JP2011137079A - Thermal decomposition apparatus for polymer-based waste - Google Patents

Thermal decomposition apparatus for polymer-based waste Download PDF

Info

Publication number
JP2011137079A
JP2011137079A JP2009297674A JP2009297674A JP2011137079A JP 2011137079 A JP2011137079 A JP 2011137079A JP 2009297674 A JP2009297674 A JP 2009297674A JP 2009297674 A JP2009297674 A JP 2009297674A JP 2011137079 A JP2011137079 A JP 2011137079A
Authority
JP
Japan
Prior art keywords
oxygen
thermal decomposition
free gas
pyrolysis
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009297674A
Other languages
Japanese (ja)
Other versions
JP5620095B2 (en
Inventor
Masanori Kawamura
正徳 川村
Takaharu Asazuma
敬治 朝妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2009297674A priority Critical patent/JP5620095B2/en
Publication of JP2011137079A publication Critical patent/JP2011137079A/en
Application granted granted Critical
Publication of JP5620095B2 publication Critical patent/JP5620095B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal decomposition apparatus for polymer-based waste, which promotes thermal decomposition reaction of polymer-based waste, suppresses graphitization of carbonized material left thereafter and inhibits oxidation of the carbonized material. <P>SOLUTION: The thermal decomposition apparatus of polymer-based waste includes a heat exchanger 1 for heating an oxygen-free gas, a thermal decomposition treatment apparatus 4 having a thermal decomposition furnace 3 that has an outlet for discharging a pyrolysis gas and an inlet for introducing an oxygen-free gas and stores the polymer-based waste 2 inside, an oil recovery apparatus 5 that cools the pyrolysis gas generated in the thermal decomposition treatment apparatus 4 and recovers a condensed oil, a circulation path 6 that supplies a residual gas as an anoxic gas after recovery of the oil by the oil recovery apparatus 5 to the heat exchanger 1. The inlet for introducing the oxygen-free gas has an oxygen-free gas introduction pipe 7 that is projected from the inner wall of the thermal decomposition furnace to a space in the furnace. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、高分子系廃棄物の熱分解装置に関し、特には、高分子系廃棄物の熱分解後に残る炭化物の黒鉛化を抑制し、該炭化物の酸化を抑えることも可能な高分子系廃棄物の熱分解装置に関するものである。   The present invention relates to a thermal decomposition apparatus for polymer waste, and in particular, polymer waste capable of suppressing graphitization of carbide remaining after thermal decomposition of polymer waste and suppressing oxidation of the carbide. The present invention relates to a thermal decomposition apparatus.

従来、機能性の材料を開発する目的で、ゴム材料や樹脂材料等、様々な高分子系材料の工業化がなされているが、他方で、高分子工業の発展は、汎用材料の大量生産、大量消費をもたらし、高分子系廃棄物の処理は早急に解決すべき重要課題となっている。そして、この課題を解決するためには、高分子系材料の再利用化、リサイクル化等の技術的進展が肝要となる。例えば、ゴム材料であるタイヤは、モータリゼーションの発展と共に自動車必需部材として大量生産、大量消費がなされ、使用済みタイヤの数が膨大になっていることから、使用済みタイヤのリサイクル化・有効利用の研究が進められ、特に有用材料の回収が大きな課題となっている。   Conventionally, various polymer materials such as rubber materials and resin materials have been industrialized for the purpose of developing functional materials. On the other hand, the development of the polymer industry has led to mass production of general-purpose materials, mass production of general-purpose materials. Consuming and the disposal of polymer waste has become an important issue to be solved immediately. In order to solve this problem, technological progress such as reuse and recycling of polymer materials is essential. For example, tires made of rubber materials have been mass-produced and consumed in large quantities as automobile essential parts along with the development of motorization, and the number of used tires has become enormous. In particular, the recovery of useful materials has become a major issue.

特開2004−277687号公報(特許文献1)では、廃タイヤを乾留処理して得た炭化物を微粉砕して、これを密閉容器中で500℃以上に加熱し結晶化させ、これによりタイヤへの添加剤としてリサイクルできることが報告されている。しかしながら、高温処理により炭化物が黒鉛化することはよく知られており、また、特許文献1に記載の電子顕微鏡像は、カーボンブラックではなく黒鉛化した微粉末のものであると判断できる。このような黒鉛化された炭化物は熱処理による酸化によって表面が改質されており、これをゴム用補強剤として使用した場合、ゴム成分への補強効果がカーボンブラックに比べて大きく低下することは、当業者によく知られていることである。   In Japanese Patent Application Laid-Open No. 2004-277687 (Patent Document 1), a carbide obtained by subjecting a waste tire to carbonization is finely pulverized, and this is heated to 500 ° C. or higher in a sealed container to be crystallized. It is reported that it can be recycled as an additive. However, it is well known that carbide is graphitized by high-temperature treatment, and the electron microscopic image described in Patent Document 1 can be judged to be a graphitized fine powder instead of carbon black. The surface of such graphitized carbide has been modified by oxidation by heat treatment, and when this is used as a rubber reinforcing agent, the reinforcing effect on the rubber component is greatly reduced compared to carbon black. This is well known to those skilled in the art.

特開2006−349224号公報(特許文献2)では、廃タイヤをマイクロ波照射により予備加熱し、これをキルン型加熱炉内で熱分解して、得られた炭化物を活性炭として利用できることが報告されている。しかしながら、該炭化物がゴム用配合剤として利用できるとの記載はなく、更に特許文献2に記載の加熱炉の構造から、空気が比較的容易に加熱炉内に流入し、得られる炭化物の酸化度合いは大きくなり、多孔質の構造となるため、活性炭の原料としてこの炭化物を利用できると思われるが、ゴム成分への補強性は殆どないと考えられる。   Japanese Patent Application Laid-Open No. 2006-349224 (Patent Document 2) reports that a waste tire is preheated by microwave irradiation, is thermally decomposed in a kiln-type heating furnace, and the resulting carbide can be used as activated carbon. ing. However, there is no description that the carbide can be used as a compounding agent for rubber. Further, from the structure of the heating furnace described in Patent Document 2, air flows relatively easily into the heating furnace, and the degree of oxidation of the resulting carbide. It is thought that this carbide can be used as a raw material for activated carbon because it becomes large and has a porous structure, but it is considered that there is almost no reinforcement to the rubber component.

特開2007−70167号公報(特許文献3)では、回転式の乾留炉内で廃タイヤを500〜560℃にて2〜3時間加熱することで、ガラス状炭素が得られることが報告されているが、該ガラス状炭素はゴム補強用配合剤として適していない。   Japanese Patent Application Laid-Open No. 2007-70167 (Patent Document 3) reports that glassy carbon can be obtained by heating a waste tire at 500 to 560 ° C. for 2 to 3 hours in a rotary dry distillation furnace. However, the glassy carbon is not suitable as a compound for reinforcing rubber.

国際公開第2007/121166号(特許文献4)では、使用済みタイヤからカーボンブラックをリサイクルする目的で、タイヤを350°F(177℃)〜850°F(566℃)で熱分解し、次いで得られた炭化物をスクリューにて空気が導入された管中を通して上昇させるときに900°F(482℃)〜1200°F(648℃)で加熱して揮発分の除去を行う方法と、その装置とが開示されている。しかしながら、管中に空気が導入され、かつ加熱温度が高いため、カーボンブラックが表面の酸化された炭化物として回収される可能性があり、この炭化物もまたゴム補強用配合剤として適さないと思われる。   In WO 2007/121166 (patent document 4), the tire is pyrolyzed at 350 ° F. (177 ° C.) to 850 ° F. (566 ° C.) for the purpose of recycling carbon black from the used tire, and then obtained. And a device for removing volatiles by heating at 900 ° F. (482 ° C.) to 1200 ° F. (648 ° C.) when the generated carbide is raised through a pipe into which air is introduced by a screw. Is disclosed. However, since air is introduced into the tube and the heating temperature is high, carbon black may be recovered as oxidized carbide on the surface, and this carbide is also considered unsuitable as a rubber reinforcing compounding agent. .

以上のように、表面が酸化された炭化物又は過度の熱処理を受けた黒鉛化炭化物と、高温下にある反応炉中での重質油の熱分解又は不完全燃焼反応で生成するカーボンブラックとは、それらの主要成分が炭素で構成されるという点が似通っているだけで、上記炭化物をゴム組成物に配合した場合には、ゴム組成物との相互作用において顕著な差異があり、このために引張応力や機械的強度が顕著に低下するので、該炭化物がゴム用配合剤として不適であることは広く知られており、このことが炭化物のゴムへの充填剤としての利用を阻害する大きな要因となっている。   As described above, the surface-oxidized carbide or graphitized carbide that has undergone excessive heat treatment, and carbon black produced by pyrolysis or incomplete combustion reaction of heavy oil in a reactor at high temperature However, there is a significant difference in the interaction with the rubber composition when the above carbide is compounded in the rubber composition, only that the main components are composed of carbon. It is widely known that the carbide is not suitable as a rubber compounding agent because the tensile stress and mechanical strength are remarkably reduced, and this is a major factor that hinders the use of carbide as a filler in rubber. It has become.

また、ゴム配合時にゴム組成物の性能を向上させることのできるカーボンブラックに対して高温で且つ長時間の熱履歴を受けさせた場合、黒鉛化が進行すると同時にカーボンブラック表面の酸素含有基の生成が増大するため、このような処理を受けたカーボンブラックをゴム組成物に配合すると、同様に引張応力や機械的強度を顕著に低下させることが、当業者にとって広く知られている。   Also, when carbon black, which can improve the performance of the rubber composition at the time of rubber compounding, is subjected to a long and long thermal history, graphitization proceeds and at the same time the generation of oxygen-containing groups on the carbon black surface Therefore, it is widely known to those skilled in the art that when carbon black subjected to such a treatment is blended with a rubber composition, the tensile stress and mechanical strength are significantly reduced as well.

一方、米国特許第5037628号(特許文献5)では、スクラップゴムを熱分解した炭化物を温和な粉砕条件で粉砕し、風力分級機を用いてカーボンブラックを含む凝集粒子(agglomerated particle)を分離する方法が報告されている。ここで、分離された炭化物のゴム材料への補強性充填剤としての適合性は、熱分解条件に大きく影響を受けることになるが、特許文献5には、熱分解時の分解条件に関する記載が一切なく、ゴム補強用配合剤として適当であるか否かの判断をすることができない。   On the other hand, in US Pat. No. 5,037,628 (Patent Document 5), a method in which carbide obtained by pyrolyzing scrap rubber is pulverized under mild pulverization conditions, and agglomerated particles containing carbon black are separated using an air classifier. Has been reported. Here, the compatibility of the separated carbide as a reinforcing filler to the rubber material is greatly influenced by the thermal decomposition conditions. However, Patent Document 5 describes the decomposition conditions at the time of thermal decomposition. There is absolutely no judgment as to whether or not it is suitable as a rubber-reinforcing compounding agent.

最近では、高分子系廃棄物から有用物質として利用可能な成分を回収する油化設備として、無酸素ガスを加熱するための熱交換器、内部に高分子系廃棄物を収容する熱分解炉と該熱分解炉を外部から加熱する外部加熱手段とを有する熱分解装置、該熱分解装置で発生した熱分解ガスを冷却して、凝縮した油分を回収するための油分回収装置、及び該油分回収装置で油分を回収した後の残ガスを、無酸素ガスとして上記熱交換器に循環させるための循環路とを備えた循環型の油化設備が報告されている(特開2008−285523号公報(特許文献6)参照)。しかしながら、熱分解後の炭化物を好適なゴム用配合剤として回収する観点から、熱分解条件、例えば、熱分解反応時間を短縮したり、熱ガス又は反応ガスとの接触時間を短くする等の条件を最適化する試みはなされていない。   Recently, as an oiling facility for recovering components that can be used as useful substances from polymer waste, a heat exchanger for heating oxygen-free gas, a pyrolysis furnace containing polymer waste inside, A pyrolysis apparatus having an external heating means for heating the pyrolysis furnace from the outside, an oil content recovery apparatus for recovering condensed oil by cooling the pyrolysis gas generated in the pyrolysis apparatus, and the oil recovery There has been reported a circulation type oil making facility provided with a circulation path for circulating the residual gas after the oil is recovered by an apparatus as an oxygen-free gas to the heat exchanger (Japanese Patent Laid-Open No. 2008-285523). (See Patent Document 6). However, from the viewpoint of recovering the carbide after pyrolysis as a suitable compounding agent for rubber, the pyrolysis conditions, for example, conditions for shortening the pyrolysis reaction time, shortening the contact time with the hot gas or the reaction gas, etc. No attempt has been made to optimize.

また、特開平7−233374号公報(特許文献7)では、熱分解槽中の廃プラスチック溶融液に加熱した不活性ガスを直接に接触させるための、熱分解槽内の溶融液中に突出した吹込み管を備える脱塩装置が開示されている。
上記特許文献7に記載の発明は、ポリ塩化ビニル等の塩素含有ポリマーを含むプラスチック廃棄物の一括処理に関し、より詳細には廃プラスチック溶融液の脱塩化水素装置に関するものであり、具体的には熱媒ガスの吹き込みにより廃プラスチックを溶融熱分解する熱分解装置と、廃プラスチック溶融液に熱媒ガスとして加熱不活性ガスを吹き込み、かつ廃プラスチックの熱分解により発生した塩化水素ガスを溶融液から放出させる不活性ガス吹き込み装置と、塩化水素を含む不活性ガスを冷却する冷却装置と、冷却した塩化水素含有不活性ガスを吸収剤によって脱塩処理する吸収装置と、脱塩処理済みの不活性ガスを加熱する加熱装置と、加熱不活性ガスを不活性ガス吹き込み装置へ送る循環装置とを具備したことを特徴とする、廃プラスチック溶融液の脱塩装置が開示されている。
すなわち、特許文献7に記載の技術では、熱分解反応炉内に導入される熱媒ガスが、液状に溶融されたポリ塩化ビニル等の塩素含有ポリマーを含むプラスチック廃棄物中に注入されており、固体状の廃タイヤ等の高分子廃棄物とは全く異なるものを対象としている。また、上記特許文献7において、熱分解終了時に装置内に残存しているであろう炭化物に関する記載は全くなく、更には該炭化物を有用回収物として利用する等の示唆も全く記載されていない。
Moreover, in JP-A-7-233374 (Patent Document 7), the waste plastic melt in the thermal decomposition tank protrudes into the melt in the thermal decomposition tank for direct contact with the heated inert gas. A desalination apparatus comprising a blowing tube is disclosed.
The invention described in Patent Document 7 relates to collective processing of plastic waste containing chlorine-containing polymers such as polyvinyl chloride, and more particularly to a dehydrochlorination apparatus for waste plastic melt, specifically, A pyrolysis device that melts and decomposes waste plastic by blowing heat medium gas, and a heated inert gas as a heat medium gas is blown into the waste plastic melt, and hydrogen chloride gas generated by the thermal decomposition of waste plastic is extracted from the melt. Inert gas blowing device to be released, cooling device for cooling inert gas containing hydrogen chloride, absorption device for desalinating the cooled hydrogen chloride-containing inert gas with an absorbent, and desalted inert material A waste plus characterized by comprising a heating device for heating the gas and a circulation device for sending the heated inert gas to the inert gas blowing device Tsu desalination apparatus is disclosed in click melt.
That is, in the technique described in Patent Document 7, the heat medium gas introduced into the pyrolysis reactor is injected into plastic waste containing a chlorine-containing polymer such as polyvinyl chloride melted in a liquid state, The target is completely different from polymer waste such as solid waste tires. Moreover, in the said patent document 7, there is no description regarding the carbide | carbonized_material which will remain | survive in an apparatus at the time of completion | finish of thermal decomposition, Furthermore, the suggestion of utilizing this carbide | carbonized_material as a useful collection | recovery is not described at all.

特開2004−277687号公報JP 2004-277687 A 特開2006−349224号公報JP 2006-349224 A 特開2007−70167号公報JP 2007-70167 A 国際公開第2007/121166号International Publication No. 2007/121166 米国特許第5037628号US Pat. No. 5,037,628 特開2008−285523号公報JP 2008-285523 A 特開平7−233374号公報JP-A-7-233374

そこで、本発明の目的は、上記従来技術の問題を解決し、高分子系廃棄物の熱分解後に残る炭化物の黒鉛化を抑制し、該炭化物の酸化を抑えることも可能な高分子系廃棄物の熱分解装置を提供することにある。そして、本発明の高分子系廃棄物の熱分解装置を用いることにより、熱分解時での黒鉛化や酸化処理を受けないため、炭化物の品質が劣化せず、ゴム成分に配合した場合にゴムとの相互作用を十分に発現でき、ゴム補強用カーボンブラックの代替品として十分な性能を発揮することが可能な炭化物を得ることができる。   Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, suppress the graphitization of the carbide remaining after the thermal decomposition of the polymer waste, and suppress the oxidation of the carbide. It is in providing a thermal decomposition apparatus. By using the polymer waste thermal decomposition apparatus of the present invention, the quality of the carbide is not deteriorated because it is not subjected to graphitization or oxidation treatment at the time of thermal decomposition. Thus, it is possible to obtain a carbide capable of exhibiting sufficient interaction with the carbon black and exhibiting sufficient performance as a substitute for carbon black for reinforcing rubber.

なお、本願における「炭化物」とは、有機物を含む物質を原料とし、この原料を加熱による熱分解反応によって原料中のガス体及び液体成分を放出した後に、生成されて残った固体を指し、灰分として無機物を含むこともある。   “Carbide” in the present application refers to a solid that is produced and left after a substance containing an organic substance is used as a raw material, and the raw material is released from a gas body and a liquid component by a thermal decomposition reaction by heating. It may contain an inorganic substance.

本発明者らは、上記目的を達成するために鋭意検討した結果、高分子系廃棄物を加熱して熱分解させる熱分解炉空間内に、無酸素ガスを導入するための導入管を挿入し、該導入管を熱分解炉内へ突出させることで、高分子系廃棄物と無酸素ガスとの接触効率を格段に上昇させることができ、これにより、高分子系廃棄物の分解速度を大きく上げることが可能となり、過度の熱履歴による黒鉛化を抑制し、更には熱分解反応中での酸素との接触機会を低下させるため、生成された炭化物の性状を大きく改良できることを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventors have inserted an introduction pipe for introducing oxygen-free gas into a pyrolysis furnace space in which polymer waste is heated and thermally decomposed. , By projecting the introduction pipe into the pyrolysis furnace, the contact efficiency between the polymer waste and the oxygen-free gas can be significantly increased, thereby increasing the decomposition rate of the polymer waste. In order to suppress graphitization due to excessive thermal history and further reduce the chance of contact with oxygen during the thermal decomposition reaction, the present inventors have found that the properties of the generated carbide can be greatly improved, and the present invention It came to complete.

即ち、本発明の高分子系廃棄物の熱分解装置は、
無酸素ガスを加熱するための熱交換器と、
熱分解ガスを排出する排出口及び無酸素ガスを導入する導入口を有し、内部に高分子系廃棄物を収容する熱分解炉を有し、該高分子系廃棄物を前記熱交換器で加熱した無酸素ガスと接触させることにより熱分解させて熱分解ガスを発生させるための熱分解処理装置と、
前記熱分解処理装置で発生した熱分解ガスを冷却して、凝縮した油分を回収するための油分回収装置と、
前記油分回収装置で油分を回収した後の残ガスを、無酸素ガスとして前記熱交換器に供給するための循環路と
を備える高分子系廃棄物の熱分解装置において、
前記無酸素ガスを導入する導入口が、熱分解炉の内壁から炉内空間へ突出している無酸素ガス導入管を有することを特徴とする。
That is, the thermal decomposition apparatus for polymer waste of the present invention is
A heat exchanger for heating anoxic gas;
It has a discharge port for discharging the pyrolysis gas and an introduction port for introducing oxygen-free gas, and has a pyrolysis furnace for containing the polymer waste inside, and the polymer waste in the heat exchanger A thermal decomposition treatment device for generating thermal decomposition gas by thermal decomposition by contacting with heated oxygen-free gas;
An oil content recovery device for recovering condensed oil by cooling the pyrolysis gas generated in the thermal decomposition processing device;
In the thermal decomposition apparatus for polymer waste, comprising a circulation path for supplying the residual gas after the oil is recovered by the oil recovery apparatus to the heat exchanger as an oxygen-free gas,
The introduction port for introducing the oxygen-free gas has an oxygen-free gas introduction pipe protruding from the inner wall of the pyrolysis furnace to the furnace space.

本発明の高分子系廃棄物の熱分解装置は、前記無酸素ガス導入管の開口面が、前記熱分解炉の内壁面と対向するように設置されていることが好ましく、該熱分解炉の底壁面と対向するように設置されていることが更に好ましい。   In the polymer-based waste pyrolysis apparatus of the present invention, it is preferable that the opening surface of the oxygen-free gas introduction pipe is installed so as to face the inner wall surface of the pyrolysis furnace. More preferably, it is installed so as to face the bottom wall surface.

本発明の高分子系廃棄物の熱分解装置は、前記熱分解炉の内径(d1)と前記無酸素ガス導入管の内径(d2)との比(d2/d1)が0.1〜0.25であることが好ましい。 In the polymer waste pyrolysis apparatus of the present invention, the ratio (d 2 / d 1 ) between the inner diameter (d 1 ) of the pyrolysis furnace and the inner diameter (d 2 ) of the oxygen-free gas introduction pipe is 0.1 to It is preferably 0.25.

更に、本発明の高分子系廃棄物の熱分解装置は、前記熱分解炉の内径(d1)と前記無酸素ガス導入管の先端から熱分解炉の内壁までの距離(D)との比(D/d1)が0.2〜0.4であることが好ましい。 Further, the polymer waste pyrolysis apparatus of the present invention is a ratio between the inner diameter (d 1 ) of the pyrolysis furnace and the distance (D) from the tip of the oxygen-free gas introduction pipe to the inner wall of the pyrolysis furnace. (D / d 1) is preferably a 0.2 to 0.4.

本発明の高分子系廃棄物の熱分解装置の好適例においては、前記無酸素ガス導入管の開口部が、無酸素ガス流動方向の下流側に向かって広がる形状に形成されている。   In a preferred example of the polymer waste pyrolysis apparatus of the present invention, the opening of the oxygen-free gas introduction pipe is formed in a shape that expands toward the downstream side in the oxygen-free gas flow direction.

本発明の高分子系廃棄物の熱分解装置の他の好適例においては、前記無酸素ガス導入管の挿入された部分の側面に、一つ又は複数の孔が開けられている。   In another preferred embodiment of the thermal decomposition apparatus for polymer waste according to the present invention, one or a plurality of holes are formed in the side surface of the portion where the oxygen-free gas introduction pipe is inserted.

本発明によれば、高分子系廃棄物を加熱し熱分解させる熱分解炉において、該熱分解炉空間内に無酸素ガスを導入するための導入管を挿入し、該導入管を熱分解炉内へ突出させることで、高分子系廃棄物と無酸素ガスとの接触効率を格段に上昇させることができ、これにより、高分子系廃棄物の分解速度を大きく上げることが可能となり、過度の熱履歴による黒鉛化を抑制し、更には熱分解反応中での酸素との接触機会を低下させるため、生成された炭化物の性状を大きく改良することができる。また、該熱分解装置により得られる炭化物は、従来のカーボンブラックと比較して、ゴム配合時に大きな性能の低下を発現することがないため、カーボンブラック又はその一部に代えて、ゴム補強用充填剤として利用可能であるという大きな利点を有している。   According to the present invention, in a pyrolysis furnace for heating and pyrolyzing polymer waste, an introduction pipe for introducing oxygen-free gas is inserted into the pyrolysis furnace space, and the introduction pipe is connected to the pyrolysis furnace. By projecting inward, the contact efficiency between the polymer waste and the oxygen-free gas can be significantly increased, which makes it possible to greatly increase the decomposition rate of the polymer waste, In order to suppress graphitization due to thermal history and further reduce the chance of contact with oxygen during the thermal decomposition reaction, the properties of the produced carbide can be greatly improved. In addition, since the carbide obtained by the thermal decomposition apparatus does not exhibit a large performance deterioration when blended with rubber as compared with conventional carbon black, it is replaced with carbon black or a part thereof for filling with rubber reinforcement. It has a great advantage that it can be used as an agent.

本発明の高分子系廃棄物の熱分解装置の一例の概略図である。It is the schematic of an example of the thermal decomposition apparatus of the polymeric waste of this invention. 実施例1で用いた高分子系廃棄物の熱分解装置の拡大部分断面図である。1 is an enlarged partial cross-sectional view of a polymer-based waste thermal decomposition apparatus used in Example 1. FIG. 本発明の高分子系廃棄物の熱分解装置の他の例の拡大部分断面図である。It is an expanded partial sectional view of the other example of the thermal decomposition apparatus of the polymeric waste of this invention. 比較例1で用いた熱分解処理装置の拡大部分断面図である。It is an expanded partial sectional view of the thermal decomposition processing apparatus used in Comparative Example 1.

以下に、図を参照しながら、本発明を詳細に説明する。図1は、本発明の高分子系廃棄物の熱分解装置の一例の概略図である。図1に示す熱分解装置は、無酸素ガスを加熱するための熱交換器1と、熱分解ガスを排出する排出口及び無酸素ガスを導入する導入口を有し、内部に高分子系廃棄物2を収容する熱分解炉3を有し、該高分子系廃棄物2を前記熱交換器1で加熱した無酸素ガスと接触させることにより熱分解させて熱分解ガスを発生させるための熱分解処理装置4と、前記熱分解処理装置4で発生した熱分解ガスを冷却して、凝縮した油分を回収するための油分回収装置5と、前記油分回収装置5で油分を回収した後の残ガスを、無酸素ガスとして前記熱交換器1に供給するための循環路6とを備える高分子系廃棄物の熱分解装置であって、前記無酸素ガスを導入する導入口が、熱分解炉の内壁から炉内空間へ突出している無酸素ガス導入管7を有することを特徴とする。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic view of an example of a thermal decomposition apparatus for polymer waste according to the present invention. The pyrolysis apparatus shown in FIG. 1 has a heat exchanger 1 for heating oxygen-free gas, a discharge port for discharging pyrolysis gas, and an introduction port for introducing oxygen-free gas, and polymer waste inside Heat for generating pyrolysis gas by pyrolyzing by bringing the polymer waste 2 into contact with the oxygen-free gas heated by the heat exchanger 1. A decomposition treatment device 4, an oil recovery device 5 for cooling the pyrolysis gas generated in the thermal decomposition treatment device 4 to recover the condensed oil component, and a residual after the oil component is recovered by the oil recovery device 5 A pyrolysis apparatus for polymer waste comprising a circulation path 6 for supplying gas to the heat exchanger 1 as an oxygen-free gas, wherein an inlet for introducing the oxygen-free gas is a pyrolysis furnace Having an oxygen-free gas introduction pipe 7 projecting from the inner wall of the furnace into the furnace space And butterflies.

本発明の熱分解装置においては、まず、熱交換器1内で無酸素ガスを加熱する。熱交換器1で加熱された無酸素ガスを熱分解炉3に供給することで、熱分解炉3内の高分子系廃棄物2を熱分解させることになる。ここで、無酸素ガスとは、酸素及び酸化物以外のガス体であり、例えば、窒素、アルゴン等の不活性ガスや、メタン、エタン等の炭化水素ガス等を挙げることができ、このような無酸素ガスを使用することにより、高分子系廃棄物2の熱分解後の熱分解炉3内に残る炭化物の酸化を防止することができる。なお、本発明の熱分解装置において、熱交換器1の構成については特に限定されるものではないが、例えば、炭化珪素発熱体もしくは他の発熱体中への無酸素ガスの導入、又は高分子系廃棄物2の熱分解により生成した炭化水素もしくは他の供給源からの炭化水素燃料の燃焼熱との熱交換により、無酸素ガスを加熱する構成となっている。また、熱交換器1に無酸素ガスを供給するには、非循環型の無酸素ガス供給源8から送る他、後述する循環路6を介して、油分回収装置5で回収した後の残ガス(例えば、炭化水素ガス)を無酸素ガスとして熱交換器1に循環させてもよい。   In the thermal decomposition apparatus of the present invention, first, the oxygen-free gas is heated in the heat exchanger 1. By supplying the oxygen-free gas heated by the heat exchanger 1 to the pyrolysis furnace 3, the polymer waste 2 in the pyrolysis furnace 3 is pyrolyzed. Here, the oxygen-free gas is a gas body other than oxygen and oxide, and examples thereof include an inert gas such as nitrogen and argon, and a hydrocarbon gas such as methane and ethane. By using the oxygen-free gas, it is possible to prevent oxidation of the carbide remaining in the pyrolysis furnace 3 after pyrolysis of the polymer waste 2. In the thermal decomposition apparatus of the present invention, the configuration of the heat exchanger 1 is not particularly limited. For example, an oxygen-free gas introduced into a silicon carbide heating element or other heating element, or a polymer The oxygen-free gas is heated by heat exchange with the combustion heat of hydrocarbon fuel generated from the thermal decomposition of the system waste 2 or hydrocarbon fuel from another supply source. Further, in order to supply the oxygen-free gas to the heat exchanger 1, in addition to being sent from the non-circulating oxygen-free gas supply source 8, the residual gas after being recovered by the oil content recovery device 5 via the circulation path 6 to be described later (For example, hydrocarbon gas) may be circulated through the heat exchanger 1 as an oxygen-free gas.

本発明の熱分解装置において、熱分解処理装置4は、熱分解ガスを排出する排出口及び無酸素ガスを導入する導入口を有した、内部に高分子系廃棄物2を収容する熱分解炉3を備えており、高分子系廃棄物2を収容する熱分解炉3内に熱交換器1で加熱された無酸素ガスを導入し、該高分子系廃棄物2を該無酸素ガスと接触させ、熱分解ガスを発生させる。高分子系廃棄物2を無酸素ガスと接触させることで、無酸素状態での熱分解が可能となる。ここで、本発明の熱分解装置は、熱分解炉3の導入口に挿入され、その先端が熱分解炉の内壁から炉内へ突出した無酸素ガス導入管7を備えるため、熱交換器1で加熱された無酸素ガスは、無酸素ガス導入管7を介して、熱分解炉3内に導入されることになる。熱分解炉3内へ突出するように無酸素ガス導入管7を設けることで、無酸素ガスは、無酸素ガス導入管7の向き(図1では下向き)から導入され、対向する熱分解炉3の底面内壁に衝突して流動方向を変え(図1では横向きと上向きに変化し)、これにより、無酸素ガス導入管7が反応炉空間内に設置されていない熱分解炉に比べて激しい乱流が発生し、高分子系廃棄物2と無酸素ガスとの接触効率を格段に上昇させることができる。このように、熱分解炉3内での高温熱ガス(加熱された無酸素ガス)の壁面への衝突により乱流を発生させることは、高分子系廃棄物2の熱分解反応の促進に大きく寄与する。かかる観点から、高分子系廃棄物2と無酸素ガスとの接触効率を向上させ、高分子系廃棄物2の熱分解反応を促進させるためには、無酸素ガス導入管7の開口面が、前記熱分解炉の内壁面と対向するように設置されていることが好ましく、該熱分解炉の底壁面と対向するように設置されていることが更に好ましい。
また、同様の観点から、熱分解炉の排出口から排出された熱分解ガスの流動方向に対して対向し又は交差する方向に無酸素ガスを導入できるように、無酸素ガス導入管7を設置することも好ましく、該熱分解ガスの流動方向に対して対向する方向(即ち、逆方向)に無酸素ガスを導入できるように、無酸素ガス導入管7を設置(図1では下向き)することが特に好ましい。
In the thermal decomposition apparatus of the present invention, the thermal decomposition processing apparatus 4 has a discharge port for discharging the pyrolysis gas and an introduction port for introducing oxygen-free gas, and contains a polymer waste 2 inside. 3, an oxygen-free gas heated by a heat exchanger 1 is introduced into a pyrolysis furnace 3 containing the polymer waste 2, and the polymer waste 2 is brought into contact with the oxygen-free gas And generate pyrolysis gas. By contacting the polymer waste 2 with an oxygen-free gas, thermal decomposition in an oxygen-free state is possible. Here, since the thermal decomposition apparatus of the present invention includes the oxygen-free gas introduction pipe 7 inserted into the inlet of the thermal decomposition furnace 3 and the tip of the thermal decomposition apparatus protrudes from the inner wall of the thermal decomposition furnace into the furnace, the heat exchanger 1 The oxygen-free gas heated at is introduced into the pyrolysis furnace 3 through the oxygen-free gas introduction pipe 7. By providing the oxygen-free gas introduction pipe 7 so as to protrude into the pyrolysis furnace 3, the oxygen-free gas is introduced from the direction of the oxygen-free gas introduction pipe 7 (downward in FIG. 1), and the pyrolysis furnace 3 facing the oxygen gas introduction pipe 7. This changes the direction of flow by colliding with the inner wall of the bottom surface (changes sideways and upward in FIG. 1). A flow is generated, and the contact efficiency between the polymer waste 2 and the oxygen-free gas can be significantly increased. Thus, the generation of turbulent flow by the collision of the high temperature hot gas (heated oxygen-free gas) with the wall surface in the pyrolysis furnace 3 greatly promotes the pyrolysis reaction of the polymer waste 2. Contribute. From this viewpoint, in order to improve the contact efficiency between the polymer waste 2 and the oxygen-free gas and promote the thermal decomposition reaction of the polymer waste 2, the opening surface of the oxygen-free gas introduction pipe 7 is It is preferably installed so as to face the inner wall surface of the pyrolysis furnace, and more preferably installed so as to face the bottom wall surface of the pyrolysis furnace.
From the same point of view, the oxygen-free gas introduction pipe 7 is installed so that the oxygen-free gas can be introduced in a direction opposite or intersecting with the flow direction of the pyrolysis gas discharged from the discharge port of the pyrolysis furnace. It is also preferable to install an oxygen-free gas introduction pipe 7 (downward in FIG. 1) so that the oxygen-free gas can be introduced in a direction opposite to the flow direction of the pyrolysis gas (that is, the opposite direction). Is particularly preferred.

また、無酸素ガス導入管7の開口部の形状は、通常、管状に形成され、例えば円筒状に形成されることになるが、無酸素ガス流動方向の下流側に向かって広がる形状に形成させることもできる。
更に、無酸素ガス導入管7の外壁側面には、何らかの加工を加えなくてもよいが、熱分解反応の開始初期に熱分解反応を受ける高分子系廃棄物2と、高温熱ガス(加熱された無酸素ガス)との接触効率を向上させるため、無酸素ガス導入管7の熱分解炉内に挿入された部分の側面に一つ又は複数の孔を開けることが好ましい。
Further, the shape of the opening of the oxygen-free gas introduction pipe 7 is usually formed in a tubular shape, for example, a cylindrical shape, but is formed in a shape that widens toward the downstream side in the oxygen-free gas flow direction. You can also.
Further, the outer wall side surface of the oxygen-free gas introduction pipe 7 does not have to be subjected to any processing, but the polymer waste 2 that undergoes the pyrolysis reaction at the beginning of the pyrolysis reaction and the high-temperature hot gas (heated) In order to improve the contact efficiency with the oxygen-free gas), it is preferable to form one or a plurality of holes in the side surface of the portion of the oxygen-free gas introduction pipe 7 inserted into the pyrolysis furnace.

更に、本発明の熱分解装置においては、熱分解炉3の内径(d1)と無酸素ガス導入管7の内径(d2)との比(d2/d1)が0.1〜0.25であることが好ましい。なお、内径(d2)は、無酸素ガス導入管7の先端部の内径を指す。d2/d1が0.1未満では、無酸素ガス導入管7の内径が小さいため、熱分解炉3内での加熱された無酸素ガスの流速が大きくなり過ぎ、加熱された無酸素ガスと共に装置内を循環する固形ダスト(高分子系廃棄物由来の微細浮遊物)を発生させる可能性があるので好ましくない。一方、d2/d1が0.25を超えると、熱分解炉3内の内径(d1)に対して無酸素ガス導入管7の内径が大きすぎるため、熱分解炉3内での無酸素ガスの流速が小さくなり、高分子系廃棄物2と無酸素ガスとの接触効率が低下し、熱分解速度を低下させるおそれがあるので好ましくない。
また、図3には、本発明の高分子系廃棄物の熱分解装置の他の例の拡大部分断面図が示されるが、図中の無酸素ガス導入管7の開口部は、無酸素ガス流動方向の下流側に向かって広がった形状を形成しており、また熱分解炉内に挿入された無酸素ガス導入管7の側面には、複数の孔が開けられている。なお、上記したように、無酸素ガス導入管7の態様は、これに限定されるものではない。
Furthermore, in the pyrolysis apparatus of the present invention, the ratio (d 2 / d 1 ) between the inner diameter (d 1 ) of the pyrolysis furnace 3 and the inner diameter (d 2 ) of the oxygen-free gas introduction pipe 7 is 0.1 to 0.25. It is preferable. The inner diameter (d 2 ) refers to the inner diameter of the tip of the oxygen-free gas introduction pipe 7. When d 2 / d 1 is less than 0.1, since the inner diameter of the oxygen-free gas introduction pipe 7 is small, the flow rate of the heated oxygen-free gas in the pyrolysis furnace 3 becomes too large, and the apparatus together with the heated oxygen-free gas This is not preferable because there is a possibility of generating solid dust (fine suspended matter derived from polymer waste) circulating inside. On the other hand, if d 2 / d 1 exceeds 0.25, the oxygen-free gas introduction pipe 7 has an inner diameter that is too large relative to the inner diameter (d 1 ) in the pyrolysis furnace 3. This is not preferable because the flow rate of the liquid is reduced, the contact efficiency between the polymer waste 2 and the oxygen-free gas is lowered, and the thermal decomposition rate may be lowered.
FIG. 3 shows an enlarged partial cross-sectional view of another example of the thermal decomposition apparatus for polymer waste according to the present invention. The opening of the oxygen-free gas introduction pipe 7 in FIG. A shape that widens toward the downstream side in the flow direction is formed, and a plurality of holes are formed in the side surface of the oxygen-free gas introduction pipe 7 inserted into the pyrolysis furnace. As described above, the aspect of the oxygen-free gas introduction pipe 7 is not limited to this.

また更に、本発明の熱分解装置においては、熱分解炉3の内径(d1)と無酸素ガス導入管7の先端から熱分解炉の内壁までの距離(D)との比(D/d1)が0.2〜0.4であることが好ましい。D/d1が0.2未満では、無酸素ガス導入管7の先端部と内壁までの距離が近すぎるため、乱流が激しく起こり、生成炭化物による微小固形ダストが熱分解装置内を循環する可能性が高くなるので好ましくない。一方、D/d1が0.4を超えると、無酸素ガス導入管7の先端部と内壁までの距離が離れすぎるため、反応炉内壁に衝突して熱分解に有効な乱流を発生させるだけの速度が確保できず、熱分解速度の低下を招来するので好ましくない。ここで、距離Dは、無酸素ガス導入管7の先端から熱分解炉3の内壁までの最短距離を指す。 Furthermore, in the pyrolysis apparatus of the present invention, the ratio (D / d) between the inner diameter (d 1 ) of the pyrolysis furnace 3 and the distance (D) from the tip of the oxygen-free gas introduction pipe 7 to the inner wall of the pyrolysis furnace. 1 ) is preferably 0.2 to 0.4. If D / d 1 is less than 0.2, the distance between the tip of the oxygen-free gas introduction pipe 7 and the inner wall is too close, and turbulence may occur violently, and fine solid dust from the generated carbides may circulate in the pyrolysis unit. Is unfavorable because of the high. On the other hand, if D / d 1 exceeds 0.4, the distance between the tip of the oxygen-free gas introduction pipe 7 and the inner wall is too far away, so that it only collides with the inner wall of the reactor and generates a turbulent flow effective for thermal decomposition. This is not preferable because the speed cannot be secured and the thermal decomposition rate is lowered. Here, the distance D indicates the shortest distance from the tip of the oxygen-free gas introduction pipe 7 to the inner wall of the pyrolysis furnace 3.

なお、高分子系廃棄物2は、主として有機系廃棄物を指し、具体的には、タイヤ廃棄物(例えば、スピュー、バフ粉、4〜32分割されたタイヤ)等のゴム材料廃棄物や、炭化水素モノマーの(共)重合反応により得られた高分子材料、例えば、ポリエチレン、ポリプロピレン、スチレン−ブタジエン共重合体等、炭化水素モノマーと他のモノマーとの共重合体、例えば、エチレン−酢酸ビニル共重合体、炭化水素モノマーのハロゲン誘導体の(共)重合体、例えば、ポリ塩化ビニル等の樹脂材料廃棄物が挙げられる。   The polymer waste 2 mainly refers to organic waste, specifically, rubber material waste such as tire waste (for example, spew, buff powder, 4-32 divided tires), Polymer materials obtained by (co) polymerization reaction of hydrocarbon monomers, such as polyethylene, polypropylene, styrene-butadiene copolymers, etc. Copolymers of hydrocarbon monomers with other monomers, such as ethylene-vinyl acetate (Co) polymers, (co) polymers of halogen derivatives of hydrocarbon monomers, for example, resin material waste such as polyvinyl chloride.

更に、上記熱分解処理装置4は、内部に高分子系廃棄物2を収容する熱分解炉3の他、該熱分解炉3を外部から加熱する外部加熱手段9を備えるのが好ましい。熱分解処理装置4が外部加熱手段9を備えることで、熱分解炉3内の高分子系廃棄物2を熱分解炉3の外側から間接的に加熱することができるため、無酸素ガスのガス流量を低減することが可能となり、これによって高分子系廃棄物2の熱分解炉3内での熱分解速度を更に大きくすることが可能となる。このように、熱分解炉3に導入する高温無酸素ガスのガス流量を低下させ、またそのガス体の温度も低下させることができるので、高温無酸素ガスの流動により舞い上げられてガス中に混入し、該ガス(熱分解ガスや無酸素ガス等)と共に装置内を循環する固形ダスト(高分子系廃棄物由来の微細浮遊物)の発生を抑え、窒素酸化物等の発生をも抑制することができる。外部加熱手段9は、特に限定されるものではないが、例えば、熱分解炉3を囲んで配設される炭化珪素発熱体、もしくは他の発熱体を外部発熱手段9として使用してもよいし、熱分解炉3を囲んで配設した外部壁によって熱分解炉3との間に空間Sを形成し、この空間Sに熱媒体を導入してもよい。なお、空間Sに導入することのできる熱媒体は、高分子系廃棄物2を熱分解炉3の外側から間接的に加熱するため、無酸素ガスに限定されず、種々の媒体を利用することができる。なお、空間S内への熱媒体の導入・排出口は図示していない。   Further, it is preferable that the pyrolysis apparatus 4 includes an external heating means 9 for heating the pyrolysis furnace 3 from the outside, in addition to the pyrolysis furnace 3 that accommodates the polymer waste 2 therein. Since the pyrolysis apparatus 4 includes the external heating means 9, the polymer waste 2 in the pyrolysis furnace 3 can be indirectly heated from the outside of the pyrolysis furnace 3. It is possible to reduce the flow rate, thereby further increasing the rate of thermal decomposition of the polymer waste 2 in the thermal decomposition furnace 3. As described above, the gas flow rate of the high-temperature oxygen-free gas introduced into the pyrolysis furnace 3 can be reduced, and the temperature of the gas body can also be reduced. Mixing and suppressing the generation of solid dust (fine suspended matter derived from polymer waste) that circulates in the device together with the gas (pyrolysis gas, oxygen-free gas, etc.), and also suppresses the generation of nitrogen oxides, etc. be able to. The external heating means 9 is not particularly limited. For example, a silicon carbide heating element disposed around the pyrolysis furnace 3 or another heating element may be used as the external heating means 9. Alternatively, a space S may be formed between the pyrolysis furnace 3 and an external wall disposed around the pyrolysis furnace 3, and a heat medium may be introduced into the space S. The heat medium that can be introduced into the space S is not limited to oxygen-free gas because the polymer waste 2 is indirectly heated from the outside of the pyrolysis furnace 3, and various media can be used. Can do. The introduction / exhaust port of the heat medium into the space S is not shown.

本発明の熱分解装置においては、上記熱分解炉3内に導入される無酸素ガスのガス流量を制御するため、ガス流量を測定するための流量計10、その開度でガス流量を調整するためのダンパ11、ガス流量を一定に保つための送風機12等を設置することができる。例えば、図1に示すように、無酸素ガス供給源8から無酸素ガスを供給するために無酸素ガス供給源8と熱交換器1とを接続する配管中に、流量計10、ダンパ11及び送風機12を設けてもよいし、油分回収装置5で回収した後の残ガスを無酸素ガスとして熱交換器1に循環させるための循環路6中に、流量計10、ダンパ11及び送風機12を設けてもよい。   In the pyrolysis apparatus of the present invention, in order to control the gas flow rate of the oxygen-free gas introduced into the pyrolysis furnace 3, the flow rate 10 for measuring the gas flow rate, and the gas flow rate is adjusted by the opening degree. The damper 11 for this, the air blower 12 etc. for keeping a gas flow rate constant can be installed. For example, as shown in FIG. 1, in order to supply oxygen-free gas from the oxygen-free gas supply source 8, a flow meter 10, a damper 11 and a pipe 11 connecting the oxygen-free gas supply source 8 and the heat exchanger 1 are connected. A blower 12 may be provided, and a flow meter 10, a damper 11, and a blower 12 are provided in a circulation path 6 for circulating the residual gas after being collected by the oil collecting device 5 as an oxygen-free gas to the heat exchanger 1. It may be provided.

本発明の熱分解装置において、油分回収装置5は、熱分解処理装置4で発生した熱分解ガスを冷却して、凝縮した油分を回収するため、一つ又はそれ以上の乾留塔13を利用するのが好ましい。図1に示すように、複数の乾留塔13を利用すれば、熱分解処理装置4内で発生した熱分解ガスから、回収される油分をその沸点に応じて分けることができる。詳細には、ガス流路の上流側にある第一の乾留塔13aは、高さ方向の途中の位置に熱分解炉3からの熱分解ガスの供給口と、その上端に、熱分解ガスを冷却して油分(重質油)に凝縮させるための冷却器と、下流側にある乾留塔13bに熱分解ガスを送るための排出口とを備える。ガス流路の下流側にある第二の乾留塔13bは、第一乾留塔13aと同様な構成をとるが、第一の乾留塔13aが対象とする油分の沸点と比べて低い領域の沸点を有する油分(軽質油)を回収する。このように、複数の乾留塔13を設置することで、組成が一定で品質の安定した油分を高い回収率で回収することができる。また、各乾留塔13は、例えば、その下部で配管を通して回収タンク14に接続され、回収した油分を貯蔵することができる。更に、乾留塔の下流側に凝縮装置等を設け、該凝縮装置内で凝縮される油分を回収することもできる。   In the thermal decomposition apparatus of the present invention, the oil content recovery unit 5 uses one or more dry distillation towers 13 to cool the pyrolysis gas generated in the thermal decomposition processing unit 4 and recover the condensed oil content. Is preferred. As shown in FIG. 1, if a plurality of dry distillation towers 13 are used, the recovered oil can be separated from the pyrolysis gas generated in the pyrolysis processor 4 according to the boiling point. Specifically, the first dry distillation column 13a on the upstream side of the gas flow path has a pyrolysis gas supply port from the pyrolysis furnace 3 at a position in the middle of the height direction, and pyrolysis gas at the upper end. A cooler for cooling and condensing into oil (heavy oil) and a discharge port for sending pyrolysis gas to the dry distillation column 13b on the downstream side are provided. The second dry distillation tower 13b on the downstream side of the gas flow path has the same configuration as the first dry distillation tower 13a, but has a lower boiling point in the region than the boiling point of the oil component targeted by the first dry distillation tower 13a. The oil content (light oil) is collected. Thus, by installing the plurality of dry distillation towers 13, it is possible to recover an oil component having a constant composition and stable quality with a high recovery rate. In addition, each of the carbonization towers 13 is connected to the recovery tank 14 through a pipe, for example, at the lower part thereof, and can store the recovered oil. Furthermore, a condensing device or the like can be provided on the downstream side of the carbonization tower, and the oil component condensed in the condensing device can be recovered.

本発明の熱分解装置において、循環路6は、油分回収装置5で油分を回収した後の残ガスを、無酸素ガスとして熱交換器1に供給するため、例えば、油分回収装置5と熱交換器1とを配管で接続してなる。循環路6を備えることで、組成が一定で品質の安定した油分をより高い回収率で回収することができる。循環路6を通して熱交換器1に供給される残ガスは、熱交換器1へ直接供給することもできるが、熱風炉(図示せず)で加熱してから熱交換器1に供給してもよい。なお、図1では、第二の乾留塔13bのみに循環路6が接続されているが、本発明においては、これに限定されず、第一の乾留塔13aに循環路6を接続してもよいし、凝縮装置が設置される場合には該凝縮装置に循環路6を接続してもよい。また、本発明の熱分解装置において、余剰のガスは、排風機15を介して排ガス処理装置16で処理された後、大気中に放出することができる。なお、図1においては、油分回収装置5と熱交換器1とを接続する配管のみを循環路6として表すが、本発明の熱分解装置は循環型であるため、熱交換器1と熱分解処理装置4とを接続する配管や熱分解処理装置4と油分回収装置5とを接続する配管等の配管も循環路の一部として含めることができる。   In the thermal decomposition apparatus of the present invention, the circulation path 6 supplies the residual gas after the oil content is recovered by the oil content recovery device 5 to the heat exchanger 1 as an oxygen-free gas. Connected to the vessel 1 by piping. By providing the circulation path 6, it is possible to recover an oil component having a constant composition and stable quality at a higher recovery rate. The residual gas supplied to the heat exchanger 1 through the circulation path 6 can be directly supplied to the heat exchanger 1, but can also be supplied to the heat exchanger 1 after being heated in a hot stove (not shown). Good. In FIG. 1, the circulation path 6 is connected only to the second dry distillation column 13b. However, the present invention is not limited to this, and the circulation path 6 may be connected to the first dry distillation column 13a. Alternatively, when a condenser is installed, the circulation path 6 may be connected to the condenser. In the thermal decomposition apparatus of the present invention, surplus gas can be released into the atmosphere after being treated by the exhaust gas treatment device 16 via the exhaust fan 15. In FIG. 1, only the pipe connecting the oil content recovery device 5 and the heat exchanger 1 is shown as a circulation path 6. However, since the thermal decomposition apparatus of the present invention is a circulation type, Piping such as piping connecting the processing device 4 and piping connecting the thermal decomposition processing device 4 and the oil content recovery device 5 can also be included as part of the circulation path.

本発明の熱分解装置を用いて高分子系廃棄物の熱分解を行う場合には、高分子系廃棄物と無酸素ガスとから熱分解ガスを発生させることになるが、このときの熱分解時の温度を300〜600℃に制御することが好ましい。熱分解時の温度が上記特定した範囲内にあれば、高分子系廃棄物が溶融工程を経ずに、安定で且つ連続的な熱分解を行うことができる。もし、高分子系廃棄物を溶融した場合には、無酸素ガスとの接触機会が溶融物表面に限定されるため、熱分解速度が低下する。該熱分解時の温度が300℃未満では、熱分解反応が十分に進行せず、これによって、分解されるべき成分が完全に除去されない炭化物を生成するおそれがあるので好ましくなく、一方、600℃を超えると、上述の溶融現象の発生の可能性があり、また、生成した炭化物とガス中に含まれ得る成分(例えば、酸化物)との間で望ましくない改質反応や賦活反応が起こり、炭化物中の全酸性度を上昇させたり、又は多孔性でゴムへの補強効果に悪影響を及ぼし得る炭化物を生成するおそれがある。ここで、熱分解時の温度を制御するには、上述した、熱交換器1内で加熱される無酸素ガスや、熱分解炉3を外部から加熱する外部加熱手段9等を利用すればよい。   When performing thermal decomposition of polymer waste using the thermal decomposition apparatus of the present invention, pyrolysis gas is generated from the polymer waste and oxygen-free gas. It is preferable to control the temperature at 300 to 600 ° C. If the temperature at the time of thermal decomposition is within the above specified range, the polymer waste can be stably and continuously decomposed without going through the melting step. If the polymer waste is melted, the contact with the oxygen-free gas is limited to the melt surface, so the thermal decomposition rate is lowered. If the temperature during the pyrolysis is less than 300 ° C., the pyrolysis reaction does not proceed sufficiently, and this is not preferable because there is a possibility of generating a carbide in which the components to be decomposed are not completely removed. Exceeding the above, there is a possibility of occurrence of the above-described melting phenomenon, and an undesirable reforming reaction or activation reaction occurs between the generated carbide and a component (for example, oxide) that can be contained in the gas, There is a possibility that the total acidity in the carbide is increased, or a carbide which is porous and may adversely affect the reinforcing effect on the rubber may be generated. Here, in order to control the temperature at the time of thermal decomposition, the oxygen-free gas heated in the heat exchanger 1, the external heating means 9 for heating the thermal decomposition furnace 3 from the outside, or the like may be used. .

次に、本発明の熱分解装置を用いた場合においては、高分子系廃棄物の熱分解後の熱分解炉内に残る炭化物を回収する。例えば、熱分解ガスを発生させ、該熱分解ガスを凝縮した油分を回収すると、熱分解炉3内には、熱分解後の炭化物が残るため、該炭化物を回収することができる。なお、上述の回収方法により炭化物が得られるが、一般的には塊状物として回収されるので、例えば、粉砕機等を用いた粉砕工程によって回収された炭化物を微細に壊砕し、更に分級機等を用いた分級工程によって特定の粒度を持つ炭化物として回収・抽出することができる。このようにして得た炭化物は、カーボンブラック又はその一部に代えて、ゴム補強用充填剤として利用可能である。   Next, when the thermal decomposition apparatus of the present invention is used, the carbide remaining in the thermal decomposition furnace after the thermal decomposition of the polymer waste is recovered. For example, when pyrolyzed gas is generated and an oil component obtained by condensing the pyrolyzed gas is recovered, the pyrolyzed carbide remains in the pyrolysis furnace 3, so that the carbide can be recovered. Although the carbide is obtained by the above-described recovery method, generally, it is recovered as a lump, so for example, the carbide recovered by a pulverization process using a pulverizer or the like is finely crushed and further classified. It can be recovered and extracted as a carbide having a specific particle size by a classification process using, for example. The carbide thus obtained can be used as a rubber reinforcing filler in place of carbon black or a part thereof.

本発明の熱分解装置は、装置内の酸素濃度を1容量%以下に制御することが好ましい。該熱分解装置内の酸素濃度が1容量%以下であれば、熱分解後の熱分解炉内に残る炭化物の酸化をより確実に抑制でき、品質が劣化せず、ゴム成分に配合してもゴム特性を十分に維持できる炭化物をより確実に得ることができる。なお、熱分解装置内の酸素濃度は、例えば、固体電解質ジルコニアベースの酸素濃淡セルを用いるジルコニア式酸素センサー等により測定できる。   In the thermal decomposition apparatus of the present invention, the oxygen concentration in the apparatus is preferably controlled to 1% by volume or less. If the oxygen concentration in the pyrolysis apparatus is 1% by volume or less, oxidation of carbides remaining in the pyrolysis furnace after pyrolysis can be more reliably suppressed, quality does not deteriorate, and even if blended with a rubber component Carbide that can sufficiently maintain rubber properties can be obtained more reliably. The oxygen concentration in the thermal decomposition apparatus can be measured by, for example, a zirconia oxygen sensor using a solid electrolyte zirconia-based oxygen concentration cell.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

(実施例1)
図1に示す熱分解装置を用いて、廃トラック用タイヤを熱分解して炭化物を回収した。なお、実施例1の熱分解装置に用いた熱分解処理装置4は、詳しくは、図2に示す構造で構成される。また、図2に示す通り、無酸素ガス導入管7は、熱分解炉3の中心軸上に設置され、無酸素ガス導入管7の先端から熱分解炉3の内壁までの距離(D)は、20cmであった。
具体的には、熱分解炉3(容量0.5m3、内径(d1)0.8m、高さ1m)内に廃トラック用タイヤの裁断品(高分子系廃棄物2)約100kgを投入し、熱分解炉3内を窒素ガス供給源8で発生させた窒素ガスで置換した後、該窒素ガスを循環させながら熱交換器1によりガス温度を約500℃まで上昇させて、この温度を保持した。なお、熱分解装置内での酸素濃度を1容量%以下に制御した。次に、熱交換器1で加熱された無酸素ガスを、導入口を経て無酸素ガス導入管7(内径(d2)15cm)を通し、熱分解炉3内に導入した。このとき、熱分解炉3内に導入される無酸素ガスのガス流量は、0.004m3(STP)/秒となるように制御された。無酸素ガスの熱分解炉3内への導入を開始してから45分で乾留塔13aに油分が溜出し始め、無酸素ガスの熱分解炉3内への導入を開始してから約3時間後に溜出が止まった。溜出の停止は熱分解反応が完了したことを示し、熱交換器1を止めて約12時間放置冷却した。その後、熱分解炉3から炭化物を取り出した。炭化物中には、タイヤ材料であるスチールコード等が含まれるため、炭化物以外の余分なタイヤ構成材料をマグネットセパレーターで除去した。余分なタイヤ構成材料が除去された炭化物をハンマー式の粉砕機で粒径が1mm以下の細粉に粉砕し、回転羽を有する風力分級機で該細粉を分級し、粒径が50μm以上の粗粉を除去し、炭化物を回収した。
(Example 1)
By using the pyrolysis apparatus shown in FIG. 1, the waste truck tire was pyrolyzed to recover the carbides. In addition, the thermal decomposition processing apparatus 4 used for the thermal decomposition apparatus of Example 1 is comprised in detail by the structure shown in FIG. Further, as shown in FIG. 2, the oxygen-free gas introduction pipe 7 is installed on the central axis of the pyrolysis furnace 3, and the distance (D) from the tip of the oxygen-free gas introduction pipe 7 to the inner wall of the pyrolysis furnace 3 is 20cm.
Specifically, about 100 kg of waste truck tire cut products (polymer waste 2) are put into the pyrolysis furnace 3 (capacity 0.5 m 3 , inner diameter (d 1 ) 0.8 m, height 1 m), After replacing the inside of the pyrolysis furnace 3 with nitrogen gas generated by the nitrogen gas supply source 8, the gas temperature was raised to about 500 ° C. by the heat exchanger 1 while circulating the nitrogen gas, and this temperature was maintained. . The oxygen concentration in the thermal decomposition apparatus was controlled to 1% by volume or less. Next, the oxygen-free gas heated in the heat exchanger 1 was introduced into the pyrolysis furnace 3 through the oxygen-free gas introduction pipe 7 (inner diameter (d 2 ) 15 cm) through the inlet. At this time, the flow rate of the oxygen-free gas introduced into the pyrolysis furnace 3 was controlled to be 0.004 m 3 (STP) / second. About 45 hours after the start of introduction of oxygen-free gas into the pyrolysis furnace 3, oil begins to accumulate in the dry distillation column 13 a and about 3 hours after the introduction of oxygen-free gas into the pyrolysis furnace 3 is started. Distillation stopped later. Stopping the distillation showed that the thermal decomposition reaction was completed, and the heat exchanger 1 was stopped and the system was left to cool for about 12 hours. Thereafter, the carbide was taken out from the pyrolysis furnace 3. Since the carbide includes a steel cord as a tire material, excess tire constituent materials other than the carbide were removed with a magnetic separator. Carbide from which excess tire components have been removed is crushed into fine powder with a particle size of 1 mm or less with a hammer-type pulverizer, and the fine powder is classified with an air classifier having rotating blades. The coarse powder was removed and the carbide was recovered.

(比較例1)
図2に示す熱分解処理装置4に代えて、熱分解装置空間内に突出していた無酸素ガス導入管を取り外した図4に示す熱分解処理装置を設置した以外は、実施例1と同様な熱分解装置を用いて、高分子系廃棄物を熱分解した。
具体的には、熱分解炉3内に実施例1で用いたものと同じ高分子系廃棄物2を約100kg投入し、熱分解炉3内を窒素ガス供給源8で発生させた窒素ガスで置換した後、該窒素ガスを循環させながら熱交換器1によりガス温度を約500℃まで上昇させて、この温度を保持した。なお、熱分解装置内での酸素濃度を1容量%以下に制御した。次に、熱交換器1で加熱された無酸素ガスを導入口から熱分解炉3内に導入した。このとき、熱分解炉3内に導入される無酸素ガスのガス流量は、0.004Nm3(STP)/秒となるように制御された。無酸素ガスの熱分解炉3内への導入を開始してから60分で乾留塔13aに油分が溜出し始め、無酸素ガスの熱分解炉3内への導入を開始してから約5時間後に溜出が止まった。
(Comparative Example 1)
Instead of the thermal decomposition treatment apparatus 4 shown in FIG. 2, the thermal decomposition treatment apparatus shown in FIG. 4 from which the oxygen-free gas introduction pipe protruding in the thermal decomposition apparatus space is removed is installed. The polymer waste was pyrolyzed using a pyrolysis apparatus.
Specifically, about 100 kg of the same polymer waste 2 as that used in Example 1 is put into the pyrolysis furnace 3, and the inside of the pyrolysis furnace 3 is nitrogen gas generated by the nitrogen gas supply source 8. After the replacement, the gas temperature was raised to about 500 ° C. by the heat exchanger 1 while circulating the nitrogen gas, and this temperature was maintained. The oxygen concentration in the thermal decomposition apparatus was controlled to 1% by volume or less. Next, the oxygen-free gas heated by the heat exchanger 1 was introduced into the pyrolysis furnace 3 from the inlet. At this time, the flow rate of the oxygen-free gas introduced into the pyrolysis furnace 3 was controlled to be 0.004 Nm 3 (STP) / second. About 60 hours after the start of introduction of oxygen-free gas into the pyrolysis furnace 3, oil begins to be accumulated in the dry distillation column 13 a and about 5 hours after the introduction of oxygen-free gas into the pyrolysis furnace 3 is started. Distillation stopped later.

実施例1及び比較例1の結果から、実施例1の熱分解装置は、ガス温度及びガス流量が同じガス体を熱分解炉に導入したにもかかわらず、比較例1に比べて、熱分解反応が開始するまでの時間で25%、熱分解反応が完了するまでの時間で40%の時間が短縮されていることが分かる。これに加えて、生成した炭化物(微粉砕、分級後の試料)の性状として水酸化ナトリウムとの中和反応により評価される酸性度は、実施例1の炭化物では1グラム当たり0.083ミリ等量と低位にあったのに対し、比較例1の炭化物では1グラム当たり0.124ミリ等量であった。この差異は、比較例1にて熱分解反応が長時間となったことにより、酸化反応の発生機会が増大したためだと考えられる。従って、本発明は、回収炭化物をゴム組成物用充填剤として使用する場合において、該充填剤としての性能を向上させるための有効な手段となる。   From the results of Example 1 and Comparative Example 1, the pyrolysis apparatus of Example 1 was compared with Comparative Example 1 in spite of introducing a gas body having the same gas temperature and gas flow rate into the pyrolysis furnace. It can be seen that the time to start the reaction is reduced by 25% and the time to complete the pyrolysis reaction is reduced by 40%. In addition, the acidity evaluated by neutralization reaction with sodium hydroxide as a property of the generated carbide (sample after fine pulverization and classification) is 0.083 milliequivalent per gram for the carbide of Example 1. While it was low, the carbide of Comparative Example 1 was 0.124 milliequivalent per gram. This difference is considered to be because the occurrence of the oxidation reaction has increased due to the prolonged thermal decomposition reaction in Comparative Example 1. Therefore, the present invention is an effective means for improving the performance as a filler when the recovered carbide is used as a filler for a rubber composition.

1 熱交換器
2 高分子系廃棄物
3 熱分解炉
4 熱分解処理装置
5 油分回収装置
6 循環路
7 無酸素ガス導入管
8 無酸素ガス供給源
9 外部加熱手段
10 流量計
11 ダンパ
12 送風機
13 乾留塔
14 回収タンク
15 排風機
16 排ガス処理装置
S 空間
DESCRIPTION OF SYMBOLS 1 Heat exchanger 2 Polymer waste 3 Pyrolysis furnace 4 Pyrolysis processing apparatus 5 Oil content collection apparatus 6 Circulation path 7 Anoxic gas introduction pipe 8 Anoxic gas supply source 9 External heating means 10 Flow meter 11 Damper 12 Blower 13 Carbonization tower 14 Recovery tank 15 Ventilator 16 Exhaust gas treatment device S Space

Claims (7)

無酸素ガスを加熱するための熱交換器と、
熱分解ガスを排出する排出口及び無酸素ガスを導入する導入口を有し、内部に高分子系廃棄物を収容する熱分解炉を有し、該高分子系廃棄物を前記熱交換器で加熱した無酸素ガスと接触させることにより熱分解させて熱分解ガスを発生させるための熱分解処理装置と、
前記熱分解処理装置で発生した熱分解ガスを冷却して、凝縮した油分を回収するための油分回収装置と、
前記油分回収装置で油分を回収した後の残ガスを、無酸素ガスとして前記熱交換器に供給するための循環路と
を備える高分子系廃棄物の熱分解装置において、
前記無酸素ガスを導入する導入口が、熱分解炉の内壁から炉内空間へ突出している無酸素ガス導入管を有することを特徴とする高分子系廃棄物の熱分解装置。
A heat exchanger for heating anoxic gas;
It has a discharge port for discharging the pyrolysis gas and an introduction port for introducing oxygen-free gas, and has a pyrolysis furnace for containing the polymer waste inside, and the polymer waste in the heat exchanger A thermal decomposition treatment device for generating thermal decomposition gas by thermal decomposition by contacting with heated oxygen-free gas;
An oil content recovery device for recovering condensed oil by cooling the pyrolysis gas generated in the thermal decomposition processing device;
In the thermal decomposition apparatus for polymer waste, comprising a circulation path for supplying the residual gas after the oil is recovered by the oil recovery apparatus to the heat exchanger as an oxygen-free gas,
A pyrolysis apparatus for polymer waste, wherein the introduction port for introducing the oxygen-free gas has an oxygen-free gas introduction pipe protruding from the inner wall of the pyrolysis furnace to the space in the furnace.
前記無酸素ガス導入管の開口面が、前記熱分解炉の内壁面と対向するように設置されたことを特徴とする請求項1に記載の高分子系廃棄物の熱分解装置。   2. The polymer waste pyrolysis apparatus according to claim 1, wherein an opening surface of the oxygen-free gas introduction pipe is disposed so as to face an inner wall surface of the pyrolysis furnace. 3. 前記無酸素ガス導入管の開口面が、前記熱分解炉の底壁面と対向するように設置されたことを特徴とする請求項2に記載の高分子系廃棄物の熱分解装置。   The thermal decomposition apparatus for polymer waste according to claim 2, wherein an opening surface of the oxygen-free gas introduction pipe is installed so as to face a bottom wall surface of the pyrolysis furnace. 前記熱分解炉の内径(d1)と前記無酸素ガス導入管の内径(d2)との比(d2/d1)が0.1〜0.25であることを特徴とする請求項1に記載の高分子系廃棄物の熱分解装置。 Of claim 1 the ratio of the inner diameter of the pyrolysis furnace (d 1) and the inner diameter of the oxygen-free gas introduction pipe (d 2) (d 2 / d 1) is characterized in that 0.1 to 0.25 Polymeric waste pyrolysis equipment. 前記熱分解炉の内径(d1)と前記無酸素ガス導入管の先端から熱分解炉の内壁までの距離(D)との比(D/d1)が0.2〜0.4であることを特徴とする請求項1に記載の高分子系廃棄物の熱分解装置。 The ratio (D / d 1 ) between the inner diameter (d 1 ) of the pyrolysis furnace and the distance (D) from the tip of the oxygen-free gas introduction pipe to the inner wall of the pyrolysis furnace is 0.2 to 0.4, The thermal decomposition apparatus for polymer waste according to claim 1. 前記無酸素ガス導入管の開口部が、無酸素ガス流動方向の下流側に向かって広がる形状に形成されていることを特徴とする請求項1に記載の高分子系廃棄物の熱分解装置。   2. The polymer waste pyrolysis apparatus according to claim 1, wherein the opening portion of the oxygen-free gas introduction pipe is formed in a shape that expands toward the downstream side in the oxygen-free gas flow direction. 前記無酸素ガス導入管の挿入された部分の側面に、一つ又は複数の孔が開けられていることを特徴とする請求項1に記載の高分子系廃棄物の熱分解装置。   2. The polymer waste pyrolysis apparatus according to claim 1, wherein one or a plurality of holes are formed in a side surface of a portion where the oxygen-free gas introduction pipe is inserted.
JP2009297674A 2009-12-28 2009-12-28 Polymer waste pyrolysis equipment Active JP5620095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009297674A JP5620095B2 (en) 2009-12-28 2009-12-28 Polymer waste pyrolysis equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009297674A JP5620095B2 (en) 2009-12-28 2009-12-28 Polymer waste pyrolysis equipment

Publications (2)

Publication Number Publication Date
JP2011137079A true JP2011137079A (en) 2011-07-14
JP5620095B2 JP5620095B2 (en) 2014-11-05

Family

ID=44348813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009297674A Active JP5620095B2 (en) 2009-12-28 2009-12-28 Polymer waste pyrolysis equipment

Country Status (1)

Country Link
JP (1) JP5620095B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101456621B1 (en) * 2014-05-14 2014-11-04 주식회사 에이쓰이엔지 Waste Recycling System
RU2679263C1 (en) * 2018-05-28 2019-02-06 федеральное государственное бюджетное образовательное учреждение высшего образования "Кузбасский государственный технический университет имени Т.Ф. Горбачева" (КузГТУ) Method of improving a solid residue of pyrolysis of car tires
CN112480952A (en) * 2020-03-23 2021-03-12 黄颖媛 Waste gas treatment device for thermal cracking recovery of waste tires

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5079582A (en) * 1973-11-19 1975-06-28
JPS538394A (en) * 1976-07-12 1978-01-25 Jgc Corp Production of reinforcing filler from residue of pyrolysis of rubber waste
JP2002523552A (en) * 1998-08-21 2002-07-30 − スツレ エルシャグ、ベングト Method for recovering carbon and hydrocarbon mixtures from polymers by pyrolysis in a pyrolysis reactor, preferably in the form of waste tires
JP2002265956A (en) * 2001-03-07 2002-09-18 Kazuteru Shinohara Liquefaction apparatus for polymer waste
JP2005114336A (en) * 2003-09-18 2005-04-28 Repro Research:Kk Carbonization facility
JP2006036806A (en) * 2004-07-22 2006-02-09 Mugen System Kk Method of thermal decomposition and apparatus for thermal decomposition
JP2007161783A (en) * 2005-12-09 2007-06-28 Fujimi Zosen Kk Continuous volume-reduction system for polymer waste
JP2008285523A (en) * 2007-05-15 2008-11-27 Kazuteru Shinohara Liquefaction apparatus for polymer-based waste

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5079582A (en) * 1973-11-19 1975-06-28
JPS538394A (en) * 1976-07-12 1978-01-25 Jgc Corp Production of reinforcing filler from residue of pyrolysis of rubber waste
JP2002523552A (en) * 1998-08-21 2002-07-30 − スツレ エルシャグ、ベングト Method for recovering carbon and hydrocarbon mixtures from polymers by pyrolysis in a pyrolysis reactor, preferably in the form of waste tires
JP2002265956A (en) * 2001-03-07 2002-09-18 Kazuteru Shinohara Liquefaction apparatus for polymer waste
JP2005114336A (en) * 2003-09-18 2005-04-28 Repro Research:Kk Carbonization facility
JP2006036806A (en) * 2004-07-22 2006-02-09 Mugen System Kk Method of thermal decomposition and apparatus for thermal decomposition
JP2007161783A (en) * 2005-12-09 2007-06-28 Fujimi Zosen Kk Continuous volume-reduction system for polymer waste
JP2008285523A (en) * 2007-05-15 2008-11-27 Kazuteru Shinohara Liquefaction apparatus for polymer-based waste

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101456621B1 (en) * 2014-05-14 2014-11-04 주식회사 에이쓰이엔지 Waste Recycling System
RU2679263C1 (en) * 2018-05-28 2019-02-06 федеральное государственное бюджетное образовательное учреждение высшего образования "Кузбасский государственный технический университет имени Т.Ф. Горбачева" (КузГТУ) Method of improving a solid residue of pyrolysis of car tires
CN112480952A (en) * 2020-03-23 2021-03-12 黄颖媛 Waste gas treatment device for thermal cracking recovery of waste tires

Also Published As

Publication number Publication date
JP5620095B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
US8304573B2 (en) Recovery method of pyrolysis product of resin
EP2007849B1 (en) Method of devolatilizing recycled carbon black and associated apparatus
US9358549B2 (en) Method for manufacturing carbide for reinforcing rubber articles
JP5692321B2 (en) Method for producing fine powder of mixed plastic, fine powder of mixed plastic, fine powder of waste plastic, method of operating blast furnace, and method of processing waste plastic
JP5620095B2 (en) Polymer waste pyrolysis equipment
JP5878275B2 (en) Method of pyrolyzing polymer waste, method of recovering carbide, and carbide, rubber composition and tire
JP4775485B2 (en) Method for producing waste plastic crushed material and solid fuel or ore reducing material
JP5446061B2 (en) Method for producing fine powder of mixed plastic, method for operating blast furnace, and method for treating waste plastic
JP5629500B2 (en) Carbide manufacturing apparatus and carbide manufacturing method using the manufacturing apparatus
JP5693057B2 (en) CARBIDE, PROCESS FOR PRODUCING THE SAME, RUBBER COMPOSITION AND TIRE
JP5707044B2 (en) Thermal decomposition apparatus for polymer waste and thermal decomposition method using the same
EP4217419A1 (en) A method for the production of a rubber composition
JP5646890B2 (en) Carbide production equipment
JP2006241442A (en) Process for treatment of waste plastics
JP2012001702A (en) Carbon material for rubber reinforcement and method for manufacturing the same
JP2009084543A (en) Waste plastic liquefying apparatus
JP5675061B2 (en) Polymer waste pyrolysis apparatus, pyrolysis method using the apparatus, carbide recovery method, carbide, rubber composition containing the carbide, and tire using the rubber composition
JP2012001698A (en) Manufacturing method of carbide
JP4807112B2 (en) Blowing synthetic resin into blast furnace
WO2021158109A1 (en) A method for processing mixed rubber waste streams and carbon black powder obtained
JP5593819B2 (en) Thermal decomposition method of acrylic resin
US20060247127A1 (en) Process for converting a carbonaceous source into an adsorption material
JP2001200264A (en) Process for preparing coke from inorganic material- containing waste polymer
JP2000256503A (en) Utilization of organic medium after treatment of waste material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140424

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140918

R150 Certificate of patent or registration of utility model

Ref document number: 5620095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250