JP5191842B2 - Carbon deposition equipment - Google Patents

Carbon deposition equipment Download PDF

Info

Publication number
JP5191842B2
JP5191842B2 JP2008229173A JP2008229173A JP5191842B2 JP 5191842 B2 JP5191842 B2 JP 5191842B2 JP 2008229173 A JP2008229173 A JP 2008229173A JP 2008229173 A JP2008229173 A JP 2008229173A JP 5191842 B2 JP5191842 B2 JP 5191842B2
Authority
JP
Japan
Prior art keywords
carbon
sample
vacuum
vapor deposition
deposition apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008229173A
Other languages
Japanese (ja)
Other versions
JP2010059525A (en
Inventor
辺 栄 一 渡
谷 川 史 憲 長
田 昌 照 柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2008229173A priority Critical patent/JP5191842B2/en
Publication of JP2010059525A publication Critical patent/JP2010059525A/en
Application granted granted Critical
Publication of JP5191842B2 publication Critical patent/JP5191842B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

本発明は、カーボン(炭素)を通電加熱して蒸発させ、試料表面にカーボンの導電性薄膜を形成させるためのカーボン蒸着装置に関する。   The present invention relates to a carbon vapor deposition apparatus for forming a conductive carbon thin film on a sample surface by evaporating and heating carbon (carbon).

例えば走査電子顕微鏡(SEM)や電子プローブマイクロアナライザ(EPMA)等の荷電粒子線装置を用いて試料の観察や分析を行なうとき、試料にAu(金の原子記号)、Pt(白金の元素記号)、Pd(パラジウムの元素記号)等の金属やこれらの合金若しくはカーボンを試料にコーティングすることがある。   For example, when a sample is observed or analyzed using a charged particle beam apparatus such as a scanning electron microscope (SEM) or an electron probe microanalyzer (EPMA), Au (gold atomic symbol) or Pt (platinum element symbol) is used for the sample. In some cases, the sample is coated with a metal such as Pd (elemental symbol of palladium), an alloy thereof, or carbon.

Au、Pt,Pd等の金属やこれらの合金をコーティングする目的のひとつは、非導電性試料表面に導電性薄膜を形成することにより、荷電粒子の照射によって生じるチャージアップ(帯電)や熱損傷を防止することである。もうひとつの目的は、特にSEM等で2次電子像を観察する場合、電子線の照射により試料表面から発生する2次電子の発生効率を向上させて良質な2次電子像を得ることである。   One of the purposes of coating metals such as Au, Pt, Pd and their alloys is to form a conductive thin film on the surface of a non-conductive sample, thereby preventing charge-up (charging) and thermal damage caused by irradiation of charged particles. Is to prevent. Another object is to obtain a high-quality secondary electron image by improving the generation efficiency of secondary electrons generated from the sample surface by irradiation with an electron beam, particularly when observing a secondary electron image with an SEM or the like. .

一方、EPMAを用いて非導電性試料の元素分析を行なう場合、試料にコーティングする導電性薄膜は分析になるべく影響を与えない物質であることが優先される。そのため、Au、Pt,Pd等の金属やこれらの合金はなるべく避けて、試料に照射される電子線との相互作用が小さい物質をコーティングする必要がある。非導電性試料を分析する目的で、カーボンの導電性薄膜をコーティングする真空蒸着装置が広く普及している。   On the other hand, when conducting elemental analysis of a non-conductive sample using EPMA, the conductive thin film coated on the sample is prioritized to be a substance that does not affect the analysis as much as possible. For this reason, it is necessary to avoid metals such as Au, Pt, and Pd and alloys thereof as much as possible, and to coat a material that has a small interaction with the electron beam irradiated on the sample. For the purpose of analyzing non-conductive samples, vacuum deposition apparatuses that coat carbon conductive thin films are widely used.

特許文献1の実開平5−756号公報には、真空蒸着に用いるカーボン棒を簡単、迅速且つ確実にカーボンホルダに取り付けることのできる一体型カーボンホルダの技術が開示されている。また、特許文献2の実公平7−30674号公報には、カーボンに短時間の間、大電流を通電し、冷却時間を置いた後に再度大電流を通電してカーボンを蒸発させることを繰り返して、いわばスパッタ的に蒸着を行なうことにより、低い真空度で良質のカーボン膜を得る技術が開示されている。   Japanese Utility Model Laid-Open No. 5-756 of Patent Document 1 discloses a technique of an integrated carbon holder that allows a carbon rod used for vacuum deposition to be easily and quickly attached to a carbon holder. In addition, in Japanese Utility Model Publication No. 7-30674 of Patent Document 2, a large current is applied to carbon for a short time, and after a cooling time, a large current is applied again to evaporate the carbon. In other words, a technique for obtaining a high-quality carbon film with a low degree of vacuum by performing sputter deposition is disclosed.

実開平5−756号公報Japanese Utility Model Publication No. 5-756 実公平7−30674号公報Japanese Utility Model Publication No. 7-30664 特開昭52−62138号公報JP-A 52-62138

良質なカーボン膜を得るためには、Au、Pt,Pd等の金属やこれらの合金をコーティングする場合とは異なる問題がある。   In order to obtain a high-quality carbon film, there is a problem different from the case of coating a metal such as Au, Pt, Pd or an alloy thereof.

例えば、カーボンはAu、Pt,Pd等の金属と比較して酸化しやすいため、通電加熱時は高真空を必要とする。カーボン蒸着装置の真空チャンバ内を高真空にするため、油拡散ポンプやターボ分子ポンプを備える必要がある。従って、必然的に装置が高価になる、高真空を得るまでに通常30分程度の時間がかかる、真空系の構造や操作が複雑になる、設置面積や重量が大きくなる、高真空度測定のための高価な真空計が必要となる等の問題がある。   For example, since carbon is more easily oxidized than metals such as Au, Pt, and Pd, a high vacuum is required during energization heating. In order to create a high vacuum in the vacuum chamber of the carbon deposition apparatus, it is necessary to provide an oil diffusion pump and a turbo molecular pump. Therefore, the apparatus is inevitably expensive, it usually takes about 30 minutes to obtain a high vacuum, the structure and operation of the vacuum system is complicated, the installation area and weight are increased, and high vacuum measurement is required. Therefore, there is a problem that an expensive vacuum gauge is required.

また、高真空中でカーボンを加熱蒸発させると、平均自由行程が長いため、凹凸のある試料の場合はシャドウ効果により蒸着物質のコーティングのむらが生じるという問題がある。シャドウ効果の問題を解決するには、Au、Pt,Pd等の金属であれば、特許文献3の特開昭52−62138号公報に開示されているように、真空度を低下させて、蒸着原子(粒子)の回り込みを起こし、むらの無い蒸着を行なう方法が可能である。しかし、前述したように、カーボンは酸化しやすいため、真空度の低い雰囲気で蒸着を行なうと、良質な導電性のカーボン膜の形成は困難である。高真空中でカーボン蒸着を行なうときのシャドウ効果の問題を解決するため、試料台を傾斜及び回転させて、試料の向きを満遍なく変えてむらをなくす方法が行なわれている。しかし、試料台を傾斜及び回転させる装置は高価であり、操作に手間がかかるという問題もある。   In addition, when carbon is heated and evaporated in a high vacuum, the mean free path is long, and therefore, in the case of an uneven sample, there is a problem that uneven deposition of the vapor deposition material occurs due to the shadow effect. In order to solve the problem of the shadow effect, if the metal is Au, Pt, Pd or the like, as disclosed in Japanese Patent Laid-Open No. 52-62138 of Patent Document 3, the degree of vacuum is reduced and vapor deposition is performed. A method of causing vapor deposition without unevenness by causing wraparound of atoms (particles) is possible. However, as described above, since carbon is easily oxidized, it is difficult to form a high-quality conductive carbon film when vapor deposition is performed in an atmosphere with a low degree of vacuum. In order to solve the problem of the shadow effect when performing carbon deposition in a high vacuum, a method has been used in which the sample stage is tilted and rotated to uniformly change the direction of the sample and eliminate unevenness. However, the apparatus for tilting and rotating the sample stage is expensive, and there is a problem that it takes time and effort to operate.

また、カーボンを高温度に加熱するため、熱に弱い試料にコーティングするとき、試料の変形や熱ダメージを生じる場合がある。更に、高温のカーボンから強い光が発生するため、サングラス等の防御治具を必要とする。   In addition, since carbon is heated to a high temperature, when a sample that is weak against heat is coated, the sample may be deformed or thermally damaged. Furthermore, since strong light is generated from high-temperature carbon, a protective jig such as sunglasses is required.

更に、特許文献1の実開平5−756号公報に記述されているように、カーボン棒の通電加熱により蒸発させる部分は細く削っておかなければならない。そのための道具が必要であり、使用するカーボン棒の準備に手間と時間が掛かるという問題がある。   Furthermore, as described in Japanese Utility Model Laid-Open No. 5-756 of Patent Document 1, the portion of the carbon rod that is evaporated by energization heating must be finely cut. A tool for that purpose is necessary, and there is a problem that it takes time and labor to prepare a carbon rod to be used.

本発明は上記した問題を解決するためになされたものであって、その目的は、簡単な操作で、むらの無い良質な導電性のカーボン膜を短時間で形成することが可能なカーボン蒸着装置を提供することにある。   The present invention has been made to solve the above-described problems, and its object is to provide a carbon deposition apparatus capable of forming a high-quality conductive carbon film without unevenness in a short time with a simple operation. Is to provide.

上記の問題を解決するために、請求項1に記載の発明は、気密容器と、該気密容器内を排気する排気ポンプと、前記気密容器内に通電加熱可能に配置されるカーボン部材と、該気密容器内に試料表面が該カーボン部材を見通すように試料を保持する試料台と、前記気密容器内に不活性ガスを満たすためのガス供給手段とを備え、前記気密容器内に不活性ガスを満たし、前記排気ポンプにより排気することにより、前記気密容器内圧力が0.5Pa〜5Paに設定された状態で前記カーボン部材を通電加熱し、前記試料台に保持された試料の表面にカーボンを蒸着することを特徴とする。 In order to solve the above problem, an invention according to claim 1 is directed to an airtight container, an exhaust pump for exhausting the inside of the airtight container, a carbon member disposed in the airtight container so as to be electrically heated, A sample stage for holding the sample so that the surface of the sample can be seen through the carbon member in the hermetic container; and a gas supply means for filling the inert gas in the hermetic container, and the inert gas is contained in the hermetic container. By filling and exhausting with the exhaust pump, the carbon member is energized and heated in a state where the pressure in the hermetic container is set to 0.5 Pa to 5 Pa, and carbon is deposited on the surface of the sample held on the sample stage. It is characterized by doing.

また請求項に記載の発明は、前記排気ポンプがロータリーポンプであることを特徴とする。 The invention according to claim 2 is characterized in that the exhaust pump is a rotary pump.

また請求項に記載の発明は、前記不活性ガスがアルゴンガスであることを特徴とする。 The invention described in claim 3 is characterized in that the inert gas is argon gas.

本発明によれば、真空蒸着装置のチャンバを高真空にする必要が無いため、短時間で蒸着できる、装置が小形軽量にできる、価格及び維持費が安価にできる、操作が容易になるという効果がある。また、真空チャンバ内に不活性ガスが存在するため、カーボン粒子の回り込みがあり、むらの無いカーボンの蒸着膜を形成することができる。また、通電加熱によるカーボンの温度上昇が従来の高真空下の方法に比べて小さいため、熱に弱い試料の変形や熱ダメージを著しく低下させることができる。既製品のカーボン棒に特別な加工を施さずに簡単に取り付ければよいので、準備に掛かる手間と時間を大幅に少なくできる。低真空、短時間で作成したにもかかわらず、従来の高真空下で作製したカーボン膜と同等の良質なカーボン膜が得られる。   According to the present invention, it is not necessary to set the chamber of the vacuum deposition apparatus to a high vacuum, so that the deposition can be performed in a short time, the apparatus can be reduced in size and weight, the cost and the maintenance cost can be reduced, and the operation is facilitated. There is. Further, since an inert gas is present in the vacuum chamber, carbon particles can wrap around and a carbon vapor deposition film can be formed without unevenness. In addition, since the temperature rise of carbon due to electric heating is smaller than that in the conventional high vacuum method, deformation and thermal damage of a sample that is sensitive to heat can be significantly reduced. Since it is only necessary to simply attach the prefabricated carbon rod without any special processing, the labor and time required for preparation can be greatly reduced. Despite being produced in a low vacuum and in a short time, a high-quality carbon film equivalent to a carbon film produced under a conventional high vacuum can be obtained.

以下図面を参照しながら、本発明の実施の形態について説明する。但し、この例示によって本発明の技術範囲が制限されるものでは無い。   Embodiments of the present invention will be described below with reference to the drawings. However, the technical scope of the present invention is not limited by this illustration.

図1は、本発明を実施するカーボン蒸着装置の概略構成例を説明するための図である。図1において、1はカーボン蒸着装置の基本体で、図示しない電源や操作パネル等が配置されている。2は気密容器で、通常硬質ガラス等の耐真空性がある透明な材料が用いられる。気密容器2に囲われた空間を試料室2aとする。気密容器2と基本体1との間にはOリング11が配置され、試料室2aの気密を保持することができる。リーク弁(図示せず)を開いて、試料室2aを大気圧にしたときは、気密容器2を基本体1から取り外すことができる。なお、試料室2aの真空度をモニターするための真空計(図示せず)が備えられている。   FIG. 1 is a diagram for explaining a schematic configuration example of a carbon deposition apparatus for carrying out the present invention. In FIG. 1, reference numeral 1 denotes a basic body of a carbon vapor deposition apparatus, on which a power source, an operation panel and the like (not shown) are arranged. 2 is an airtight container, and a transparent material having vacuum resistance such as hard glass is usually used. A space surrounded by the airtight container 2 is defined as a sample chamber 2a. An O-ring 11 is disposed between the hermetic container 2 and the basic body 1, and the hermeticity of the sample chamber 2a can be maintained. When the leak valve (not shown) is opened to bring the sample chamber 2a to atmospheric pressure, the airtight container 2 can be removed from the basic body 1. A vacuum gauge (not shown) for monitoring the degree of vacuum in the sample chamber 2a is provided.

Sはカーボン蒸着を行なう試料、4は試料Sを置くための試料台、3はカーボン棒である。5aと5bはカーボン棒3に通電するための電極、7aと7bは電極棒である。である。カーボン棒3は押さえ板6aと6bによりその両端をそれぞれ電極5aと5bに固定される。図1では抑え板が試料Sの側にあるように示されているが、この位置に限定する必要は無い。少なくともカーボン棒の両端がそれぞれの電極に接するように取り付けられていればよい。   S is a sample for carbon deposition, 4 is a sample stage for placing the sample S, and 3 is a carbon rod. 5a and 5b are electrodes for energizing the carbon rod 3, and 7a and 7b are electrode rods. It is. Both ends of the carbon rod 3 are fixed to the electrodes 5a and 5b by holding plates 6a and 6b, respectively. In FIG. 1, the holding plate is shown to be on the sample S side, but it is not necessary to limit to this position. It is sufficient that at least both ends of the carbon rod are attached so as to contact each electrode.

また、カーボン棒3と試料Sとの間の距離が変えられるようになっていることが好ましい。例えば、電極5a、5bを螺子止めにより電極棒7a、7bへ取り付けるようにして、螺子止め位置を変えることにより、カーボン棒3と試料Sとの間の距離を可変とすることができる。   Moreover, it is preferable that the distance between the carbon rod 3 and the sample S can be changed. For example, the distance between the carbon rod 3 and the sample S can be made variable by attaching the electrodes 5a and 5b to the electrode rods 7a and 7b by screwing and changing the screwing position.

また、カーボン棒3と試料Sとの間にシャッター機構を設けることが望ましい。シャッター機構があれば、試料を試料台に載せたまま、焼き出し等の予備操作を行なうことが可能となる。   It is desirable to provide a shutter mechanism between the carbon rod 3 and the sample S. If there is a shutter mechanism, a preliminary operation such as baking out can be performed while the sample is placed on the sample stage.

8はアルゴンガスボンベ(図示せず)から試料室2aにアルゴンガス(Ar)を供給する供給管、8aはアルゴンガスの流量調整弁、9は試料室2a内の空気とアルゴンガスを排気する排気管、9aは排気管の開閉弁、10はロータリーポンプ(RP)である。   8 is a supply pipe for supplying argon gas (Ar) from an argon gas cylinder (not shown) to the sample chamber 2a, 8a is an argon gas flow rate adjusting valve, and 9 is an exhaust pipe for exhausting air and argon gas in the sample chamber 2a. , 9a is an exhaust pipe opening / closing valve, and 10 is a rotary pump (RP).

次に、図1のように構成されたカーボン蒸着装置を用いてカーボン蒸着を行なう手順を説明する。
ステップ1:開閉弁9aと流量調整弁8aが閉じた状態で、試料室2aに大気を導入し、気密容器2を取り外す。
ステップ2:カーボン蒸着を行なう試料Sを試料台4に載せる。
Next, a procedure for performing carbon vapor deposition using the carbon vapor deposition apparatus configured as shown in FIG. 1 will be described.
Step 1: With the on-off valve 9a and the flow rate adjustment valve 8a closed, the atmosphere is introduced into the sample chamber 2a and the airtight container 2 is removed.
Step 2: A sample S to be subjected to carbon deposition is placed on the sample table 4.

ステップ3:カーボン棒3の両端をそれぞれ電極5aと5bに取り付け、押さえ板6aと6bで固定する。カーボン棒3は直径が0.5mmから1mm程度の太さのものを用いるのが望ましい。従来のカーボン蒸着装置用に市販されているカーボン棒をそのまま使用することができる。なお、シャープペンシルの芯を使用することも可能であるが、この場合は蒸着に使用する前に、芯の中に含まれているバインダーを焼きだす操作モードを備えていることが好ましい。   Step 3: Both ends of the carbon rod 3 are attached to the electrodes 5a and 5b, respectively, and fixed with the pressing plates 6a and 6b. The carbon rod 3 preferably has a diameter of about 0.5 mm to 1 mm. The carbon rod marketed for the conventional carbon vapor deposition apparatus can be used as it is. Although it is possible to use a mechanical pencil lead, in this case, it is preferable to have an operation mode in which the binder contained in the lead is baked out before being used for vapor deposition.

ステップ3:気密容器2を取り付けて、開閉弁9aを開き、ロータリーポンプ10で試料室2aの大気を排気する。試料室2aの真空度が1Pa程度になったら、流量調整弁8aを開いてアルゴンガスを導入し、ロータリーポンプ10で排気しつつ試料室2aの真空度が2Pa程度に維持されるようにアルゴンガスの流量を調整する。アルゴンガスの必要な流量は蒸着を行なう試料の表面状態等に応じて多少異なるが、試料室2aのアルゴンガスが少なすぎると回り込みの効果が十分ではなく、反対に多すぎるとカーボンの蒸発が妨げられる。従って、カーボンを通電加熱しているときは、試料室2aの真空度が概ね0.5Paから5Paの間に設定されていることが望ましい。   Step 3: The airtight container 2 is attached, the on-off valve 9a is opened, and the atmosphere in the sample chamber 2a is exhausted by the rotary pump 10. When the degree of vacuum in the sample chamber 2a becomes about 1 Pa, the argon gas is introduced so that the flow rate adjusting valve 8a is opened to introduce argon gas, and the vacuum in the sample chamber 2a is maintained at about 2 Pa while being evacuated by the rotary pump 10. Adjust the flow rate. The required flow rate of argon gas varies somewhat depending on the surface condition of the sample to be deposited, but if the argon gas in the sample chamber 2a is too small, the effect of wraparound is not sufficient, and conversely if too much, the carbon evaporation is hindered. It is done. Therefore, it is desirable that the degree of vacuum of the sample chamber 2a is set between approximately 0.5 Pa and 5 Pa when the carbon is heated by current.

ステップ4:電極棒7aと7b及び電極5aと5bを通じて、カーボン棒に50A程度の電流を流す。通電によりカーボン棒が赤熱し、カーボンが蒸発する。   Step 4: A current of about 50 A is passed through the carbon rods through the electrode rods 7a and 7b and the electrodes 5a and 5b. When energized, the carbon rod becomes red hot and the carbon evaporates.

ステップ5:カーボン棒が細くなったら通電を終了する。試料室2aの大気を排気し始めてからカーボン蒸着が終了するまでに要する時間は概ね5分程度である。   Step 5: Stop energization when the carbon rod becomes thinner. The time required from the start of exhausting the atmosphere of the sample chamber 2a to the end of carbon deposition is about 5 minutes.

ステップ6:開閉弁9aと流量調整弁8aを閉じて試料室2aに大気を導入し、気密容器2を取り外し、試料Sを取り出す。
以上が、本発明のカーボン蒸着装置を用いてカーボン蒸着を行なう手順の説明である。なお、上記例では、不活性ガスとしてアルゴンガスを用いたが、その他の不活性ガスでも同様の効果を奏する。また、上記ステップ3で、ロータリーポンプ10で排気しつつ試料室2aをカーボン蒸着に必要な真空度に維持するようにしたが、カーボンを通電加熱する間に必要な真空度が維持できれば、必ずしもロータリーポンプ10で排気し続ける必要は無い。
図2は、本発明のカーボン蒸着装置で作製したカーボン膜の膜質と膜厚を評価するために撮影したカーボン膜断面の透過電子顕微鏡写真である。本発明のカーボン蒸着装置によりシリコン基板上にカーボン膜を蒸着し、カーボン膜の厚さを正確に確認するため、カーボン膜上にCrをコーティングした。この試料の断面の薄膜を作製するため、イオンスライサ(登録商標)(日本電子(株)商品名、イオンを照射して透過電子顕微鏡観察用の薄膜試料を作製する装置)を用いた。
図2の透過電子顕微鏡写真から、カーボン膜の膜厚は約13nmで、良好なアモルファス構造となっていることが確認できる。
以上述べたように、本発明のカーボン蒸着装置を用いれば、従来の高真空雰囲気で時間をかけて形成されたカーボン膜と同等の極めて良質なカーボン膜を短時間に得ることができる。



Step 6: The on-off valve 9a and the flow rate adjusting valve 8a are closed to introduce the atmosphere into the sample chamber 2a, the airtight container 2 is removed, and the sample S is taken out.
The above is description of the procedure which performs carbon vapor deposition using the carbon vapor deposition apparatus of this invention. In the above example, argon gas is used as the inert gas, but the same effect can be obtained with other inert gases. In step 3 above, the sample chamber 2a is maintained at a degree of vacuum necessary for carbon deposition while being evacuated by the rotary pump 10. However, if the degree of vacuum necessary for heating and heating the carbon can be maintained, the rotary chamber 10a is not necessarily rotary. There is no need to continue exhausting with the pump 10.
FIG. 2 is a transmission electron micrograph of a cross section of the carbon film taken to evaluate the film quality and film thickness of the carbon film produced by the carbon deposition apparatus of the present invention. A carbon film was deposited on a silicon substrate by the carbon deposition apparatus of the present invention, and Cr was coated on the carbon film in order to confirm the thickness of the carbon film accurately. In order to produce a thin film having a cross section of this sample, Ion Slicer (registered trademark) (trade name of JEOL Ltd., an apparatus for producing a thin film sample for transmission electron microscope observation by irradiating ions) was used.
From the transmission electron micrograph of FIG. 2, it can be confirmed that the carbon film has a thickness of about 13 nm and has a good amorphous structure.
As described above, by using the carbon vapor deposition apparatus of the present invention, it is possible to obtain a very good carbon film equivalent to a carbon film formed over time in a conventional high vacuum atmosphere in a short time.



本発明を実施するカーボン蒸着装置の概略構成例を説明するための図。The figure for demonstrating the schematic structural example of the carbon vapor deposition apparatus which implements this invention. 本発明のカーボン蒸着装置で作製したカーボン膜の膜質と膜厚を確認するために撮影した透過電子顕微鏡写真。The transmission electron microscope photograph image | photographed in order to confirm the film quality and film thickness of the carbon film produced with the carbon vapor deposition apparatus of this invention.

符号の説明Explanation of symbols

S…試料
1…基本体
2…気密容器
2a…試料室
3…カーボン棒
4…試料台
5a、5b…電極
6a、6b…押さえ板
7a、7b…電極棒
8…供給管
8a…流量調整弁
9…排気管
9a…開閉弁
10…ロータリーポンプ(RP)
11…Oリング
S ... Sample 1 ... Basic body 2 ... Airtight container 2a ... Sample chamber 3 ... Carbon rod 4 ... Sample stand 5a, 5b ... Electrodes 6a, 6b ... Presser plates 7a, 7b ... Electrode rod 8 ... Supply pipe 8a ... Flow rate adjusting valve 9 ... Exhaust pipe 9a ... Open / close valve 10 ... Rotary pump (RP)
11 ... O-ring

Claims (3)

気密容器と、該気密容器内を排気する排気ポンプと、前記気密容器内に通電加熱可能に配置されるカーボン部材と、該気密容器内に試料表面が該カーボン部材を見通すように試料を保持する試料台と、前記気密容器内に不活性ガスを満たすためのガス供給手段とを備え、前記気密容器内に不活性ガスを満たし、前記排気ポンプにより排気することにより、前記気密容器内圧力が0.5Pa〜5Paに設定された状態で前記カーボン部材を通電加熱し、前記試料台に保持された試料の表面にカーボンを蒸着することを特徴とするカーボン蒸着装置。 An airtight container, an exhaust pump for exhausting the inside of the airtight container, a carbon member arranged to be electrically heated in the airtight container, and a sample held in the airtight container so that the surface of the sample can be seen through the carbon member A sample stage and a gas supply means for filling the gas tight container with an inert gas, filling the gas tight container with the inert gas, and exhausting the gas with the exhaust pump; A carbon vapor deposition apparatus characterized in that the carbon member is energized and heated in a state set to 5 Pa to 5 Pa to deposit carbon on the surface of the sample held on the sample stage. 前記排気ポンプがロータリーポンプであることを特徴とする請求項1記載のカーボン蒸着装置。 The carbon vapor deposition apparatus according to claim 1, wherein the exhaust pump is a rotary pump. 前記不活性ガスがアルゴンガスであることを特徴とする請求項1記載のカーボン蒸着装置。 The carbon deposition apparatus according to claim 1, wherein the inert gas is an argon gas.
JP2008229173A 2008-09-08 2008-09-08 Carbon deposition equipment Active JP5191842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008229173A JP5191842B2 (en) 2008-09-08 2008-09-08 Carbon deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008229173A JP5191842B2 (en) 2008-09-08 2008-09-08 Carbon deposition equipment

Publications (2)

Publication Number Publication Date
JP2010059525A JP2010059525A (en) 2010-03-18
JP5191842B2 true JP5191842B2 (en) 2013-05-08

Family

ID=42186636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008229173A Active JP5191842B2 (en) 2008-09-08 2008-09-08 Carbon deposition equipment

Country Status (1)

Country Link
JP (1) JP5191842B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115616016A (en) * 2022-12-14 2023-01-17 矿冶科技集团有限公司 Electronic probe sample surface conductivity treatment method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60132454U (en) * 1984-02-08 1985-09-04 三菱重工業株式会社 Vacuum deposition equipment
JPH1192579A (en) * 1997-09-19 1999-04-06 Nitto Denko Corp Method for plasma treatment of organic substrate and method for forming metal layer on organic substrate
JP2002148161A (en) * 2000-11-13 2002-05-22 Jeol Ltd Sample preparation device
JP2003013205A (en) * 2001-06-26 2003-01-15 Kawatetsu Techno Res Corp Carbon vapor deposition apparatus

Also Published As

Publication number Publication date
JP2010059525A (en) 2010-03-18

Similar Documents

Publication Publication Date Title
Lungu et al. Beryllium coatings on metals for marker tiles at JET: development of process and characterization of layers
US20080315122A1 (en) Charged particle beam system and method for evacuation of the system
Wang et al. Electron beam evaporation deposition
JP2009538980A (en) Ceramic coating and ion beam mixing apparatus for improving high temperature corrosion resistance and method for modifying interface between coating layer and base material using the same
JP3715956B2 (en) Information acquisition device, sample evaluation device, and sample evaluation method
JP6518868B6 (en) Ion beam apparatus for sample preparation and coating
JP5191842B2 (en) Carbon deposition equipment
Banerjee et al. Material engineering to fabricate rare earth erbium thin films for exploring nuclear energy sources
JP5224347B2 (en) Method for forming metal thin film on spectroscopic sample for scanning electron microscope
CN108085651A (en) A kind of secondary laminated film of resistance to beam bombardment and preparation method thereof
CN104109830B (en) Surface hafnium-infiltrated austenitic stainless steel resistant to high temperature and preparation method thereof
CN108004506B (en) A kind of noble metal nano particles and preparation method thereof based on In alloy
TWI753574B (en) Corrosion Resistant Components
JP2002310960A (en) Pre-processing apparatus and method for non- electroconductive sample
JP3777436B2 (en) Boron film forming method and boron film forming apparatus
WO2019146060A1 (en) Method for manufacturing chromel-alumel thermocouple
EP2757572B1 (en) Sample heating method using sample heating holder for electron beam microscopes or analyzers
JP3580101B2 (en) Method and apparatus for producing negative electrode material for lithium ion battery
CN115261790B (en) High-photo-thermal-performance nano-structure titanium nitride coating and preparation method thereof
JP5935270B2 (en) Sample heating holder for microscope or analyzer using electron beam, and sample heating method using the same
JP2009252413A (en) Electron beam source
Hatano et al. Construction and performance test of apparatus for permeation experiments with controlled surfaces
JP3530941B2 (en) Low outgassing and low secondary electron emission materials
JP2701222B2 (en) Manufacturing method of vacuum-deposited Ti-plated steel sheet
JP2014063588A (en) Analytical sample stage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130130

R150 Certificate of patent or registration of utility model

Ref document number: 5191842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3