JPS6254869B2 - - Google Patents

Info

Publication number
JPS6254869B2
JPS6254869B2 JP59280063A JP28006384A JPS6254869B2 JP S6254869 B2 JPS6254869 B2 JP S6254869B2 JP 59280063 A JP59280063 A JP 59280063A JP 28006384 A JP28006384 A JP 28006384A JP S6254869 B2 JPS6254869 B2 JP S6254869B2
Authority
JP
Japan
Prior art keywords
gas
vapor deposition
chemical vapor
deposited
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59280063A
Other languages
Japanese (ja)
Other versions
JPS61157681A (en
Inventor
Kimio Nakada
Hiroshi Mikita
Nobuatsu Watanabe
Takeshi Nakajima
Yoho Tei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Kinzoku Co Ltd
Original Assignee
Toho Kinzoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Kinzoku Co Ltd filed Critical Toho Kinzoku Co Ltd
Priority to JP28006384A priority Critical patent/JPS61157681A/en
Publication of JPS61157681A publication Critical patent/JPS61157681A/en
Publication of JPS6254869B2 publication Critical patent/JPS6254869B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は被蒸着物の表面に緻密かつ平滑な炭
化タングステン被膜を形成するための化学蒸着法
に関するものである。 (技術的背景) 金属等の表面に化学蒸着法(CVD)によつて
炭化タングステン被膜を形成する表面硬化法が知
られている。この化学蒸着法として従来採用され
てきた方法は、六フツ化タングステン(WF6)と
水素ガス(H2)にベンゼン(C6H6)をアルゴンガ
ス(Ar)をキヤリヤガスとして添加し、高温に
保持された被蒸着物表面に導く方法である。この
方法によつて炭化タングステンの蒸着被膜を形成
することはできるが、ベンゼン(C6H6)は液体で
あるため供給操作が難しく、しかも均一な蒸着被
膜を形成することのできる反応条件の領域が狭い
という問題があつた。また、ベンゼンを用いる従
来の方法では、形成された被膜表面の平滑さが充
分ではなく、実用面で問題があつた。 (発明の目的) この発明は、上記従来の化学蒸着法の問題点を
改良し、緻密で平滑な表面を有する炭化タングス
テン被膜を容易に形成することのできる化学蒸着
法を提供することを目的としている。 (発明の開示) 本発明にかかる化学蒸着法は、六フツ化タング
ステン、水素ガスおよびシクロプロパンガスを反
応ガスとして用い、キヤリヤガスである不活性ガ
スとともに反応室内に供給して反応室内の被蒸着
物表面に炭化タングステン被膜を形成することを
特徴としている。すなわち、従来法におけるベン
ゼンのかわりにシクロプロパンガスを採用するこ
とによつてすぐれた炭化タングステン被膜を形成
するものであり、シクロプロパンガスがベンゼン
と違つて気体であるため、適当なキヤリヤガスを
用いることによつて安定状態でうまく供給するこ
とができるのである。以下これを具体的に説明す
る。 第1図は本発明を実施するための化学蒸着装置
の1例をあらわす系統図であつて、この化学蒸着
装置1は、外周部に加熱炉2が設けられた管状の
竪型反応室をそなえ、その内部に被蒸着物を載置
する回転テーブル5が設けられている。回転テー
ブル5は、反応室3の底部に設けられた回転装置
6の回転軸7によつて支持されている。 反応室3のガス供給口3aには、水素ガスボン
ベ10、アルゴンガスボンベ11、シクロプロパ
ンガスボンベ12および六フツ化タングステンボ
ンベ13が接続されている。図中、14,15,
16,17はそれぞれのガスの流量を調節するた
めのガス流量調節バルブ、18,19,20は回
転浮遊式流量計、21は質量流量計である。反応
室3の底部に設けた排気口3bには、排ガス処理
槽22とターボフアン23が接続されている。ま
た、反応室3の入気側と排気側には、ガスの流通
を停止することのできる閉塞用バルブ24,25
が設けられている。 この化学蒸着装置1を用いて炭化タングステン
被膜を形成するには、被蒸着物4をテーブル5上
に載置し、加熱炉2によつて所定の温度に加熱す
るとともに、それぞれのボンベから所定量のガス
を反応室内に供給する。蒸着中における被蒸着物
の温度は350〜600℃とするのが好ましく、400〜
550℃とするのがより好ましい。反応室3に供給
される混合ガス中の六フツ化タングステン
(WF6)と水素ガス(H2)の混合比率は、モル比で
WF6:H2=1:3〜1:15とするのが好まし
く、WF6:H2=1:6〜1:12とするのがより
好ましい。また、シクロプロパンガス(C3H6)の
添加量は、水素ガス(H2)と六フツ化タングステ
ン(WF6)とを合わせた量(WF6+H2)に対しモ
ル比で0.01〜0.3の割合とするのが好ましく。0.01
〜0.15の割合とするのがより好ましい。シクロプ
ロパンガス供給用のキヤリヤガスとしては、入手
性等の面でアルゴンガスを用いるのがよいが、他
の適当な不活性ガスを用いてもよい。高温に加熱
された被蒸着物が混合ガスにさらされると、その
表面に炭化タングステン被膜が形成される。この
被膜は、W2Cを主成分とする柱状組織となるの
が普通であり、従来のものに較べて緻密で、しか
も平滑な表面をそなえている。また、従来の化学
蒸着法による炭化タングステン被膜の400〜500℃
の比較的低い温度領域におけるヌープ硬度が1800
(Hk)程度であり、反応条件によつて大きなバラ
ツキを示すのに対し、本発明によつて形成される
被膜のヌープ硬度は一般に2300〜2500(Hk)と
高くて安定した値を示す傾向がある。これは、従
来法による蒸着被膜がW、W2C、W3C等が混在
する不均質組織となりやすいのに対し、本発明の
蒸着法では比較的均質なW2Cの柱状組織が得ら
れるからであろうと考えられる。 (実施例および比較例) 被蒸着物(基材)としてグラフアイト板(IG
−11)および無酸素銅板を用い、種々の条件で化
学蒸着を行なつた結果を第1表に示す。また、実
施例2と比較例1で得られた被膜の顕微鏡組織を
第2図a,bおよび第3図a,bに示す。第2図
は実施例2の被膜を、第3図は比較例1の被膜を
あらわす。いずれもaは被膜の表面を、bは断面
をあらわす。従来法による被膜が10〜30μm程度
の塊状粒子(積層体)からなる粗い表面を有する
のに対し、本発明による被膜は微細な柱状組織を
呈し、表面の凹凸も5μm程度と平滑で緻密なも
のであることがわかる。
(Industrial Application Field) The present invention relates to a chemical vapor deposition method for forming a dense and smooth tungsten carbide film on the surface of an object to be deposited. (Technical Background) A surface hardening method is known in which a tungsten carbide film is formed on the surface of a metal or the like by chemical vapor deposition (CVD). The conventional chemical vapor deposition method is to add benzene (C 6 H 6 ) and argon gas (Ar) as a carrier gas to tungsten hexafluoride (WF 6 ) and hydrogen gas (H 2 ), and then heat it to a high temperature. This is a method in which the vapor is guided to the surface of the held object. Although it is possible to form a vapor deposited film of tungsten carbide by this method, since benzene (C 6 H 6 ) is a liquid, supply operations are difficult, and the reaction conditions are in the range where a uniform vapor deposited film can be formed. There was a problem that the space was too small. Further, in the conventional method using benzene, the surface of the formed film was not sufficiently smooth, which caused problems in practical use. (Object of the Invention) The purpose of the present invention is to improve the problems of the conventional chemical vapor deposition method described above, and to provide a chemical vapor deposition method that can easily form a tungsten carbide film having a dense and smooth surface. There is. (Disclosure of the Invention) The chemical vapor deposition method according to the present invention uses tungsten hexafluoride, hydrogen gas, and cyclopropane gas as reaction gases, and supplies them together with an inert gas as a carrier gas into a reaction chamber to deposit a material to be deposited in the reaction chamber. It is characterized by forming a tungsten carbide film on the surface. In other words, an excellent tungsten carbide film is formed by using cyclopropane gas instead of benzene in the conventional method, and since cyclopropane gas is a gas unlike benzene, an appropriate carrier gas must be used. This allows it to be successfully supplied in a stable state. This will be explained in detail below. FIG. 1 is a system diagram showing an example of a chemical vapor deposition apparatus for carrying out the present invention. A rotary table 5 is provided therein on which the object to be deposited is placed. The rotary table 5 is supported by a rotating shaft 7 of a rotating device 6 provided at the bottom of the reaction chamber 3. A hydrogen gas cylinder 10, an argon gas cylinder 11, a cyclopropane gas cylinder 12, and a tungsten hexafluoride cylinder 13 are connected to the gas supply port 3a of the reaction chamber 3. In the figure, 14, 15,
Reference numerals 16 and 17 are gas flow rate control valves for adjusting the flow rates of the respective gases, 18, 19 and 20 are rotary floating flowmeters, and 21 is a mass flowmeter. An exhaust gas treatment tank 22 and a turbo fan 23 are connected to an exhaust port 3b provided at the bottom of the reaction chamber 3. Further, on the inlet side and the exhaust side of the reaction chamber 3, there are closing valves 24 and 25 that can stop the flow of gas.
is provided. To form a tungsten carbide film using this chemical vapor deposition apparatus 1, the material to be deposited 4 is placed on the table 5, heated to a predetermined temperature by the heating furnace 2, and a predetermined amount is deposited from each cylinder. of gas is supplied into the reaction chamber. The temperature of the object to be deposited during vapor deposition is preferably 350 to 600°C, and 400 to 600°C.
More preferably, the temperature is 550°C. The mixing ratio of tungsten hexafluoride (WF 6 ) and hydrogen gas (H 2 ) in the mixed gas supplied to reaction chamber 3 is expressed as a molar ratio.
It is preferable that WF 6 :H 2 =1:3 to 1:15, and more preferably that WF 6 :H 2 =1:6 to 1:12. The amount of cyclopropane gas (C 3 H 6 ) added is 0.01 to 0.3 in molar ratio to the combined amount of hydrogen gas (H 2 ) and tungsten hexafluoride (WF 6 ) (WF 6 +H 2 ). It is preferable to set the ratio to . 0.01
It is more preferable to set the ratio to 0.15. As a carrier gas for supplying cyclopropane gas, argon gas is preferably used from the viewpoint of availability, but other suitable inert gases may also be used. When a deposition target heated to a high temperature is exposed to a mixed gas, a tungsten carbide film is formed on its surface. This coating usually has a columnar structure mainly composed of W 2 C, and has a denser and smoother surface than conventional coatings. In addition, 400~500℃ of tungsten carbide coating by conventional chemical vapor deposition method.
Knoop hardness in the relatively low temperature range of 1800
(Hk) and shows large variations depending on the reaction conditions, whereas the Knoop hardness of the coating formed by the present invention generally tends to show a high and stable value of 2300 to 2500 (Hk). be. This is because the vapor deposited film by the conventional method tends to have a heterogeneous structure in which W, W 2 C, W 3 C, etc. are mixed, whereas the vapor deposition method of the present invention can obtain a relatively homogeneous columnar structure of W 2 C. It is thought that this is because (Example and Comparative Example) Graphite plate (IG
Table 1 shows the results of chemical vapor deposition carried out under various conditions using C-11) and oxygen-free copper plates. Further, the microscopic structures of the coatings obtained in Example 2 and Comparative Example 1 are shown in FIGS. 2a and 2b and 3a and 3b. FIG. 2 shows the coating of Example 2, and FIG. 3 shows the coating of Comparative Example 1. In both cases, a represents the surface of the coating, and b represents the cross section. While the film produced by the conventional method has a rough surface consisting of lumpy particles (laminates) of about 10 to 30 μm, the film produced by the present invention has a fine columnar structure, and the surface irregularities are smooth and dense with about 5 μm. It can be seen that it is.

【表】 (発明の効果) 以上の説明から明らかなように、本発明にかか
る化学蒸着法は、緻密で平滑な安定した炭化タン
グステン被膜を容易に形成することのできるきわ
めてすぐれたものである。
[Table] (Effects of the Invention) As is clear from the above explanation, the chemical vapor deposition method according to the present invention is extremely excellent in that it can easily form a dense, smooth, and stable tungsten carbide film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に用いられる化学蒸着装
置の1例をあらわす系統図、第2図および第3図
はそれぞれ実施例と比較例における炭化タングス
テン蒸着被膜のa表面顕微鏡写真(×1000)およ
びb断面顕微鏡写真(×400)である。 1……化学蒸着装置、2……加熱炉、3……反
応室、4……被蒸着物、5……テーブル。
Fig. 1 is a system diagram showing an example of a chemical vapor deposition apparatus used in carrying out the present invention, and Figs. 2 and 3 are a-surface micrographs (x1000) of tungsten carbide vapor-deposited films in the example and comparative example, respectively. and b cross-sectional micrograph (×400). DESCRIPTION OF SYMBOLS 1...Chemical vapor deposition apparatus, 2...Heating furnace, 3...Reaction chamber, 4...Deposited object, 5...Table.

Claims (1)

【特許請求の範囲】 1 六フツ化タングステン、水素ガスおよびシク
ロプロパンガスを反応ガスとして用い、キヤリヤ
ガスである不活性ガスとともに反応室内に供給し
て反応室内の被蒸着物表面に炭化タングステン被
膜を形成することを特徴とする化学蒸着法。 2 被蒸着物の温度が350〜600℃、六フツ化タン
グステン(WF6)と水素ガス(H2)との混合比が
モル比でWF6:H2=1:3〜1:15、シクロプ
ロパンガスの添加量が六フツ化タングステンと水
素ガスを合わせた量に対しモル比で0.01〜0.3の
反応条件下で被膜の形成を行なう特許請求の範囲
第1項記載の化学蒸着法。
[Claims] 1. Tungsten hexafluoride, hydrogen gas, and cyclopropane gas are used as reaction gases and are supplied into a reaction chamber together with an inert gas as a carrier gas to form a tungsten carbide film on the surface of an object to be deposited in the reaction chamber. A chemical vapor deposition method characterized by: 2 The temperature of the material to be deposited is 350 to 600°C, the mixing ratio of tungsten hexafluoride (WF 6 ) and hydrogen gas (H 2 ) is WF 6 :H 2 = 1:3 to 1:15 in molar ratio, and cyclo The chemical vapor deposition method according to claim 1, wherein the film is formed under reaction conditions in which the amount of propane gas added is 0.01 to 0.3 in molar ratio to the combined amount of tungsten hexafluoride and hydrogen gas.
JP28006384A 1984-12-28 1984-12-28 Chemical vapor deposition method Granted JPS61157681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28006384A JPS61157681A (en) 1984-12-28 1984-12-28 Chemical vapor deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28006384A JPS61157681A (en) 1984-12-28 1984-12-28 Chemical vapor deposition method

Publications (2)

Publication Number Publication Date
JPS61157681A JPS61157681A (en) 1986-07-17
JPS6254869B2 true JPS6254869B2 (en) 1987-11-17

Family

ID=17619785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28006384A Granted JPS61157681A (en) 1984-12-28 1984-12-28 Chemical vapor deposition method

Country Status (1)

Country Link
JP (1) JPS61157681A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874642A (en) * 1987-09-03 1989-10-17 Air Products And Chemicals, Inc. Method for depositing a hard, fine-grained, non-columnar alloy of tungsten and carbon on a substrate
US5024901A (en) * 1988-02-08 1991-06-18 Air Products And Chemicals, Inc. Method for depositing highly erosive and abrasive wear resistant composite coating system on a substrate
US5006371A (en) * 1988-02-08 1991-04-09 Air Products And Chemicals, Inc. Low temperature chemical vapor deposition method for forming tungsten and tungsten carbide
US5262202A (en) * 1988-02-17 1993-11-16 Air Products And Chemicals, Inc. Heat treated chemically vapor deposited products and treatment method
JP2748881B2 (en) * 1995-02-03 1998-05-13 日本電気株式会社 Semiconductor manufacturing apparatus and manufacturing method
DE69939554D1 (en) 1999-02-11 2008-10-23 Hardide Ltd TUNGSTEN CARBIDE COATINGS AND METHOD FOR THE PRODUCTION THEREOF

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6184375A (en) * 1984-09-29 1986-04-28 Toho Kinzoku Kk Chemical vapor deposition method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6184375A (en) * 1984-09-29 1986-04-28 Toho Kinzoku Kk Chemical vapor deposition method

Also Published As

Publication number Publication date
JPS61157681A (en) 1986-07-17

Similar Documents

Publication Publication Date Title
US3874900A (en) Article coated with titanium carbide and titanium nitride
Archer The plasma-assisted chemical vapour deposition of TiC, TiN and TiCxN1− x
US3836392A (en) Process for increasing the resistance to wear of the surface of hard metal cemented carbide parts subject to wear
US4402764A (en) Method for producing abrasion and erosion resistant articles
US3964937A (en) Method of making a composite coating
US3368914A (en) Process for adherently depositing a metal carbide on a metal substrate
EP0064884B1 (en) Method and apparatus for coating by glow discharge
JPS6254869B2 (en)
US4971624A (en) Abrasion and erosion resistant articles
JPS6149390B2 (en)
US3730507A (en) Boron nitride base evaporation vessel having a surface coating of titanium-silicon thereon
JPH0250194B2 (en)
US3552939A (en) Metal carbide coatings on metal substrates
JP2610914B2 (en) Method and apparatus for coating aluminum inside heat resistant member
EP0112206B1 (en) Method of coating metallic surfaces with carbides
CN115124348B (en) Single phase (Hf) x Zr 1-x ) N solid solution superhigh temperature ablation-resistant ceramic coating and preparation method thereof
JPH05470B2 (en)
JPS58174569A (en) Formation of film comprising metal compound
JPH0215161A (en) Formation of titanium carbide film by ion beam sputtering method
JP2833839B2 (en) Coating method of vapor phase diamond
JPS5560017A (en) Hafnium carbide coating method
Pearlstein Electroless Metal Coatings
JPS62256964A (en) Ceramics-coated member
JPH03170661A (en) Method for evaporating sublimable metal
JPS58209554A (en) Multiple coating material and its manufacture