来より、金属、セラミツクス等からなる基体
表面に、耐摩耗性にすぐれる、たとえば窒化チタ
ン、炭化チタン等の高融点化合物の被膜を形成す
る方法として化学蒸着法が知られている。この方
法では、高融点化合物の被覆の形成が900〜1200
℃で行われるため基体が薄物あるいは細物等の変
形を起こしやすい形状のものや融点の低い材質の
ものでは適用できないという制限があつた。また
得られる被膜の表面状態が粗雑であり、装飾用と
しては不適用であるという欠点があつた。
[Technical background of the invention and its problems] Chemical methods have traditionally been used to form coatings of high-melting compounds such as titanium nitride and titanium carbide, which have excellent wear resistance, on the surfaces of substrates made of metals, ceramics, etc. Vapor deposition methods are known. In this method, the formation of a coating of high melting point compounds is 900-1200
Since the process is carried out at ℃, there are limitations in that it cannot be applied to substrates that are easily deformed, such as thin or thin substrates, or are made of materials with a low melting point. Another disadvantage was that the surface of the resulting coating was rough, making it unsuitable for decorative purposes.

このため腕時計等の外側として用いた場合、耐
摩耗性向上と装飾性付与の目的の為に、上述の金
属化合物を被覆する場合にグロー放電空間を基体
近傍に形成させて、放電エネルギーにより、化学
反応を起こさせ、被覆に要するする加熱温度を
400〜600℃と低くして行なうグロー放電化学蒸着
法が検討されている。
For this reason, when used as the outside of a wristwatch, etc., a glow discharge space is formed near the base when coating with the above-mentioned metal compound in order to improve wear resistance and add decorative properties. The heating temperature required to cause the reaction and coating is
A glow discharge chemical vapor deposition method that is carried out at a low temperature of 400 to 600°C is being considered.

この方法を例えば基本表面に金属窒化物を被覆
する場合について第1図を参照して説明すると、
まず初めに真空ポンプに接続された排気口1より
排気して真空容器2内を10-3Torr以下の真空度
まで排気した後、ガス供給口3から金属ハロゲン
化物と窒素と水素との混合ガスを、真空容器2内
が0.1〜10Torrの圧になるよう真空容器2内に導
入する。真空容器2内には、被処理基体4を電気
的に導通した状態で設置しうる陰極板5と陰極板
5の上方に所定の間隔をおいて支持される陽極板
6とが配置されている。この電極間で200〜
8000Vの直流電圧を印加し、かつ陰極板5の裏面
に設けられた加熱板7を加熱して被処理基体を
200〜1000℃、好ましくは400〜600℃にすること
により、被処理基体近傍にグロー放電空間が形成
され、基体表面で混合ガスが反応して金属窒化物
の被膜が形成される。
This method will be explained with reference to FIG. 1, for example, when a basic surface is coated with metal nitride.
First, the inside of the vacuum container 2 is evacuated to a degree of vacuum of 10 -3 Torr or less by evacuating through the exhaust port 1 connected to the vacuum pump, and then a mixed gas of metal halide, nitrogen, and hydrogen is supplied from the gas supply port 3. is introduced into the vacuum container 2 so that the pressure inside the vacuum container 2 is 0.1 to 10 Torr. Disposed within the vacuum container 2 are a cathode plate 5 that can be placed in electrical continuity with the substrate 4 to be processed, and an anode plate 6 supported at a predetermined distance above the cathode plate 5. . 200~ between this electrode
The substrate to be processed is heated by applying a DC voltage of 8000 V and heating the heating plate 7 provided on the back surface of the cathode plate 5.
By heating the temperature to 200 to 1000°C, preferably 400 to 600°C, a glow discharge space is formed near the substrate to be processed, and the mixed gas reacts on the surface of the substrate to form a metal nitride film.

しかしながらこの方法においては、処理できる
被処理基体の数が陰極板上に載置できる数に制限
されるため、大量の基体を同時に処理することが
困難であつた。
However, in this method, the number of substrates that can be processed is limited to the number that can be placed on the cathode plate, making it difficult to process a large number of substrates at the same time.

[発明の目的] 本発明は、大量の基体を処理する場合であつて
も、均一美麗な装飾被膜が形成できる金属化合物
被膜の形成方法を提供することを目的とする。
[Object of the Invention] An object of the present invention is to provide a method for forming a metal compound film that can form a uniform and beautiful decorative film even when processing a large number of substrates.

[発明の概要] 本発明は第2図に示すようにガス供給口3、排
気口1並びに器壁の加熱手段8を備えた真空容器
2内に、陰極板5を下方に陽極板6を上方に間隔
をおいて縦方向に複数個対向配置し、各陰極板5
上に被処理基体4を載置して前記真空容器2内を
真空にし、次いでガス状金属化合物を含む反応ガ
スを0.1〜10Torrとなるよう導入し、前記両極間
に200〜8000Vの直流電圧を印加して被処理基体
4近傍に放電空間を形成するとともに、前記真空
容器2内を約200〜1000℃に加熱して前記被処理
基体4表面に金属化合物の被膜を形成することを
特徴とするものである。
[Summary of the Invention] As shown in FIG. 2, the present invention is a vacuum vessel 2 equipped with a gas supply port 3, an exhaust port 1, and a heating means 8 for the vessel wall, with a cathode plate 5 placed downward and an anode plate 6 placed upward. A plurality of cathode plates 5 are arranged facing each other in the vertical direction at intervals of
The substrate 4 to be processed is placed on top of the vacuum container 2 to make it evacuated, and then a reaction gas containing a gaseous metal compound is introduced to a pressure of 0.1 to 10 Torr, and a DC voltage of 200 to 8000 V is applied between the two electrodes. The method is characterized in that a discharge space is formed in the vicinity of the substrate 4 to be processed by applying a discharge voltage, and the inside of the vacuum container 2 is heated to about 200 to 1000°C to form a film of a metal compound on the surface of the substrate 4 to be processed. It is something.

本発明に適用される金属化合物としては、
a、a、a族の窒化物、炭化物、ホウ化物ま
たはそれらの組合せ等があり、原料ガスとして
は、これらa、a、a族のハロゲン化物と
水素と窒素およびアンモニアガスのいずれか1種
または2種とを用いる。これらのガスの混合比率
は金属ハロゲン化物:水素:窒素およびアンモニ
アガスのいずれか1種または2種のモル比が1:
12:100:1〜100好ましくは1:12〜50:1〜30
がよい。その理由は、この値をはずれると装飾性
のある被膜が均一に得られ難いことになる。
The metal compounds applicable to the present invention include:
There are nitrides, carbides, borides, or combinations thereof of groups a, a, and a, and the raw material gases include halides of groups a, a, and a, and any one of hydrogen, nitrogen, and ammonia gas, or Two types are used. The mixing ratio of these gases is metal halide:hydrogen:any one or two of nitrogen and ammonia gas in a molar ratio of 1:
12:100:1-100 preferably 1:12-50:1-30
Good. The reason is that if it deviates from this value, it will be difficult to obtain a uniform decorative film.

また本発明方法は、金属、半導体、導電性セラ
ミツクス等のほか、電気導電性のものであればど
のような材料の基体に対しても均一な装飾性のあ
る金属化合物被膜を成することができる。
Furthermore, the method of the present invention can form a uniform decorative metal compound coating on a substrate made of any electrically conductive material, such as metals, semiconductors, and conductive ceramics. .

[発明の実施例] 次ぎに本発明の実施例について説明する。[Embodiments of the invention] Next, examples of the present invention will be described.

実施例 円柱状の真空容器内に円板状の陰極板を3つ配
置し、この陰極板のそれぞれの上方に陽極板の配
置した処理装置に使用し、この陰極板のそれぞれ
にCr38%、Al3.8%、Ni残の組成の合金からなる
25mm×25mm×4mmの金属板を被処理基体として
900個載置して次ぎの条件で処理を行なつた。
Example: Three disk-shaped cathode plates are placed in a cylindrical vacuum container, and an anode plate is placed above each of the cathode plates. Consisting of an alloy with a composition of .8% and the rest of Ni.
A metal plate of 25 mm x 25 mm x 4 mm is used as the substrate to be processed.
900 pieces were placed and processed under the following conditions.

いずれの基体にも厚さ1μmの均一美麗なTiNの
被膜が形成された。
A uniform and beautiful TiN film with a thickness of 1 μm was formed on each substrate.

反応ガス組成 Til4:H2:N2=1:19:6(モル
比) 圧 力 2Torr 電 圧 500V 電流密度 0.1m/A/cm 基本の温度 550℃ 処理時間 30分 [発明の効果] 以上の実施例からも明らかなように本発明方法
によれば、大量の基体について均一な色むらのな
い美麗な被膜が得られる。
Reaction gas composition Til 4 :H 2 :N 2 = 1:19:6 (molar ratio) Pressure 2Torr Voltage 500V Current density 0.1m/A/cm Basic temperature 550℃ Processing time 30 minutes [Effects of the invention] Above As is clear from the examples, according to the method of the present invention, a uniform, beautiful coating without uneven color can be obtained on a large number of substrates.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来方法に使用する装置の概略を示す
断面図、第2図は本発明方法に使用する装置の概
略を示す断面図である。 2……真空容器、4……被処理基体、5……陰
極板、6……陽極板、8……加熱手段。
FIG. 1 is a sectional view schematically showing the apparatus used in the conventional method, and FIG. 2 is a sectional view schematically showing the apparatus used in the method of the present invention. 2... Vacuum container, 4... Substrate to be processed, 5... Cathode plate, 6... Anode plate, 8... Heating means.

Claims (1)

【特許請求の範囲】[Claims] 1 ガス供給口、排気口並びに器壁の加熱手段を
備えた真空容器内に、陰極板と陽極板を間隔をお
いて縦方向に複数個対向配置し、各陰極板上に被
処理基体を載置して前記真空容器内を真空にし、
次いでa、a、a族のハロゲン化物と水素
と窒素およびアンモニアガスのいずれか1種また
は2種とからなり、これらのガスの混合比率は金
属ハロゲン化物:水素:窒素およびアンモニアガ
スのいずれか1種または2種のモル比が1:12〜
100:1〜100であるガス状金属化合物を含む反応
ガスを0.1〜10Torrとなるよう導入し、前記両電
極間に200〜8000Vの直流電圧を印加して被処理
基体近傍に放電空間を形成するとともに、前記真
空容器の器壁を加熱して前記被処理基体表面に金
属化合物の被膜を形成することを特徴とする金属
化合物被膜の形成方法。
1. In a vacuum container equipped with a gas supply port, an exhaust port, and means for heating the chamber wall, a plurality of cathode plates and anode plates are arranged facing each other in the vertical direction with a space between them, and a substrate to be processed is placed on each cathode plate. to evacuate the inside of the vacuum container,
Next, it consists of a halide of group a, a, a, hydrogen, and one or two of nitrogen and ammonia gas, and the mixing ratio of these gases is metal halide:hydrogen:any one of nitrogen and ammonia gas. The molar ratio of the species or two species is 1:12 ~
A reactive gas containing a gaseous metal compound having a ratio of 100:1 to 100 is introduced at a pressure of 0.1 to 10 Torr, and a DC voltage of 200 to 8000 V is applied between the two electrodes to form a discharge space near the substrate to be processed. A method for forming a metal compound film, further comprising heating a wall of the vacuum container to form a metal compound film on the surface of the substrate to be processed.
JP4571082A 1982-03-24 1982-03-24 Formation of metallic compound film Granted JPS58164777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4571082A JPS58164777A (en) 1982-03-24 1982-03-24 Formation of metallic compound film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4571082A JPS58164777A (en) 1982-03-24 1982-03-24 Formation of metallic compound film

Publications (2)

Publication Number Publication Date
JPS58164777A JPS58164777A (en) 1983-09-29
JPH0246668B2 true JPH0246668B2 (en) 1990-10-16

Family

ID=12726901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4571082A Granted JPS58164777A (en) 1982-03-24 1982-03-24 Formation of metallic compound film

Country Status (1)

Country Link
JP (1) JPS58164777A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953837U (en) * 1982-09-27 1984-04-09 光洋機械産業株式会社 mixer for cement paste
JPS6328871A (en) * 1986-07-22 1988-02-06 Toshiba Corp Plasma cvd treating device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118235A (en) * 1977-03-23 1978-10-16 Vide & Traitement Sa Plural cathode thermoion treatment furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118235A (en) * 1977-03-23 1978-10-16 Vide & Traitement Sa Plural cathode thermoion treatment furnace

Also Published As

Publication number Publication date
JPS58164777A (en) 1983-09-29

Similar Documents

Publication Publication Date Title
GB2055403A (en) Method for depositing hard wear-resistant coatings on substrates
JPS61295377A (en) Formation of membrane
JPS61214312A (en) Composite body for electric contact member and making thereof
JPS62294163A (en) Production of low contact resistance composition
WO1995016058A1 (en) Magnetron sputtering apparatus for compound thin films
EP0064884B1 (en) Method and apparatus for coating by glow discharge
US3243363A (en) Method of producing metallic and dielectric deposits by electro-chemical means
JPH02247393A (en) Electrolytic electrode with durability and its production
US3321337A (en) Process for preparing boron nitride coatings
US3564565A (en) Process for adherently applying boron nitride to copper and article of manufacture
EP0068464B1 (en) Method for forming a decorative metallic nitride coating
US3418229A (en) Method of forming films of compounds having at least two anions by cathode sputtering
US3239368A (en) Method of preparing thin films on substrates by an electrical discharge
JPH0246668B2 (en)
US3481854A (en) Preparation of thin cermet films by radio frequency sputtering
US1019394A (en) Reduction of chemical compounds.
JPS58174569A (en) Formation of film comprising metal compound
JPS6134507B2 (en)
JPH0387373A (en) Formation of thin film by plasma cvd
JPS5848664A (en) Coating method and coated matter
US3344055A (en) Apparatus for polymerizing and forming thin continuous films using a glow discharge
JPS6134506B2 (en)
JP2646582B2 (en) Plasma CVD equipment
JP6797068B2 (en) Method for manufacturing titanium carbide-containing thin film by atomic layer deposition method
JPH02115359A (en) Formation of compound thin film and device therefor