JPS5970767A - Method and device for coating by glow discharge - Google Patents

Method and device for coating by glow discharge

Info

Publication number
JPS5970767A
JPS5970767A JP17832582A JP17832582A JPS5970767A JP S5970767 A JPS5970767 A JP S5970767A JP 17832582 A JP17832582 A JP 17832582A JP 17832582 A JP17832582 A JP 17832582A JP S5970767 A JPS5970767 A JP S5970767A
Authority
JP
Japan
Prior art keywords
glow discharge
coating
gas
cathode
reactive gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17832582A
Other languages
Japanese (ja)
Inventor
Naotatsu Asahi
朝日 直達
Shizuka Yamaguchi
静 山口
Yoshiyuki Kojima
慶享 児島
Kazuyoshi Terakado
寺門 一「よし」
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17832582A priority Critical patent/JPS5970767A/en
Publication of JPS5970767A publication Critical patent/JPS5970767A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes

Abstract

PURPOSE:To perform uniform surface coating or hardening of the work, by disposing the conductive work and an auxiliary cathode in a vacuum chamber conrg. the gaseous material of a metallic compd. and reactive gas under adequate partial pressure and generating glow discharge. CONSTITUTION:The conductive work 113 of steel or the like connecting to a cathode terminal 117 is disposed and a auxiliary electrode 112 is disposed in proximity to the position where the mutual effect of the hollow cathode discharge effect and glow discharge is generated in the work, in a reaction furnace 114. The gaseous material of a metallic compd. obtd. by blowing a carrier gas such as H2 to a soln. 122 of a metallic compd. such as TiCl4 and reactive gas such as CH4 are introduced through a gas introducing port 119, and the inside of the furnace is reduced in pressure to <=10 Torr degree of vacuum by an evacuator 120 provided with a trapper 121. A power source 115 is connected to an anode terminal 116 and the terminal 117 to generate glow discharge, thereby coating the resulted product of reaction such as TiC on the surface of the work 113. The partial pressure of the gaseous material in the above-mentioned method is maintained under the pressure smaller than the partial pressure of the reactive gas.

Description

【発明の詳細な説明】 〔発、明の利用分野〕 本発明はグロー放′成による導電性物品の被覆方法およ
び装置に係り、特に陰極に接続された導電性被処理物品
と該物品に近接して配置された補助陰極、および陽極と
の間でグロー放電を発生させ前記物品の表面に反応物を
被覆する方法および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method and apparatus for coating a conductive article by glow emission, and particularly to a conductive article connected to a cathode and a coated article in the vicinity of the article. The present invention relates to a method and apparatus for generating a glow discharge between an auxiliary cathode and an anode arranged as a auxiliary cathode to coat the surface of the article with a reactant.

〔従来技術〕[Prior art]

導電性物品の被覆方法としてはこれまでにCVD法およ
びPVD法がアシ、これらの方法によってT ic、T
 iNの被覆が行われてきた。CVD法は電気炉、又は
高周波加熱によシ、1000C近傍に加熱した被処理品
上に被処理品表面と気相での接触反応によシ、例えばT
rct、とC,Hsを反応させてTiCを被覆している
Until now, CVD and PVD methods have been used as coating methods for conductive articles, and these methods have been used to coat Tic, Tic, and Tic.
iN coatings have been performed. The CVD method uses an electric furnace or high-frequency heating, and a catalytic reaction between the surface of the workpiece and the gas phase on the workpiece heated to around 1000C, such as T
rct, C, and Hs to coat TiC.

CVD法での反応物の析出過程は、気相からの固体の結
晶成長プロセスで被処理品と気相との間には、温度差と
化学種物質の濃度差があって、過飽オロ度が被膜成長の
駆動力となる。したがって、CVD法によれば、反応界
面への反応ガスの拡散はtheによるガス拡散によって
いるので、一般には界面における反応ガス濃度が低くな
っている。
The reaction product precipitation process in the CVD method is a solid crystal growth process from the gas phase. becomes the driving force for film growth. Therefore, according to the CVD method, the reaction gas concentration at the interface is generally low because the reaction gas is diffused to the reaction interface by the gas diffusion.

CVD法によるTiC被覆では、1000C近くの2〜
3時間の処理で5〜10μm程度の被膜が形成きれ、高
温度での処理にもかかわらず被膜形成速度が遅いという
欠点がある。また、被膜の特性を安定して形成させるに
は、ガスの混合比、流量等の制御も微調整を必要とし、
被覆工程が複雑になる。さらに、1000C程度の高温
度を要するので、被処理品として最もよく用いられる鉄
鋼部品では結晶粒の粗大化による脆化等の問題を生じる
ことがあり、その防止に複雑な工程を要する。このよう
な欠点はPVD法においても生ずる。PVD法は低温で
の被覆も可能性があるが、その場合は被処理品との密着
性の低下、被1摸生成速度の低下等の欠点がある。
TiC coating by CVD method has a temperature of 2~1000C.
A film of about 5 to 10 μm can be formed only after 3 hours of treatment, and the film formation rate is slow despite the high temperature treatment. In addition, in order to form a film with stable characteristics, fine adjustments are required to control the gas mixture ratio, flow rate, etc.
The coating process becomes complicated. Furthermore, since a high temperature of about 1000 C is required, problems such as embrittlement due to coarsening of crystal grains may occur in steel parts, which are the most commonly used products to be processed, and complicated processes are required to prevent such problems. Such drawbacks also occur in the PVD method. The PVD method has the possibility of coating at low temperatures, but in that case there are disadvantages such as a decrease in adhesion to the object to be treated and a decrease in the rate of generation of the object.

グロー放電によるTiCの被覆も□開示されている〔例
えば、F、 J、 Hazlewood and P、
 C。
Coating of TiC by glow discharge has also been disclosed [e.g. F. J. Hazlewood and P.
C.

Iordanis:”Abrasion−re、5is
L3nt、 titanium−carbide−1)
2sed coatings formed bygl
ow−discharge−assisted vop
or deposition”。
Iordanis: “Abrasion-re, 5is
L3nt, titanium-carbide-1)
2sed coatings formed by gl
ow-discharge-assisted vop
or position”.

pagerl 2 、 pager29−37 、 A
dLlances 1nSurface Coat i
ng ’[’echnology Jnternati
onalConference of the Wel
ding 工n5tituteand the In5
titute of Mechanical Engi
neers。
pagerl 2, pager29-37, A
dLlances 1nSurface Coat i
ng'['technology
onalConference of the Wel
ding ENG n5 posture and the In5
Titute of Mechanical Engineering
neers.

London、 Feb、i 3−15 (’78 )
 )。この被覆方法はグロー放電によるイオン窒化法で
あムそのガス源として’l’icA、 f:用い、少な
くとも10−1’l’o r rに減圧した容器内にT
ict、とC,l−12,またキャリアガスとしてAr
+5%I(、を用いてTi Cを被膜形成する。
London, Feb, i 3-15 ('78)
). This coating method is an ion nitriding method using glow discharge.T'icA, f: is used as the gas source, and T is heated in a container with a reduced pressure of at least 10-1'l'o r.
ict, C, l-12, and Ar as a carrier gas.
Coat the TiC using +5% I(,).

このように被処理品の加熱はグロー放電エネルギーによ
っているので外部からの熱源を必要としない。すなわち
、グローを発生している表面が加熱源となるので、被処
理品の温度は体積に対する表面の割合によって変化する
ことになる。すなわち、同一形状で比較的単純な形状の
被処理品では全体がほぼ均一な温度になり、均一な被覆
ができるが、複雑な形状、特に体積に対する弐面積が異
なる部品では同一被処理品でも場所によりイオン衝撃エ
ネルギーおよび電離密度に差を生じて温度差が大きくな
り、拡散原子の濃度、深さが大きく変動し、被膜形成速
度に変動を与え、このため均一な被覆ができない。特に
、凹凸の製品では電子の放出し易い凸部にグローが集中
するので、この部分の被覆が形成され易くなり凹部にほ
とんど被膜されないことがある。この現象はグロー放a
の際の放電電圧によって大きく変化する。グロー放電に
よって600C以上に加熱しようとすると放電電圧が急
激に上昇することになる。この放電電圧が高くなる程、
電子の放出の指向性が筒くなり、は子の放出し易い位置
にグローが集中するようになる。
In this way, since the object to be processed is heated by glow discharge energy, no external heat source is required. That is, since the surface generating the glow becomes the heat source, the temperature of the object to be processed changes depending on the ratio of the surface to the volume. In other words, if the workpiece is of the same shape and has a relatively simple shape, the temperature will be almost uniform throughout and a uniform coating will be possible, but if the workpiece has a complex shape, especially parts with different areas relative to volume, even if the workpiece is the same, the temperature will be uniform. This causes a difference in ion bombardment energy and ionization density, resulting in a large temperature difference, and the concentration and depth of the diffused atoms vary greatly, causing variations in the film formation rate, making it impossible to form a uniform coating. In particular, in the case of products with uneven surfaces, the glow concentrates on the convex portions where electrons are easily emitted, so that coating is more likely to be formed in these portions, and the concave portions may be hardly coated. This phenomenon is caused by glow radiation.
It varies greatly depending on the discharge voltage at the time. If an attempt is made to heat the battery to 600C or higher by glow discharge, the discharge voltage will rise rapidly. The higher this discharge voltage, the more
The directionality of electron emission becomes cylindrical, and the glow becomes concentrated in positions where it is easy for the electrons to emit.

現在、工粟的に用いられているイオン窒化被覆温度は約
600Cであり、この温度ではイオン衝撃エネルギーお
よび電離密度による温度差は少ないが、蟹化処理でも高
温の場合温度差が太きくなシ必要な場所に均一に被覆す
ることは困難である。
The ion nitriding coating temperature currently used for millet treatment is approximately 600C, and at this temperature there is little temperature difference due to ion bombardment energy and ionization density. It is difficult to coat the required areas uniformly.

この解決のために、例えば、従来の真空熱処理炉内でイ
オン窒化を行うこと、あるいは外部から高周波加熱を行
いつつイオン窒化を行うことが提案されている。しかし
、前者の場合、被処理品の加熱を、例えば、炭素繊維の
ようなヒータによって行うため、加熱電源は高出力を要
すると共に、イオンによる加熱が少なくなるので、従来
のイオンのみによる処理に比較して被処理品へのイオン
衝撃エネルギーが小さくなり、表面へのイオン分布割合
も少なくなる。そのため装置の構造と制御が複雑となる
と共に全体の消費エネルギーも多く、イオンによるクリ
ーニング作用、表面の被膜生成あるいは硬化等に関与す
る原子の濃度も少なくなる。後者の場合、高周波による
誘導電流によって加熱するため多くの部品を炉内に挿入
した場合、高周波コイルからの距離によって、個々の部
品間で加熱される温度が異なると共に、前者同様、電源
、II]’J御が複雑となる。また、被覆処理に要する
エネルギーも多く、イオンのクリーニング作用、表面の
イオン濃度の制御も充分でない。
To solve this problem, it has been proposed, for example, to perform ion nitriding in a conventional vacuum heat treatment furnace, or to perform ion nitriding while applying high-frequency heating from the outside. However, in the former case, the object to be processed is heated using a heater such as carbon fiber, which requires a high output heating power source and requires less heating by ions, compared to conventional processing using only ions. As a result, the ion bombardment energy on the processed product is reduced, and the ion distribution ratio on the surface is also reduced. Therefore, the structure and control of the device become complicated, the overall energy consumption is large, and the concentration of atoms involved in the cleaning action of ions, the formation of a film on the surface, or the hardening, etc., is also reduced. In the latter case, when many parts are inserted into the furnace to be heated by induced current caused by high frequency, the temperature at which the individual parts are heated differs depending on the distance from the high frequency coil, and as in the former case, the power supply, II] 'J control becomes complicated. Further, a lot of energy is required for the coating process, and the cleaning effect of ions and the control of the ion concentration on the surface are not sufficient.

一方、被処理品の用途によっては、その表面全体に同一
機能の表面処理を施すのではなく、同−被処理品内の異
なる場所にそれぞれの機能を有する処理を要することが
ある。このような処理は、上述のイオン窒化被覆におい
ては同一炉内で、一工程で連続して行うことはできず、
複数工程で行われていた。
On the other hand, depending on the use of the article to be treated, it may be necessary to perform treatments with different functions on different locations within the same article, rather than applying a surface treatment with the same function to the entire surface. In the case of the above-mentioned ion nitriding coating, such treatment cannot be performed continuously in one process in the same furnace;
It was done in multiple steps.

イオン窒化法で部分的に異なる硬化層(例えば硬さ、り
るいは硬化層深さ)を形成する方式として特開昭47−
6956がらる。この処理法では、被処理品(陰極)と
真空容器壁(陽極)の間に、直流′電源の陽極ft1l
jから分圧器を通して接続された付加金属電極を設置し
、この付加電極の電位を変えることにより、被処理品上
のイオン衝撃エネルギーを部分的に変えて、部分的に異
なった処理層を形成させている。この方式によるイオン
窒化によれば、被処理品の部分的に異なった硬化層を要
する被処理品の近傍にこの付加金属陽極を設けて処理を
行う。また処理の際、外部回路により付加金属電極の電
位を変化させてその近傍の被処理品表面のイオン衝撃エ
ネルギーを変化させることによって、窒素の拡散量を制
御し、部分的に異なった窒化層を形成させている。
Japanese Patent Application Laid-Open No. 47-1999 is a method for forming partially different hardened layers (for example, hardness, roughness, and hardened layer depth) using the ion nitriding method.
6956 Garuru. In this processing method, an anode ft1l of a DC' power supply is placed between the workpiece (cathode) and the wall of the vacuum container (anode).
By installing an additional metal electrode connected to j through a voltage divider, and changing the potential of this additional electrode, the ion bombardment energy on the workpiece is partially changed to form a partially different treatment layer. ing. According to this method of ion nitriding, the additional metal anode is provided in the vicinity of the workpiece that requires different hardened layers in different parts of the workpiece. In addition, during processing, by changing the potential of the additional metal electrode using an external circuit and changing the ion bombardment energy on the surface of the workpiece in the vicinity, the amount of nitrogen diffusion is controlled, and partially different nitrided layers are formed. It is being formed.

しかしながら、この方式では実際問題としてイオン衝撃
エネルギーを制御することが難しく、また窒素の拡散量
はイオン衝撃エネルギーよシも温度による影響が著しく
強くなる。従ってこの方式で硬化層を制御することは極
めて困難である。
However, in this method, it is difficult to control the ion bombardment energy as a practical matter, and the amount of nitrogen diffusion is significantly influenced by temperature as well as the ion bombardment energy. Therefore, it is extremely difficult to control the hardened layer using this method.

かかる問題を解決するために、本発明者等は導電性被処
理品に近接して補助電極を配置して、被処理品と該補助
電極との間に相互作用を有するグロー放電を発生させる
ことによる処理品の処理面のグロー放電の放電電圧を低
電圧にし、短時間に処理の表面処理を行う方法を開発し
た。
In order to solve this problem, the present inventors placed an auxiliary electrode close to the conductive object to be processed, and generated a glow discharge that interacted between the object to be processed and the auxiliary electrode. We have developed a method for surface treatment in a short time by reducing the discharge voltage of glow discharge on the treated surface of the treated product.

この先行技術は次の表面処理を提供するものである。This prior art provides the following surface treatment.

減圧状態の容器内で陽極と陰極との間にグロー放電を発
生させて表面処理をする方法において、陽極に対向して
配置され陰極に接続された導電性表面を有する補助電極
を、被処理品の必要とする部分に近接して配置し、被処
理面と補助電極とのb′巨離を、被処理品の必要表面部
の温度が高くなる程度にグロー放電間に相互干渉を生じ
させるように選定して配置し、必要部の熱処理効果を高
めたことを特徴とする熱処理法である。
In a method of surface treatment by generating glow discharge between an anode and a cathode in a container under reduced pressure, an auxiliary electrode having a conductive surface placed opposite to the anode and connected to the cathode is used to treat the workpiece. The auxiliary electrode is placed close to the part where it is needed, and the large distance b' between the surface to be processed and the auxiliary electrode is set so as to cause mutual interference between the glow discharges to the extent that the temperature of the required surface part of the part to be processed becomes high. This is a heat treatment method characterized by selecting and arranging the heat treatment in the necessary parts to enhance the heat treatment effect.

本発明者等はかかる表面処理法の一連の研究としてCV
D法に適用することを鋭意検討し、本発明を達成した。
The present inventors have carried out CV as a series of research on such surface treatment methods.
The present invention was achieved after intensive study on application to method D.

〔発明の目的〕[Purpose of the invention]

本発明の目的は低電圧で導電性被処理品の全体、または
その目的とする部分に均一にグロー放電により表面被覆
、または表向硬化と表面被覆とを行う方法および装置を
提供することにある。
An object of the present invention is to provide a method and an apparatus for uniformly surface-coating the entire conductive article or a target part thereof by glow discharge or surface-curing and surface-coating at low voltage. .

〔発明の概要〕[Summary of the invention]

本発明は金属化合物のガス状物質と、該金属化合物と反
応して反応物を形成するガス状物質(反応性ガス)とを
10Torr以下の真空度で陰極に接続された導電性被
処理品と該被処理品にグロー放電の相互作用が生じる位
置に近接して配置された補助陰極、および陽極との間で
グロー放電を発生さぜ、niJ記物品の載面に反応物を
被覆する方法でめって、前記ガス状物質の分圧は前記反
応性ガスのそれよりも小さいことから成るグロー放電に
よる導゛岨性物品の被覆方法および装置を提供するもの
である。
The present invention combines a gaseous substance of a metal compound and a gaseous substance (reactive gas) that reacts with the metal compound to form a reactant with a conductive workpiece connected to a cathode at a vacuum level of 10 Torr or less. A method of generating a glow discharge between an anode and an auxiliary cathode disposed close to a position where glow discharge interaction occurs on the article to be treated, and coating the surface of the article mentioned above with a reactant. The present invention provides a method and apparatus for coating a conductive article by glow discharge, wherein the partial pressure of the gaseous substance is less than that of the reactive gas.

すなわし、本発明は、蛍騙化せ物のガス状物質と該金属
化合物と反応して反応q/!lJ全形成するガス状物質
(尚、このガス状物質を以下反応性ガスと呼ぶことがあ
る、ンとt含む減圧写囲気中に、陰極に接続された4電
性被処理品全配設すると共に、該導電性被処理品の周囲
に補助陰極を設け、該補助陰極金導社性の被膜処理部と
の間にホロー放邂効果を生じさせる程度に導電性被処理
品に近接させてグロー数社処理することによって、前記
2棟以上のガス状物質の反応物を導電性被処理品に被膜
として形成するものでろる。
That is, in the present invention, the gaseous substance of the fluorescent substance reacts with the metal compound to cause a reaction q/! All the four-electrode to be processed parts connected to the cathode are placed in a reduced pressure atmosphere containing a gaseous substance (this gaseous substance may be referred to as a reactive gas hereinafter). At the same time, an auxiliary cathode is provided around the conductive article, and the auxiliary cathode is placed close to the conductive article to the extent that a hollow discharge effect is produced between the auxiliary cathode and the gold-conducting film treated area. By performing several treatments, the reactants of the two or more gaseous substances may be formed as a film on the conductive product.

なお、ホロー放電効果とは補助電極と被処理品との間に
発生する負グロー間に相互干渉作用を起させて、この間
′電流密度を増加させる現象を呼んでいる。この部分で
は、ガスの電離密度も増加され、目的とする活性な原子
の被処理品表面への表面反応も活発になる。
Note that the hollow discharge effect is a phenomenon in which mutual interference is caused between negative glow generated between the auxiliary electrode and the object to be processed, and the current density is increased during this period. In this part, the ionization density of the gas is also increased, and the surface reaction of target active atoms to the surface of the object to be treated becomes active.

すなわち、前記補助陰極を導電性被処理品の被覆処理部
を実質的に包囲するように配置することによって、ホロ
ー放電処理を効果的に行うことができる。ここで、実質
的に包囲するとは、被覆処理部を補助陰極がほぼ包囲完
全にするか、または被覆処理部と補助陰極を相対的に移
動または回転させて、包囲したと同じ効果を奏すること
をいう。
That is, by arranging the auxiliary cathode so as to substantially surround the coating portion of the conductive article, the hollow discharge treatment can be effectively performed. Here, "substantially surrounding" means that the auxiliary cathode almost completely surrounds the coating section, or that the coating section and the auxiliary cathode are relatively moved or rotated to produce the same effect as surrounding it. say.

また、複数個の補助陰極を設け、この補助陰極間あるい
はこれの内部の導電性被処理品間でホロー放電効果を生
じさせるように配置させることによっても、グロー成畦
処理を効果的に行える。
The glow ridge growth process can also be effectively performed by providing a plurality of auxiliary cathodes and arranging them so as to produce a hollow discharge effect between the auxiliary cathodes or between the conductive objects to be treated inside the auxiliary cathodes.

この補助陰極は被処理品との間でグロー放電の相互作用
を起させ、これにより金属化合物のガス状物質と、これ
と反応して反応物を形成するガス状物質(反応性ガス)
との反応を行わせ、反応生成物を被覆して被処理品表面
上に付着させるものであシ、この補助陰極はグロー放′
亀の補助エネルギー供給減であシ、反応物質は雰囲気ガ
スから供給されるものである。この場合、金属化合物の
ガス状物質は減圧下、例えば10Torr以下の真空度
で供給される。即ち、金属化合物のガス状物質の分圧は
極めて低く、換言すれば極微量を供給することになり、
この極微量のガスを補助電極と被1刈処理品との間隙を
経て被処理品表面上に新しいガス状物質を均一に分布さ
せる必要があり、また、この間隙にガス状物質または反
応物が滞留せずに直ちに被処理品の処理狭面に付着させ
る必要がある。
This auxiliary cathode causes a glow discharge interaction with the workpiece, which causes a gaseous substance of the metal compound to react with the gaseous substance (reactive gas) to form a reactant.
This auxiliary cathode is used as a glow-emitting device.
The turtle's auxiliary energy supply is reduced, and the reactants are supplied from the atmospheric gas. In this case, the gaseous substance of the metal compound is supplied under reduced pressure, for example at a vacuum level of 10 Torr or less. In other words, the partial pressure of the gaseous substance of the metal compound is extremely low, in other words, a very small amount is supplied.
It is necessary to pass this very small amount of gas through the gap between the auxiliary electrode and the workpiece to uniformly distribute the new gaseous substance on the surface of the workpiece. It is necessary to immediately adhere to the narrow surface of the product to be processed without stagnation.

本発明考案者等はこれらの問題を解決するため鋭意研究
した結果、次のことを見出した。
As a result of intensive research to solve these problems, the inventors of the present invention discovered the following.

金属化合物のガス状物質の供給量が少なくなると反応物
被覆形成速度が遅くなり、大きくなるとこの形成速度は
大きくなるが、生成被覆が多孔質になシ、脆弱で被処理
品から剥離しやすくなる。
When the supply amount of the gaseous substance of the metal compound decreases, the reaction material coating formation rate slows down, and as it increases, this formation rate increases, but the resulting coating becomes porous, brittle, and easily peeled off from the processed item. .

例えばキャリアガスとしてH7に分散された金属化合物
のガス状物質としてTiCl2と、この金属化合物のガ
ス状物質と反応して反応物を形成するガス状物質(反応
性ガス)としてCH4を用い、’rict、の分圧をC
H4の分圧よシも大きくすると被処理品表面上には微細
反応物粒子が堆積した状態で付着し、20〜30分後に
はフィルム状になり被処理品表面から剥離する。この被
処理品上の被覆物の断面の顕微鏡観察によればTiCは
殆ど形成されておらず、TiCl2の分圧をCI(4の
分圧よりも小さく、好ましくは0.5以下にすることが
望′ましいことが判った。
For example, using TiCl2 as a gaseous substance of a metal compound dispersed in H7 as a carrier gas and CH4 as a gaseous substance (reactive gas) that reacts with the gaseous substance of this metal compound to form a reactant, 'rict , the partial pressure of C
When the partial pressure of H4 is also increased, fine reactant particles adhere to the surface of the article to be treated in a deposited state, and after 20 to 30 minutes, they become film-like and peel off from the surface of the article to be treated. According to the microscopic observation of the cross section of the coating on this workpiece, almost no TiC was formed, and the partial pressure of TiCl2 should be lower than the partial pressure of CI (4, preferably 0.5 or less). It turned out to be desirable.

また、キャリアガスに分散された金属化合物のガス状物
質の供給は被覆処理装置の一方から導入し、他方から排
気しながら行う。特に補助陰極と被処理品との間隙、少
なくとも被処理品表面にはキャリアガスに分散された金
属化合物のガス状物質が前記反応性ガスの1.0以下の
当量比で供給する。この金属化合物のガス状物質は補助
陰極と彼処Ju1品との間に惹起されたグロー放電によ
シ反応し、反応物が被処理品表面上に付着され、その反
応の割合に応じてグロー放電中の反応種が減少する。従
って、反応性ガスが滞留を起す構造にすると、前記の被
覆処理に適切な尚量比に調整された反応性ガスが均一に
供給されず、被処理品に被覆が形成されなくなる。この
ため反応性ガスが均一に分布され、均一な被覆を得るた
めには被覆期間中に反応性ガスがその供給方向と被処理
品の被覆処理面とを相対的に移動させる必要があること
が判った。このためには被処理品、または反応性ガス供
給側、または双方を移動させる。例えば、被処理品を回
転させるか、反応性ガス供給に回転式ガス分配器を用い
る。
Further, the gaseous substance of the metal compound dispersed in the carrier gas is supplied from one side of the coating processing apparatus while being exhausted from the other side. In particular, a gaseous substance of a metal compound dispersed in a carrier gas is supplied to the gap between the auxiliary cathode and the object to be processed, or at least to the surface of the object to be processed, at an equivalent ratio of 1.0 or less to the reactive gas. This metal compound gaseous substance reacts with the glow discharge caused between the auxiliary cathode and the Ju1 product, and the reactant is deposited on the surface of the product to be treated, and the glow discharge occurs depending on the rate of the reaction. Reactive species in the reactor are reduced. Therefore, if the structure is such that the reactive gas stagnates, the reactive gas adjusted to the appropriate amount ratio for the coating treatment will not be uniformly supplied, and the article to be treated will not be coated. Therefore, in order to distribute the reactive gas uniformly and obtain a uniform coating, it is necessary for the reactive gas to move relatively between its supply direction and the coating surface of the workpiece during the coating period. understood. For this purpose, the article to be treated, the reactive gas supply side, or both are moved. For example, the workpiece may be rotated or a rotary gas distributor may be used to supply the reactive gas.

本発明に用いられる金属化合物(半金属も含む)のガス
状物質としては’l’i、Cr、l’Ji、Si。
Gaseous substances of metal compounds (including metalloids) used in the present invention include 'l'i, Cr, l'Ji, and Si.

At、Zr、B、Hf、V、W、またはTa等のハロゲ
ン化物等であり、この金属化合物のガス状物質と反応し
て反応物を生成するガス状物質としてはCH4,N、、
7ラン、ボラン等であり、キャリアガスとしては不活性
ガス、特にHt、Arが用いられる。この場合に生ずる
反応被覆物はとれもの金属元素の窒化物、炭化物、硼化
物である。
These are halides such as At, Zr, B, Hf, V, W, or Ta, and the gaseous substances that react with the gaseous substance of this metal compound to produce a reactant include CH4, N,
7, borane, etc., and an inert gas, especially Ht and Ar, is used as the carrier gas. The reaction coatings that result in this case are nitrides, carbides, and borides of various metal elements.

これらの金属化合物のガス状物質と反応物を形成するガ
ス状物質(反応性ガス)は単独、複合とすることができ
る。
The gaseous substance (reactive gas) that forms a reactant with the gaseous substance of these metal compounds may be used alone or in combination.

また、本発明に用いられる被処理品としては、鉄、鋼等
の金属材料、例えばクロムモリブデン鋼、熱間ダイス鋼
、あるいは超硬、Ni、’I”i、セラミックス等であ
る。
Further, the objects to be processed used in the present invention include metal materials such as iron and steel, such as chromium molybdenum steel, hot die steel, cemented carbide, Ni, 'I''i, and ceramics.

本発明では補助陰極を用いるCVD法による反応物の被
覆を行う前に被処理品の被覆処理表面を表面硬化、例え
ば浸炭、窒化、硼化、浸硫、または浸炭窒化させると、
反応物の被覆処理の密着性が更に改善されることが判っ
た。即ち、表面硬化と被覆処理の併用が好ましいう 本発明に基づく被覆処理の一例は以下のような手順で行
う。
In the present invention, before coating the reactant by the CVD method using an auxiliary cathode, the surface of the article to be coated is surface hardened, for example, by carburizing, nitriding, boriding, sulfurizing, or carbonitriding.
It was found that the adhesion of the reactant coating treatment was further improved. That is, an example of the coating treatment based on the present invention, in which a combination of surface hardening and coating treatment is preferred, is carried out in the following procedure.

(1)被処理品と補助陰極をグロー放電容器内の適切な
位置に配置する。
(1) Place the article to be treated and the auxiliary cathode at appropriate positions within the glow discharge container.

(11)  グロー放電容器を10”Torr以下に排
気する。
(11) Evacuate the glow discharge vessel to 10” Torr or less.

(ii[+H2、またはH,十Arを0.1〜10To
rrの必要値になるようにグロー放電容器内に導入する
(ii[+H2, or H, 10Ar to 0.1 to 10To
It is introduced into the glow discharge vessel so that the required value of rr is obtained.

(1v)電極間にDCを印加しグロー放電を発生させ、
補助陰極に対向する被処理品の被覆処理面にスパッター
クリーニングとを行い、処要温度に加熱する。
(1v) Apply DC between the electrodes to generate glow discharge,
Sputter cleaning is performed on the coated surface of the workpiece facing the auxiliary cathode and heated to the required treatment temperature.

(ψ グロー放′就谷器内にCH4を導入し、処要温度
を保持するように容器内圧力を制御し、被処理品の被覆
処理面にCの#度の高い浸炭層を設ける。
(ψ) CH4 is introduced into the glow chamber, the pressure inside the container is controlled to maintain the treatment temperature, and a carburized layer with a high degree of C is formed on the coated surface of the product to be treated.

(vl)キャリアガスに分散した金属化合物のガス状4
吻質、例えば(T ict* + H2)をCHaに対
して1.0当量比以下で導入し、温度が所要値を保つよ
う全圧を主にH2、またはAr量(キャリアのH2は固
定)を制御して必要時間、通常0.5〜10 h r 
%グロー放電処理をする。
(vl) Gaseous form of metal compound dispersed in carrier gas 4
A rostrum, for example (T ict* + H2), is introduced at an equivalent ratio of 1.0 or less to CHa, and the total pressure is mainly H2 or Ar amount to keep the temperature at the required value (H2 in the carrier is fixed). control the required time, usually 0.5~10 hr
% glow discharge treatment.

(Vi+)次いで、ガスの供給、DCの印加を中止しグ
ロー放電容器を10−”I’orr以下に減圧し冷却す
る。
(Vi+) Next, the supply of gas and the application of DC are stopped, and the pressure of the glow discharge vessel is reduced to 10-"I'orr or less and cooled.

本発明では補助電極を被処理品の被処理部分に面した側
の温度が、その面と反対側での温度よシも篩くなるよう
に構成すれば、グロー放縮のエネルギーを有効に利用す
ることもできる。
In the present invention, if the auxiliary electrode is configured so that the temperature on the side facing the processed part of the workpiece is sieved compared to the temperature on the opposite side, the energy of glow discharge can be effectively used. You can also.

さらに、被処理品の被覆処理部を少なくとも2種類のグ
ロー放電処理条件下にさらすことにより、被処理品に複
数種の処理を施すこともできる。
Furthermore, by exposing the coated portion of the article to at least two types of glow discharge treatment conditions, the article can be subjected to a plurality of types of treatments.

また、被処理品の2以上被覆処理部を異なったグロー放
電処理条件下にさらすことによって、1つの被処理品に
対し複数種の機能をもった部分を与えることもできる。
Moreover, by exposing two or more coated parts of the treated article to different glow discharge treatment conditions, it is possible to provide parts with multiple types of functions to one treated article.

穴、スリット等の不連続面を有する補助電極を使用して
反応性ガスの供給を改善し、補助電極と被処理品間での
ガスの滞留を改善することもできる。
Auxiliary electrodes with discontinuous surfaces such as holes, slits, etc. can also be used to improve the supply of reactive gases and to improve gas retention between the auxiliary electrode and the workpiece.

〔発明の実施例〕 以下、添付図面を参照して本発明の実施例を詳細に説明
する。
[Embodiments of the Invention] Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

4准性被処理品表面に被膜を形成する。はじめに表面を
スパッタリングを行り゛C直接目的とする原子を単独あ
るいは複会して被膜してもよいが、まず表面の潤滑作用
、耐食性、耐疲労性等の機能をもたせ、その後に被膜を
形成させることが望ましい。この場合、被処理品に悪影
響を及ぼすことなく機能をもたせるには、その拡散ある
いは吸着させる原子量、深さ等に適切な値があシ、表面
濃度が一定(一般には材料の固溶限あるいは吸着物の成
長速度等に関係)に保たれれば、処理温度が重要な役割
を演する。ここで、鉄鋼材料の表面硬化を例にとると、
望素で表面硬化を行う場合は、一般に400〜700C
の範囲である。炭素を用いる浸炭処理での表面硬化では
700〜1100Cでろり、硼累では800〜1200
2:になる。一方、表面に破膜させる処理は原子によっ
て異なるが、500〜1200iCの範囲である。この
ように、材料の表面に硬質な層を形成させた後、その表
面にT iC,HfCのような超硬被覆層を形成させる
と、変形に強く、シかも耐久性に優れた材料が得られる
A film is formed on the surface of the quaternary treated product. First, the surface may be sputtered to coat the target atoms singly or in combination, but first the surface has functions such as lubrication, corrosion resistance, fatigue resistance, etc., and then the coating is formed. It is desirable to In this case, in order to provide the product with functionality without adversely affecting it, the atomic weight and depth of the diffusion or adsorption must be appropriate, and the surface concentration must be constant (generally, the solid solubility limit of the material or the adsorption The processing temperature plays an important role. Here, taking surface hardening of steel materials as an example,
When surface hardening is carried out with desired elements, generally 400 to 700C
is within the range of Surface hardening in carburizing process using carbon hardens at 700-1100C, and hardening at 800-1200C
2: Become. On the other hand, the treatment for causing membrane rupture on the surface varies depending on the atom, but is in the range of 500 to 1200 iC. In this way, if a hard layer is formed on the surface of a material and then a superhard coating layer such as TiC or HfC is formed on that surface, a material that is resistant to deformation and has excellent durability can be obtained. It will be done.

以上のように拡散あるいは被覆させる原子、被処理品材
質により適切な処理温度と処理時間がある。被処理品の
表面温度を効率よく高くするかあるい(ハ)部ノ上的に
適切な温度に加熱するには外部熱源を用いることも可能
であるが、本発明では、被処理品とl’LはNId位の
補助陰極を、被処理品表面から所定の距1ii1[をお
いて陰極側に配設し、被覆処理中に導入するガスの圧力
種類等を制御することによシ、補助電極と被処理品の間
あるいは補助陰極内あるいは補助電極間でホローカソー
ド効果を発生させて反応を行う。ここで、被処理品の熱
の収受は、グロー放電エネルギーの熱交換、被処理品や
電極などからの輻1j」熱であり、熱放出による熱損失
は輻射熱、反応性ガスの対流、電極からの熱伝導(電極
の冷却水からの流出)などがある。
As mentioned above, there are appropriate processing temperatures and processing times depending on the atoms to be diffused or coated and the material of the object to be processed. Although it is possible to use an external heat source to efficiently raise the surface temperature of the workpiece or (c) to heat it to a topically appropriate temperature, in the present invention, the workpiece and the 'L is an auxiliary cathode of about NId, which is placed on the cathode side at a predetermined distance 1ii1 from the surface of the workpiece, and by controlling the type of pressure of the gas introduced during the coating process. A reaction is carried out by generating a hollow cathode effect between the electrode and the object to be processed, within or between the auxiliary cathodes. Here, heat absorption by the processed item is due to heat exchange of glow discharge energy and radiant heat from the processed item and electrode, and heat loss due to heat release is due to radiant heat, convection of reactive gas, and heat from the electrode. heat conduction (outflow from the electrode cooling water), etc.

なお、ホローカソード効果は、2つの負グロー放電をあ
る距t411に近づけることによシ、発生し相互作用を
及ぼし合い、その池のグロー放電部よシも電離密度があ
5くなり、放電゛醒圧が低いにもかかわらず他の側より
も温度が高くなる。被処理品の必要な部分を所定の温度
に加熱するのに利用できるものは、補助陰極と被処理品
間の放電エネルギー相互の輻射熱などである。これは、
陰極間隔を一定間隔とし、導入反応性ガス圧力を19F
定の値に設定して、2つの陰極間隔あるいは陰極と被処
理品間でホローカソード効果を発生させて、他のグロー
面よシも電流密度を高くさせることによシ実現できる。
Note that the hollow cathode effect occurs when two negative glow discharges are brought close to a certain distance t411, and they interact with each other, and the ionization density of the glow discharge part of the pond also becomes 5, and the discharge Even though the rising pressure is low, the temperature is higher than that on the other side. What can be used to heat the required portion of the workpiece to a predetermined temperature is mutual radiant heat from discharge energy between the auxiliary cathode and the workpiece. this is,
The cathode spacing was set at a constant interval, and the introduced reactive gas pressure was 19F.
This can be achieved by setting a constant value to create a hollow cathode effect between the two cathodes or between the cathode and the workpiece, and increasing the current density on other glow surfaces.

また、被処理品で部分的に他とは異なる機能を付与した
い表面部分が複数部ある場合は、それに応じて陰極を複
数個設け、それぞれの間隙、形状、材質を変え、必要に
応じて、投入する反応性ガスの種類、圧力を制御するこ
とにより、複数の機能面が得られる。これらの部分の被
処理品表面は、この補助電極および補助陰極間のガスの
電離密度も増加され、目的とする拡散あるいは被覆する
活性な原子との表面反応も活発となる。この現象を効果
的に行うためには、被処理品表面から補助電極までの距
離あるいは補助陰極内の間隔、材質、形状、面積および
ガスの組成に応じたガス圧力の設定が重要な因子になる
。まず、被処理品表面から補助電極までの距離あるいは
補助陰極内の間隔であるが、これは反応性ガス圧力によ
っても異なるが、被処理品および配設された補助電極と
に生じる負グローが何らかの相互作用を及ぼしてホロー
カソード効果を発生しなければ目的とする効果は発生し
ない。これは、ガス組成およびガス圧によって負グロー
のお互いの影響を及ぼし合う有効間隙が異なり、これが
ホローカソード効果に強く影響するからである。さらに
、これらと密接な関係にめる11打助陰極の形状および
構造も重要な因子となる。
In addition, if there are multiple surface areas on which you would like to impart different functions to different parts of the product, you can install multiple cathodes accordingly and change the gap, shape, and material of each cathode, as necessary. By controlling the type and pressure of the reactive gas introduced, multiple functional aspects can be obtained. The ionization density of the gas between the auxiliary electrode and the auxiliary cathode on the surface of the product in these parts is increased, and the target diffusion or surface reaction with the active atoms to be coated becomes active. In order to effectively carry out this phenomenon, important factors are the distance from the surface of the workpiece to the auxiliary electrode or the spacing within the auxiliary cathode, the setting of the gas pressure according to the material, shape, area, and gas composition. . First, the distance from the surface of the workpiece to the auxiliary electrode or the spacing within the auxiliary cathode varies depending on the reactive gas pressure, but the negative glow generated between the workpiece and the installed auxiliary electrode is Unless interaction occurs and a hollow cathode effect is generated, the desired effect will not occur. This is because the effective gap in which the negative glow influences each other varies depending on the gas composition and gas pressure, and this strongly influences the hollow cathode effect. Furthermore, the shape and structure of the auxiliary cathode 11, which are closely related to these factors, are also important factors.

第1図は板状の補助陰極の構造を示したものである。補
助陰極11は陽極側であり、補助陰極12が被処理品側
である。この処理方法では、陰極間隔1.が重要な因子
となる。特に、陰極内で補助陰極12が補助陰極11よ
シも高い温度になるような構造にする。ホローカソード
効果は陰極間、すなわち補助陰極11と補助陰極12と
の間あるいは補助陰極12と被処理品との間で発生させ
る。また、陰極構造を第2図のように円筒型としてもよ
い。この場合、補助電極22あるいは23は補助電極2
1に比較して薄く、さらに小型片として21に取シ付け
てもよい。次に、補助陰極の間隔t、あるいは補助陰極
と被処理品との間隔t、であるが、一般的な被覆・26
埋においては、この距離が0.5 mm以下になると、
被処理品への処理ガスの反応が阻害される傾向にアシ、
一方、50叫以上離れるとグロー間でのホローカソード
効果の影響が弱くなり、補助成極間あるいは被処理品と
の間の輻射熱による加熱効果が低下し、通常のCVD法
処理に近くなる。
FIG. 1 shows the structure of a plate-shaped auxiliary cathode. The auxiliary cathode 11 is on the anode side, and the auxiliary cathode 12 is on the workpiece side. In this treatment method, the cathode spacing is 1. is an important factor. In particular, the structure is such that the auxiliary cathode 12 has a higher temperature than the auxiliary cathode 11 within the cathode. The hollow cathode effect is generated between the cathodes, that is, between the auxiliary cathode 11 and the auxiliary cathode 12, or between the auxiliary cathode 12 and the object to be processed. Further, the cathode structure may be cylindrical as shown in FIG. In this case, the auxiliary electrode 22 or 23 is the auxiliary electrode 2
It is thinner than 1 and may be attached to 21 as a smaller piece. Next, the distance t between the auxiliary cathodes, or the distance t between the auxiliary cathodes and the workpiece, is determined by the general coating.
When this distance becomes less than 0.5 mm,
There is a tendency for the reaction of the processing gas to the object to be processed to be inhibited.
On the other hand, when the distance is 50 degrees or more, the effect of the hollow cathode effect between the glows becomes weaker, the heating effect due to radiant heat between the auxiliary polarization or the object to be processed decreases, and the process becomes similar to that of a normal CVD method.

ここで、窒素ガス、水素ガス、アルゴンガス、メタンガ
スの混合ガスを用い3.5 To r rの圧力でグロ
ー放心を発生させ、補助電極のない場合囚、第1図およ
び第2図の補助電極を用い、第1図ではt、を30rn
mとし、陰極12と被処理品の間隔を任意に変えた場合
(ロ)および第2図でt2f:10工、”11を任意に
変えて、これと被処理品との間隔を8Wt!nとした場
合0につきそれぞれ直径15闘×長さ50間の被処理品
を同一炉内で同一電圧を印加して被処理品の温度を測定
した。第3図は間隔と温度の関係を示すグラフである。
Here, using a mixed gas of nitrogen gas, hydrogen gas, argon gas, and methane gas, a glow center was generated at a pressure of 3.5 Torr. In Fig. 1, t is 30rn
m, and if the distance between the cathode 12 and the workpiece is arbitrarily changed (b), and in Fig. 2, t2f: 10 mm, and ``11'' is arbitrarily changed, the distance between this and the workpiece is 8Wt!n. In the case of 0, the temperature of the workpieces was measured by applying the same voltage to the workpieces with a diameter of 15mm x length of 50cm in the same furnace.Figure 3 is a graph showing the relationship between the interval and temperature. It is.

補助電極のない従来のグロー放′屯のみの温度は、Aの
ように570Cであるが、補助陰極として第1図に示す
ものを用いた場合は、Bのようになりホローカソード効
果の発生する2〜7ttrmの間では900C以上の温
度にまで加熱される。また補助電極として第2図のもの
を用いた場合は第3図の曲線Cのような温度になり、補
助電極のない場合に比較してホローカソード放電部では
3000以上高い温度になっている。この温度差はガス
の組成、ガス圧力、補助電極材材質、形状、厚さ等によ
って大きく変動する。
The temperature of a conventional glow tube without an auxiliary electrode is 570C as shown in A, but when the auxiliary cathode shown in Figure 1 is used, it becomes as shown in B, and a hollow cathode effect occurs. Between 2 and 7 ttrm, it is heated to a temperature of 900C or more. Further, when the auxiliary electrode shown in FIG. 2 is used, the temperature becomes as shown by curve C in FIG. 3, and the temperature in the hollow cathode discharge section is 3000 times higher than that in the case without the auxiliary electrode. This temperature difference varies greatly depending on the gas composition, gas pressure, auxiliary electrode material, shape, thickness, etc.

以上のように直径15關×長さ50mm程度の試験片を
補助電極を用いてホローカソード効果を利用して個々の
部品のそれぞれあるいは個々の部品のある特定の位置を
加熱するには、ホローカソード効果を発生させる距離は
0,5〜10■好ましくは1.5〜9胴の範囲が望まし
いことが判る。次に、補助電極の構造であるが、第1図
および第2図の構造で補助電極として陽極に対向する面
の陰極11を被処理品側の陰極12よシ厚くして同様の
実験を行うと、各々の厚さの差にもよるが、陰極12が
厚くなる程、同一の消費電力では温度差力(少なくなり
、陰極12が陰極11よシも高い温度となる構造が望ま
しいことが判った。
As mentioned above, in order to heat each individual part or a specific position of each part using the hollow cathode effect using an auxiliary electrode on a test piece of about 15 mm in diameter x 50 mm in length, a hollow cathode is used. It can be seen that the distance at which the effect is produced is desirably in the range of 0.5 to 10 mm, preferably 1.5 to 9 mm. Next, regarding the structure of the auxiliary electrode, a similar experiment is performed using the structure shown in FIGS. 1 and 2, with the cathode 11 on the surface facing the anode being thicker than the cathode 12 on the side of the processed product. Although it depends on the difference in thickness between each, the thicker the cathode 12 is, the less the temperature difference force is for the same power consumption, and it is desirable to have a structure in which the temperature of the cathode 12 is higher than that of the cathode 11. Ta.

また円筒状の直径50園、高さ90叫の導電性被処理品
を用い、直径70mmの薄板補助陰極を同心円的に配置
した場合と、この補助陰極を用いない場合を上記のガス
条件下で2.5Torrで電圧を印加したときの電圧、
電流、出力と温度の関係を求めたところ第4図のようで
あった。第4図中、実線は補助成極あり、破線は補助電
極なしである。
In addition, a cylindrical conductive article with a diameter of 50mm and a height of 90mm was used, and a thin plate auxiliary cathode with a diameter of 70mm was arranged concentrically, and a case where this auxiliary cathode was not used was examined under the above gas conditions. Voltage when applying voltage at 2.5 Torr,
The relationship between current, output, and temperature was determined as shown in Figure 4. In FIG. 4, the solid line indicates auxiliary polarization, and the broken line indicates no auxiliary electrode.

第4図から補助成極を用いることにより低電圧で高温度
を得ることができ、処理電流、出力の値も低くすること
ができることが判る。
It can be seen from FIG. 4 that by using auxiliary polarization, a high temperature can be obtained with a low voltage, and the values of processing current and output can also be reduced.

本発明に用いる反応性ガスを均一に被処理品表面上に分
布させるには第5図に示す回転式ガス分配器51〜53
を用いるか、第6図に示す被処理品と補助電極を一体に
回転させる方式を用いる。
In order to uniformly distribute the reactive gas used in the present invention on the surface of the workpiece, rotary gas distributors 51 to 53 shown in FIG.
Alternatively, the method shown in FIG. 6 in which the workpiece and the auxiliary electrode are rotated together is used.

第5図において、ガス分配器51〜53にはそれぞれ反
応性ガス供給孔51A、5113,51Cが設けられて
いる。
In FIG. 5, the gas distributors 51 to 53 are provided with reactive gas supply holes 51A, 5113, and 51C, respectively.

第6図において、円筒型補助陰極61が回転62」二に
配置され、図示していない被処理品はこの補助陰極61
に配置される。また補助陰極61上に回転式ガス分配器
63が設けられ、陽極64と回転陰極62との間に電圧
を印加し、反応性ガスをガス分配器63から導入し、排
気孔65から排出させながらグロー放電を発生させ、補
助陰極61と被処理品間でホローカソード放電効果を発
生させるようになっている。
In FIG. 6, a cylindrical auxiliary cathode 61 is placed at the second rotation 62'', and a workpiece (not shown) is placed on this auxiliary cathode 61.
will be placed in Further, a rotary gas distributor 63 is provided on the auxiliary cathode 61, and a voltage is applied between the anode 64 and the rotating cathode 62, and reactive gas is introduced from the gas distributor 63 and discharged from the exhaust hole 65. Glow discharge is generated to produce a hollow cathode discharge effect between the auxiliary cathode 61 and the workpiece.

また、第7図に示すように平板状の補助電極71.72
を対向して配置し、該補助′成極71゜72間に導電性
部材73を配置する。この場会、+’rli助蒐極71
,72の対向面以外の箇所に絶縁性るるいは保温性のあ
るセラミック層74を設けると成力消費上の効果が得ら
れる。
In addition, as shown in FIG. 7, flat plate-shaped auxiliary electrodes 71, 72
are arranged facing each other, and a conductive member 73 is arranged between the auxiliary polarizations 71 and 72. This occasion, +'rli Suke Kougoku 71
, 72 is provided with an insulating layer or a ceramic layer 74 having a heat retaining property at a location other than the opposing surfaces, an effect on power consumption can be obtained.

本発明における複数個の被処理品の配置の一例を第8図
、第9図、第10図に示す。
An example of the arrangement of a plurality of objects to be processed in the present invention is shown in FIGS. 8, 9, and 10.

第8図、第9図においてイオン表面処理装置81の内部
に複数筒の被処理品82を同心円環状に配列し、その内
周及び外周に同心円環状の平行面の補助電極83.84
を配置しである。この補助電極83.84と被処理品8
2は一体となって回転するようになっている。85は陽
極端子、86は陰極端子、87は反応性ガス導入口、8
8は真空装置が接続されたガス排気口、89は真空計端
子である。
In FIGS. 8 and 9, a plurality of cylinders of objects to be treated 82 are arranged in a concentric ring shape inside an ion surface treatment apparatus 81, and auxiliary electrodes 83, 84 with concentric ring-shaped parallel surfaces are arranged on the inner and outer peripheries.
It is arranged. This auxiliary electrode 83, 84 and the object to be processed 8
2 are designed to rotate together. 85 is an anode terminal, 86 is a cathode terminal, 87 is a reactive gas inlet, 8
8 is a gas exhaust port connected to a vacuum device, and 89 is a vacuum gauge terminal.

第10図において、補助電極101と補助電極102を
平列に配置し、補助電極102側にこれと間隔をもって
平板状の被処理品103が配置されている。このような
三者の配置状態を複数個設けることによって平板状被処
理物を一度に多数処理することができる。
In FIG. 10, an auxiliary electrode 101 and an auxiliary electrode 102 are arranged in parallel, and a flat workpiece 103 is arranged on the side of the auxiliary electrode 102 with a space therebetween. By providing a plurality of such three-way arrangement states, it is possible to process a large number of flat plate-shaped objects at once.

実施例1 第11図に示すようなイオン表面処理装置によシ、Ti
Cの被覆処理を行った。被処理品は熱間ダイス鋼JIS
の5KD61鋼(直径20咽、長さ50間と直径7胴、
長さ30闘の段付き形状)を使用した。補助電極112
は幅150mm、長さ300m++++、厚さ5關の5
U8304とし、これを第11図に示すように、50w
wLの間隔で2枚対向配置させ、その中央に、被処理品
113を3本設置した。なお、この第11図において1
14は反応炉、115は電源、116は陽極端子、11
7は陰極端子、118はガスボンベ、119はガス導入
口、120は真空装置 121はトラッパ−1122は
金属蒸発源を示す。なお119の先端は第5図に示す回
転式ガス分配器が設けである。
Example 1 Using an ion surface treatment apparatus as shown in FIG.
C coating treatment was performed. The product to be processed is hot die steel JIS
5KD61 steel (diameter 20 mm, length 50 mm and diameter 7 body,
A stepped shape with a length of 30 mm was used. Auxiliary electrode 112
The width is 150mm, the length is 300m++, and the thickness is 5mm.
U8304, as shown in Fig. 11, 50w
Two pieces were placed facing each other at an interval of wL, and three pieces of the workpiece 113 were placed in the center. In addition, in this Figure 11, 1
14 is a reactor, 115 is a power source, 116 is an anode terminal, 11
7 is a cathode terminal, 118 is a gas cylinder, 119 is a gas inlet, 120 is a vacuum device, 121 is a trapper, and 1122 is a metal evaporation source. Note that the tip of 119 is provided with a rotary gas distributor shown in FIG.

処理は、はじめに真空装置120によシ1O−2TOr
rに減圧17、その後、H,、CH,、Arガスを導入
し、直流゛電源15で600v印加してグロー放心を発
生させ、900C,10分の浸炭処理後、このガス中に
キャリアガスとしてのH6に分散させたTtCA4を混
合し、930C,30分の被覆処理を行った。各ガスの
分圧はH,0,0,5Torr、Ar、0.9Torr
、CH4,0,9Torr*T ict、、0.11 
Tor rでsb、ガス流量はトータルで5.5t/分
でめる。
The process is first performed using a vacuum device 120 at 10-2 Torr.
After reducing the pressure 17 to r, H, CH, Ar gas was introduced, and 600V was applied from the DC power supply 15 to generate a glow center.After carburizing at 900C for 10 minutes, a carrier gas was added to this gas. TtCA4 dispersed in H6 was mixed and coated at 930C for 30 minutes. The partial pressure of each gas is H, 0, 0, 5 Torr, Ar, 0.9 Torr
,CH4,0,9Torr*T ict,,0.11
Torr sb, gas flow rate is 5.5t/min in total.

処理は同一温度であるが、補助電極を用いない従来のイ
オン窒化処理と類似の工程と、本発明の補助電極112
を用いた工程を行った。その結果、本発明による工程で
は、第12図(a)に示すように表面に均一に約5μm
厚さの’l”iCC被被膜形成されていた。一方、補助
電極を用いない従来の方法では、段付き部で均一の温度
が得られないと共に、930Cに加熱した直径7間の部
分でも均一な被膜は形成されず、1だ、被膜部も第12
図に示すように不均一な被膜であった。
Although the treatment is at the same temperature, it is a process similar to the conventional ion nitriding treatment without using an auxiliary electrode, and the auxiliary electrode 112 of the present invention.
A process using . As a result, in the process according to the present invention, as shown in FIG.
On the other hand, with the conventional method that does not use an auxiliary electrode, it is not possible to obtain a uniform temperature in the stepped part, and even in the part between the diameters of 7 mm heated to 930C, the iCC coating was formed. No film is formed, and the film part is also 12th.
As shown in the figure, the film was non-uniform.

filjKカス分圧eHt 、0.33 Torr、 
A r 。
filjK scum partial pressure eHt, 0.33 Torr,
Ar.

0.67 Torr 、 CH4,0,67Torr、
 Ti(、t4.0.83Torrとし、トータルのガ
ス流量を7.5t/分どした他は実施例1と同一条件で
処理したところ、軟弱なススのような被覆が形成され、
良好なTiC4の被覆は得られなかった。
0.67 Torr, CH4,0,67 Torr,
When treated under the same conditions as in Example 1 except that Ti (t4.0.83 Torr and total gas flow rate 7.5 t/min), a soft soot-like coating was formed.
A good TiC4 coating was not obtained.

実施例2 第13図(a)、 (b)、 (c)、 (d)、 (
P)−に、示す如く、試験片をgl1図に示すイオン表
面処理装置の内部にセットした。第13図では被処理品
(試験片)131ばJIS規格SCM415のクロムモ
リブデン鋼7ヤフト(直径15叫、長さ200間)を使
用した。補助電極は第13図(a)では円筒状とし、1
32と133の間隔を8mmとし、132と試験片13
1との間隔は5間として、ホローカソード放電は132
と試験片131との間で発生させた。
Example 2 Figure 13 (a), (b), (c), (d), (
As shown in P)-, the test piece was set inside the ionic surface treatment apparatus shown in Figure GL1. In FIG. 13, the article to be treated (test piece) 131 was a JIS standard SCM415 chromium molybdenum steel 7 shaft (diameter: 15 mm, length: 200 mm). The auxiliary electrode is cylindrical in FIG.
The distance between 32 and 133 is 8 mm, and 132 and test piece 13
1 and the interval is 5, and the hollow cathode discharge is 132.
and test piece 131.

第13図(b)は補助電極135を134よシも厚くし
て、この間隔を3.5鰭とし、ここでホローカソード放
電を発生させた。第13図(C)は試験片131の上、
下にホローカソード放電を発生させるもので、上端では
138と137で、下端では139と試験片131の間
で発生させている。第13図(d)は140を試験片1
31よシも厚くし、140と131の間にホローカソー
ド放電を発生させた。
In FIG. 13(b), the auxiliary electrode 135 is made thicker than 134, and the interval is set to 3.5 fins, and a hollow cathode discharge is generated here. FIG. 13(C) shows the top of the test piece 131;
Hollow cathode discharge is generated at the bottom between 138 and 137 at the upper end and between 139 and the test piece 131 at the lower end. Figure 13(d) shows 140 as test piece 1.
31 was also made thicker, and a hollow cathode discharge was generated between 140 and 131.

第13図(e)は上端では132と133の間で、下端
は136と137の間でホローカソード放電を発生させ
た。その結果、第13図の(a)、 (b)の上下端、
(e)の上端では850〜950Cの温度に加熱され、
第13図(b)では680〜700t;、第13図(d
)では670〜690C,第13図(e)ノ下端では6
50〜670Cの範囲となっていた。
In FIG. 13(e), hollow cathode discharge was generated between 132 and 133 at the upper end and between 136 and 137 at the lower end. As a result, the upper and lower ends of (a) and (b) in Fig. 13,
(e) is heated to a temperature of 850-950C at the upper end;
680 to 700t in Fig. 13(b);, Fig. 13(d)
) is 670-690C, and the lower end of Fig. 13(e) is 6
The temperature ranged from 50 to 670C.

ここで、CH,十i−i、+アルゴン雰囲気中で1hの
処理を行い、その後、さらにキャリアガスとしてH2に
分散させたTiCt4ガスを混合し、30m1nの処理
を行い、急冷処理を行った。
Here, treatment was performed for 1 h in a CH, 1-i-i, + argon atmosphere, and then TiCt4 gas dispersed in H2 was further mixed as a carrier gas, a treatment of 30 ml was performed, and a rapid cooling treatment was performed.

各カフ’、(0分圧は、Hz 、0.77 ’forr
、 A r。
Each cuff', (0 partial pressure is Hz, 0.77'forr
, A r.

0.70 Torr、 CH4,0,94Torr、 
TiCl2.0.07Torrであり、トータルガス流
量は5.3t/分である。
0.70 Torr, CH4,0.94 Torr,
TiCl2.0.07 Torr, and the total gas flow rate is 5.3 t/min.

第14図は被覆処理後の硬さ分布の測定結果を示したも
のである。その結果、表面の被覆以外の部分の硬さにつ
いては、温度が850C以上に加熱されたものの硬さは
Iの範囲となシ、その他のものは■の範囲である。表向
被覆の状態も実施例1と同様850C以上に加熱された
浸炭が均一に行われた範囲ではTiCが形成されていた
。以上のように、ホローカソード放電試験片あるいはそ
の近傍で発生させたものが硬化および被膜9成に対して
極めて有効であることがわかる。第15図は補助電極の
一例を示す。直径20關、長さ200mmの丸棒状被処
理品151に直径26間、長さ150酎、肉厚3間の円
筒状内側補助1E極152のみを用いる場合、およびこ
れに直径36悶肉厚5岨の内側′電極143のある場合
、第16図のように直径26間、肉厚3ff+Hの円筒
状内側補助電極161に直径1關、2rum、3mmの
穴を順次に全面に設けたものおよび、この補助電極の外
側に内径36闘、肉)享5間の外側補助成極162のあ
る四種類と電極を用いない場合を、第11図に示す装置
中で窒素ガス、水素ガス、アルゴンガス、メタンガスの
混合ガスによって補助電極のない部分を580Cに保持
し、ガス圧力を変動させて補助電極部の1温度を測定し
た。第17図はガス圧力と温度分布の関係を示したもの
である。イオンにおける表面処理を安定して行うために
は、多少のガス圧力の変動によっても被処理品の温度が
大きく変動しないことである。補助電極のない場合は、
580tZ’であるが、従来の単一の補助電極では第1
7図の121のように被処理品との間でホローカソード
放電を発生させる範囲内のみで比較的狭い圧力内で高い
温度になる。これに外部成極を用いると、第17図の曲
線131のようになり、ホローカソード効果が′成極内
である第15図の152と153の間にも発生し、その
効果がみられる。
FIG. 14 shows the measurement results of the hardness distribution after coating treatment. As a result, the hardness of the parts other than the surface coating is in the range I for those heated to 850C or higher, and in the range ■ for the others. The state of the surface coating was the same as in Example 1, with TiC being formed in the range where carburization was uniformly performed by heating to 850C or higher. As described above, it can be seen that the hollow cathode discharge test piece or one generated near it is extremely effective for curing and film formation. FIG. 15 shows an example of an auxiliary electrode. When only the cylindrical inner auxiliary pole 152 with a diameter of 26 mm, a length of 150 mm, and a wall thickness of 3 mm is used for a round rod-shaped workpiece 151 with a diameter of 20 mm and a length of 200 mm, and a cylindrical inner auxiliary pole 152 with a diameter of 36 mm and a wall thickness of 5 mm is used. In the case of the inner side electrode 143, as shown in FIG. 16, a cylindrical inner auxiliary electrode 161 with a diameter of 26 mm and a wall thickness of 3 ff+H is provided with holes of 1 mm, 2 rum, and 3 mm in diameter sequentially on the entire surface, and On the outside of this auxiliary electrode, four types of external auxiliary polarization 162 with an inner diameter of 36 mm and a case where no electrode is used were prepared using nitrogen gas, hydrogen gas, argon gas, etc. in the apparatus shown in FIG. The part without the auxiliary electrode was maintained at 580C with a mixed gas of methane gas, and the temperature of the auxiliary electrode part was measured by varying the gas pressure. FIG. 17 shows the relationship between gas pressure and temperature distribution. In order to stably perform surface treatment using ions, it is important that the temperature of the object to be treated does not change significantly even with slight fluctuations in gas pressure. If there is no auxiliary electrode,
580tZ', but with the conventional single auxiliary electrode, the first
As shown at 121 in Fig. 7, the temperature is high within a relatively narrow pressure range only within the range where hollow cathode discharge is generated between the product and the workpiece. If external polarization is used for this, the curve becomes like the curve 131 in FIG. 17, and the hollow cathode effect also occurs between 152 and 153 in FIG. 15, which is within the polarization range, and its effect can be seen.

一方、本発明のように電極に直径1〜3mmの孔を順序
正しく設けた場合は、第17図の曲線141のように最
高加熱時の温度は低くなるが、温度が一定の範囲になる
圧力範囲が広くなる。この場合、圧力の変動によシ、補
助′成極内の孔の中にその圧力に応じてホローカソード
放電が発生し、これにより、被処理品とのホローカソー
ド放電の圧力範囲が広くなることによっている。次に、
この電極にさらに外側電極(第17図)を設けた場合は
、第17図の曲線151のようになり、最高温度が高く
なると共に一足温度を維持できる圧力範囲も広くなる。
On the other hand, when holes with a diameter of 1 to 3 mm are provided in the electrode in the correct order as in the present invention, the temperature at maximum heating becomes low as shown by curve 141 in FIG. The range becomes wider. In this case, due to pressure fluctuations, a hollow cathode discharge occurs in the hole in the auxiliary polarization according to the pressure, which widens the pressure range of the hollow cathode discharge with the workpiece. I am by. next,
When this electrode is further provided with an outer electrode (FIG. 17), the curve becomes like the curve 151 in FIG. 17, and as the maximum temperature becomes higher, the pressure range within which the temperature can be maintained also becomes wider.

なお、最高温度、一定温度を維持できる圧力範囲は補助
電極の形状、構造、ガスの組成によっても大幅に変動で
きる。。
Note that the maximum temperature and the pressure range in which a constant temperature can be maintained can vary greatly depending on the shape and structure of the auxiliary electrode and the composition of the gas. .

次に第16図の構造の電極として直径0.5〜3聴、4
,5,6,7,8,9咽の孔?l−順次設けた内部補助
電極を用いて孔の大きさについて検討した。その結果、
最大の孔径が4閲以上になると、最高加熱温度が急激に
低下しsmm以上になると効果が著しく低下することが
わかった。最も効果がある範囲は、直径0.5〜48で
0.5〜7間の範囲でもある程度の効果がある。次に、
孔のかわりに長さ20關のスリットを設けた。この場合
も、スリット幅が4rran以内であれば同様にはじめ
にスリット内でホローカソード効果に基づく放電が発生
した。次に、電極の外側にセラミック層を設けて同様の
実験を行った。その結果、第16図の形の電極で外側電
極にセラミックを設けた場合は電気出力を約10%低減
できることが知られた。
Next, as electrodes with the structure shown in Figure 16, diameters of 0.5 to 3 mm and 4 mm
, 5, 6, 7, 8, 9 pharyngeal foramen? The size of the pores was investigated using internal auxiliary electrodes provided sequentially. the result,
It has been found that when the maximum pore size is 4 mm or more, the maximum heating temperature decreases rapidly, and when the maximum pore size is smm or more, the effect is significantly reduced. The most effective range is a diameter of 0.5 to 48, and a range of 0.5 to 7 is also effective to some extent. next,
A slit with a length of 20 mm was provided instead of a hole. In this case as well, if the slit width was within 4 rran, discharge based on the hollow cathode effect similarly occurred within the slit. Next, a similar experiment was conducted with a ceramic layer provided on the outside of the electrode. As a result, it was found that in the case of an electrode having the shape shown in FIG. 16, in which ceramic was provided on the outer electrode, the electrical output could be reduced by approximately 10%.

実施例3 断面寸法15闘×15胴、長さ120關のJISSKD
I材を用い、これに、第15図および第16図に示す二
種の電極を用い各々3本を、1〜4’l”orrの窒素
ガス、メタンガス、水素ガス、アルゴンガス、キャリア
ガスとしてH7に分散させたCrC1,を用いて実施例
1と同様にして被覆した。各ガスの分圧は、l−12,
1,21Torr。
Example 3 JISSKD with cross-sectional dimensions of 15mm x 15mm and length of 120mm
I material was used, and two types of electrodes shown in Fig. 15 and Fig. 16 were used, and three electrodes each were used as nitrogen gas, methane gas, hydrogen gas, argon gas, and carrier gas of 1 to 4'l'' orr. Coating was carried out in the same manner as in Example 1 using CrC1 dispersed in H7.The partial pressures of each gas were l-12,
1.21 Torr.

A r、 0.56’l’orr、 CH4,1,13
Torr。
A r, 0.56'l'orr, CH4,1,13
Torr.

CrCl2.0.08Torrであり、トータルガス流
量は5.3t/分である。但し、ホローカソード放心の
ない位置の温度を950Cで30分間保持し、その断面
を観蒙した。その結果、本発明による方法では、ホロー
カソード部に均一に7〜10μmのCr炭化物被膜が形
成されていた。
CrCl2.0.08 Torr, and the total gas flow rate is 5.3 t/min. However, the temperature at the position where the hollow cathode was not centered was maintained at 950 C for 30 minutes, and its cross section was observed. As a result, in the method according to the present invention, a Cr carbide film with a thickness of 7 to 10 μm was uniformly formed on the hollow cathode portion.

実施例4 第11図に示すイオン表面処理装置を用い、被処理品と
して直径20關、長さ30朋のWC系超硬、JISSU
S304を用い、この表面に内径36間、肉厚5 tn
mのグラファイト製補助電極を被処理品を中心になるよ
うに設置1fL7ζ。この状態で炉内f:10−” ’
l’orrまで減IE L i’j 後、H,+5%A
rガスを導入し、3Torrの圧力になるよう流量を調
整した。その後DC800Vを印加した。
Example 4 Using the ion surface treatment apparatus shown in Fig. 11, the workpiece to be treated was WC-based carbide, JISSU, with a diameter of 20 mm and a length of 30 mm.
Using S304, this surface has an inner diameter of 36 mm and a wall thickness of 5 tn.
A graphite auxiliary electrode of m is installed 1fL7ζ so that the object to be treated is centered. In this state, f: 10-”'
After decreasing IE L i'j to l'orr, H, +5%A
r gas was introduced, and the flow rate was adjusted so that the pressure was 3 Torr. Thereafter, DC 800V was applied.

補助電極部はグロー放電が強く、約15分で950Cに
加熱された。この状態でN、ガスをH1+5%Arに対
し30%の流量になるよう尋人し、温度が950Cを保
持するよう(Ht 十Ar )の流量を制御して全体の
圧力を調整し約10分間窒化処理を行った。この場合N
、を投入時から被処理品をセットした電極及び冶具全体
を1回/分で回転させた。その後、H,ガスをキャリア
ガスとしてTiCl2をH,キャリア量でN、ガスの1
/2の流量になるよう導入し、全圧力を制御して、95
0Cを保持出来るようH7+5%Ar流量を制御し、3
0分の処理を行った。この時、被処理をセットした電極
及び治具は3回転/分とした。冷却後、各処理品の断面
組織を観察した結果、補助電極を設けた位置に5〜10
μmのTiN被膜が形成されていた。この処理と同様の
処理を被処理品を回転しない状態で行った。その結果、
TiN被膜は被処理品のセット位置により異なシ、ガス
の供給口近傍の場合、3〜7μm形成されているが、他
の物は殆ど形成されないことが分った。
The auxiliary electrode part had a strong glow discharge and was heated to 950C in about 15 minutes. In this state, N and gas were introduced at a flow rate of 30% of H1 + 5% Ar, and the overall pressure was adjusted by controlling the flow rate to maintain the temperature at 950C (Ht + Ar) for about 10 minutes. Nitriding treatment was performed. In this case N
, the entire electrode and jig in which the article to be treated was set were rotated at a rate of 1 rotation per minute. After that, H, gas as carrier gas, TiCl2 as H, carrier amount as N, gas as 1
/2 flow rate, control the total pressure, 95
Control the H7 + 5% Ar flow rate to maintain 0C,
Processing was performed for 0 minutes. At this time, the electrode and jig on which the object to be treated was set were rotated at 3 revolutions/minute. After cooling, the cross-sectional structure of each treated product was observed, and it was found that 5 to 10
A TiN film of μm thickness was formed. A process similar to this process was performed without rotating the workpiece. the result,
It was found that the TiN film was formed in a thickness of 3 to 7 μm depending on the set position of the article to be processed, and was found to be 3 to 7 μm near the gas supply port, but was hardly formed in other areas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明で使用される補助電極の構造を示す斜視
図、第2図は本発明で使用される補助電極の他の例を示
す斜視図、第3図は本発明の実施例で得られた被処理品
からの距離と温度との関係を示すグラフ 第4図は加熱
に及ぼす補助電極の効果を示すグラフ、第5図(a)、
 (b)、 (d)はそれぞれ反応性ガスを均一に分布
させるための回転式ガス分配器の模式構造図、第6図は
反応性ガスを均一に分布させるための回転式補助電極の
模式構造図、第7図は本発明のグロー放電処理装置の構
成の一悪様を示す要部斜視図、第8図は本発明に基づく
複数個の被処理品を複数個の補助電極を用いて被覆する
配列図、第9図(a)およびCI))はそれぞれ第8図
の部分横断面図および部分縦断面図、第1O図は平板状
被処理物を一度に多数処理するときの被処理品の配置と
補助電極とを示す斜視図、第11図は本発明のイオン表
面処理装置の構成を示す概略図、第12図(a)、 (
b)は本発明工程と従来工程を  “施した場合の被処
理品の金属組織を示す顕微鏡写真、第13図(a)、 
(b)、 (c)、 (d)、 (e)はそれぞれ本発
明で使用される補助電極を示す断面図、第14図は本発
明の実施例で得られた被処理品の表面硬度と、被処理品
と補助電極との距離との関係を示すグラフ、第15図お
よび第16図は本発明に用いられる補助電極の構造を示
す断面図、第17図は本発明の実施例でイ?+られたガ
ス圧力と温度との関係を示す図である。 11.12,21,22,23,61,71゜72.8
3,84,101,102,112゜132.133,
134,135,137,138゜139・・・補助電
極。 ゛・蟹す14゜ 茅! 目 第3 目 距離(1り 第4. 固 温度 (・す 茅5目 (f−) (C) $7 目 $8 目 δ6 茅7 口 (久) $70 図 茅  ノ1   巨] 12θ 茅72図 く乙【ン (b) 茅13巳 (幻     鉛)     (す /36  /36 芽74 固 距離 (売捌) 葦150 茅76目 早17図 ・畔 軛 力°゛ス圧7JC7,,,ジ 手続補正書(方式) 特許庁長官 若杉和夫殿 41′F件の表示 昭和57年′IIl;、Vl:1頭第178325 −
じ発明の名称 ダロ一方電による被堕方法および装置 補正をする者 ・1(flとの陣乎  特許出願人 イIIす[東京都丁−代111区丸の内−・−j[15
番1号名  (j、L51111株式会(111立 製
 作 所代表昔 三 1)勝 茂 代   理   人 居  所  東京都千代田区丸の内−丁目5番1号補正
の対象 明細書の図面の簡単な説明の欄。 補正の内容 1、明細il)第38頁第5行の[第5図(a) 、 
(b) 、 (d) Jを「第5図(a) 、 (b)
 、 (C) Jに改める。
Fig. 1 is a perspective view showing the structure of the auxiliary electrode used in the present invention, Fig. 2 is a perspective view showing another example of the auxiliary electrode used in the present invention, and Fig. 3 is a perspective view showing the structure of the auxiliary electrode used in the present invention. A graph showing the relationship between the distance from the object to be processed and the temperature. Figure 4 is a graph showing the effect of the auxiliary electrode on heating. Figure 5 (a).
(b) and (d) are schematic structural diagrams of a rotary gas distributor for uniformly distributing reactive gas, respectively, and Figure 6 is a schematic structural diagram of a rotating auxiliary electrode for uniformly distributing reactive gas. 7 is a perspective view of a main part showing one aspect of the configuration of the glow discharge treatment apparatus of the present invention, and FIG. 8 is a perspective view of a main part showing a bad aspect of the structure of the glow discharge treatment apparatus of the present invention, and FIG. Figures 9(a) and CI)) are a partial cross-sectional view and a partial vertical cross-sectional view of Figure 8, respectively, and Figure 1O is an arrangement diagram of a workpiece when processing a large number of flat workpieces at once. FIG. 11 is a schematic diagram showing the configuration of the ion surface treatment apparatus of the present invention, FIG. 12(a), (
b) is a micrograph showing the metal structure of the processed product when the present invention process and the conventional process were applied, FIG. 13(a),
(b), (c), (d), and (e) are cross-sectional views showing the auxiliary electrodes used in the present invention, respectively. , a graph showing the relationship between the distance between the object to be processed and the auxiliary electrode, FIGS. 15 and 16 are cross-sectional views showing the structure of the auxiliary electrode used in the present invention, and FIG. 17 is a graph showing the structure of the auxiliary electrode used in the present invention. ? FIG. 3 is a diagram showing the relationship between the increased gas pressure and temperature. 11.12, 21, 22, 23, 61, 71°72.8
3,84,101,102,112゜132.133,
134, 135, 137, 138° 139... Auxiliary electrode.゛・Kanisu 14゜Kaya! Eye 3rd Eye Distance (1st 4th. Solid Temperature (Sumo 5th Eye (f-) (C) $7 Eye $8 Eye δ6 Kaya 7 Mouth (Long) $70 Figure Kaya No. 1 Huge] 12θ Kaya 72 Tsukuotsu (b) Chi 13 Snake (Phantom Lead) (Su / 36 / 36 Bud 74 Solid Distance (Sale) Reed 150 Chi 76 Eye Haya 17 Fig. yoke force °゛ Pressure 7 JC 7,,, Ji Procedural amendment (method) Mr. Kazuo Wakasugi, Commissioner of the Patent Office, 41'F indication 1981'IIl;, Vl: 1 head No. 178325 -
The name of the invention is the person who corrects the method and device for deterioration caused by electricity.
Number 1 Name (j, L51111 Co., Ltd. (111 Manufacturing Co., Ltd. Representative Matsu 31) Katsu Shigeyo Osamu Address Address 5-chome Marunouchi, Chiyoda-ku, Tokyo No. 1 Brief description of the drawings of the specification subject to the amendment Column. Contents of amendment 1, specification il) Page 38, line 5 [Figure 5 (a),
(b), (d) J to "Figure 5 (a), (b)
, (C) amended to J.

Claims (1)

【特許請求の範囲】 1、金属化合物のガス状物質と、該金属化合物と反応し
て反応物を形成する反応性ガスとを含む10Torr以
下の真空度で陰極に接続された導電性被処理物と該物品
にグロー放電の相互作用が生じる位置に近接して配置さ
れた補助陰極、および陽極との間でグロー放′亀を発生
させ、前記物品の表面に反応物を被覆する方法であって
、前記ガス状物質の分圧は前記反応性ガスの分圧よりも
小さいこと全特徴とするグロー放電による被覆方法。 2、特許請求の範囲第1項において、金属化合物のガス
状物質の分圧は0.5Torr以下であシ、反応性ガス
の分圧は1Torr以上であることを特徴トスるグロー
放電による被覆方法。 3、・特許請求の範囲第1項において、金属化合物のガ
ス状物質がT I r Cr* N 1 r S i+
 A Z sZr、B、Hf、V、W、またはTaのハ
ロゲン化物であり、反応性ガスがCH,、N、、シラン
またはボランでアシ、反応物が前記金属の窒化物。 炭化物または硼化物であることを特徴とするグロー放電
による被覆方法。 4、%許請求の範囲第1項において、金属化合物のガス
状物質は、該金属化合物の貯液中に非酸化性ガスからな
るキャリアガスを吹き込むことによってキャリアガス中
に分散されたものであることを特徴とするグロー放電に
よる被覆方法。 5、特許請求の範囲第4項において、キャリアガスは水
床であシ、金属化合物は’rict、であシ、反応性ガ
スはCH4であることを特徴とするグロー放電による被
覆方法。 6、特許請求の範囲第1項において、被覆処理前に被処
理物品の被処理面を表面硬化させることを特徴とするグ
ロー放電による被覆方法。 7、特許請求の範囲第6項において、表面硬化が、浸炭
、窒化、硼化、浸流または浸炭窒化のいずれかであるこ
とを特徴とするグロー放電による被覆方法。 8、特許請求の範囲第1項において、真空度が、2〜7
’I’orrであることを特徴とするグロー放電による
被覆方法。 9、陽極と、陰極と、該陰極に接続された導電性被処理
品ど、該被処理品にグロー放電の相互作用が生じる位置
に近接して配置された補助電極と、反応性ガス尋人口と
、反応性ガス排出口と、全備えたグロー放電による被覆
装置において、該装置内に供給てれる金属化合物のガス
状物質の分圧と、該ガス状物質と反応して反応物を形成
する反応性ガスの分圧とを調整する圧力調整手段を設け
たことを特徴とするグロー放電による被覆装置。 10、特許請求の範囲第9項において、前記圧力調整手
段が、前記反応性ガスの供給方向と前記被処理品の被膜
処理面を相ヌ゛」的に移動させる手段であることを特徴
とするグロー放電による被覆装置。 11、%許請求の範囲第10項において、前記手段が、
回転式反応性ガス分配器であることを特徴とするグロー
放電による被覆装置。 12、特許請求の範囲第10項において、前記手段が、
前記被処理品を前記補助電極と一体的に回転させるもの
であるグロー放電による被覆装置。 13、特許請求の範囲第9項において、前記被処理品と
前記補助電極との距離が015〜50間であるグロー放
電による被覆装置。
[Scope of Claims] 1. An electrically conductive treated object connected to a cathode at a vacuum level of 10 Torr or less, containing a gaseous substance of a metal compound and a reactive gas that reacts with the metal compound to form a reactant. A method for coating the surface of the article with a reactant by generating a glow discharge between the anode, an auxiliary cathode, and an anode, which are disposed close to a position where glow discharge interaction occurs on the article, . A coating method by glow discharge, characterized in that the partial pressure of the gaseous substance is smaller than the partial pressure of the reactive gas. 2. In claim 1, the coating method by glow discharge characterized in that the partial pressure of the gaseous substance of the metal compound is 0.5 Torr or less, and the partial pressure of the reactive gas is 1 Torr or more. . 3. In Claim 1, the gaseous substance of the metal compound is T I r Cr* N 1 r Si+
A Z sZr, B, Hf, V, W, or Ta halide, the reactive gas is CH, N, silane or borane, and the reactant is a nitride of the above metal. A coating method using glow discharge, characterized in that it is a carbide or a boride. 4.% Allowance In claim 1, the gaseous substance of the metal compound is dispersed in a carrier gas by blowing a carrier gas consisting of a non-oxidizing gas into the storage liquid of the metal compound. A coating method using glow discharge characterized by: 5. A coating method using glow discharge according to claim 4, characterized in that the carrier gas is a water bed, the metal compound is 'rict, and the reactive gas is CH4. 6. A coating method using glow discharge according to claim 1, characterized in that the surface of the article to be treated is surface hardened before the coating treatment. 7. The coating method by glow discharge according to claim 6, wherein the surface hardening is any one of carburizing, nitriding, boriding, flooding, or carbonitriding. 8. In claim 1, the degree of vacuum is 2 to 7.
A coating method using glow discharge characterized by 'I'orr. 9. An anode, a cathode, an auxiliary electrode, such as a conductive workpiece connected to the cathode, disposed close to a position where glow discharge interaction occurs with the workpiece, and a reactive gas immersion source. , a reactive gas outlet, and a glow discharge coating device, which reacts with the partial pressure of the gaseous substance of the metal compound fed into the device to form a reactant. A coating device using glow discharge, characterized in that it is provided with pressure adjustment means for adjusting the partial pressure of a reactive gas. 10. Claim 9, characterized in that the pressure regulating means is a means for moving the supply direction of the reactive gas and the coating treatment surface of the article to be treated in tandem. Coating device using glow discharge. 11.% Allowance In claim 10, the means comprises:
A coating device using glow discharge, characterized in that it is a rotary reactive gas distributor. 12. In claim 10, the means comprises:
A coating device using glow discharge, which rotates the object to be treated integrally with the auxiliary electrode. 13. The coating device using glow discharge according to claim 9, wherein the distance between the object to be treated and the auxiliary electrode is between 0.15 and 0.50.
JP17832582A 1982-10-13 1982-10-13 Method and device for coating by glow discharge Pending JPS5970767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17832582A JPS5970767A (en) 1982-10-13 1982-10-13 Method and device for coating by glow discharge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17832582A JPS5970767A (en) 1982-10-13 1982-10-13 Method and device for coating by glow discharge

Publications (1)

Publication Number Publication Date
JPS5970767A true JPS5970767A (en) 1984-04-21

Family

ID=16046507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17832582A Pending JPS5970767A (en) 1982-10-13 1982-10-13 Method and device for coating by glow discharge

Country Status (1)

Country Link
JP (1) JPS5970767A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274772A (en) * 1987-05-07 1988-11-11 Res Dev Corp Of Japan Manufacture of titanium boride
JP2006199980A (en) * 2005-01-18 2006-08-03 Shinko Seiki Co Ltd Method for coating inner surface and apparatus therefor
JP2008540821A (en) * 2005-05-04 2008-11-20 エーリコン・トレイディング・アーゲー・トリューバッハ Plasma amplifier for plasma processing plant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5456366A (en) * 1977-10-14 1979-05-07 Hitachi Ltd Plasma film forming apparatus
JPS5727914A (en) * 1980-07-25 1982-02-15 Mitsubishi Electric Corp Manufacture of thin silicon carbide film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5456366A (en) * 1977-10-14 1979-05-07 Hitachi Ltd Plasma film forming apparatus
JPS5727914A (en) * 1980-07-25 1982-02-15 Mitsubishi Electric Corp Manufacture of thin silicon carbide film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274772A (en) * 1987-05-07 1988-11-11 Res Dev Corp Of Japan Manufacture of titanium boride
JP2006199980A (en) * 2005-01-18 2006-08-03 Shinko Seiki Co Ltd Method for coating inner surface and apparatus therefor
JP2008540821A (en) * 2005-05-04 2008-11-20 エーリコン・トレイディング・アーゲー・トリューバッハ Plasma amplifier for plasma processing plant

Similar Documents

Publication Publication Date Title
US7160616B2 (en) DLC layer system and method for producing said layer system
US4486462A (en) Method for coating by glow discharge
EP2148939B1 (en) Vacuum treatment unit and vacuum treatment process
US8691063B2 (en) Methods and apparatus for forming diamond-like coatings
JPS62180069A (en) Method for coating inside surface of pipe
KR101849997B1 (en) Methods for coating surface of iron-based alloy and products with high hardness and low friction manufactured thereby
JPS5970767A (en) Method and device for coating by glow discharge
JPH0835075A (en) Steel-series composite surface-treated product and its production
JPS6154869B2 (en)
JP2001192861A (en) Surface treating method and surface treating device
KR101859116B1 (en) Methods for coating surface of iron-based alloy and products with high corrosion resistance and high conductivity manufactured thereby
JPS61194180A (en) Hollow electric discharge vapor deposition device
JPS60125366A (en) Surface treatment of member
JPS6156273A (en) Method and device for surface processing by glow electric discharge
JPS6134505B2 (en)
JPS60248880A (en) Method and device for coating by glow discharge
JP4210141B2 (en) Method for forming hard carbon nitride film
JPS58164777A (en) Formation of metallic compound film
JPS6342362A (en) Production of surface coated steel material
JPH07118850A (en) Formation of hard film by ion nitriding and plasma cvd
JPH03138370A (en) Thin film forming device
US20080014371A1 (en) Method of Producing a Coated Fishing Hook
JPS63118075A (en) Coating method by glow discharge
JPS58174569A (en) Formation of film comprising metal compound
JPS62180077A (en) Coating method for inside surface of pipe