JP2011140716A - 繊維状物質の連続コーティングのための方法及び装置 - Google Patents

繊維状物質の連続コーティングのための方法及び装置 Download PDF

Info

Publication number
JP2011140716A
JP2011140716A JP2010289318A JP2010289318A JP2011140716A JP 2011140716 A JP2011140716 A JP 2011140716A JP 2010289318 A JP2010289318 A JP 2010289318A JP 2010289318 A JP2010289318 A JP 2010289318A JP 2011140716 A JP2011140716 A JP 2011140716A
Authority
JP
Japan
Prior art keywords
housing
vapor deposition
chemical vapor
coating
strand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010289318A
Other languages
English (en)
Inventor
Milivoj Konstantin Brun
ミリヴォジ・コンスタンティン・ブラン
Krishan Lal Luthra
クリシャン・ラル・ルスラ
Timothy John Sommerer
ティモシー・ジョン・ソマーラー
Joseph Darryl Michael
ジョセフ・ダリル・マイケル
William Paul Minnear
ウィリアム・ポール・ミニアー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2011140716A publication Critical patent/JP2011140716A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation by radiant heating of the substrate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62865Nitrides
    • C04B35/62868Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62865Nitrides
    • C04B35/62871Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62873Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62897Coatings characterised by their thickness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/667Sintering using wave energy, e.g. microwave sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

【課題】繊維状物質上にコーティングを連続的に付着させるための方法及び装置を提供する。
【解決手段】繊維状物質の複数のストランド46を、ハウジング42により画定された包囲されたチャンバー44内のコーティングゾーンに通して連続的に移動させることにより、ストランドの一部分がチャンバーを通って移動するときに前記部分が反応物質ガスと接触し、ストランドと物理的に接触することなく、かつハウジングを直接に加熱することなく、ストランドの前記部分を直接加熱し、反応物質ガスがストランドの前記部分と接触し分解する結果としてストランド上にコーティング材料を付着させてコーティング材料のコーティングを形成することを含む化学蒸着法である。
【選択図】図3

Description

本発明は、一般に、コーティングの方法及び装置に関する。より詳細には、本発明は、繊維状物質上にコーティングを連続的に設置するための方法及び装置に関する。

セラミックマトリックス複合材(CMC)材料は一般にセラミックマトリックス材料中に埋め込まれたセラミック繊維強化材を含んでいる。この強化材は、マトリックス材料中に分散した不連続の短繊維又はマトリックス材料内で配向された連続繊維若しくは繊維束(トウ)であり得、マトリックスに亀裂が入った場合にはCMCの負荷担持成分として働く。一方、セラミックマトリックスは強化材を保護し、その繊維の配向を維持し、強化材に対する負荷を分散するように機能する。個々の繊維(フィラメント)は、これらの繊維とセラミックマトリックス材料との限定され制御された滑りを許容する脆弱な界面又は剥離(de-bond)層を形成するように窒化ホウ素(BN)又は炭素のような剥離材で被覆されることが多い。CMC内に亀裂が発生したとき、その亀裂を横切る1以上の繊維が、その負荷をマトリックス材料の隣接する繊維及び領域に再分配して、その亀裂がさらに伝播するのを阻止するか又は少なくとも遅らせるように作用する。
連続繊維で強化されたセラミック複合材(CFCC)は、ガスタービンエンジンのシュラウド、燃焼器ライナー、ベーン、ブレード及びその他の高温部品を含めて種々の高温負荷担持用途に対して軽量、高強度及び高剛性を提供するCMCの一種である。CFCC材料は一般に連続繊維(フィラメント)により特徴付けられ、これらの連続繊維(フィラメント)は、並べられて一方向アレイの繊維を形成していてもよいし、又は並べられて一方向アレイのトウを形成するトウに束ねられていてもよいし、又は織られて二次元のファブリックを形成するか又は織られるか若しくは編まれて三次元のファブリックを形成するトウに束ねられていてもよい。三次元のファブリックでは、複数の組の一方向性のトウが、例えば、互いに横断して織り合わせられ得る。個々の繊維で強化されたCMCと同様に、CFCC材料の個々のトウは剥離材でコートして、亀裂の伝播を阻止する剥離層を形成することができる。
SiC、炭化チタン(TiC)、窒化ケイ素(Si)及びアルミナ(Al)を始めとする種々のセラミックマトリックス材料のための強化材として炭化ケイ素(SiC)繊維が使用されている。高温用途に特に重要なものは、炭化ケイ素がマトリックス及び/又は強化材であるケイ素系の複合材である。注目に値する1つの例は、General Electric社によりHiPerComp(登録商標)という名称で開発されたSiC/Si−SiC(繊維/マトリックス)CFCC材料であり、これは炭化ケイ素及び元素状ケイ素又はケイ素合金のマトリックス中に連続炭化ケイ素繊維を含有する。適切な炭化ケイ素繊維材料としては、限定されることはないが、日本カーボン(株)から市販されているNICALON(登録商標)、HI−NICALON(登録商標)及びHI−NICALON(登録商標)Type S繊維、並びに宇部興産(株)から入手可能なTyranno類の繊維がある。
SiC/Si−SiC CFCC材料の特定の例及び方法は本出願人に譲渡されている米国特許第5015540号、同第5330854号、同第5336350号、同第5628938号、同第6024898号、同第6258737号、同第6403158号及び同第6503441号、並びに本出願人に譲渡されている米国特許出願公開第2004/0067316号に開示されている。一例として、SiC/Si−SiC CFCC材料はフィラメントワインディングプロセスを用いて製造することができ、この方法によって繊維、通常は長繊維トウの形態の繊維に、適切な溶媒及び結合剤中にマトリックス粉末を含有する前駆体スラリーを含浸させる。このスラリーに好ましい組成はセラミックマトリックスに望ましい特定の組成に依存する。この前駆体を含浸したトウを次にドラムに巻き取り、スラリーを部分的に乾燥させる。次いで、得られたプリプレグをドラムから外し、他のプリプレグをレイアップした後、圧力と温度を高めて減量し(debulk)、硬化させて硬化したプリフォームを形成する。この硬化したプリフォームを次に真空中又は不活性雰囲気中で加熱して結合剤を分解し、溶融したケイ素による溶融浸透(MI)にそのままかけられる多孔性のプリフォームを得る。溶融浸透中、ケイ素及び/又は1種以上のケイ素合金(通例外部からプリフォームに加えられる)が溶融し、溶融したケイ素及び/又はケイ素合金がプリフォームの気孔中に浸透する。溶融したケイ素の一部はプリフォーム中に存在する炭素と反応して炭化ケイ素を形成し、一方残りの溶融したケイ素は気孔を満たす。冷却により、マトリックスが炭化ケイ素相と固体の元素状ケイ素及び/又は1種以上のケイ素合金相とを含むCMC構成要素が生成する。上記方法の具体的な加工処理技術及びパラメーターは材料の特定の組成に依存し、その他の点では当業者の能力の範囲内であり、従ってここでは述べない。
図1に、上記方法に従って製造することができるタイプのCFCC材料を概略的に示す。図1で、CFCC構成要素10の表面領域は、各々がセラミックマトリックス前駆体を含浸した一方向に並んだトウ14を含む個々のプリプレグに由来する複数の薄層12を含むものとして表されている。結果として、各々の薄層12は、炭化ケイ素、元素状ケイ素及び/又はケイ素合金相(図には示してない)を含むセラミックマトリックス18内に包まれた一方向に並んだ繊維16を含有する。
前述したように、繊維16は、繊維16、トウ14及びセラミックマトリックス18間の限定され制御された滑りを可能にする脆弱な界面又は剥離層(図には示してない)、通例は窒化ホウ素、炭素又はこれらの混合物で被覆されるのが好ましい。また、CMCの加工処理中繊維16を保護するといったような様々な目的で追加の及び/又は異なるコーティングを設けてもよい。繊維コーティングを設けるために、スラリー−浸漬、ゾル−ゲル、スパッタリング及び化学蒸着(CVD)のような幾つかの異なる技術が開発されている。これらのうちで、CVDは均一な厚さと制御された組成の連続剥離層を生成するのに特に適していることが示されている。典型的なCVDプロセスでは、1以上の繊維又はトウと所望のコーティングのガス源(反応物質ガス)とを加熱して反応物質ガスを分解させ、繊維又はトウ上にコーティングとして付着させる。CVDコーティングはバッチ式又は連続式に設けられるが、後者の場合通例反応器内に流される反応物質ガスを含有する反応器に1以上の繊維又はトウを連続的に通す。
上記のようなタイプの繊維コーティングプロセスの非限定例には、米国特許出願公開第2002/0066409号及び同第2007/0099527号がある。かかるプロセスに使用される反応器は通例、トウ又は繊維が通され反応物質ガスが流れる管状の形態を有している。例として図2に示されているように、反応器20は、トウ(又は繊維)26と反応物質ガスが端から端まで通り抜ける完全に包囲された通路又はチャンバー24を画定する管状ハウジング22を有する。反応器20は高温壁の反応器であり、すなわちトウ26とガスを暖めるのに必要な熱はハウジング22を取り囲む加熱炉28により供給されることになる。有効ではあるが、この方法の欠点は、反応器ハウジング22の壁が加熱炉28により加熱されるので、ハウジング22の内面もトウ26とほぼ同じ程度に被覆され、幾らかの反応物質ガスを不必要に消費することである。繊維トウは、トウ26が反応器20を通って移動するときに放出され得る破断したフィラメントを幾らかの割合で含有することが多いので、ハウジング22の内壁上に付着するコーティングは破断したフィラメントを含有する可能性がある。コーティングと破断したフィラメントが蓄積されると最終的にハウジング22を通るガスの流れが遮断され、反応器20の作動停止と洗浄が必要となる。
繊維コーティングプロセスは通例CMC方法全体の高価な工程であるので、コーティング作業のコストの削減はCMC構成要素のコスト全体に対して大きな影響を有し得る。従って、反応器壁へのコーティング及び繊維の付着を低減又は排除することができれば望ましいであろう。1つのかかるアプローチは、反応器の両端において繊維と電気的に接触させ、次に反応器内の繊維部分に十分に大きい電流を通して繊維を加熱することによって、繊維を直接加熱することである。しかし、このアプローチは被覆される繊維材料の電気伝導度によってある程度制限される。

米国特許第6503441号明細書
本発明は、コーティング装置上へのコーティングの付着を回避するか又は少なくとも最小化しながら、繊維状物質上にコーティングを連続的に付着させるのに適した方法と装置を提供する。
本発明の第1の局面によると、この方法は化学蒸着法であり、ハウジングによって画定される包囲されたチャンバー内のコーティングゾーンに通して繊維状物質の複数のストランドを連続的に移動させて、そのストランドの一部分がチャンバーを通って移動するときにその部分が反応物質ガスと接触するようにさせ、ストランドのその部分を、そのストランドと物理的に接触せずハウジングを直接加熱しない加熱手段で直接加熱し、反応物質ガスがストランドの前記部分と接触し分解する結果としてストランド上にコーティング材料を付着させて、コーティング材料のコーティングを形成することを含む。この加熱段階は、静電結合、誘導結合、マイクロ波放射及び輻射加熱を始めとする様々な非接触技術によって達成することができる。
本発明の第2の局面によると、本装置は、ハウジングにより画定される包囲されたチャンバー内のコーティングゾーン、繊維状物質のストランドをチャンバーに通して連続的に移動させるためのデバイス、ストランドの一部分がチャンバーを通って移動する際にそのストランドの前記一部分を反応物質ガスと接触させるためのデバイス及び前記ストランドの部分を、ストランドと物理的に接触することなく、またハウジング直接加熱することなく直接加熱するためのデバイスを含んでいる。加熱デバイスは静電結合デバイス、誘導結合デバイス、マイクロ波放射生成デバイス、又は輻射加熱デバイスである。
上記のことから分かるように、本発明の技術的効果は、単一又は複数のトウ(繊維/フィラメントの束)のような繊維状物質の直接加熱を、繊維状物質と直接の電気的接触を形成することなく実現することができるということである。加熱は実質的に繊維状物質に限定されるので、周囲のコーティング装置へのコーティングの付着は回避するか又は少なくとも大きく最小化することができる。加熱はまた多種多様な材料から形成された繊維及びトウで達成することもでき、また誘電体又は電気絶縁材料を含めて多種多様なコーティング材料を付着させることもできる。コーティング装置へのコーティングの蓄積がないので、装置を洗浄する必要なくより長い期間運転することが可能であろう。
本発明の他の局面及び利点は以下の詳細な説明からより良好に理解されるであろう。
図1は、CFCC物品の部分断面図を概略的に示す。 図2は、図1のCFCC物品の製造に使用される種類の繊維及びトウにコーティングを連続的に付着させるための従来技術による高温壁の反応器を概略的に示す。 図3は、本発明の特定の実施形態に従って繊維/トウを容量性に加熱する(capacitively heating)ことにより繊維及びトウにコーティングを連続的に付着させるための反応器を概略的に示す。 図4は、本発明の別の実施形態に従って、反応器ハウジングを直接加熱することなく輻射加熱デバイスで繊維/トウを加熱することにより繊維及びトウにコーティングを連続的に付着させるための反応器を概略的に示す。 図5は、本発明の別の実施形態に従って、反応器ハウジングを直接加熱することなく輻射加熱デバイスで繊維/トウを加熱することにより繊維及びトウにコーティングを連続的に付着させるための反応器を概略的に示す。
図3は、繊維状物質の1以上のストランド46にコーティングを連続的に付着させるのに適合した反応器40を概略的に示す(図3には1本のストランド46のみが示されている)。ストランド46はCMC物品中に強化材として使用するのに適したタイプのものであり得、かかる物品の非限定例にはガスタービンエンジンのシュラウド、燃焼器ライナー、ベーン、ブレード、その他の高温部品がある。また、各々のストランド46は複数の繊維でも、1つのトウ(繊維の束)でも、複数のトウでもよい。特定の非限定例として、ストランド46は約400〜800本の個々の繊維の束を含有するトウからなり得る。CMC強化材の目的では、ストランド46内の繊維は約4〜約25マイクロメートル、普通は約14マイクロメートルの直径を有するのが好ましいが、広範囲の直径が考えられる。ストランド46をCFCCその他のCMC材料中の強化材として使用しようとする用途の場合、ストランド46は繊維状セラミック材料、例えば、炭化ケイ素又はアルミナ(Al)若しくはムライト(3Al・2SiO)のような酸化物から形成されるであろうが、他の繊維状物質も本発明の範囲内である。加えて、特に重要なコーティングは、ストランド46とCMCのセラミックマトリックス材料との間の限定され制御された滑りを可能にする脆弱な界面又は剥離層を形成するために1種以上の剥離材を含有しており、その非限定例としては窒化ホウ素(BN)、ケイ素をドープした窒化ホウ素、窒化ケイ素(Si)及び炭素がある。CMC物品中の強化材として使用するのに適したセラミック繊維状物質に関連して本発明の実施形態を説明するが、他の用途も本発明の範囲内である。
図3に示した反応器40は、繊維状物質の1以上のストランド46が反応物質ガスと接触しながら通り抜けるコーティングゾーンを画定する化学蒸着(CVD)装置である。反応器40は、反応物質ガスが加熱されたストランド46と接触したときにそのガスの分解を引き起こすのに充分な持続時間の間充分な温度にストランド46をコーティングゾーン内で加熱する役目を果たす。反応物質ガスの組成はコーティングに望まれる組成に依存する。例えば、炭素を含有するコーティングを設ける目的の場合、ガスはメタン(CH)のような炭化水素を含有し得るか又は場合によって全体的にかかる炭化水素からなり得る。窒化ホウ素がコーティングの目的とする成分である場合、ガスは三塩化ホウ素(BCl)とアンモニア(NH)を含有し得るか又は場合によって全体が三塩化ホウ素(BCl)とアンモニア(NH)からなり得る。ケイ素をドープした窒化ホウ素コーティングはケイ素前駆体、例えば、ジクロロシラン(HClSi)、トリクロロシラン(HClSi)、四塩化ケイ素(SiCl)及び/又はシラン(SiH)を含む反応物質の混合物から形成することができる。また、窒化ケイ素コーティングはケイ素及び窒素前駆体、例えば、ジクロロシランとアンモニアを含有する反応物質ガスの混合物を用いて形成することができる。反応物質ガスは、化学蒸着反応に直接関与しないが、反応物質ガスを希釈して反応の速度及び反応温度を制御するのに有用な水素、窒素又はその他のガスを伴っていてもよい。最後に、ストランド46は、例えば、反応器40と同じでも異なっていてもよい一連の反応器にストランド46を通過させることにより、異なる組成の複数の層を含有するコーティングを備えることができるということが了解されよう。当業者には分かるように、様々な他のコーティング材料及び構造も可能であり、従って本発明の範囲内である。
図3に示されているように、反応器40は、繊維状物質の1以上のストランド46が通り抜ける通路又はチャンバー44を画定する包囲された管状ハウジング42をもっている。ストランド46は、当技術分野で周知のように、一対のスプール52と54の間でハウジング42を通って連続的に運ばれるものとして示されている。反応物質ガス(本明細書で使用する場合反応物質ガス混合物であり得る)は2つのポート50の1つを介してチャンバー44内に導入され、一方反応副生成物と残留する反応物質ガスは残りのポート50を介してハウジング42から出て行く。このように、チャンバー44はハウジング42内にコーティングゾーンを画定し、そこではストランド46が進む方向と同じか又は反対の方向でストランド46の長手方向にガスが流れるときストランド46とガスの密な接触が起こる。ハウジング42内で、反応物質ガス圧力は大気圧より低い〜大気圧の範囲であることができる。チャンバー圧力はCVD蒸着プロセスにおいて可変量であり、ガスが分解する速度及びガス分子の平均自由行程に影響を及ぼす。チャンバー44の断面は円形でよいが、他の断面も可能である。また、ハウジング42の内側の断面寸法は、ストランド46の直径にある程度依存して変化することができる。実際には、ハウジング42の内壁をストランド46から約1〜約25センチメートルの間隔をあけて離すことによって適切な結果を得ることができると考えられる。
図2の反応器20とは対照的に、図3の反応器40は高温壁の反応器ではない。すなわち、反応器40の壁はチャンバー44により画定されるコーティングゾーン内のストランド46及び反応物質ガスを加熱する目的で直接にも意図的にも加熱されない。特に、反応器40は、図2におけるハウジング22の壁を囲んで意図的に加熱する加熱炉28又は同様なデバイスをもっていない。代わりに、ハウジング42の壁は比較的冷たいままであるので、反応物質ガスはハウジング42により有意に加熱されることがなく、その代わりにストランド46と接触する結果として加熱され分解する。こうして、反応器40は、図2の反応器20に伴う欠点、例えば、コーティングが反応器ハウジング42の内壁表面に付着する傾向及び最終的にはハウジング42を通るガス流を遮断する可能性があるコーティング及び破断したフィラメントの蓄積を回避する。
図3の実施形態は、ハウジング42の直接加熱を回避しつつストランド46を加熱することができる電気的静電結合システムを使用するものとして示されている。図3に概略的に示されているように、静電結合システムはハウジング42の両端に隣接して一対の容量性(capacitive)電極48a及び48b(例えば、プレート又はシリンダー)を含んでいる。電極48a及び48bは各々がハウジング42を囲み、ストランド46と静電結合して、各々のストランド46のハウジング42内で電極48aと48bの間にある部分を、ストランド46がハウジング42を通して連続的に引き抜かれる所与の時間直接加熱する。静電結合は、ストランド46に沿って長手方向に、またストランド46から半径方向に、電極48aと48bの間隔を適切にあけ、ハウジング42の大きさ及び所望のコーティング温度に適当なレベルの電力を電源から電極48a及び48bに供給することによって達成される。
ハウジング42はストランド46の周囲を完全に囲むことにより、ストランド46を包囲すると共に支持する役割を果たす。高いコーティング温度で反応性のガスに耐えることができる適当な材料、例えば石英又は別の電気絶縁材料でハウジング42を形成することによって、ハウジング42はストランド46の静電結合に干渉せず、従ってストランド46の加熱に干渉しない。電極48aと48bの間隔及び電極48aと48bに供給される電力レベルは、ハウジング42及びストランド46の材料と同様に、ストランド46において反応物質ガスを分解するのに充分な熱を達成するための要因である。さらに、コーティングの付着速度は、チャンバー44(コーティングゾーン)の長さ、ストランド46の送り速度及び反応物質ガスの体積流量に依存する。電力、ストランド46の送り速度及び反応物質ガスの体積流量は特定の反応物質ガスに対して必要に応じて容易に調節することができ、反応物質ガスの組成は適切な厚さのコーティングを付着させるためにストランド46に対して一定の暴露時間を必要とし得る。実際、石英から形成されたハウジングで、長手方向に約1メートル離れ、トウから約0.5センチメートルの間隔であり、約360ワットの電力レベルで交流電源に接続されたキャパシター電極でおよそ1メートルの長さの炭化ケイ素トウを加熱して、適切な結果が得られている。これらの条件で、窒化ホウ素と炭素剥離コーティングを付着させるのに望ましい温度、例えば、約1000℃〜約1600℃以上が達成可能である。
別の検討事項は、窒化ホウ素、ケイ素をドープした窒化ホウ素及び窒化ケイ素を始めとするコーティング化学の付着が副生成物、換言すると、意図したコーティング組成物以外の化合物を生成する傾向があるということである。注目に値する非限定例は塩化アンモニウム(NHCl)である。通例、ストランド46上並びに反応器ハウジング42の内壁表面上へのプロセスの副生成物の付着(凝結)を回避するのが望ましい。塩化アンモニウムは窒化ホウ素、ケイ素をドープした窒化ホウ素及び窒化ケイ素より低い温度で付着するので、この副生成物のストランド46上への付着は特定のコーティング化学を付着させるのに必要な温度にストランド46を加熱することにより回避することができる。しかし、本発明の好ましい局面はハウジング42の直接加熱を意図的に回避することであるので、ハウジング42の低い温度はプロセスの副生成物をハウジング42の内壁表面上に付着させる結果となる可能性がある。このため、反応器ハウジング42の内壁表面の間接加熱を制御して塩化アンモニウム及び/又はプロセスのその他の副生成物の凝結を回避することが必要になり得る。より詳細には、ハウジング42の壁は、プロセスの副生成物の凝結を回避するのに十分に高いが、それでも意図したコーティング構成成分のハウジング42の壁への付着を回避するのに十分に低い温度に維持するべきである。これを実現する1つのアプローチは、ストランド46とハウジング42の壁との間隔を調節(低減)することにより、ストランド46によるハウジングの壁の間接加熱を制御することである。或いは、又は加えて、様々な公知の加熱デバイスを用いてハウジング42の壁を直接に加熱することができよう。
図3に関連して上記した加熱技術はストランド46を電気素子と直接接触させることによりストランド46を加熱することがない。ストランド46を誘導結合したりストランド46をマイクロ波放射又は輻射加熱に付すと行ったような他の非接触加熱技術を使用してもよい。例えば、誘導結合は図3に概略的に示したハウジング42と同様であるが、容量性電極48a及び48bの所定の位置の1以上の誘導コイル並びにこれらのコイルと殆ど又は全く誘導結合を示さないハウジングを利用する反応器で達成することができる。マイクロ波放射もまた、図3のハウジング42と同様であるが、容量性電極48a及び48bの所定の位置のマイクロ波発生機並びにマイクロ波放射をあまり吸収しないハウジングを利用する反応器を用いて適用することができる。特に、炭化ケイ素から形成された繊維状物質はマイクロ波放射と充分に結合することが知られている。マイクロ波加熱の場合、チャンバー44内のストランド46の均一な加熱は電磁放射線の波長及びマイクロ波発生機/アプリケーターのデザインに依存する。上記容量性加熱技術と同様に、チャンバー44の長さ、ストランド46の送り速度及び反応物質ガスの体積流量は選択された放射線の周波数及び特定の反応物質ガスに対して必要に応じて調節することができる。
1つの実験で、複数の炭化ケイ素トウ(HI−NICALON(登録商標))を図3に示したのと同様な反応器に通した。ハウジングはおよそ2インチ(約5センチメートル)の直径の石英管であった。容量性電極の代わりに、このハウジングは、繊維トウのアレイをマイクロ波放射で均一に加熱するように具体的に設計されたマイクロ波アプリケーターによって囲まれていた。これらのトウをハウジングに通して送ると同時に三塩化ホウ素とアンモニアガスをハウジングに通した。希釈ガスとして窒素もハウジングに通した。およそ2kWのマイクロ波エネルギーをトウに加え、トウ表面の約1400℃の高い温度を光高温計で記録した。プラズマは発生しなかったが、その代わりにトウをマイクロ波エネルギーで直接加熱し、トウの温度を、トウの表面上で反応物質ガスを分解させるのに充分な温度とした。ハウジングを通り抜けた後、トウを巻き取りスプールに巻き取った。走査型顕微鏡による検査で、約220ナノメートルの厚さを有するコーティングの存在が示された。XPS分析で、このコーティングがBNであることが示された。
単一の繊維のマイクロ波加熱とは対照的に、複数の繊維、特に複数のストランド46、例えば8〜12のトウを同時にマイクロ波加熱すると、個々の繊維及びトウの電気的性質の変動に起因してトウの非均一な加熱が起こる可能性がある。この実施形態の好ましい局面は、ハウジング42の内面を赤外線反射コーティングで被覆することで、個々の繊維及びトウから放出された熱が赤外反射コーティングによりストランド46の方へ反射されて、より高温の繊維及びストランド46がより冷たい繊維及びストランド46を加熱するのを補助できるようにすることにより、コーティングプロセス中にストランド46のより均一な加熱が達成されることである。
図4と5は、輻射加熱炉70及び80を概略的に示すが、これらはそれぞれ、ハウジング72及び82によりその内部に画定されるコーティングチャンバー内で繊維状物質の複数のストランド76上にコーティングを加熱し連続的に付着させるのに使用することができる。ハウジング72と82は図3に概略的に示されたハウジング42と同様であることができるが、ハウジング72と82はそれぞれの光源78、88a及び88bにより放出された光に対して透明又は実質的に透明でなければならないというさらなる限定がある。図4は、コーティングハウジング72と、好ましくは可視及び赤外範囲の波長を有する電磁放射線を発生する高強度光源である光源78とを取り囲む輻射加熱炉70を示す。コーティングハウジング72は光源78が放出する光に対して透明又は実質的に透明でなければならない。輻射加熱炉70は楕円形の断面形状を有しており、その内面は1以上の光反射器(ミラー)73で被覆されている。光源78は、例えば単一の線形フィラメントを有するタングステン/ハロゲンランプであり得るが、他のタイプの光源が公知であり使用することができよう。反射器73は陽極酸化アルミニウムシート材料のような高度に反射性の材料で形成されるが、他の適切な高反射性材料も反射器73として使用することが考えられる。光源78は反射器73の楕円形の形状の1つの焦点77aに位置しているか又はその付近に集中しており、ハウジング72は楕円形の形状の第2の焦点77bに位置しているか又はその付近に集中していて、反射器73が、第1の焦点77aにある光源78により発生した光を、第2の焦点77bにあるハウジングチャンバー74内に位置するストランド76上に集中させるようになっている。ここで、先の実施形態に関して記載したのと同様なポート(図には示してない)を介して、反応物質ガスをチャンバー74中に導入することができ、反応副生成物及び残留反応物質ガスをチャンバー74から抜き出すことができる。輻射加熱炉70の長手方向の長さは好ましくは光源78の長さに等しい。
図4の単一の光源78ではストランド76を所望の温度に加熱するのに充分なエネルギーが得られない場合は、図5の輻射加熱炉80を使用することができる。図5はコーティングハウジング82とこのハウジング82の両側にある2つの高強度光源88a及び88bとを取り囲む輻射加熱炉80を示している。輻射加熱炉70は、2つの別れた焦点87aを画定し共通の焦点87bを有する2つの交差する楕円により画定される断面形状を有している。図4の実施形態と同様に、輻射加熱炉80の内面は1以上の光反射器(ミラー)83で被覆されている。反射器83は、光源88aと88bが各々の楕円形の形状の焦点87aに位置するか又はその付近に集中し、コーティングハウジング82が交差する楕円形形状の一致する焦点87bに位置するか又はその付近に集中するように配置されている。こうして、輻射加熱炉80内面を被覆する反射器83は、焦点87aに位置する光源78により発生した光を、一致する焦点87bにあるハウジングチャンバー84内に位置するストランド86上に集中させる。先の実施形態について記載したのと同様に、反応物質ガスを導入し、反応副生成物と残留反応物質ガスをポート(図には示してない)を介してチャンバー84から抜き出す。ストランド86は線形のアレイとして並んでおり、そのアレイの中心は一致する焦点87bに位置する。或いは、ストランド86は、例えば、ストランド86のより均一な加熱を促進するために、その軸が焦点87cに位置する円形パターンのような異なるパターンで配置することができよう。
光源78、88a及び88bで発生した光エネルギーを正確に集中させることができる輻射加熱炉は一般に光源78、88a及び88bに使用されるランプのフィラメントとほぼ同じ大きさの加熱ゾーンを画定する。適切に設計された光学素子を使用することにより任意の光源形状が線形のストランド76及び86上に集光することができるので、適切な光源が線形の形状に限定されないということは明らかであろう。加えて、加熱炉は、各々が他の反射器と共通の第2の焦点を有する自身の楕円形の反射器を備えている異なる数の光源を収容するように構成することができよう。複数のストランド76及び86の均一な加熱は、光源78、88a及び88bにより生成した放射線エネルギーがハウジング72及び82内のより広い断面積にわたって集中するように、光源78、88a及び88bを焦点77a及び87aから少しずらして配置することにより、光源78、88a及び88bの焦点77b及び87bをぼかすことによってさらに促進することができる。
マイクロ波加熱及び誘導加熱はストランド46の繊維材料の電気伝導度に依存するが、輻射加熱炉70及び80は加熱のための繊維放射率(emissivity)に依存し、より広い種々の繊維材料の加熱が可能になる。最も注目すべきことに、炭化ケイ素のような導電性繊維に加えて、繊維材料が光源78又は88a及び88bにより放出されたエネルギーを吸収する限り、アルミナ又はムライトのような非導電性繊維をこの技術によって加熱することができる。
別の実験において、複数の炭化ケイ素トウ(HI−NICALON(登録商標))を図5に示したような加熱炉に通した。ハウジングはおよそ2インチ(約5センチメートル)の直径の石英管であった。トウをハウジングに通して送り、同時に三塩化ホウ素及びアンモニアガスをハウジングに通した。希釈ガスとして窒素もハウジングに通した。ハウジングは光源とおよそ同じ長さであり、光源は約10インチ(約25センチメートル)の長さを有する2つの工業用2kW石英/ハロゲンランプであった。各々のランプは楕円形の反射器を有しており、これらの楕円形の反射器は共通の第2の焦点を有していた。トウを共有の第2の焦点において、約4インチ/分(約10センチメートル/分)の速度でハウジングに通して送り、同時に三塩化ホウ素及びアンモニアガスを通した。窒素を希釈ガスとして使用した。ハウジングを通り抜けた後、トウを巻き取りスプールに巻き取った。走査型顕微鏡によるトウの検査で、約250ナノメートルの厚さを有するコーティングの存在が示された。XPS分析は、このコーティングがBNであることを示していた。
図3〜5に示したタイプの反応器を用いてストランド46、76及び86のコーティングをした後、ストランド46、76及び86は、CMC物品、殊にCFCC物品を製造するために後に巻き戻しCMCプロセスで強化材として使用するために、スプール(図3中の54)に巻き取ることができる。例えば、適切なCMCプロセスとしては、米国特許第5015540号、同第5330854号、同第5336350号、同第5628938号、同第6024898号、同第6258737号、同第6403158号及び同第6503441号、並びに米国特許出願公開第2004/0067316号に開示されているものを含めて上記のものがある。
特定の実施形態に関して本発明を説明して来たが、当業者は他の形態を採用することができることは明らかである。例えば、反応器の物理的構成は示したものと異なることができるし、記載したもの以外の材料及び方法を使用することができよう。従って、本発明の範囲は特許請求の範囲によってのみ限定されるべきである。
10 部品
12 薄層
14 トウ
16 繊維
18 マトリックス
20 反応器
22 ハウジング
24 チャンバー
26 繊維
28 加熱炉
30
40 反応器
42 ハウジング
44 チャンバー
46 ストランド
48a 電極
48b 電極
50 ポート
52 スプール
54 スプール
70 輻射加熱炉
72 ハウジング
73 ミラー
74 チャンバー
76 ストランド
77a 点
77b 点
78 光源
80 輻射加熱炉
82 ハウジング
83 反射器
84 チャンバー
86 ストランド
87a 点
87b 点
88a 光源
88b 光源

Claims (10)

  1. 繊維状物質の複数のストランド(46,76,86)を、ハウジング(42,72,82)により画定される包囲されたチャンバー(44,74,84)内のコーティングゾーンに通して連続的に移動させることによって、ストランド(46,76,86)の一部分がチャンバー(44,74,84)を通って移動するときに前記部分が反応物質ガスと接触し、反応物質ガスがストランド(46,76,86)の前記部分と接触し分解する結果としてコーティング材料をストランド(46,76,86)上に付着させてコーティング材料のコーティングを形成することを含む化学蒸着法であって、
    ストランド(46,76,86)と物理的に接触せず、ハウジング(42,72,82)を直接加熱しない加熱手段(48a,48b,78,88a,88b)で、ストランド(46,76,86)の前記部分を直接加熱し、前記加熱手段(48a,48b,78,88a,88b)が容量性又は誘導結合手段(48a,48b)、マイクロ波放射発生手段(48a,48b)及び輻射加熱手段(78,88a,88b)からなる群から選択されることを特徴とする、前記化学蒸着法。
  2. ストランド(46,76,86)の前記部分がマイクロ波放射発生手段(48a,48b)及びそれにより発生したマイクロ波放射によって加熱されることを特徴とする、請求項1記載の化学蒸着法。
  3. さらに、ハウジング(42)の内面上の赤外−反射性コーティングにより特徴付けられ、赤外−反射性コーティングがストランド(46)から放出された熱をストランド(46)の方に向けて反射するように適合している、請求項2記載の化学蒸着法。
  4. ストランド(46,76,86)の前記部分が輻射加熱手段(78,88a,88b)及びそれにより発生した電磁放射線によって加熱されることを特徴とする、請求項1記載の化学蒸着法。
  5. さらに、ハウジング(72,82)及び輻射加熱手段(78,88a,88b)を含有する光反射器(73,83)により特徴付けられる、請求項4記載の化学蒸着法。
  6. 光反射器(73)が楕円形の断面を有し、輻射加熱手段(78)が楕円形の断面の第1の焦点(77a)に位置し、ハウジング(72)が楕円形の断面の第2の焦点(77b)に位置することを特徴とする、請求項5記載の化学蒸着法。
  7. 光反射器(83)が少なくとも2つの交差する楕円により画定される断面を有し、各々の楕円が個別に第1の焦点(87a)を有し、楕円が一致する第2の焦点(87b)を共有し、輻射加熱手段(88a,88b)が各々第1の焦点(87a)に位置し、ハウジング(82)が一致する第2の焦点(87b)に位置することを特徴とする、請求項5記載の化学蒸着法。
  8. コーティング材料が繊維状物質とセラミック材料との結合を阻止する剥離層であることを特徴とする、請求項1乃至請求項7のいずれか1項記載の化学蒸着法。
  9. さらに、前記付着工程により製造された被覆されたストランドをセラミックマトリックス複合材料中の強化材として使用することを特徴とする、請求項1乃至請求項8のいずれか1項記載の化学蒸着法。
  10. 請求項1乃至請求項9のいずれか1項記載の方法を実施するのに適した化学蒸着装置(50,70,80)。
JP2010289318A 2010-01-08 2010-12-27 繊維状物質の連続コーティングのための方法及び装置 Pending JP2011140716A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/684,305 US20110171399A1 (en) 2010-01-08 2010-01-08 Process and apparatus for continuous coating of fibrous materials
US12/684,305 2010-01-08

Publications (1)

Publication Number Publication Date
JP2011140716A true JP2011140716A (ja) 2011-07-21

Family

ID=43650633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010289318A Pending JP2011140716A (ja) 2010-01-08 2010-12-27 繊維状物質の連続コーティングのための方法及び装置

Country Status (4)

Country Link
US (1) US20110171399A1 (ja)
EP (1) EP2343398A1 (ja)
JP (1) JP2011140716A (ja)
CA (1) CA2726386A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019001706A (ja) * 2017-06-15 2019-01-10 ロールス−ロイス ハイ テンペラチャー コンポジッツ,インコーポレーテッド 炭化ケイ素繊維上に湿度耐性コーティングを形成する方法
JP2023016748A (ja) * 2021-07-21 2023-02-02 ゼネラル・エレクトリック・カンパニイ セラミックファイバをコーティングするためのシステムおよび方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10815156B2 (en) * 2013-10-10 2020-10-27 Raytheon Technologies Corporation Controlling microstructure of inorganic material by indirect heating using magnetic radiation
US20150291473A1 (en) * 2014-04-09 2015-10-15 United Technologies Corporation Energy preparation of ceramic fiber for coating
US10490425B2 (en) * 2015-07-29 2019-11-26 Infineon Technologies Ag Plasma systems and methods of processing using thereof
US10118792B2 (en) 2016-08-03 2018-11-06 General Electric Company Fiber unwinding system and methods of unwinding a fiber from a bobbin
US10899671B2 (en) * 2016-08-24 2021-01-26 Westinghouse Electric Company Llc Process for manufacturing SiC composite ceramics
CA2974387A1 (en) 2016-08-30 2018-02-28 Rolls-Royce Corporation Swirled flow chemical vapor deposition
US10710111B2 (en) 2017-09-25 2020-07-14 Raytheon Technologies Corporation Continuous tow fiber coating reactor
US10941491B2 (en) 2017-09-25 2021-03-09 Raytheon Technologies Corporation Continuous multiple tow coating reactor
FR3075829B1 (fr) * 2017-12-26 2020-09-04 Safran Ceram Procede et dispositif de depot d'un revetement sur une fibre continue
US20220055955A1 (en) * 2020-08-19 2022-02-24 Rolls-Royce High Temperature Composites Inc. Method of making a ceramic matrix composite that exhibits moisture and environmental resistance
FR3113496A1 (fr) * 2020-08-21 2022-02-25 Safran Ceramics Procédé de dépôt d’un revêtement sur un fil sous champ micro-ondes
US20230193467A1 (en) * 2021-12-22 2023-06-22 Raytheon Technologies Corporation Alternating and continuous microwave fiber tow coating thermo-chemical reactor furnace

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280273A (ja) * 1985-10-04 1987-04-13 Toray Ind Inc 複合繊維の連続製造方法
JPH05279857A (ja) * 1992-01-22 1993-10-26 Avco Corp マイクロ波式繊維加熱装置
JPH0744905A (ja) * 1993-05-27 1995-02-14 Canon Inc 光記録媒体及びその製造方法
JP2006080196A (ja) * 2004-09-08 2006-03-23 Taiyo Nippon Sanso Corp 気相成長装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB873429A (en) * 1957-11-08 1961-07-26 Arthur Henry Clarkson Apparatus and method for the production of metallized materials
US3213827A (en) * 1962-03-13 1965-10-26 Union Carbide Corp Apparatus for gas plating bulk material to metallize the same
US3657508A (en) * 1970-11-18 1972-04-18 Western Electric Co Method of and radiant energy transmissive member for reflow soldering
US3754112A (en) * 1972-06-14 1973-08-21 Avco Corp Localized heating filaments by induced currents
US4518628A (en) * 1982-05-28 1985-05-21 International Telephone And Telegraph Corporation Hermetic coating by heterogeneous nucleation thermochemical deposition
US5015540A (en) * 1987-06-01 1991-05-14 General Electric Company Fiber-containing composite
US5330854A (en) * 1987-09-24 1994-07-19 General Electric Company Filament-containing composite
US5866195A (en) * 1988-03-31 1999-02-02 Lemelson; Jerome H. Methods for forming diamond-coated superconductor wire
AU624203B2 (en) * 1988-12-21 1992-06-04 Sumitomo Electric Industries, Ltd. Method and apparatus for producing coated optical fiber
CA2001009C (en) * 1989-10-19 2000-11-28 Richard S. Adams Infrared window
US5336350A (en) * 1989-10-31 1994-08-09 General Electric Company Process for making composite containing fibrous material
US5021072A (en) * 1990-01-16 1991-06-04 At&T Bell Laboratories Method for making a carbon-coated and polymer-coated optical fiber
GB2271518B (en) * 1992-10-16 1996-09-25 Korea Res Inst Chem Tech Heating of fluidized bed reactor by microwave
US5628938A (en) * 1994-11-18 1997-05-13 General Electric Company Method of making a ceramic composite by infiltration of a ceramic preform
US5543605A (en) * 1995-04-13 1996-08-06 Avco Corporation Microwave fiber coating apparatus
US6024898A (en) * 1996-12-30 2000-02-15 General Electric Company Article and method for making complex shaped preform and silicon carbide composite by melt infiltration
US6152072A (en) * 1998-05-26 2000-11-28 California Institute Of Technology Chemical vapor deposition coating of fibers using microwave application
US6403158B1 (en) * 1999-03-05 2002-06-11 General Electric Company Porous body infiltrating method
US6506483B1 (en) * 2000-04-28 2003-01-14 Technology Assessment & Transfer, Inc. Ceramic fiber debond coatings
DE10051901C1 (de) * 2000-10-19 2002-06-13 Man Technologie Gmbh Kohlenstoffverstärkungen, insbesondere zur Verwendung in kohlenstoffverstärkten Werkstoffen, und Verfahren zum Erzeugen eines inneren Oxidationsschutzes von Kohlenstoffverstärkungen
US6630029B2 (en) * 2000-12-04 2003-10-07 General Electric Company Fiber coating method and reactor
US6939579B2 (en) * 2001-03-07 2005-09-06 Asm International N.V. ALD reactor and method with controlled wall temperature
US6503441B2 (en) * 2001-05-30 2003-01-07 General Electric Company Method for producing melt-infiltrated ceramic composites using formed supports
JP4437641B2 (ja) * 2002-08-21 2010-03-24 大日本スクリーン製造株式会社 熱処理装置
US7291407B2 (en) * 2002-09-06 2007-11-06 Siemens Power Generation, Inc. Ceramic material having ceramic matrix composite backing and method of manufacturing
US20040067316A1 (en) * 2002-10-04 2004-04-08 Paul Gray Method for processing silicon-carbide materials using organic film formers
JP5260830B2 (ja) * 2003-09-23 2013-08-14 古河電気工業株式会社 一次元半導体基板の製造方法
US20070099527A1 (en) * 2005-11-01 2007-05-03 General Electric Company Method and reactor to coat fiber tows and article
US7510742B2 (en) * 2005-11-18 2009-03-31 United Technologies Corporation Multilayered boron nitride/silicon nitride fiber coatings

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280273A (ja) * 1985-10-04 1987-04-13 Toray Ind Inc 複合繊維の連続製造方法
JPH05279857A (ja) * 1992-01-22 1993-10-26 Avco Corp マイクロ波式繊維加熱装置
JPH0744905A (ja) * 1993-05-27 1995-02-14 Canon Inc 光記録媒体及びその製造方法
JP2006080196A (ja) * 2004-09-08 2006-03-23 Taiyo Nippon Sanso Corp 気相成長装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019001706A (ja) * 2017-06-15 2019-01-10 ロールス−ロイス ハイ テンペラチャー コンポジッツ,インコーポレーテッド 炭化ケイ素繊維上に湿度耐性コーティングを形成する方法
JP7126872B2 (ja) 2017-06-15 2022-08-29 ロールス-ロイス ハイ テンペラチャー コンポジッツ,インコーポレーテッド 炭化ケイ素繊維上に湿度耐性コーティングを形成する方法
JP2023016748A (ja) * 2021-07-21 2023-02-02 ゼネラル・エレクトリック・カンパニイ セラミックファイバをコーティングするためのシステムおよび方法
JP7416470B2 (ja) 2021-07-21 2024-01-17 ゼネラル・エレクトリック・カンパニイ セラミックファイバをコーティングするためのシステムおよび方法

Also Published As

Publication number Publication date
US20110171399A1 (en) 2011-07-14
EP2343398A1 (en) 2011-07-13
CA2726386A1 (en) 2011-07-08

Similar Documents

Publication Publication Date Title
JP2011140716A (ja) 繊維状物質の連続コーティングのための方法及び装置
US11008652B2 (en) Swirled flow chemical vapor deposition
US5389152A (en) Apparatus for densification of porous billets
US5154862A (en) Method of forming composite articles from CVD gas streams and solid particles of fibers
EP2554525B1 (en) Powder material impregnation method and method for producing fiber-reinforced composite material
US20060228497A1 (en) Plasma-assisted coating
CN1653867A (zh) 等离子体辅助涂覆
CN106460172B (zh) 针对由石墨构成的pecvd舟皿的保护层
CN102127753A (zh) 一种直流电加热cvd法制备碳化硅纤维的装置和制备方法
Lazzeri CVI processing of ceramic matrix composites
US20220316068A1 (en) Method and device for depositing a coating on a continuous fibre
KR20090101288A (ko) 코팅을 안정적으로 하는 방법과 장치
KR101787065B1 (ko) 화학 기상 침착 장치
JP6467290B2 (ja) セラミック複合材
JP6610806B2 (ja) 気相プロセス用再熱捕集装置
KR20150144873A (ko) 균일한 미세구조를 가지는 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 제조방법
JP2019001706A (ja) 炭化ケイ素繊維上に湿度耐性コーティングを形成する方法
EP1148152A2 (en) Chemical vapor deposition apparatus
US20220177374A1 (en) A method of fabricating a cmc part
Serre et al. Study of the silicon carbide matrix elaboration by film boiling process
JPS5935674A (ja) 蒸着装置
CN112154223A (zh) 在连续纤维上沉积涂层的方法和装置
AU714371B2 (en) Method for densification of porous billets
Day et al. Fabrication of SiC Matrix Surface Composites by Chemical Vapor Infiltration with Microwave Heating: Temperature Effects

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140819

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140822

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140919

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20141001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150623