JPS58174568A - Formation of film of metal compound - Google Patents

Formation of film of metal compound

Info

Publication number
JPS58174568A
JPS58174568A JP5723882A JP5723882A JPS58174568A JP S58174568 A JPS58174568 A JP S58174568A JP 5723882 A JP5723882 A JP 5723882A JP 5723882 A JP5723882 A JP 5723882A JP S58174568 A JPS58174568 A JP S58174568A
Authority
JP
Japan
Prior art keywords
cathode
vapor deposition
metal compound
film
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5723882A
Other languages
Japanese (ja)
Other versions
JPS6134507B2 (en
Inventor
Takeshi Yasui
安井 毅
Masahiko Hirose
広瀬 昌彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP5723882A priority Critical patent/JPS58174568A/en
Publication of JPS58174568A publication Critical patent/JPS58174568A/en
Publication of JPS6134507B2 publication Critical patent/JPS6134507B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/503Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using dc or ac discharges

Abstract

PURPOSE:To prevent the stoppage of vapor deposition reaction due to arc discharge in a cathode introducing pipe part, in coating the surface of a material to be treated with metal nitride according to a glow discharge chemical vapor deposition method, by cooling the cathode introducing pipe part of an apparatus. CONSTITUTION:A cathode 5 and an anode 6 are opposedly arranged within a vacuum container 2 in a glow discharge chemical vapor deposition apparatus while a material 4 to be treated made of a metal or ceramics is placed on the cathode 5 to be heated to 400-600 deg.C by a heating plate 7. After the vacuum container 2 is evacuated from an exhaust port 1, gaseous metal halide and a mixed gas of hydrogen and nitrogen are introduced into said container 2 from a gas supply port 3 under pressure of 0.1-10 Torr and DC voltage of 200-800V is applied between both electrodes to form by vapor deposition by glow discharge a film excellent in corrosion resistance and decorative property such as a TiN film on the surface of the material 4 to be treated. At this time, a cathode introducing pipe 8 is cooled to 200 deg.C or less by water cooling with a cooling pipe and the generation of arc discharge in the introducing pipe 8 is prevented to prevent the stoppage of vapor deposition reaction due to arc discharge.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は窒化チタン等の耐摩耗性、装飾性に優れた金属
化合物の被膜を形成する方法に関し、詳しくは被膜形成
を妨害するアーク放電現象の発生を防止する方法に関す
る。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for forming a film of a metal compound such as titanium nitride that has excellent wear resistance and decorative properties, and more specifically, a method for forming a film of a metal compound such as titanium nitride that has excellent wear resistance and decorative properties. Regarding how to prevent the occurrence.

[発明の技術的背景とその問題点] 従来より、金属、セラミックス等からなる基体表面に、
耐摩耗性にすぐれる、人とえば窒化チタン、炭化チタン
等の高融点化合物の被膜を形成する方法として化学蒸着
法が知られている。この方法では、高融点化合物の被覆
の形成が900〜1200℃で行われるため基体が薄物
あるいは細物等の変形を起こしやすい形状のものや融点
の低い材質のものでは適用できないという制限があった
[Technical background of the invention and its problems] Conventionally, on the surface of a substrate made of metal, ceramics, etc.
Chemical vapor deposition is known as a method for forming a film of a high melting point compound such as titanium nitride or titanium carbide, which has excellent wear resistance. In this method, the coating of the high-melting point compound is formed at a temperature of 900 to 1200°C, so there is a limitation that it cannot be applied to substrates that are thin or thin, easily deformed, or made of materials with a low melting point. .

また得られる被膜の表面状態が粗雑であり、装飾用とし
ては不適当であるという欠点があった。
Another disadvantage is that the surface of the resulting coating is rough, making it unsuitable for decorative purposes.

このため腕時計等の外側として用いた場合、耐摩耗性向
上と装飾性付与の目的の為に、上述の金属化合物を被覆
する場合にグロー放電空間を基体近傍に形成させて、放
電エネルギーにより、化学反応を起こさせ、被覆に要す
る加熱温度を400〜600℃と低くして行なうグロー
放電化学蒸着法が検討されている。
For this reason, when used as the outside of a wristwatch, etc., a glow discharge space is formed near the base when coating with the above-mentioned metal compound in order to improve wear resistance and add decorative properties. A glow discharge chemical vapor deposition method is being considered in which a reaction is caused and the heating temperature required for coating is as low as 400 to 600°C.

この方法を例えば基体表面に金属窒化物を被覆する場合
について第1図を参照して説明すると、まず初めに真空
ポンプに接続された排気口1より排気して真空容器2内
を10’Torr以下の輿空度まで排気した後、ガス供
給口3から金属ハロゲン化物と窒素と水素との混合ガス
を、真空容器2内が0.1〜10Torrの圧になるよ
う真空容器2内に導入する。真空容器2内には、被処理
基体4を電気的に導通した状態で設置しつる陰極板5と
陰極板5の上方に所定の間隔をおいて支持される陽極板
6とが配−されている。この電極間ぐ200〜8000
Vの直流電圧を印加し、かつ陰極板5の裏面に設けられ
た加熱板7を加熱して被処理基体を200〜1000尤
、好ましくは400〜600℃にすることにより、被処
理基体近傍にグロー放電空間が形成され、金属窒化物の
被膜が形成される。
This method will be explained with reference to FIG. 1 when, for example, the surface of a substrate is coated with metal nitride. First, the inside of the vacuum chamber 2 is evacuated from the exhaust port 1 connected to the vacuum pump to a pressure of 10'Torr or less. After the vacuum chamber is evacuated to a degree of vacancy, a mixed gas of metal halide, nitrogen, and hydrogen is introduced into the vacuum chamber 2 through the gas supply port 3 so that the pressure inside the vacuum chamber 2 is 0.1 to 10 Torr. Disposed within the vacuum chamber 2 are a cathode plate 5 that is installed in an electrically conductive state with the substrate 4 to be processed, and an anode plate 6 that is supported above the cathode plate 5 at a predetermined interval. There is. The distance between these electrodes is 200 to 8000
By applying a DC voltage of V and heating the heating plate 7 provided on the back surface of the cathode plate 5 to bring the temperature of the substrate to 200 to 1000°C, preferably 400 to 600°C, the temperature near the substrate to be processed is heated. A glow discharge space is formed and a metal nitride coating is formed.

しかしながら、この方法においては、陰極導入管8が加
熱板7に近接しているため陰極板5の陽極側に形成され
るグ0−が、陰極の縁部を越えて陰極導入管8側に延び
てきて矢印に示すように真空容器2の底部(陽極)にま
で達し、この部分で主放電が生じるようになり、遂には
アーク放電へと移行して基体表面の被膜形成が妨害され
るという問題があった。
However, in this method, since the cathode introduction tube 8 is close to the heating plate 7, the groove formed on the anode side of the cathode plate 5 extends beyond the edge of the cathode to the cathode introduction tube 8 side. The problem is that the discharge reaches the bottom (anode) of the vacuum vessel 2 as shown by the arrow, and the main discharge begins to occur in this area, eventually transitioning to arc discharge and hindering the formation of a film on the substrate surface. was there.

[発明の目的] 本発明は上述の問題を解消するもので、陰極導入1!8
表面への金属化合物被膜の形成を防止して、アーク放電
現象の発生を防ぐ方法を提供することを目的とする。
[Object of the invention] The present invention solves the above-mentioned problems, and the present invention solves the above-mentioned problems.
It is an object of the present invention to provide a method for preventing the formation of a metal compound film on a surface and preventing the occurrence of an arc discharge phenomenon.

[発明の痺要] すなわち本発明は陰極導入t18の外壁を冷却すること
を特徴とする。
[Key Points of the Invention] That is, the present invention is characterized in that the outer wall of the cathode introduction t18 is cooled.

第2!!lは本発明方法に使用する装置の概略であって
、陰極導入管8内に銅等からなる冷却パイプ9がらせん
状に配置されている。冷却は冷却パイプ9内を流れる液
体(例えば水等)あるいは気体(例えば冷却空気等)に
よって行なわれる。
Second! ! 1 schematically shows an apparatus used in the method of the present invention, in which a cooling pipe 9 made of copper or the like is arranged in a spiral shape within a cathode introduction tube 8. Cooling is performed by liquid (for example, water) or gas (for example, cooling air) flowing within the cooling pipe 9.

このように構成された装置においては、陰極導入管8の
外壁が冷却されるため金属化合物被膜の形成は行なわれ
ない。なお、冷却された導入管表面の温度は、200℃
以下、好ましくは100℃以下に保つことが望ましい。
In the apparatus configured in this manner, the outer wall of the cathode introduction tube 8 is cooled, so that no metal compound coating is formed. Note that the temperature of the cooled introduction pipe surface is 200°C.
Hereinafter, it is desirable to keep the temperature preferably below 100°C.

本発明に適用される金属化合物としては、■a、Va 
、 q’la族の窒化物、炭化物、ホウ化物またはそれ
らの組合せ等があり、原料ガスとしては、これらrVa
 、 Va 、Via族のハロゲン化物と水素と窒素(
あるいは窒素の代りにアンモニアガス)とを用いる。こ
れらのガスの混合比率は金属へ′Oゲン化物:水素:窒
素のモル比が1:12〜100:1〜100好ましくは
1:12〜50:1〜30がよい。その理由は、この値
をはずれると装飾性のある被膜が均一に得られ難いこと
による。
The metal compounds applicable to the present invention include ■a, Va
, q'la group nitrides, carbides, borides, or combinations thereof, and these rVa
, Va, Via group halides, hydrogen and nitrogen (
Or use ammonia gas instead of nitrogen. The mixing ratio of these gases is such that the molar ratio of metal to hydrogen: hydrogen: nitrogen is from 1:12 to 100:1 to 100, preferably from 1:12 to 50:1 to 30. The reason for this is that if it deviates from this value, it is difficult to obtain a uniform decorative film.

また本発明方法は、金属、半導体、導電性セラミックス
等のほか、電気導電性のものであればどのようなものに
でも適用できる。
Furthermore, the method of the present invention can be applied to any electrically conductive material in addition to metals, semiconductors, conductive ceramics, etc.

[発明の実施例] 次に実施例について説明する。[Embodiments of the invention] Next, an example will be described.

実施例 ガス供給口と排気口とを備えた真空容器内の底板上に、
頂部に陰極板を配置し、内部に冷却パイプの取付られた
陰極導入管を立設し、かつ陰極板と対向させて陽極板を
配置した処理装置を使用し、Cr38%、A13.8%
、Ni残の組成の合金から成る25nX25nX4uの
金属板を被処理基体として陰極板上に載置し、次の条件
で処理を行なったところ、陰極導入管表面にはTiNの
被膜は形成されず、反応がスムーズに行えた。得られた
基体上のTiN被躾は均一で光沢があった。
Example: On the bottom plate in a vacuum container equipped with a gas supply port and an exhaust port,
A processing device was used in which a cathode plate was placed on the top, a cathode introduction tube with a cooling pipe was installed inside, and an anode plate was placed opposite the cathode plate.
A metal plate of 25n x 25n x 4u made of an alloy with a composition of Ni remaining was placed on the cathode plate as a substrate to be treated, and the treatment was carried out under the following conditions. As a result, no TiN film was formed on the surface of the cathode introduction tube. The reaction was smooth. The TiN coating on the obtained substrate was uniform and glossy.

反応ガス組成  Ticぶs :N2 :N2−1;1
16(モル比) 圧    力       2T0rr電   圧  
     500v 電流密度    0.11A/CI 基体の温度   550℃ 処理待lI    30分 一方陰極導入管内に冷却パイプを内蔵しない処理装置を
使用し、あとは実施例と同様に処理を行なったところ、
途中でTiN被膜が基体上に形成されず、陰極導入管表
面の上部からどんどん下方に向かって形成されたため処
理を中止した。
Reaction gas composition Ticbus:N2:N2-1;1
16 (molar ratio) Pressure 2T0rr Voltage
500v Current density 0.11A/CI Substrate temperature 550°C Processing time 30 minutes On the other hand, a processing device without a built-in cooling pipe in the cathode introduction tube was used, and the rest of the processing was carried out in the same manner as in the example.
During the process, the TiN film was not formed on the substrate, but was formed downward from the top of the cathode introduction tube surface, so the process was stopped.

[発明の効果] 以上の実施例からも明らかなように、本発明方法によれ
ば陰極導入管表面へ金属化合物の被膜が形成されること
がないから、アーク放電環象が発生するおそれがなく、
基体表面上への金属化合物被膜の形成がスムーズに行え
る。
[Effects of the Invention] As is clear from the above examples, according to the method of the present invention, a metal compound film is not formed on the surface of the cathode introduction tube, so there is no risk of an arc discharge phenomenon occurring. ,
A metal compound film can be smoothly formed on the substrate surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来方法に使用する処理装置を模式的に示す概
略断面図、第2図は本発明方法に使用する処理装置の概
略断面図である。 2・・・・・・・・・・・・真空容器 4・・・・・・・・・・・・被処理基体5・・・・・・
・・・・・・陰極板 6・・・・・・・・・・・・陽極板 7・・・・・・・・・・・・加熱板 8・・・・・・・・・・・・陰極導入管9・・・・・・
・・・・・・冷却パイプ(7317)  代理人弁理士
 則近憲佑(ほか1名) 1
FIG. 1 is a schematic sectional view schematically showing a processing apparatus used in the conventional method, and FIG. 2 is a schematic sectional view of the processing apparatus used in the method of the present invention. 2......Vacuum container 4......Substrate to be processed 5...
......Cathode plate 6...Anode plate 7...Heating plate 8...・Cathode introduction tube 9...
・・・・・・Cooling pipe (7317) Representative patent attorney Kensuke Norichika (and 1 other person) 1

Claims (2)

【特許請求の範囲】[Claims] (1)ガス供給口と排気口とを備えた真空容器内の底板
上に、頂部に陰極体を配置した陰極導入管を立設し、か
つ陰極体と対向させて陽極体を配置するとともに、前記
陰極体上に被処理基体を載置して前記真空容器内を真空
にし、次いで0.1〜10Torrのガス状金属化合物
を含む反応ガスを導入し、両極間に200〜8000V
の電圧を印加して前記基体近傍に放電空部を形成するこ
とにより、基体表面に反応生成物による金属化合物の被
膜を形成するにあたり、前記陰極導入管の外壁を冷却す
ることを特徴とする金属化合物被膜の形成方法。
(1) A cathode introduction tube with a cathode body placed on the top is placed upright on the bottom plate of a vacuum container equipped with a gas supply port and an exhaust port, and an anode body is placed facing the cathode body, A substrate to be processed is placed on the cathode body and the inside of the vacuum container is evacuated, and then a reaction gas containing a gaseous metal compound of 0.1 to 10 Torr is introduced, and a voltage of 200 to 8000 V is applied between the two electrodes.
A metal compound characterized in that the outer wall of the cathode introduction tube is cooled in forming a film of a metal compound by a reaction product on the surface of the substrate by applying a voltage of Method for forming compound film.
(2)冷却は、陰極導入管内に設けられた冷却バイブに
より行なわれる特許請求の範囲第1項記載の金属化合物
被膜の形成方法。
(2) The method for forming a metal compound film according to claim 1, wherein the cooling is performed by a cooling vibe provided in the cathode introduction tube.
JP5723882A 1982-04-08 1982-04-08 Formation of film of metal compound Granted JPS58174568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5723882A JPS58174568A (en) 1982-04-08 1982-04-08 Formation of film of metal compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5723882A JPS58174568A (en) 1982-04-08 1982-04-08 Formation of film of metal compound

Publications (2)

Publication Number Publication Date
JPS58174568A true JPS58174568A (en) 1983-10-13
JPS6134507B2 JPS6134507B2 (en) 1986-08-08

Family

ID=13049944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5723882A Granted JPS58174568A (en) 1982-04-08 1982-04-08 Formation of film of metal compound

Country Status (1)

Country Link
JP (1) JPS58174568A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62294160A (en) * 1986-06-13 1987-12-21 バルツエルス アクチエンゲゼルシヤフト Thermochemical surface treatment of material in reactive gaseous plasma
CN113235069A (en) * 2021-05-11 2021-08-10 中国石油天然气集团有限公司 Corrosion-resistant titanium nitride wear-resistant coating, preparation method thereof and product comprising coating

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722339A (en) * 1993-07-05 1995-01-24 Toshiba Corp Formation of thin film
JPH0719865U (en) * 1993-08-20 1995-04-07 日本コロムビア株式会社 Disk storage device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62294160A (en) * 1986-06-13 1987-12-21 バルツエルス アクチエンゲゼルシヤフト Thermochemical surface treatment of material in reactive gaseous plasma
CN113235069A (en) * 2021-05-11 2021-08-10 中国石油天然气集团有限公司 Corrosion-resistant titanium nitride wear-resistant coating, preparation method thereof and product comprising coating

Also Published As

Publication number Publication date
JPS6134507B2 (en) 1986-08-08

Similar Documents

Publication Publication Date Title
US4625678A (en) Apparatus for plasma chemical vapor deposition
JP5054867B2 (en) PECVD of TaN films from tantalum halide precursors
KR100683297B1 (en) PLASMA TREATED THERMAL CVD OF TaN FILMS FROM TANTALUM HALIDE PRECURSORS
US5508066A (en) Method for forming a thin film
KR100668892B1 (en) CVD OF INTEGRATED Ta AND TaNx FILMS FROM TANTALUM HALIDE PRECURSORS
WO2002058115A2 (en) Method for deposit copper on metal films
JP2002543282A (en) Thermal CVD of TaN film from tantalum halide precursor
US5827408A (en) Method and apparatus for improving the conformality of sputter deposited films
JPS63203772A (en) Vapor growth method for thin copper film
US4522660A (en) Process for ion nitriding of aluminum or an aluminum alloy and apparatus therefor
GB2319532A (en) Filling recesses in a surface of a workpiece with conductive material
JPS58174568A (en) Formation of film of metal compound
JPH0641631B2 (en) Chemical vapor deposition method and chemical vapor deposition apparatus for tantalum oxide film
JPS581067A (en) Formation of ornamental metallic nitride film
US1019394A (en) Reduction of chemical compounds.
JPS61163195A (en) Synthesizing method for diamond in gas phase and its apparatus
JPH03267361A (en) Hard film and its production
KR100668903B1 (en) Cvd tantalum nitride plug formation from tantalum halide precursors
JPS58164777A (en) Formation of metallic compound film
JPS58174569A (en) Formation of film comprising metal compound
JPH0797690A (en) Plasma cvd device
JPS58117868A (en) Film forming device
JPH08181075A (en) Thin film depositing method
JP2020059885A (en) Container for evaporation raw material, and manufacturing method of container for evaporation raw material
JPS58151468A (en) Formation of metallic compound film