JPS58174569A - Formation of film comprising metal compound - Google Patents

Formation of film comprising metal compound

Info

Publication number
JPS58174569A
JPS58174569A JP5723982A JP5723982A JPS58174569A JP S58174569 A JPS58174569 A JP S58174569A JP 5723982 A JP5723982 A JP 5723982A JP 5723982 A JP5723982 A JP 5723982A JP S58174569 A JPS58174569 A JP S58174569A
Authority
JP
Japan
Prior art keywords
cathode
treated
film
vapor deposition
metal compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5723982A
Other languages
Japanese (ja)
Inventor
Takeshi Yasui
安井 毅
Masahiko Hirose
広瀬 昌彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP5723982A priority Critical patent/JPS58174569A/en
Publication of JPS58174569A publication Critical patent/JPS58174569A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/503Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using dc or ac discharges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a uniform vapor deposition film without irregularity on a large amount of materials, in forming a film of metal nitride on the surface of each material to be treated by a glow discharge chemical vapor deposition method, by rotating a cathode attached with the material to be treated. CONSTITUTION:A freely rotatable cathode 9 is arranged within a vacuum vessel 8 in a glow discharge chemical vapor deposition apparatus and plural materials 4 to be treated are attached to said cathode in a suspended manner. A gas of halide of a metal belonged to the Group 4a, 5a, 6a of the Periodic Table and a mixed gas of hydrogen and nitrogen are introduced into the vessel 8 under pressure of 0.1-10 Torr. In the next step, DC voltage of 200-800V is applied between the cathode 9 and the inner wall of the vessel 8 as an anode to form a film of nitride excellent in corrosion resistance and decorative property such as a TiN film on each material 4 to be treated by glow discharge. At this time, the materials 4 to be treated are rotated along with the cathode 9 to form a uniform vapor deposition film without irregularity as a whole even if a large amount of the materials 4 to be treated are present.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、均−美魔な被膜を大量の基体上に形成できる
金属化合物被膜の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for forming a metal compound film that can form a uniform and beautiful film on a large amount of substrates.

[発明の技術的背景とその問題点] 従来より、金属、セラミックス等からなる基体表面に、
耐摩耗性にすぐれる、たとえば窒化チタン、炭化、チタ
ン等の高融点化合物の被膜を形成する方法として化学蒸
着法が知られている。この方法では、高融点化合物の液
種の形成が900〜1200℃で行われるため基体が薄
物あるいは細物等の変形を起こしやすい形状のものや融
点の低い材質のものでは適用できないという制限があっ
た。
[Technical background of the invention and its problems] Conventionally, on the surface of a substrate made of metal, ceramics, etc.
Chemical vapor deposition is known as a method for forming a film of a high melting point compound such as titanium nitride, carbide, titanium, etc., which has excellent wear resistance. In this method, the liquid species of the high melting point compound is formed at a temperature of 900 to 1200°C, so there are limitations in that it cannot be applied to substrates that are easily deformed, such as thin or thin objects, or are made of materials with a low melting point. Ta.

また得られる被膜の表面状態が粗雑であり、装飾用とし
ては不適当であるという欠点があった。
Another disadvantage is that the surface of the resulting coating is rough, making it unsuitable for decorative purposes.

この、ため腕時計等の外側として用いた場合、耐摩耗性
向上と装飾性付与の目的の為に、上述の金属化合物を被
覆する場合にグロー放電空間を基体近傍に形成させて、
放電エネルギーにより、化学反応を起こさせ、被覆に要
する加熱温度を400〜600℃と低くして行なうグロ
ー放電化学蒸着法が検討されている。
Therefore, when used as the outside of a wristwatch, etc., a glow discharge space is formed near the base when coated with the above-mentioned metal compound for the purpose of improving wear resistance and adding decorative properties.
A glow discharge chemical vapor deposition method is being considered in which a chemical reaction is caused by discharge energy and the heating temperature required for coating is as low as 400 to 600°C.

この方法を例えば基体表面に金属窒化物を被覆する場合
について第1図を参照して説明すると、まず初めに真空
ポンプに接続された排気口1より排気して真空容器2内
を10’Torr以下の真空度まで排気した後、ガス供
給口3から金属ハロゲン化物と窒素と水素との混合ガス
を、真空容器2内が0.1〜10Torrの圧になるよ
う真空容器2内に導入する。真空容器2内には、被処理
基体4を電気的に導通した状態で設置しつる陰極板5と
陰極板5の上方に所定の間隔をおいて支持される陽極板
6とが配置されている。この電極間で200〜8000
Vの直流電圧を印加し、かつ陰極板5の裏面に設けられ
た加熱板7を加熱して被処理基体を200〜1000℃
、好ましくは400〜600℃にすることにより、被処
理基体近傍にグロー故電空間が形成され、基体表面で混
合ガスが反応して金属化合物の皮膜が形成される。
This method will be explained with reference to FIG. 1 when, for example, the surface of a substrate is coated with metal nitride. First, the inside of the vacuum chamber 2 is evacuated from the exhaust port 1 connected to the vacuum pump to a pressure of 10'Torr or less. After evacuating to a degree of vacuum, a mixed gas of metal halide, nitrogen, and hydrogen is introduced into the vacuum container 2 from the gas supply port 3 so that the pressure inside the vacuum container 2 is 0.1 to 10 Torr. Disposed within the vacuum chamber 2 are a cathode plate 5 that is installed in an electrically conductive state with the substrate 4 to be processed, and an anode plate 6 that is supported above the cathode plate 5 at a predetermined interval. . 200 to 8000 between these electrodes
Applying a DC voltage of V and heating the heating plate 7 provided on the back surface of the cathode plate 5, the substrate to be processed is heated to 200 to 1000°C.
, preferably at 400 to 600° C., a glow discharge space is formed near the substrate to be treated, and the mixed gas reacts on the surface of the substrate to form a metal compound film.

しかしながら、装置を大型にして大量の基体に上述の方
法を適用して被膜を形成する場合、装置内のガスの流れ
や温度分輌の不均一さのため被処理基体の位置によって
形成される被膜にむらが生ずるという欠点があった。
However, when the above-mentioned method is applied to a large number of substrates using a large-sized apparatus to form a coating, the coating may be formed depending on the position of the substrate due to non-uniformity of gas flow and temperature distribution within the apparatus. There was a drawback that unevenness occurred.

[発明の目的] 本発明は、大量の基体についても均一美麗な装飾被膜が
形成できる金属化合物′被膜の形成方法を提供すること
を目的とする。
[Object of the Invention] It is an object of the present invention to provide a method for forming a metal compound' coating that can form a uniform and beautiful decorative coating even on a large number of substrates.

し発明の概要〕 本発明は第2図に示すように、ガス供給口3と排気口1
を備えた真空容器8内に柱状の、回転機構を備えた陰極
9を配置し、この陰極9に複数の被処理基体4を吊着し
て陰極9をその中心軸のまわりに回転させ、前記陰極9
と真空容器8の器壁(l極)とに200〜8000vの
直流flJI!印加して被処理基体近傍に放電空間を形
成するとともk、前記真空容器8内を0.1〜10To
rrのガス状金属化合物含む反応ガスで満たして基体表
面に金属化合物の被膜を形成することを特徴とするもの
である。
Summary of the Invention] As shown in FIG.
A columnar cathode 9 equipped with a rotation mechanism is arranged in a vacuum container 8 equipped with a rotary mechanism, a plurality of substrates 4 to be treated are suspended from the cathode 9, and the cathode 9 is rotated around its central axis. Cathode 9
A DC flJI of 200 to 8000v is applied to the wall (l pole) of the vacuum vessel 8! When applying voltage to form a discharge space near the substrate to be processed, the inside of the vacuum vessel 8 is heated to 0.1 to 10 To
The method is characterized in that it is filled with a reactive gas containing a gaseous metal compound of rr to form a metal compound coating on the surface of the substrate.

なお被処理基体の加熱は、例えば真空容器8内を外部加
熱によ:す400〜600℃に加熱することにより行な
われる。
The substrate to be processed is heated, for example, by heating the inside of the vacuum container 8 to 400 to 600° C. by external heating.

本発明に適用される金属化合物としては、[%la。The metal compound applicable to the present invention includes [%la.

va、■a族の窒化物、炭化物、ホウ化物またはそれら
の組合せ等があり、原料ガスとしては、これら[%la
 、 va 、 Vla族のハロゲン化物と水素と窒素
(あるいは窒素の代りにアンモニアガス)とを用いる。
va, ■a group nitrides, carbides, borides, or combinations thereof, and these [%la
, va and Vla group halides, hydrogen and nitrogen (or ammonia gas instead of nitrogen) are used.

これらのガスの混合比率は金属7\ロゲン化物:水素:
窒素のモル比が1:12〜100:1〜100好ましく
は1:12〜50:1〜30がよい。その理由は、この
値をはずれると装飾性のある被膜が均一に得られ難いこ
とによる。陰極の回転は、グロー放電の状態に左右され
ずに均一な被膜が得られるものであればよく、間欠回転
よりは連続回転がよい。また回転は試料の安定性h\ら
余り速いと不適で30「0−以下、好ましくは1orp
鳳以下がよい。
The mixing ratio of these gases is metal 7\logenide:hydrogen:
The molar ratio of nitrogen is preferably 1:12 to 100:1 to 100, preferably 1:12 to 50:1 to 30. The reason for this is that if it deviates from this value, it is difficult to obtain a uniform decorative film. The rotation of the cathode may be any method as long as a uniform coating can be obtained regardless of the state of glow discharge, and continuous rotation is better than intermittent rotation. Also, due to the stability of the sample, it is unsuitable to rotate too fast, so 30" or less, preferably 1 or
Otori or lower is better.

また本発明方法は、金属、半導体、導電性セラミックス
等のほか、電気導電性のものであればどのような材料の
基体に対しても均一な装飾性のある金属化合物被膜を形
成することができる。
In addition, the method of the present invention can form a uniform decorative metal compound coating on a substrate made of any electrically conductive material, such as metals, semiconductors, and conductive ceramics. .

(発明の実施例] 次に本発明の実施例について説明する。(Embodiments of the invention) Next, examples of the present invention will be described.

実施例 真空容器8の中央部に設けられた角柱状の陰極9にC「
38%、八β3.8、N1残の組成の合金からなる25
nX25nX4n金属板を被処理基体として900個吊
着し、真空容器8を10−” Torrに減圧した後、
真空容器8内の圧力が2Torrになるようガス成分比
TiCβ4 :N2 :N2=l:19:6(モル比)
の混合ガスを真空容器8内に注入し、この状態で陰極を
約10rplで連続回転させて基体を容器内に回転させ
た。次l/為で真空容器8の器壁を陽極とし、被処II
!1体を陰極として500vの直流電圧を30分間印加
し放電させた。このとき被処理基体のI!14ま約55
0℃であった。この結果、いずれの基体にも1μ−の均
一美麗なTiNの被膜が形成された。なお被膜厚にはば
らつきはほとんどなかった。
Example A prismatic cathode 9 provided in the center of the vacuum vessel 8 is provided with C
25 consisting of an alloy with a composition of 38%, 8β3.8, and the balance N1
After suspending 900 nX25nX4n metal plates as substrates to be processed and reducing the pressure in the vacuum container 8 to 10-'' Torr,
Gas component ratio TiCβ4:N2:N2=l:19:6 (molar ratio) so that the pressure inside the vacuum container 8 is 2 Torr.
A mixed gas of was injected into the vacuum container 8, and in this state, the cathode was continuously rotated at about 10 rpm to rotate the substrate into the container. Next, the wall of the vacuum container 8 is used as an anode, and the
! A DC voltage of 500 V was applied to one of the cells as a cathode for 30 minutes to cause discharge. At this time, I! of the substrate to be processed! 14 to about 55
It was 0°C. As a result, a uniform and beautiful TiN film of 1 μm was formed on each substrate. Note that there was almost no variation in the film thickness.

一方、陰極を回転させないで処理した場合番よ、真空容
1B内のガス供給0側と排気口側とでは被膜厚に±0.
2μ−のばらつきが生じた。
On the other hand, when processing is performed without rotating the cathode, the film thickness varies by ±0.
A variation of 2 μ- occurred.

[発明の効果] 以上の実施例からも明らかなように本発明方法によれば
、大量の基体について均一な色むらのない装置な被膜が
得られる。
[Effects of the Invention] As is clear from the above examples, according to the method of the present invention, uniform coatings without uneven color can be obtained on a large number of substrates.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来方法に使用する装置の概略を示す断面図、
第2図は本発明方法に使用する装置の概略を示す断面図
である。 2.8・・・・・・真空容器 4・・・・・・・・・・・・被処理基体5.9・・・・
・・陰極 6・・・・・・・・・・・・陽極 (7317)  代理人弁理士 則近憲佑(ほか1名) :1 第1図 第と図 393−
FIG. 1 is a cross-sectional view schematically showing the equipment used in the conventional method;
FIG. 2 is a sectional view schematically showing the apparatus used in the method of the present invention. 2.8... Vacuum container 4... Substrate to be processed 5.9...
・・Cathode 6・・・・・・・・・・・・Anode (7317) Representative Patent Attorney Kensuke Norichika (and 1 other person): 1 Figure 1 and Figure 393-

Claims (2)

【特許請求の範囲】[Claims] (1)ガス供給口と排気口を備えた真空容器内に回転機
構を備えた陰極を配置し、この陰極に複数の被処理基体
を配置して陰極を回転させ、前記陰極と真空容器の器!
!(II極)とに200〜8000■の直流電圧を印加
して被処理基体近傍に放電空間を形成するとともに、前
記真空容器内を0゜1〜10Torrのガス状金属化合
物含む反応ガスで満たして基体表面に金属化合物の被膜
を形成する1ことを特徴とする金属化合物被膜の形成方
法。
(1) A cathode equipped with a rotation mechanism is placed in a vacuum container equipped with a gas supply port and an exhaust port, a plurality of substrates to be processed are placed on this cathode, and the cathode is rotated. !
! A DC voltage of 200 to 8,000 μm is applied to the (II pole) to form a discharge space near the substrate to be processed, and the inside of the vacuum container is filled with a reaction gas containing a gaseous metal compound at 0°1 to 10 Torr. 1. A method for forming a metal compound film, comprising: forming a metal compound film on the surface of a substrate.
(2)陰極の回転は連続回転である特許請求の範囲第1
項に記載の金属化合物被膜の形成方法。
(2) The rotation of the cathode is continuous rotation.Claim 1
The method for forming a metal compound film as described in .
JP5723982A 1982-04-08 1982-04-08 Formation of film comprising metal compound Pending JPS58174569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5723982A JPS58174569A (en) 1982-04-08 1982-04-08 Formation of film comprising metal compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5723982A JPS58174569A (en) 1982-04-08 1982-04-08 Formation of film comprising metal compound

Publications (1)

Publication Number Publication Date
JPS58174569A true JPS58174569A (en) 1983-10-13

Family

ID=13049975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5723982A Pending JPS58174569A (en) 1982-04-08 1982-04-08 Formation of film comprising metal compound

Country Status (1)

Country Link
JP (1) JPS58174569A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266248A (en) * 1990-05-10 1993-11-30 Torao Ohtsuka Method of producing hydroxylapatite base porous beads filler for an organism
KR19980060642A (en) * 1996-12-31 1998-10-07 김영환 Titanium Nitride Film Formation Method
CN112899616A (en) * 2019-12-03 2021-06-04 上海新微技术研发中心有限公司 Thin film deposition method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410240A (en) * 1977-06-25 1979-01-25 Nippon Denshi Kogyo Kk Apparatus for hardening metal surface using glow discharge
JPS5693873A (en) * 1979-12-28 1981-07-29 Ulvac Corp Ion nitridation apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410240A (en) * 1977-06-25 1979-01-25 Nippon Denshi Kogyo Kk Apparatus for hardening metal surface using glow discharge
JPS5693873A (en) * 1979-12-28 1981-07-29 Ulvac Corp Ion nitridation apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266248A (en) * 1990-05-10 1993-11-30 Torao Ohtsuka Method of producing hydroxylapatite base porous beads filler for an organism
KR19980060642A (en) * 1996-12-31 1998-10-07 김영환 Titanium Nitride Film Formation Method
CN112899616A (en) * 2019-12-03 2021-06-04 上海新微技术研发中心有限公司 Thin film deposition method

Similar Documents

Publication Publication Date Title
US4156042A (en) Coating articles having fine bores or narrow cavities in a pack-cementation process
US3771976A (en) Metal carbonitride-coated article and method of producing same
JPH0578844A (en) Amorphous thin film having solid lubricity and its production thereof
GB2055403A (en) Method for depositing hard wear-resistant coatings on substrates
US5334250A (en) Vapor deposition apparatus for using solid starting materials
US4486462A (en) Method for coating by glow discharge
JPH07103461B2 (en) Method for forming black film and film thereof
US3321337A (en) Process for preparing boron nitride coatings
JPS58174569A (en) Formation of film comprising metal compound
US3239368A (en) Method of preparing thin films on substrates by an electrical discharge
KR100319544B1 (en) Corrosion-resistant member and a producing process therof
KR101859116B1 (en) Methods for coating surface of iron-based alloy and products with high corrosion resistance and high conductivity manufactured thereby
JPH0246668B2 (en)
JPS58174568A (en) Formation of film of metal compound
JPS6149390B2 (en)
JPS6254869B2 (en)
JPH0149417B2 (en)
JPH0797690A (en) Plasma cvd device
JPH0387373A (en) Formation of thin film by plasma cvd
JPS62174383A (en) Thin film deposition device
JPS58151468A (en) Formation of metallic compound film
JPS58207943A (en) Formation of coating film consisting of metallic compound
JPS5970767A (en) Method and device for coating by glow discharge
JPH01163995A (en) Manufacture of thin film el element
KR100390576B1 (en) Apparatus for fabricating thin film