JP2011138950A - 半導体装置及び電子機器 - Google Patents

半導体装置及び電子機器 Download PDF

Info

Publication number
JP2011138950A
JP2011138950A JP2009298365A JP2009298365A JP2011138950A JP 2011138950 A JP2011138950 A JP 2011138950A JP 2009298365 A JP2009298365 A JP 2009298365A JP 2009298365 A JP2009298365 A JP 2009298365A JP 2011138950 A JP2011138950 A JP 2011138950A
Authority
JP
Japan
Prior art keywords
metal microstructure
semiconductor device
photoelectric conversion
light
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009298365A
Other languages
English (en)
Inventor
Keiichi Yamamoto
恵一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2009298365A priority Critical patent/JP2011138950A/ja
Priority to TW099142874A priority patent/TWI442589B/zh
Priority to US12/967,815 priority patent/US8513586B2/en
Priority to KR1020100127994A priority patent/KR20110076770A/ko
Priority to CN201010598252.0A priority patent/CN102110703B/zh
Publication of JP2011138950A publication Critical patent/JP2011138950A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)
  • Photovoltaic Devices (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Optical Filters (AREA)

Abstract

【課題】表面プラズモンを利用した半導体装置において、より高感度化、薄膜化を可能にした半導体装置を提供する。
【解決手段】光電変換層2と、光電変換層2内に埋め込まれた連続あるいは不連続の筒状の金属微細構造体3と、金属微細構造体3の内側面及び外側面を被覆する誘電体膜4とを有する。
【選択図】図1

Description

本発明は、プラズモン現象を利用した半導体装置、及びこの半導体装置で構成された固体撮像装置を備えてカメラなどに適用される電子機器に関する。
近年、光と、金、銀、銅、アルミニウムなどのメタル系材質とが特別な条件でカップリングして、小さな領域に強電場を生じる表面プラズモンと呼ばれる特殊な光が注目を集めている。実際、これまでバイオ系でその応用が進んでおり、クレッチマン配置と全反射減衰法を組み合わせたSPR顕微鏡により、タンパク分子など単分子吸着の観察などに使用されている。全反射減衰法はATR(Attenuated-Total-Reflection)法と略称され、SPRはSurface-Plasmon-Resonanceの略称である。
一方、プラズモンを用いてイメージセンサ(いわゆる固体撮像装置)のフォトダイオードの薄膜化、高感度化を図った技術が提案されている(特許文献1、2参照)。
図14に特許文献1のイメージセンサを示す。このイメージセンサは、基本的にはセンサー内にプラズモン共鳴体(メタル系の金属粒子)を埋め込み、センサーの薄膜化と深さ方向での分光機能を持たせた構成である。図14Aのイメージセンサ101は、p型半導体基板102に順次n型半導体領域103、p型半導体領域104、n型半導体領域105が形成され、pn接合を有する光電変換層が積層される。p型半導体基板102に赤の光Rでプラズモン共鳴を起こすプラズモン共鳴体106が埋め込まれ、n型半導体領域103に緑Gの光でプラズモン共鳴を起すプラズモン共鳴体107が埋め込まれ、p型半導体領域104に青の光Bでプラズモン共鳴を起すプラズモン共鳴体108が埋め込まれる。各プラズモン共鳴体106〜108は、透明絶縁膜109で被覆される。pn接合を有する光電変換層に光Lが入射し、そのRGBの光がプラズモン共鳴体106〜108に入射する。プラズモン共鳴体に光が入射し、プラズモン共鳴が生じている状態では、RGBの光は、プラズモン共鳴体106〜108近傍の狭い領域に局在した光となっており、そこから再放射された光により生じた電荷を蓄積し、信号が読み出し部111より読み出される。
図14Bのイメージセンサ113は、透明絶縁膜114で絶縁された光電変換層115、116、117が積層され、各光電変換層115、116、117にそれぞれ赤の光R、緑の光G、青の光Bでプラズモン共鳴を起すプラズモン共鳴体106,107、108が埋め込まれる。各プラズモン共鳴体106〜108は、透明絶縁膜109で被覆される。各光電変換層115〜117の両端には読み出し部となる電極118A,118Bが形成される。各光電変換層114〜116に光Lが入射され、RGBの光がプラズモン共鳴体106〜108で増強され、価電子帯から伝導電子帯に励起された電子が信号として電極118A,118Bを通じて読み出しされる。
このように、複数の光電変換層が積層され、プラズモン共鳴体を配置した構成を採ることにより、センサーの感度を下げることなく薄膜化することが可能となる。また、光電変換層毎に、異なる波長帯域に共鳴ピークを有し分光要素として機能するプラズモン共鳴体が配設されることにより、深さ方向での色分離が可能とされる。
光が異なる深さのプラズモン共鳴体に吸収されるだけでは、光強度の検出はできない。プラズモン共鳴体の共鳴ピークに応じた波長帯域ごとに光強度の検出が可能である理由は、プラズモン共鳴体から再放射された光を周囲の材料によって光電変換し、入射光強度を電荷の量へと変換するからである。また、その電荷をpn接合や電極を用いて電圧や電流の形で取り出すことで、それぞれの波長帯域の光強度を電気信号で得ることができる。
図15A、Bに、特許文献2のイメージセンサを示す。基本的には、金属ナノ粒子をシリコン面上に配置して、プラズモン現象を利用し、金属ナノ粒子の粒型や配置を工夫することで、センサーの薄膜化と分光の機能を持たせている。すなわち、図15A、Bのイメージセンサ121は、シリコンによるpn接合フォトダイオード122の上面に誘電体膜123を介して金属微粒子124のパターン層125を配置して構成される。誘電体膜123は、SiO、SiON、HfO、Si等からなり、誘電体膜123の膜厚が3nmないし100nmとされる。
金属微粒子124は、金、銀、銅、アルミニウム及びタングステンからなる群のうち選択された少なくとも一つで形成される。金属微粒子124のパターン層125は、複数の領域を備え、金属微粒子124のパターン層125の各領域は、複数のサブ画素領域、すなわち赤色サブ画素領域126R、緑色サブ画素領域126G、及び青色サブ画素領域126Bから構成される。各サブ画素領域126R、126G及び126Bでの金属微粒子124は、赤、緑、青の順で小さくなる。金属微粒子124の形状は、三角形、四角形、五角形、円形及び星形からなり、特定波長の光によりプラズモン共鳴が最適化されるようにパターン層125が形成される。
このパターン層125上の金属微粒子124は、光の電磁波が金属表面の電子と共振してプラズモンを形成することにより、光が金属微粒子124の近辺に留まる時間を延長させる役割を行う。したがって、この現象によってフォトダイオードへ入射してくる光は、このパターン層125の効果により、フォトダイオードが感知できる時間を延長させることができ、感度を向上させている。
特開2009−38352号公報 特開2009−147326号公報
ところで、上述の従来例では、光の進行方向に対する金属ナノ粒子の水平断面積の総和が大きく、結果として反射率が大きくなることが予想される。その結果、フォトダイオードへの光のフラックスが減少してしまい、感度に寄与する伝導電子の発生が抑制される。金属ナノ粒子による局在プラズモンの増強電磁波の存在領域は、金属ナノ粒子の近傍から数ナノから数十ナノメートル程度と小さいため、感度に寄与する光電変換領域も小さくなり、発生電子の総和も少ない。
さらに、プラズモンの物理的な性質上、金属ナノ粒子近傍に増強電場を生じさせるためには、その金属ナノ粒子をガラスなどの低屈折率材料で被覆してシリコンなどの高屈折率材料中に閉じ込める必要があることが知られている。このため、実際に感度として寄与する電子の発生につながる増強電場のフォトダイオードなどのセンサーにおける実効的な光の存在領域及び感度計算に用いる積分領域は、上記の理由に加えてさらに小さいものとなる。それ故、光電変換を行うフォトダイオードまでプラズモンの増強光が届かない場合も生じ得る。
従来技術では、センサーの高感度、薄膜化に対して、共鳴現象によって生じたプラズモンの増強光をダイレクトに感度として観測するのではなく、共鳴体から生じる再放射光の感知や、フォトダイオードの感知時間の延長などといったような、物理的に困難なプロセスを経由しなければ信号となる伝導電子を得ることができない。
本発明は、上述の点に鑑み、表面プラズモンを利用した半導体装置において、光電変換層のより高感度化、薄膜化を可能にした半導体装置を提供するものである。
本発明は、上記半導体装置で構成された固体撮像装置を備えてカメラなどに適用される電子機器を提供するものである。
本発明に係る半導体装置は、光電変換層と、光電変換層内に埋め込まれた連続あるいは不連続の筒状の金属微細構造体と、金属微細構造体の内側面及び外側面を被覆する誘電体膜とを有する。
本発明の半導体装置では、光が入射されると筒状の金属微細構造体で表面プラズモンが励起され、筒状の金属微細構造体の内外側の光電変換層にダイレクトに且つ広い領域に増強電場、つまり強い光が励起される。金属微細構造体が筒状であるので、金属微細構造体における入射光の反射が低減し、光のエネルギーを効率よく信号電荷に変換することができる。
本発明に係る電子機器は、光学レンズと、固体撮像装置として構成された半導体装置と、半導体装置の出力信号を処理する信号処理回路とを備える。上記半導体装置は、複数の画素が配列された撮像領域を有して構成される。複数の画素は、それぞれ光電変換層に埋め込まれた連続あるいは不連続の筒状の複数の金属微細構造体と、金属微細構造体の内側面及び外側面を被覆する誘電体膜とを有して成る。
本発明の電子機器では、上記固体撮像装置として構成された半導体装置を備えることにより、固体撮像装置の光電変換層において入射される光のエネルギーを効率よく信号電荷に変換することができる。
本発明に係る半導体装置によれば、筒状の金属微細構造体によって光電変換層の広い領域に強い光が励起され、金属微細構造体での反射率が低減して光のエネルギーを効率よく信号電荷に変換できるので、光電変換層のより高感度化、薄膜化を可能にする。
本発明に係る電子機器によれば、上記固体撮像装置として構成された半導体装置を備えることにより、より薄型化、高感度化が図られた電子機器を提供することができる。
A、B 本発明に係る半導体装置の基本構成(第1実施の形態)を示す平面図及びAーA線上の断面図である。 A−J 第1実施の形態に係る半導体装置の製造方法の一例を示す製造工程図である。 本発明に係る半導体装置の動作説明に供する説明図である。 第1実施の形態に係る半導体装置の他の例を示す平面図及びB−B断面図である。 読み出し方式の一例の説明に供する半導体装置の構成図である。 読み出し方式の他の例の説明に供する半導体装置の構成図である。 第1実施の形態に係る半導体装置の他の例を示す概略断面図である。 第1実施の形態に係る半導体装置の他の例を示す概略断面図である。 A〜G 筒状の金属微細構造体の上面から見た形状の例を示す筒状パターン図である。 A〜G 筒状の属微細構造体の縦断面形状の例を示す筒状パターン図である。 A、B 本発明に係る半導体装置を固体撮像装置に適用した第2実施の形態を示す要部の概略構成図である。 本発明に係る半導体装置を太陽電池に適用した第3実施の形態を示す概略構成図である。 本発明の第4実施の形態に係る電子機器の概略構成図である。 A、B 従来のイメージセンサの一例を示す概略構成図である。 A、B 従来のイメージセンサの他の例を示す概略構成図である。
以下、発明を実施するための形態(以下実とする)について説明する。なお、説明では以下の順序で行う。
1.第1実施の形態(半導体装置の概略基本構成例と製造方法例)
2.第2実施の形態(半導体装置を固体撮像装置に適用した要部の概略構成例)
3.第3実施の形態(半導体装置を太陽電池に適用した概略構成例)
4.第4実施の形態(電子機器の構成例)
<1.第1実施の形態>
[半導体装置の概略基本構成例]
図1に、本発明に係る半導体装置の第1実施の形態を示す。この第1実施の形態は、本発明の半導体装置の概略基本構成を示す。第1実施の形態に係る半導体装置1は、図1A、Bに示すように、光電変換層となる例えばシリコンなどによる半導体基板2内に、後述する連続あるいは不連続の筒状の金属微細構造体3を埋め込んで構成される。金属微細構造体3の内側面及び外側面は、誘電体膜4で被覆される。この金属微細構造体3は、この金属微細構造体に光が入射したとき、表面プラズモンを励起させる。
金属微細構造体3は、表面プラズモンを励起するには、光とのカップリングにより誘電率が負となる金属系の材質で形成する必要がある。金属微細構造体3は、この条件に合う例えば、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、タングステン(W)などのメタル系材料で形成される。タングステン(W)は緑の波長光とのカップリングでは誘電率が負にならないが、カップリングする波長域により誘電率が負となりうる。
金属微細構造体3を被覆する誘電体膜4は、低屈折率材料で形成される。誘電体膜4は、好ましくは実部が3.0以下の誘電体材料、例えばSiO、SiON、HfOなどで形成することができる。本例の誘電体膜4は、シリコン酸化(SiO)膜で形成される。実部が3.0を超える大きい場合、十分な電場が励起されない。
筒状の金属微細構造体3は、内径r1もしくは上面から見た内側の長さt1(図9E参照)が100nm〜1.0μmの範囲、厚さd1が10nm〜100nmの範囲、トータルの長さs1が20nm〜3.0μmの範囲に、それぞれ設定することが好ましい。金属微細構造体3が、例えば後述の図9D、Eで示す四角形状の筒状であるときは、四角状の内側の長さt1が100nm〜1.0μmの範囲に設定することが好ましい。
内径r1、内側の長さt1が100nm〜1μmの範囲であれば、可視光で表面プラズモンを励起させることができる。この範囲を外れると可視光での表面プラズモン励起条件から外れる。内径r1、内側の長さt1が100nm〜300nmの範囲であれば、安全に可視光で表面プラズモンを励起させることができる。筒状の金属微細構造体3の外径r2は、入射する光の波長以下とするのが好ましい。厚さd1は、10nmより薄いと光が金属を貫通する不都合があり、100nmを超えると光の反射率が増大するという不都合がある。長さs1が20nmより短いと表面プラズモンの存在領域が小さくなるという不都合があり、また3.0μmを超えても感度としての寄与は小さくなるという不都合が生じる。
本実施の形態では、金属微細構造体3の上面及び下面を被覆するように、光電変換層と同材質の光透過層5が形成される。本例では、光透過層5が半導体基板2の一部として構成される。特定波長の光に対して表面プラズモンを生じさせるには、筒状の金属微細構造体3の直径もしくは上面から見た外側の長さを調整することで可能になる。
本実施の形態では、後述する信号の読み出し方式に応じて、例えば図6に示すように、半導体基板2に、第1導電型(p型あるいはn型)の半導体領域と第2導電型(n型またはp型)の半導体領域を形成してpn接合jを有する構成することもできる。pn接合jは筒状の金属微細構造体3の長さ方向の中間を横切るように形成される。
[半導体装置の製造方法例]
図2に、第1実施の形態に係る半導体装置1の製造方法の一例を示す。先ず、図2Aに示すように、例えば光電変換層となるシリコン単結晶による半導体基板2を用意する。この半導体基板2の表面から、所要の径、所要の深さを有する凹孔11を形成する。
次に、図2Bに示すように、凹孔11内に例えばシリコン酸化膜による誘電体膜4を埋め込む。次いで、図3Cに示すように、誘電体膜4を凹孔11の側壁に所要の膜厚で残るように、選択的にエッチング除去する。
次に、図2Dに示すように、エッチング除去された凹孔12内に金属微細構造体を形成すべき金属層、例えばアルミニウム(Al)層3Aを埋め込む。次いで、図3Eに示すように、アルミニウム層3Aを選択的にエッチング除去して、筒状の金属微細構造体3を形成する。
次に、図2Fに示すように、アルミニウム層3Aの中央部を除去して形成された凹孔13内に例えばシリコン酸化膜による誘電体膜4を埋め込む。次いで、図3Gに示すように、誘電体膜4を、金属微細構造体3の内面に接して所要の膜厚で残るように、選択的にエッチング除去する。
次に、図2Hに示すように、誘電体膜4の中央部を除去して形成された凹孔14内に、凹孔14内が埋め込まれるように、シリコン単結晶による半導体層15を形成する。この半導体層15は、半導体基板2と導電型を含み全く同等の半導体層であり、半導体基板2の一部として構成される。
次に、図2Iに示すように、金属微細構造体3、誘電体膜4及び半導体層15上を含む半導体基板2上に、シリコン単結晶による半導体層16を形成する。この半導体層16は、半導体基板2と導電型を含み全く同等の半導体層であり、半導体基板2の一部として構成される。半導体層16は、図1で示した光透過層5に相当する。
次に、図2Jに示すように、半導体基板2の裏面を光透過層5となる厚みを残して鎖線位置17(図2I参照)まで例えばCMP(化学機械研磨)法などを用いて除去し、基板の薄膜化を行う。CMP法による除去工程では、半導体基板2の上面に支持基板を貼り付けて行うことができる。このようにして、目的の半導体装置1を得る。
なお、後述する信号の読み出し方式に応じて、電極を形成するときは、図2Jの工程の後に、半導体基板2の上下面に透明電極を含む対の電極を形成する。また、pn接合を形成するときは、半導体基板2を第1導電型(p型あるいはn型)基板とし、図2Jの工程の後に、第2導電型(n型またはp型)の不純物をイオン注入してpn接合を形成する。
第1実施の形態に係る半導体装置1は、図4に示すように、半導体基板2内に金属微細構造体3を周期的に複数配置して構成することができる。本例では金属微細構造体3を、上面から見て縦3個、横3個の計9個が周期的に配列して構成される。
[半導体装置の動作説明]
次に、第1実施の形態に係る半導体装置1の動作を説明する。図3に示すように、光電変換層である半導体基板2を通して金属微細構造体3に光Lが入射されると、特定波長の光に対してプラズモン共鳴が生じ、表面プラズモンが励起される。そして、この表面プラズモンにより増強された強い光が、筒状の金属微細構造体3の内側の中央領域、及び外側の中央領域にダイレクトに励起される。この強い光の励起領域6、7は、光電変換層の広い領域に形成される。すなわち、表面プラズモンの増強電場がダイレクトにかつ広い領域で励起される。筒状の金属微細構造体3によって生じる表面プラズモンは、ピークの大きさでは局所プラズモンに劣るものの、筒状の内外に大きな電磁場が集中、蓄積される。そして、筒状の金属微細構造体3の内部及び外部の体積として大きな半導体領域で光電変換が起こる。光電変換により発生した電荷を信号として用いる。
金属微細構造体3を低誘電率の誘電体膜4で被覆して、例えば高屈折率のシリコンによる光電変換層となる半導体基板2内に埋め込むときは、表面プラズモンを励起する場合、効率よく強電場を励起することができる。つまり、効率よく光強度の高い強い光を励起することができる。
信号の読み出し方式としては、例えば、図5に示す方式を採ることができる。図5では、光電変換層となる半導体基板2の上下面に電極21、22を形成し、外部から電極21及び22間に電位差を与えて半導体基板2内に電界を形成し、光エネルギーにより価電子帯から伝導電子帯に励起された電子を信号として読み出す。電極21,22としては、少なくとも光入射面側を透明電極とする。また信号の読み出し方式としては、図6で示す方式を採ることができる。図6は、光電変換層となる半導体基板にn型半導体層23及びp型半導体層24を形成して、pn接合jを形成する。そして、光電変換によって生じた電荷を蓄積して信号として読み出す。金属微細構造体3の形状によって、半導体層23、24の不純物濃度や領域を設計する。
図7、図8に、第1実施の形態に係る半導体装置1の変形例を示す。図7に示す半導体装置26は、筒状の金属微細構造体3の上端面及び下端面をも、内側面及び外側面の誘電体膜4と同材質の誘電体膜4で被覆する。すなわち、金属微細構造体3の全面が誘電体膜4で被覆される。その他の構成は、図1で説明したと同じであるので、図1と対応する部分に同一符号を付して重複説明を省略する。金属微細構造体3の上端面が誘電体膜4で被覆されるときは、さらに強い電場を励起することができるので好ましい。
図8に示す半導体装置27は、図1の構成において、光透過層5を省略して金属微細構造体を半導体基板2の表面、裏面に露出して構成される。その他の構成は、図1で説明したと同じであるので、図1と対応する部分に同一符号を付して重複説明を省略する。半導体装置27では、光透過層5が無い分、さらに強い電場を励起することができる。それゆえより多くの電子が励起されうる。
上述の第1実施の形態に係る半導体装置1によれば、表面プラズモンを励起させる金属微細構造体3が筒状に形成されて光電変換層となる半導体基板2に埋め込まれる。筒状の金属微細構造体3であるので、光の進行方向と垂直に交わる金属微細構造体3の水平断面積が小さくなり、金属微細構造体3における反射率特性が小さくなる。すなわち、金属微細構造体3における光反射が低減し、光電変換層への光のフラックスの減少を最小限に抑えることができる。それにより、感度に寄与する電荷の発生が妨げられることがなく、光のエネルギーを効率よく信号に変換することができる。
従来技術のナノ粒子によって生じる局所プラズモンの存在領域は非常に小さかった。これに対して、本実施の形態の筒状の金属微細構造体3によって生じる伝播プラズモンは、ピークの大きさでは局所的には劣るももの、筒状の内外に大きな電磁場を集中、蓄積させることができる。すなわち、筒状の内外に強い光を集中、蓄積させることができる。これによって、筒状内部及び筒状外部周辺の堆積として大きな領域で光電変換を起させることができる。その結果、光電変換層の深いところでの光電変換されていた光を筒状周辺まで持ち上げることが可能となり、光電変換層つまりセンサーの薄膜化を実現することができる。
また、本実施の形態では、例えば、赤、緑、青などの波長の異なる光を増強する場合、最も簡単には筒状の金属微細構造体3の直径もしくは上面から見た外側の長さを調整することで対応することができる。筒状の微細構造体3は無機のメタル系材質であるため、高い耐久性も併せ持つ。さらに、金属微細構造体3の材料特性による光のコントロールではなく、金属微細構造対3の構造による光のコントロールであるため、所望の特性を自在に設計することが可能となる。
さらに、本実施の形態では、表面プラズモンの増強電場が、例えば、センサー内部の信号として検知可能な領域にダイレクトかつ大領域で励起させることができる。従って、「再放射」や「検知時間の遅延」などといった従来のイメージセンサの分野であまり馴染みのない物理メカニズムに頼ることなく、これまで通りの検知の仕方で信号に変換することが可能となる。
これらの効果を確認するために、波長600nmの光に対して図1の半導体装置1を用いてシミュレーションを実施した。その結果、筒状の金属微細構造体3の内外の中心部分における信号として検知可能なシリコン領域に、ダイレクトに増強電場は発生していることが確認できた。電場強度のピークを比較すると、バルクシリコンの場合を1とすると金属微細構造体3を用いた場合では13を超えることが判明した。電場強度のピーク値に関しては、明らかに金属微細構造体3を用いたものの方が、大きな電場強度を励起することが確認できた。感度は光電変換層内の積分値で評価できる。積分感度を比較すると、厚み250nmのシリコン半導体基板2に筒状の金属微細構造体3を埋め込んだ構成では、厚み700nmのバルクシリコン相当の感度があることを確認した。ここでは、赤の波長域の光での結果であるが、緑、青の波長域の光に対しても、同等の感度が得られる。
波長ごとの光吸収ピークのコントロールをメタル材質の選択、形やサイズでコントロールする場合には、製造精度が重要になる。従来の金属ナノ粒子では数10nmでそのばらつきを制御する必要がある。これに対して、本実施の形態の筒状の金属微細構造体3では、その直径もしくは上面から見た外側の長さ、及び深さ方向の長さが数百nmあるため、製造ばらつきの要求精度も比較的に緩くすることができる。
図9及び図10に、筒状の金属微細構造体3の種々の形状例を示す。図9は、筒状の金属微細構造体3を上面から見たリングパターンを示す。
図9Aの誘電体膜4で被覆された金属微細構造体3は、連続した円形を有する円筒状に形成される。
図9Bの誘電体膜4で被覆された金属微細構造体3は、円形に一部に切除部29が形成されて全体として不連続な円形を有する円筒状に形成される。
図9Cの誘電体膜4で被覆された金属微細構造体3は、等角間隔に切除部29が設けられて、円形が4分割され全体として不連続な円形を有する円筒状に形成される。
図9Dの誘電体膜4で被覆された金属微細構造体3は、平面形状が四角形状をなす角筒状に形成される。
図9Eの誘電体膜4で被覆された金属微細構造体3は、欠如部29によって四角形状が2等分割され全体として不連続な四角形状を有する角筒状に形成される。
図9Fの誘電体膜4で被覆された金属微細構造体3は、筒状の中心孔が円形であり、外側の誘電体膜4が横長楕円形状、金属微細構造体3及び内側の誘電体4が縦長楕円形状をなす連続した楕円筒状に形成される。
図9Gの誘電体膜4で被覆された金属微細構造体3は、複数、本例では2つの金属微細構造体3A、3Bが所要間隔を置いて、同軸心上に配置して構成される。
図10は、筒状の金属微細構造体3を垂直方向に断面したときの長さ方向の筒状パターンを示す。
図10Aの誘電体膜4で被覆された金属微細構造体3は、長さ方向に同じ径を有して連続して形成された筒状に形成される。
図10Bの誘電体膜4で被覆された金属微細構造体3は、欠如部30により長さ方向に2分されて不連続とされた筒状に形成される。
図10Cの誘電体膜4で被覆された金属微細構造体3は、欠如部30により長さ方向に多数分割、本例では5分割されて不連続とされた筒状に形成される。
図10Dの誘電体膜4で被覆された金属微細構造体3は、金属微細構造体3が長さ方向を2分してそれぞれの厚みt1、t2を異ならして筒状に形成される。例えば、光入射側と反対側の半分の厚みt2を光入射側の半分の厚みt1より厚くなるように同じ金属で金属微細構造体3が形成される。
図10Eの誘電体膜4で被覆された金属微細構造体3は、金属微細構造体3が長さ方向を2分してそれぞれ異なる金属で形成される。例えば一方がアルミニウム(Al)3aで形成され、他方が銀(Ag)3bで形成される。
図10Fの誘電体膜4で被覆された金属微細構造体3は、長さ方向に連続する筒状であって、上面の光透過層5が省略され、金属微細構造体上面が露出して形成される。
図10Gの誘電体膜4で被覆された金属微細構造体3は、筒状の金属微細構造体3が埋め込まれた半導体基板2上に、誘電体膜、例えばシリコン酸化(SiO)膜31を介して複数の金属ナノ粒子32を配列して形成される。
本実施の形態においては、図9A〜図9Gの平面パターンと、図10A〜図10Gの垂直断面パターンを組み合わせて、誘電体膜4で被覆された金属微細構造体3を構成することができる。
上述した第1実施の形態に係る半導体装置1は、例えばエリアイメージセンサ、リニアイメージセンサ等の固体撮像装置、太陽電池、バイオ系センサなどに適用することができる。
<2.第2実施の形態>
[半導体装置を固体撮像装置に適用した要部の概略構成例]
図11A、Bに、本発明に係る半導体装置を固体撮像装置に適用した第2実施の形態を示す。図11A、Bは、固体撮像装置の要部である光電変換部(受光センサー部)示す。本実施の形態における固体撮像装置は、CMOS固体撮像装置、CCD固体撮像装置、ラインセンサなどに適用できる。
第2実施の形態に係る固体撮像装置35は、複数の画素36[36R、36G、36B]が配列された撮像領域37を有して成る。複数の画素36の光電変換部38は、前述と同様に光電変換層となる例えばシリコンなどによる半導体基板2内に複数の筒状の金属微細構造体3を埋め込んで形成される。半導体基板2(以下、光電変換層という)は、電荷の読み出し方式により、図6で示したpn接合jを有する構成、あるいは図5で示したpn接合を有しない構成とすることができる。本例では、pn接合jを有する構成とする。すなわち、光電変換部38は、信号電荷を電子とするとき、電荷蓄積領域となるn型半導体領域41とp型半導体領域42が形成され、pn接合jを有するフォトダイオードとして形成される。pn接合jは筒状の金属微細構造体3の長さ方向の中間を横切るように形成される。つまり、pn接合jは、金属微細構造体3の長さを2分する位置を横切るように形成される。筒状の金属微細構造体3の内側面及び外側面は、誘電体膜4で被覆される。金属微細構造体3及び誘電体膜4の構成は、前述と同様であるので、重複説明を省略する。複数の画素36は、例えば赤画素36R、緑画素36G及び青画素36Bで形成される。赤、緑、青の画素36R、36G及び36Bは、ベイヤー配列、ハニカム配列、その他の配列とすることができる。画素36間には、隣接画素からの光を遮蔽する遮蔽部39を設けることが好ましい。画素36の間には、隣接画素からの光を遮光する遮光部39が設けられる。
筒状の金属微細構造体3の周期サイズは画素サイズ以下であると想定される。その為、画素36内には、周期構造を維持するように極力高密度になるように筒状の金属微細構造体3を埋め込むことが望ましい。例えば、筒状の金属微細構造体3の周期サイズが1画素の1/3程度のサイズである場合には、画素36Rに示すような横3×縦3の配置になる。この金属微細構造体3の配置及び筒状の直径(外側の長さ)サイズなどは、増強させたい光の波長に依存するため、フォトダイオードの上に配置されるカラーフィルタと対応することになる。傾向としては、青などの短波長の光を増強させたいときには、筒状の金属微細構造体3の直径(外側の長さ)が小さくなり、金属微細構造体3の周期も密に配置される。逆に、赤などの長波長の光を増強させたいときには、筒状の金属微細構造体3の直径r2は大きくなり、金属微細構造体3の周期が疎に配置される。
従って、本実施の形態では、各画素36の光電変換部38における金属微細構造体3(誘電体膜4を含む)の直径r2又は外側の長さt2を、赤画素36R、緑画素36G及び青画素36Bの順に小さく設定される。本例では直径r2で比較する。すなわち、赤画素36Rの金属微細構造体3の直径をr21、緑画素36Gの金属微細構造体3の直径をr22、青画素36Bの金属微細構造体3の直径をr23とするとき、r21>r22>r23に設定する。因みに、青画素36Bの金属微細構造体3の直径r23は、150nm程度とすることができる。そして、赤画素36R、緑画素36G、青画素36Bに対向してカラーフィルタ(図示せず)が配置される。
CCD固体撮像装置は、撮像領域内に、規則的に2次元配列された画素となる複数の光電変換部(フォトダイオード)と、各光電変換部列に対応したCCD構造の垂直転送レジスタと、CCD構造の水平転送レジスタと、出力部とを有して成る。
本実施の形態では、CCD固体撮像装置に適用したとき、各画素のフォトダイオードを、上述の金属微細構造体3(誘電体膜4を含む)を埋め込んだフォトダイオードに置き換えて構成される。撮像領域の上方にはカラーフィルタ及びオンチップレンズが配置される。
CMOS固体撮像装置は、撮像領域内に、複数の画素が規則的に2次元的に配列された撮像領域と、周辺回路部とを有して構成される。画素は、1つの光電変換部となるフォトダイオードと複数の画素トランジスタからなる単位画素を適用することができる。また、画素は、複数の光電変換部が転送トランジスタを除く他の画素トランジスタを共有したいわゆる画素共有の構造を適用することができる。複数の画素トランジスタは、転送トランジスタ、リセットトランジスタ、増幅トランジスタの3トランジスタ、あるいは選択トランジスタを追加した4トランジスタで構成することができる。
本実施の形態では、CMOS固体撮像装置に適用したとき、画素のフォトダイオードを、上述の金属微細構造体3(誘電体膜4を含む)を埋め込んだフォトダイオードに置き換えて構成される。撮像領域の上方にはカラーフィルタ及びオンチップレンズが配置される。
本実施の形態では、上述したようにプラズモン効果で増強された光がフォトダイオード(センサー)にダイレクトに励起されるため、通常の読み出しが可能である。それゆえ電荷の読み出しに関しては、図6、図5と同様に、pn接合や、電極または透明電極を利用する。
本実施の形態では、画素をライン状に1次元配列したいわゆるラインセンサに適用するとき、画素のフォトダイオードを、上述の金属微細構造体3(誘電体膜4を含む)を埋め込んだフォトダイオードに置き換えて構成される。カラー用であれば、撮像領域の上方にカラーフィルタ及びオンチップレンズが配置される。
第2実施の形態に係る固体撮像装置によれば、第1実施の形態で説明したと同様の作用効果を有する。すなわち、画素のフォトダイオード中に表面プラズモンを励起させる筒状の金属微細構造体3が埋め込まれるので、入射光の進行方向に対する金属微細構造体3の水平断面積が小さくなり、金属微細構造体3における光反射が低減する。これにより、フォトダイオードへの入射光のフラックスの減少が抑制され、光エネルギーが効率よく信号電荷に変換させることができる。筒状の金属微細構造体3による伝搬プラズモンの増強電場がフォトダイオード内にダイレクトかつ大きな領域で励起される。従って、フォトダイオードつまりセンサーの感度を向上し、かつ薄膜化を実現することができる。フォトダイオードを薄くすることにより、入射した光が隣接する画素に入り難く、混色を防ぐことができる。
本実施の形態の固体撮像装置では、赤、緑、青の波長の異なる光を増強するには、金属微細構造体3の筒状の直径を調整することにより、簡単の対応することができる。金属微細構造体3の構造による光のコントロールであるため、所望の特性を自在に設計することができる。筒状の金属微細構造体3では、直径、長さが数百nmであるため、公知技術の金属ナノ粒子に比べて製造ばらつきの要求精度が比較的緩くなり、製造を容易にする。
<3.第3実施の形態>
[半導体装置を太陽電池として構成した概略構成例]
図12A、Bに、本発明の半導体装置を太陽電池に適用した第3実施の形態を示す。第3実施の形態に係る太陽電池45は、前述と同様に光電変換層となる半導体基板2内にpn接合jを形成するn型半導体領域46とp型半導体領域47を形成し、半導体基板2内に複数の筒状の金属微細構造体3(誘電体膜4を含む)を埋め込んで構成される。さらに、半導体基板2の太陽光Lが入射する表面側に透明電極48が形成され、裏面側に透明電極48と対をなす電極49が形成される。透明電極48上には反射防止膜50が形成される。pn接合jは、筒状の金属微細構造体3の長さ方向の中間を横切るように形成される。
第3実施の形態に係る太陽電池45では、光電変換層となる半導体基板2の表面側より太陽光Lが入射される。上層に反射防止膜50があるために、太陽光Lを効率よく太陽電池45内に取り込むことができる。入射された太陽光Lは、前述の筒状の金属微細構造体3によるプラズモン増強効果で、光のエネルギーが蓄積され、pn接合部で光エネルギーが効率よく電子を発生させる。この電子が上下の対をなす電極48、49により電流として取り出される。
第3実施の形態に係る太陽電池45によれば、筒状の金属微細構造体3により入射した太陽光Lが増強され、効率よく電子を発生させることができるので、太陽電池の感度特性を向上することができる。また、太陽電池のより薄膜化を可能にする。
<4.第4実施の形態>
[電子機器の構成例]
上述の本発明に係る固体撮像装置は、例えばデジタルカメラやビデオカメラ等のカメラシステムや、撮像機能を有する携帯電話、あるいは撮像機能を備えた他の機器、などの電子機器に適用することができる。
図13に、本発明に係る電子機器の一例としてカメラに適用した第4実施の形態を示す。本実施の形態に係るカメラは、静止画像又は動画撮影可能なビデオカメラを例としたものである。本実施も形態のカメラ61は、固体撮像装置62と、固体撮像装置62の受光センサ部に入射光を導く光学系63と、シャッタ装置64を有する。さらに、カメラ61は、固体撮像装置62を駆動する駆動回路65と、固体撮像装置62の出力信号を処理する信号処理回路66とを有する。
固体撮像装置62は、上述した第2実施の形態の固体撮像装置のいずれかが適用される。光学系(光学レンズ)63は、被写体からの像光(入射光)を固体撮像装置62の撮像面上に結像させる。これにより、固体撮像装置62内に、一定期間信号電荷が蓄積される。光学系63は、複数の光学レンズから構成された光学レンズ系としてもよい。シャッタ装置64は、固体撮像装置62への光照射期間及び遮光期間を制御する。駆動回路65は、固体撮像装置62の転送動作及びシャッタ装置64のシャッタ動作を制御する駆動信号を供給する。駆動回路65から供給される駆動信号(タイミング信号)により、固体撮像装置62の信号転送を行う。信号処理回路66は、各種の信号処理を行う。信号処理が行われた映像信号は、メモリなどの記憶媒体に記憶され、或いは、モニタに出力される。
第4実施の形態に係るカメラなどの電子機器によれば、受光センサ部に伝播型のプラズモン現象を利用した固体撮像装置を備えるので、より薄型化、高感度化が図られた電子機器を提供することができる。
1・・半導体装置、2・・半導体基板、3・・金属微細構造体、4・・誘電体膜、5・・光透過層、j・・pn接合、35・・固体撮像装置、36[36R,36G,36B]・・画素、37・・撮像領域、38・・光電変換部、45・・太陽電池、61・・カメラ

Claims (11)

  1. 光電変換層と、
    前記光電変換層内に埋め込まれた連続あるいは不連続の筒状の金属微細構造体と、
    前記金属微細構造体の内側面及び外側面を被覆する誘電体膜と
    を有する半導体装置。
  2. 前記金属微細構造体が、光とのカップリングにより誘電率が負である金属材料で形成され、
    前記誘電体膜は屈折率の実部が3,0以下の誘電体材料で形成される
    請求項1記載の半導体装置。
  3. 前記金属微細構造体の上面及び下面に前記光電変換層と同材質の光透過層が形成される
    請求項1又は2記載の半導体装置。
  4. 前記金属微細構造体の内径もしくは上面から見た内側の長さが100nm〜1.0μmであり、
    前記金属微細構造体の厚さが10nm〜100nmであり、
    前記金属微細構造体のトータルの長さが20nm〜3.0μmである
    請求項1乃至3のいずれかに記載の半導体装置。
  5. 前記金属微細構造体の上端面及び下端面を被覆する前記誘電体膜と同質の誘電体膜を有する
    請求項1乃至4のいずれかに記載の半導体装置。
  6. 前記光電変換層に、前記金属微細構造体の長さ方向の中間を横切るようなpn接合を有する
    請求項1乃至5のいずれかに記載の半導体装置。
  7. 複数の画素が配列された撮像領域と、
    前記複数の画素のそれぞれの前記光電変換層に埋め込まれた複数の前記金属微細構造体と
    を有し、
    固体撮像装置として構成される
    請求項1乃至6のいずれかに記載の半導体装置。
  8. 前記複数の画素が、赤画素、緑画素及び青画素で形成され、
    前記緑画素における前記金属微細構造体の直径が前記赤画素における前記金属微細構造体の直径より小さく、
    前記青画素における前記金属微細構造体の直径が前記緑画素における前記金属微細構造体の直径より小さく設定される
    請求項7記載の半導体装置。
  9. 前記撮像領域上にカラーフィルタを有する
    請求項8記載の半導体装置。
  10. pn接合を有する前記光電変換層と、
    前記光電変換層内に前記pn接合を貫通して埋め込まれた前記金属微細構造体とを有し、
    太陽電池として構成される
    請求項1乃至6のいずれかに記載の半導体装置。
  11. 光学レンズと、
    固体撮像装置として構成された請求項7乃至9のいずれかに記載の半導体装置と、
    前記半導体装置の出力信号を処理する信号処理回路と
    を備えた電子機器。
JP2009298365A 2009-12-28 2009-12-28 半導体装置及び電子機器 Pending JP2011138950A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009298365A JP2011138950A (ja) 2009-12-28 2009-12-28 半導体装置及び電子機器
TW099142874A TWI442589B (en) 2009-12-28 2010-12-08 Semiconductor device and electronic apparatus
US12/967,815 US8513586B2 (en) 2009-12-28 2010-12-14 Semiconductor device and electronic apparatus
KR1020100127994A KR20110076770A (ko) 2009-12-28 2010-12-15 반도체 장치 및 전자 기기
CN201010598252.0A CN102110703B (zh) 2009-12-28 2010-12-21 半导体器件和电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009298365A JP2011138950A (ja) 2009-12-28 2009-12-28 半導体装置及び電子機器

Publications (1)

Publication Number Publication Date
JP2011138950A true JP2011138950A (ja) 2011-07-14

Family

ID=44174805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009298365A Pending JP2011138950A (ja) 2009-12-28 2009-12-28 半導体装置及び電子機器

Country Status (5)

Country Link
US (1) US8513586B2 (ja)
JP (1) JP2011138950A (ja)
KR (1) KR20110076770A (ja)
CN (1) CN102110703B (ja)
TW (1) TWI442589B (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013162024A (ja) * 2012-02-07 2013-08-19 Toshiba Corp 固体撮像素子
JP2015152486A (ja) * 2014-02-17 2015-08-24 株式会社ニコン 光学部材及び露光装置
WO2016136502A1 (ja) * 2015-02-26 2016-09-01 ソニー株式会社 固体撮像素子、および電子装置
JP2016197097A (ja) * 2015-04-02 2016-11-24 パロ アルト リサーチ センター インコーポレイテッド メタマテリアル構造を含む赤外線吸収薄膜を有する温度センサ
WO2023105678A1 (ja) * 2021-12-08 2023-06-15 ソニーセミコンダクタソリューションズ株式会社 光検出装置および光学フィルタ

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011138950A (ja) * 2009-12-28 2011-07-14 Sony Corp 半導体装置及び電子機器
JP2013093553A (ja) * 2011-10-04 2013-05-16 Canon Inc 光電変換装置及びその製造方法、並びに光電変換システム
US8941203B2 (en) 2012-03-01 2015-01-27 Raytheon Company Photodetector with surface plasmon resonance
US8957490B2 (en) 2013-06-28 2015-02-17 Infineon Technologies Dresden Gmbh Silicon light trap devices
WO2017132283A1 (en) * 2016-01-25 2017-08-03 The Regents Of The University Of California Nano-scale pixelated filter-free color detector
CN108615736A (zh) * 2016-12-11 2018-10-02 南京理工大学 制作在传感器表面的可提高光传感器灵敏度的结构
EP3651213A4 (en) * 2017-08-09 2020-05-20 Kaneka Corporation PHOTOELECTRIC CONVERSION ELEMENT AND PHOTOELECTRIC CONVERSION DEVICE
CN113329193A (zh) * 2019-04-23 2021-08-31 Oppo广东移动通信有限公司 一种彩色偏振式cis及图像处理方法、存储介质
CN109951661A (zh) * 2019-04-23 2019-06-28 Oppo广东移动通信有限公司 图像传感器及电子设备
CN110049261B (zh) * 2019-04-23 2022-04-12 Oppo广东移动通信有限公司 一种像素结构、图像传感器及终端
CN110324545B (zh) * 2019-06-11 2022-01-28 Oppo广东移动通信有限公司 一种像素结构、图像传感器及终端
CN110166698A (zh) * 2019-06-28 2019-08-23 Oppo广东移动通信有限公司 对焦方法、互补金属氧化物图像传感器、终端及存储介质
CN110620861B (zh) * 2019-09-24 2021-10-15 Oppo广东移动通信有限公司 图像传感器、相机模组和终端
US11227960B2 (en) * 2020-03-16 2022-01-18 Globalfoundries U.S. Inc. Multifunctional metamaterial-based optical device
US11355540B2 (en) 2020-04-15 2022-06-07 Visera Technologies Company Limited Optical device
TWI756764B (zh) * 2020-07-31 2022-03-01 國立中興大學 光電流電極及光電免疫感測裝置
CN113270725B (zh) * 2021-05-12 2023-05-23 中国人民解放军空军工程大学 基于人工表面等离激元的超宽带、大角度掠入射吸波体

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5886374A (en) * 1998-01-05 1999-03-23 Motorola, Inc. Optically sensitive device and method
US6864557B2 (en) * 2001-06-18 2005-03-08 Foveon, Inc. Vertical color filter detector group and array
US7109517B2 (en) * 2001-11-16 2006-09-19 Zaidi Saleem H Method of making an enhanced optical absorption and radiation tolerance in thin-film solar cells and photodetectors
CN1703810A (zh) * 2002-10-11 2005-11-30 佳能株式会社 传感器
WO2005098966A1 (ja) * 2004-04-05 2005-10-20 Nec Corporation フォトダイオードとその製造方法
US7592255B2 (en) * 2004-12-22 2009-09-22 Hewlett-Packard Development Company, L.P. Fabricating arrays of metallic nanostructures
US7586167B2 (en) * 2006-05-05 2009-09-08 Virgin Islands Microsystems, Inc. Detecting plasmons using a metallurgical junction
WO2008032017A1 (en) * 2006-09-12 2008-03-20 Eastman Kodak Company Plasmonic elements
JP5273932B2 (ja) * 2007-03-23 2013-08-28 キヤノン株式会社 光検出素子及び光検出方法、撮像素子及び撮像方法
JP5300344B2 (ja) 2007-07-06 2013-09-25 キヤノン株式会社 光検出素子及び撮像素子、光検出方法及び撮像方法
JP4621270B2 (ja) * 2007-07-13 2011-01-26 キヤノン株式会社 光学フィルタ
US20090040132A1 (en) * 2007-07-24 2009-02-12 Northeastern University Anisotropic metal-dielectric metamaterials for broadband all-angle negative refraction and superlens imaging
KR101385250B1 (ko) 2007-12-11 2014-04-16 삼성전자주식회사 Cmos 이미지 센서
EP2109147A1 (en) * 2008-04-08 2009-10-14 FOM Institute for Atomic and Molueculair Physics Photovoltaic cell with surface plasmon resonance generating nano-structures
US8866000B2 (en) * 2009-07-31 2014-10-21 Corey A. Weiss Ultra-efficient energy conversion device for converting light to electricity by rectifying surface plasmon polaritons
JP2011043681A (ja) * 2009-08-21 2011-03-03 Canon Inc 光学素子、光検出素子、光変調素子、撮像素子及びカメラ
JP2011138950A (ja) * 2009-12-28 2011-07-14 Sony Corp 半導体装置及び電子機器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013162024A (ja) * 2012-02-07 2013-08-19 Toshiba Corp 固体撮像素子
JP2015152486A (ja) * 2014-02-17 2015-08-24 株式会社ニコン 光学部材及び露光装置
WO2016136502A1 (ja) * 2015-02-26 2016-09-01 ソニー株式会社 固体撮像素子、および電子装置
US10403662B2 (en) 2015-02-26 2019-09-03 Sony Semiconductor Solutions Corporation Solid-state imaging element and electronic apparatus
JP2016197097A (ja) * 2015-04-02 2016-11-24 パロ アルト リサーチ センター インコーポレイテッド メタマテリアル構造を含む赤外線吸収薄膜を有する温度センサ
WO2023105678A1 (ja) * 2021-12-08 2023-06-15 ソニーセミコンダクタソリューションズ株式会社 光検出装置および光学フィルタ

Also Published As

Publication number Publication date
US20110155891A1 (en) 2011-06-30
US8513586B2 (en) 2013-08-20
TW201133907A (en) 2011-10-01
CN102110703A (zh) 2011-06-29
CN102110703B (zh) 2014-10-29
TWI442589B (en) 2014-06-21
KR20110076770A (ko) 2011-07-06

Similar Documents

Publication Publication Date Title
JP2011138950A (ja) 半導体装置及び電子機器
TWI472023B (zh) 成像器件及成像裝置
JP5300344B2 (ja) 光検出素子及び撮像素子、光検出方法及び撮像方法
TWI451565B (zh) 二維固態影像捕捉裝置及其偏振光資料處理方法
US7408237B2 (en) Photonic crystal-based lens elements for use in an image sensor
JP2010271049A (ja) 2次元固体撮像装置
TWI443812B (zh) 用於成像器光導管之抗諧振反射光波導
US8941158B2 (en) Solid-state imaging device
US8680638B2 (en) Stack-type image sensor
CN109564928B (zh) 固态摄像元件、固态摄像元件用光瞳校正方法、摄像装置和信息处理装置
KR20090125012A (ko) 광학필터
JP2009147326A (ja) イメージセンシングデバイス及びそれを備えたcmosイメージセンサー
JP2009059824A (ja) 固体撮像素子およびその製造方法、電子情報機器
JP6105728B2 (ja) 固体撮像装置
TWI618235B (zh) 量子點影像感測器
CN111989783B (zh) 摄像装置及摄像系统
WO2020100431A1 (ja) 受光装置
US20220352230A1 (en) Backside refraction layer for backside illuminated image sensor and methods of forming the same
WO2010134063A2 (en) Image sensor and method of producing the same
JP2009239493A (ja) 固体撮像装置
JP2010161256A (ja) 固体撮像装置および撮像装置