WO2010137352A1 - Method and apparatus for thermally decomposing polymer waste, method for collecting carbide, carbide, rubber composition containing the carbide, and tire using the rubber composition - Google Patents

Method and apparatus for thermally decomposing polymer waste, method for collecting carbide, carbide, rubber composition containing the carbide, and tire using the rubber composition Download PDF

Info

Publication number
WO2010137352A1
WO2010137352A1 PCT/JP2010/003650 JP2010003650W WO2010137352A1 WO 2010137352 A1 WO2010137352 A1 WO 2010137352A1 JP 2010003650 W JP2010003650 W JP 2010003650W WO 2010137352 A1 WO2010137352 A1 WO 2010137352A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
pyrolysis
oxygen
carbide
polymer waste
Prior art date
Application number
PCT/JP2010/003650
Other languages
French (fr)
Japanese (ja)
Inventor
正徳 川村
敬治 朝妻
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009131232A external-priority patent/JP5878275B2/en
Priority claimed from JP2009131610A external-priority patent/JP5675061B2/en
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2010137352A1 publication Critical patent/WO2010137352A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/12Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by dry-heat treatment only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention includes a thermal decomposition method and thermal decomposition apparatus for polymer waste, a method for recovering carbide from the polymer waste, a carbide obtained from the thermal decomposition method or the recovery method, and a mixture of the carbide.
  • the present invention relates to a rubber composition and a tire using the rubber composition, and more particularly, to a thermal decomposition method for a polymeric waste that can suppress oxidation of carbides remaining after thermal decomposition of the polymeric waste. .
  • Patent Document 1 carbide obtained by dry distillation treatment of a waste tire is finely pulverized and heated to 500 ° C. or higher in a sealed container to be crystallized, and added to the tire. It can be recycled as an agent.
  • carbide is graphitized by high-temperature treatment, and the electron microscopic image described in JP-A-2004-277687 is judged to be a graphitized fine powder instead of carbon black. it can. Therefore, it is clear that the carbide described in JP-A-2004-277687 is not suitable as a rubber compounding agent.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2006-349224 (Patent Document 2) reports that a waste tire is preheated by microwave irradiation, pyrolyzed in a kiln type furnace, and the resulting carbide can be used as activated carbon. .
  • the carbide can be used as a compounding agent for rubber, and further, air can flow into the heating furnace relatively easily from the structure of the heating furnace described in JP-A-2006-349224. It seems that it can be used as activated carbon because the carbides are oxidized and become porous. Therefore, it is clear that the carbide described in JP-A-2006-349224 is not suitable as a rubber compounding agent.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2007-70167 (Patent Document 3) reports that glassy carbon can be obtained by heating a waste tire at 500 to 560 ° C. for 2 to 3 hours in a rotary dry distillation furnace. However, since the glassy carbon has almost no interaction with the rubber component, it is not suitable as a compounding agent for rubber.
  • Patent Document 4 the tire is pyrolyzed at 350 ° F. (177 ° C.) to 850 ° F. (566 ° C.) for the purpose of recycling carbon black from the used tire, and then obtained.
  • air is introduced into the tube and the heating temperature is high, there is a possibility that the carbon black whose surface has been oxidized may be recovered, which is not suitable as a rubber compounding agent.
  • Patent Document 5 a method in which carbide obtained by pyrolyzing scrap rubber is pulverized under mild pulverization conditions, and aggregated particles containing carbon black are separated using an air classifier. has been reported. Here, the compatibility of the separated carbon black with the rubber material is greatly affected by the thermal decomposition conditions.
  • an object of the present invention is to provide a thermal decomposition method and thermal decomposition apparatus for polymer waste that can solve the above-described problems of the prior art and can suppress oxidation of carbides remaining after thermal decomposition of the polymer waste. It is to provide.
  • Another object of the present invention is to provide a recovery method capable of obtaining a pyrolytic recovery carbide that can maintain rubber characteristics sufficiently even when blended with a rubber component without deterioration in quality.
  • Still another object of the present invention is to provide a carbide obtained by the above pyrolysis method or recovery method, a rubber composition obtained by blending the carbide, and a tire using the rubber composition.
  • the inventors of the present invention brought a polymer waste directly into contact with a heated oxygen-free gas to generate a pyrolysis gas. by controlling the gas flow rate of oxygen-free gas introduced in the range of 0.0015m 3 /s[ntp] ⁇ 0.0095m 3 / s [ntp ], oxidation of the carbide remaining in the pyrolysis furnace after pyrolysis The inventors have found that it can be suppressed, and have completed the present invention.
  • the thermal decomposition method for polymer waste includes: Heating the oxygen-free gas in the heat exchanger; Introducing a heated oxygen-free gas into a pyrolysis furnace containing the polymer waste, bringing the polymer waste into direct contact with the oxygen-free gas, and generating a pyrolysis gas.
  • the gas flow rate of oxygen-free gas to be introduced into the pyrolysis furnace in the range of 0.0015m 3 /s[ntp] ⁇ 0.0095m 3 / s [ntp ].
  • Gas flow rate refers to the flow rate of gas sent per 100 kg of polymer waste. Ntp means a reference state, and is expressed on the basis of a volume at a gas flow rate of 0 ° C. and 1 atm.
  • the temperature during thermal decomposition it is preferable to control the temperature during thermal decomposition to 300 to 600 ° C. in the step of generating the thermal decomposition gas. In this case, oxidation of the carbide remaining after the thermal decomposition can be more reliably suppressed.
  • the oxygen concentration in the oxygen-free gas is preferably controlled to 1% by volume or less. In this case, oxidation of the carbide remaining after the thermal decomposition can be more reliably suppressed.
  • the pyrolysis apparatus used in the thermal decomposition method for polymer waste according to the present invention includes a pyrolysis furnace that contains polymer waste therein, and an external heating means that heats the pyrolysis furnace from the outside. It is preferable that the oxygen concentration in the thermal decomposition apparatus is 1% by volume or less.
  • the method for recovering the carbide of the present invention includes: Heating the oxygen-free gas in the heat exchanger; Introducing a heated oxygen-free gas into a pyrolysis furnace containing a polymer waste, bringing the polymer waste into direct contact with the oxygen-free gas, and generating a pyrolysis gas;
  • the method for recovering carbide includes cooling the pyrolysis gas and recovering the condensed oil, and recovering carbide remaining in the pyrolysis furnace after the thermal decomposition of the polymer waste. And controlling the gas flow rate of oxygen-free gas to be introduced into the pyrolysis furnace in the range of 0.0015m 3 /s[ntp] ⁇ 0.0095m 3 / s [ntp ].
  • This “carbide” refers to a solid that is generated and left after a gas body and liquid components in the raw material are released by a thermal decomposition reaction by heating using a substance containing organic matter as a raw material. May be included.
  • the temperature during pyrolysis it is preferable to control the temperature during pyrolysis to 300 to 600 ° C. in the step of generating the pyrolysis gas.
  • a carbide capable of sufficiently maintaining rubber characteristics even when blended with a rubber component can be more reliably obtained without deteriorating the quality of the carbide.
  • the oxygen concentration in the oxygen-free gas it is preferable to control the oxygen concentration in the oxygen-free gas to 1% by volume or less.
  • a carbide capable of sufficiently maintaining rubber characteristics even when blended with a rubber component can be more reliably obtained without deteriorating the quality of the carbide.
  • the pyrolysis apparatus used in the method for recovering carbide according to the present invention is: A heat exchanger for heating anoxic gas; It has a pyrolysis furnace containing polymer waste inside and an external heating means for heating the pyrolysis furnace from outside, and the polymer waste is in direct contact with oxygen-free gas heated by the heat exchanger.
  • a decomposition device for generating pyrolysis gas by pyrolyzing by An oil recovery device for recovering the condensed oil by cooling the pyrolysis gas generated in the decomposition device; A circulation path for supplying the residual gas after the oil is recovered by the oil recovery device to the heat exchanger as an oxygen-free gas; A gas generator for generating an inert gas to be introduced into the pyrolysis furnace; An oxygen concentration detector for detecting the oxygen concentration in the thermal decomposition apparatus system.
  • the carbide of the present invention is characterized in that it is a carbide obtained by the above pyrolysis method or recovery method, and its total acidity is preferably 0.1 meq / g or less, and further, a pulverization step and a classification step Of these, fine carbide obtained through at least one of the steps is more preferable.
  • the rubber composition of the present invention is characterized by blending the carbide, and the tire of the present invention is characterized by using the rubber composition.
  • the polymer waste in the thermal decomposition method for polymer waste is directly introduced into the pyrolysis furnace in the step of bringing the polymer waste into direct contact with the heated oxygen-free gas to generate the pyrolysis gas.
  • the gas flow rate that oxygen free gas within the 0.0015m 3 /s[ntp] ⁇ 0.0095m 3 / s [ntp ], remain in the pyrolysis furnace after pyrolysis of polymer waste Oxidation of carbide can be suppressed.
  • recovery method the rubber composition formed by mix
  • FIG. 1 is a schematic diagram of a polymer waste pyrolysis apparatus used in the polymer waste pyrolysis method of the present invention and the carbide recovery method of the present invention.
  • the oxygen-free gas is heated in the heat exchanger 1.
  • the oxygen-free gas is a gas body other than oxygen and oxide, and examples thereof include inert gases such as nitrogen, argon and helium, and combustible gases such as hydrogen, methane and propane.
  • the heat exchanger 1 is not particularly limited, but a spiral heat exchanger, a plate heat exchanger, or the like can be used. Further, in order to supply the oxygen-free gas to the heat exchanger 1, in addition to being sent from the non-circulating gas generator 7, there is no residual gas after being recovered by the oil recovery device 9 via the circulation path 6 described later. You may circulate to the heat exchanger 1 as oxygen gas.
  • a heated oxygen-free gas is introduced into a thermal decomposition furnace 3 containing the polymer waste 2 to remove the polymer waste 2 from the waste. Directly contact with oxygen gas to generate pyrolysis gas.
  • the pyrolysis furnace 3 is not particularly limited, but a normal kettle type pyrolysis furnace, fluidized bed type pyrolysis furnace, kiln type pyrolysis furnace or the like is used.
  • the polymer waste 2 mainly refers to organic waste.
  • the decomposition apparatus 5 used in the thermal decomposition method and the recovery method of the present invention includes an external heating means 4 that heats the thermal decomposition furnace 3 from the outside, in addition to the thermal decomposition furnace 3 that contains the polymer waste 2 inside. Is preferably provided. Since the cracking device 5 includes the external heating means 4, the polymer waste 2 in the pyrolysis furnace 3 can be indirectly heated from the outside of the pyrolysis furnace 3. It becomes possible to reduce.
  • the external heating means 4 is not particularly limited, but for example, an external heating furnace disposed around the pyrolysis furnace 3 is preferable.
  • the heating medium used for the external heating means 4 indirectly heats the polymer waste 2 from the outside of the pyrolysis furnace 3, so that it is not limited to oxygen-free gas but uses various substances. Can do.
  • the present invention in the thermal cracking process and recovery process, the gas flow rate of 0.0015m 3 /s[ntp] ⁇ 0.0095m 3 / s of oxygen-free gas to be introduced into the pyrolysis furnace 3 [ntp] It needs to be controlled within the range.
  • the thermal decomposition method and the recovery method of the present invention are intended to suppress the oxidation of the carbide remaining in the thermal decomposition furnace 3 after the thermal decomposition and recover a carbide suitable as a rubber compound.
  • An index for evaluating the degree of oxidation of carbides is “total acidity”. If this value is large, it means that the surface of the carbide is oxidized, and the carbide is not suitable as a compounding agent for rubber. Means.
  • the flow rate of the oxygen-free gas is controlled within the specified range, and the thermal decomposition is performed under mild conditions, so that the total acidity of the subsequently recovered carbides is reduced. It can be suppressed to 0.1 meq / g or less. If the total acidity is 0.1 meq / g or less, when the recovered carbide is mixed with pure carbon black (100% carbon black), the physical properties of the rubber composition can be reduced within 5% and recovered. The carbide can be reused.
  • the flow rate of the oxygen-free gas introduced into the pyrolysis furnace 3 is less than 0.0015 m 3 / s [ntp]
  • the movement of the pyrolysis gas generated by pyrolysis is delayed, so the efficiency of the pyrolysis reaction is increased.
  • it exceeds 0.0095m 3 / s [ntp] the contact between the heated oxygen-free gas and the polymer waste becomes excessive, and the generation of solid dust and oxides such as nitrogen oxides This is not preferable because it can occur.
  • FIG. 2 is a diagram showing the relationship between the gas flow rate of the oxygen-free gas and the total acidity
  • FIG. 3 is a diagram showing the relationship between the rubber properties of the rubber composition and the total acidity.
  • the vertical axis in FIG. 3 represents the recovered carbide 20 obtained by the thermal decomposition method or recovery method of the present invention when the rubber composition containing only GPF grade carbon black is expressed as an index with the tensile stress at 300% elongation as 100.
  • the index value of the tensile stress at 300% elongation of a rubber composition containing a mixture of mass% and GPF grade carbon black 80 mass% is shown
  • the horizontal axis in FIG. 3 represents the total acidity of the recovered carbide used in the rubber composition Degrees.
  • the gas flow rate of oxygen-free gas to be introduced into the pyrolysis furnace 3 is desirably in the range of 0.003m 3 /s[ntp] ⁇ 0.007m 3 / s [ntp ].
  • the reason for this is that the pyrolysis reaction efficiency due to the movement of pyrolysis gas is maximized when the oxygen-free gas flow rate is around 0.003 m 3 / s [ntp], so the oxygen-free gas flow rate is 0.003 m 3 / s. [ntp] or more is preferable.
  • the gas flow rate of the oxygen-free gas is 0.007 m 3 / s [ntp] or less
  • the total acidity of the recovered carbide can be suppressed to 0.07 meq / g or less. This is because there is almost no decrease in physical properties when used in a rubber composition.
  • the measuring method of the said total acidity is as follows. First, 1 g of carbon black is precisely weighed, transferred to a flat bottom flask, added with 50 ml of 0.002N NaOH aqueous solution, and dispersed with ultrasonic waves. Then, a condenser tube is attached to the flat bottom flask and boiled for 2 hours while refluxing. The dispersion was cooled and solubilized, and a portion thereof was titrated with 0.002N NaOH aqueous solution, and the amount of NaOH used in the neutralization reaction per 1 g of carbon black was determined from the remaining amount of NaOH left unreacted. Ask. The unit is expressed in milliequivalents (meq / g) per unit mass.
  • the oxygen concentration detector 8 for measuring the oxygen concentration Accordingly, the flow rate control means 13 for adjusting the gas flow rate, the blower 10 for keeping the gas flow rate constant, and the like can be used. For example, as shown in FIG.
  • an oxygen concentration detector 8 in a pipe connecting the gas generator 7 and the heat exchanger 1 for supplying oxygen-free gas from the gas generator 7, an oxygen concentration detector 8, a flow control means 13 and An air blower 10 may be provided, or an oxygen concentration detector 8 and a flow rate control means 13 are provided in a circulation path 6 for circulating the residual gas recovered by the oil content recovery device 9 to the heat exchanger 1 as an oxygen-free gas. And a blower 10 may be provided.
  • the temperature at the time of pyrolysis it is preferable to control the temperature at the time of pyrolysis to 300 to 600 ° C. in the step of generating pyrolysis gas from the polymer waste 2 and oxygen-free gas. If the temperature at the time of thermal decomposition is within the above specified range, the polymer waste can be stably and continuously decomposed. If the temperature during the pyrolysis is less than 300 ° C., the pyrolysis reaction does not proceed sufficiently, which may result in the formation of carbides in which the components to be decomposed are not completely removed.
  • Undesirable reforming reactions and activation reactions occur between the generated carbides and the components that can be contained in the gas, increasing the total acidity in the carbides, or being porous and adversely affecting the reinforcing effect on the rubber. There is a risk of forming carbides that can be affected.
  • the flow rate of the oxygen-free gas heated in the heat exchanger 1, the external heating means 4 for heating the pyrolysis furnace 3 from the outside, etc. are used. That's fine.
  • the pyrolysis gas is cooled and the condensed oil is recovered.
  • one or more oil content recovery devices 9 are provided to cool the pyrolysis gas generated in the decomposition device 5 and recover the condensed oil content. Is preferred.
  • the pyrolysis gas generated in the cracking device 5 can be divided into oil content recovered in accordance with the boiling point thereof. Specifically, the first oil content recovery device 9a on the upstream side of the gas flow path and the second oil content recovery device 9b on the downstream side of the gas flow path are provided.
  • the second oil recovery unit 9b on the downstream side of the gas flow path has the same configuration as the first oil recovery unit 9a, but is lower than the boiling point of the oil component targeted by the first oil recovery unit 9a.
  • An oil having a boiling point in the region is recovered.
  • recovery apparatus 9 is connected to the collection tank 10 through piping at the lower part, for example, and can collect
  • a condensing device or the like can be provided on the downstream side of the oil content recovery device 9, and the oil content condensed in the condensing device can be recovered.
  • the carbide remaining in the pyrolysis furnace after the thermal decomposition of the polymer waste is recovered.
  • the pyrolyzed carbide remains in the pyrolysis furnace 3, so that the carbide can be recovered.
  • the carbide is obtained by the above-described recovery method, generally, it is recovered as a lump, so for example, the carbide recovered by a pulverization process using a pulverizer or the like is finely crushed and further classified.
  • a carbide having a specific particle size can be extracted by a classification process using the like.
  • the oxygen concentration is preferably controlled to 1% by volume or less. This means that the oxygen concentration in the thermal decomposition apparatus used in the thermal decomposition method and the recovery method of the present invention is controlled to 1% by volume or less. If the oxygen concentration in the pyrolysis apparatus is 1% by volume or less, oxidation of carbides remaining in the pyrolysis furnace after pyrolysis can be more reliably suppressed, quality does not deteriorate, and even if blended with a rubber component Carbide that can sufficiently maintain rubber properties can be obtained more reliably.
  • the thermal decomposition apparatus used for the thermal decomposition method or the recovery method of the present invention includes, in addition to the above-described decomposition apparatus 5 and oil content recovery apparatus 9, in addition to these, the heat exchanger 1, the gas generator 7, the circulation path 6, oxygen A pyrolysis apparatus including the concentration detector 8, the flow rate control means 13, the blower 10, the recovery tank 10, the exhaust fan 11, the exhaust gas treatment device 12 and the like as appropriate is also included.
  • the oxygen concentration in the thermal decomposition apparatus can be measured by, for example, a zirconia oxygen sensor using a solid electrolyte zirconia-based oxygen concentration cell.
  • FIG. 4 is a diagram showing the relationship between the oxygen concentration in the pyrolyzer system and the total acidity. From FIG. 4, in order to obtain the total acidity capable of obtaining high-quality carbides. It can be seen that the oxygen concentration in the thermal decomposition apparatus system is preferably 1.0% by volume or less.
  • the thermal decomposition apparatus shown in FIG. 1 includes a heat exchanger 1 for heating an oxygen-free gas, a thermal decomposition furnace 3 that contains a polymer waste 2 inside, and an external heating unit that heats the thermal decomposition furnace 3 from the outside.
  • a decomposition apparatus 5 having heating means 4 for generating thermal decomposition gas by thermally decomposing the polymer waste 2 by directly contacting the oxygen-free gas heated by the heat exchanger 1;
  • the pyrolysis gas generated in the cracking device 5 is cooled to recover the condensed oil component, and the residual gas after the oil component is recovered by the oil recovery device 9 is used as the oxygen free gas as the heat.
  • a concentration detector 8 for supplying to the exchanger 1 for a gas generator 7 for generating oxygen-free gas introduced into the pyrolysis furnace 3, and oxygen for
  • the decomposition apparatus 5 includes a thermal decomposition furnace 3 that accommodates the polymer waste 2 inside and an external heating means 4 that heats the thermal decomposition furnace 3 from the outside.
  • the oxygen-free gas heated by the heat exchanger 1 is introduced into the pyrolysis furnace 3 containing the polymer-based waste 2, and the polymer-based waste 2 is brought into direct contact with the oxygen-free gas, Generate pyrolysis gas.
  • the decomposition apparatus 5 includes the external heating means 4, the polymer waste 2 in the pyrolysis furnace 3 can be indirectly heated from the outside of the pyrolysis furnace 3.
  • the gas flow rate can be reduced. This suppresses the generation of solid dust (fine suspended matter of polymer waste) that is swollen from the pyrolysis furnace 3 and mixed in the gas and circulates in the apparatus together with the gas. Occurrence can also be suppressed.
  • the circulation path 6 supplies the residual gas after the oil content is recovered by the oil content recovery device 9 to the heat exchanger 1 as an oxygen-free gas.
  • the exchanger 1 is connected by piping.
  • the residual gas supplied to the heat exchanger 1 through the circulation path 6 can be directly supplied to the heat exchanger 1, but can also be supplied to the heat exchanger 1 after being heated in a hot stove (not shown). Good.
  • the circulation path 6 is connected only to the second oil recovery unit 9b.
  • the present invention is not limited to this, and the circulation path 6 is connected to the first oil recovery unit 9a. May be.
  • surplus gas can be released into the atmosphere after being treated by the exhaust gas treatment device 12 via the exhaust fan 11.
  • the pyrolysis apparatus of the present invention has a gas generator 7 for generating an inert gas to be introduced into the pyrolysis furnace 3, and a pyrolysis apparatus system. And an oxygen concentration detector 8 for detecting the oxygen concentration.
  • the gas generator 7 and the oxygen concentration detector 8 together, the oxygen concentration in the pyrolysis apparatus system is monitored, and an inert gas is introduced into the pyrolysis furnace 3 according to the detection result. It becomes possible, the oxidation of the carbide
  • the thermal decomposition apparatus of the present invention further introduces an inert gas from the gas generator into the thermal decomposition apparatus system based on the oxygen concentration in the thermal decomposition apparatus system detected by the oxygen concentration detector 8. It is preferable to provide a device for controlling the flow rate. As a result, a signal is transmitted to the inert gas flow rate control means 13 based on the detection result of the oxygen concentration in the thermal decomposition system detected by the oxygen concentration detector 8, and the gas generator 7 is operated by this signal. An inert gas is generated, and this inert gas is introduced into the thermal decomposition system through the flow rate control means 13 whose opening degree is changed by the signal.
  • the gas generator 7 for supplying an inert gas operates in conjunction with the detection result, and at the same time the flow rate Inert gas is introduced into the circulation path 6 by adjusting the opening of the control means 13.
  • the inert gas By introducing the inert gas, the oxygen concentration detected by the oxygen concentration detector 8 is lowered, and the oxygen concentration in the thermal decomposition apparatus system can be controlled to a reference value or less.
  • the gas generator 9 operates when the oxygen concentration in the thermal decomposition system detected by the oxygen concentration detector 8 exceeds 1.0 vol%, and at the same time, in the circulation path 6 via the flow rate control means 13. An inert gas is supplied to the gas, and the oxygen concentration in the thermal decomposition apparatus system is lowered.
  • oxygen concentration detector 8 for example, a zirconia oxygen sensor using a solid electrolyte zirconia-based oxygen concentration cell is used.
  • gas generator 7 for example, P.I. S. A nitrogen gas generator using the A (Pressure Swing Adsorption) method is used.
  • the inert gas supplied by the gas generator 7 is introduced to the downstream side of the gas flow path from the oil content recovery device 9 and to the upstream side of the gas flow path from the heat exchanger 1.
  • the inert gas is introduced to the upstream side of the oil content recovery device 9, the temperature of the pyrolysis gas containing the oil content may be lowered, the oil content recovery efficiency may be reduced, or the piping may be blocked with oil.
  • the inert gas is introduced to the downstream side of the heat exchanger 1, the temperature of the hot gas for liquefying the polymer waste is lowered, and the thermal decomposition efficiency is lowered.
  • a flow rate control means 13 that works in conjunction with the oxygen concentration detector 8, whereby inert gas is introduced into the system by a detection signal from the oxygen concentration detector 8. Can be introduced.
  • the carbide of the present invention is a carbide obtained by the above pyrolysis method or recovery method, and its total acidity is preferably 0.1 meq / g or less, more preferably 0.07 meq / g or less. If the total acidity of the carbide is 0.1 meq / g or less, as described above, the recovered carbide can be reused as a filler for rubber reinforcement. Moreover, it is preferable that the carbide
  • the carbide is generally recovered as a lump, the carbide is finely crushed through a pulverization process using a pulverizer or the like, and the particle size of the carbide is selected through a classification process using a classifier or the like. Thus, the quality of the carbide can be improved.
  • the rubber composition of the present invention is characterized by blending a carbide obtained by the above-described thermal decomposition method or recovery method.
  • compounding agents usually used in the rubber industry such as fillers, softeners, silane coupling agents, stearic acid, anti-aging agents, Zinc white, a vulcanization accelerator, a vulcanizing agent, and the like can be appropriately blended depending on the purpose.
  • these compounding agents commercially available products can be suitably used.
  • the said rubber composition can be manufactured by mix
  • the rubber component that can be used in the rubber composition of the present invention is not particularly limited, and in addition to natural rubber (NR), polyisoprene rubber (IR), styrene-butadiene copolymer rubber (SBR), polybutadiene.
  • Synthetic rubbers such as rubber (BR), ethylene-propylene-diene rubber (EPDM), chloroprene rubber (CR), halogenated butyl rubber, acrylonitrile-butadiene rubber (NBR) can be used. You may use individually and may blend and use 2 or more types.
  • the recovered carbide obtained by the above pyrolysis method or recovery method can be blended with pure carbon black.
  • the physical property deterioration of the rubber composition can be suppressed to within 5%.
  • the recovered carbide content in the total of the recovered carbide and pure carbon black is preferably in the range of 1 to 20% by mass. If content of this collection
  • the tire of the present invention is characterized by using the above-mentioned rubber composition, and can reduce the deterioration of physical properties of the tire even though the carbide recovered from the polymer waste is reused.
  • the tire of the present invention is not particularly limited except that the above rubber composition is used, and can be manufactured according to a conventional method.
  • inert gas such as nitrogen, argon, helium other than normal or the air which adjusted oxygen partial pressure, can be used.
  • Example 1 Carbides were recovered from the waste truck tires using the thermal decomposition apparatus shown in FIG. 1 includes a heat exchanger 1, a polymer waste 2, a pyrolysis furnace 3, an external heating means 4, a circulation path 6, a gas generator 7, an oxygen concentration detector 8, an oil recovery.
  • the apparatus 9, the recovery tank 10, the exhaust fan 11, the exhaust gas treatment device 12, and the flow rate control means 13 are provided, and the recovery tank 10 is provided downstream of the oil content recovery device 9.
  • the gas temperature was raised to about 500 ° C.
  • the gas flow rate of nitrogen gas introduced into the pyrolysis furnace 3 is set to 0.005m 3 / s [ntp], controlled in the range of 0.0045m 3 /s[ntp] ⁇ 0.0055m 3 / s [ntp ]
  • the oxygen concentration in the pyrolyzer system was controlled within a range of 1% by volume or less.
  • a zirconia oxygen sensor or the like was used for measuring the oxygen concentration in the thermal decomposition apparatus.
  • Example 2 The gas flow rate of nitrogen gas introduced into the pyrolysis furnace 3 is set to 0.008m 3 / s [ntp], except for controlling the range of 0.0075m 3 /s[ntp] ⁇ 0.0085m 3 / s [ntp ] Were subjected to a thermal decomposition reaction in the same manner as in Example 1 above.
  • the gas flow rate in this example is higher than that in Example 1, distillation starts 45 minutes after the start of heating by the heat exchanger 1, and after 3 hours from the start of heating by the heat exchanger 1. Stopped. Next, the total acidity of the fine carbide for rubber compounding obtained by pulverization and classification after recovery was measured by the above method and found to be 0.0908 meq / g.
  • Example 3 The gas flow rate of nitrogen gas introduced into the pyrolysis furnace 3 is set to 0.002m 3 / s [ntp], except for controlling the range of 0.0015m 3 /s[ntp] ⁇ 0.0025m 3 / s [ntp ] Were subjected to a thermal decomposition reaction in the same manner as in Example 1 above.
  • the gas flow rate in this example is lower than that in Example 1, the distillation started 1.5 hours after the start of heating by the heat exchanger 1 and 6 hours after the start of heating by the heat exchanger 1 Stopped.
  • the total acidity of the fine carbide for rubber compounding obtained by pulverization and classification was measured by the above method and found to be 0.0365 meq / g.
  • the gas flow rate of nitrogen gas introduced into the pyrolysis furnace 3 is set to 0.0010m 3 / s [ntp], except for controlling the range of 0.00095m 3 /s[ntp] ⁇ 0.00105m 3 / s [ntp ]
  • the gas flow rate in this example is less than 0.0015 m 3 / s [ntp], and only a small amount of distillate is observed even after 2 hours have passed since the heating by the heat exchanger 1 was started. However, since the thermal decomposition reaction hardly proceeded, it was stopped halfway.
  • the fine carbides for rubber compounding recovered in Comparative Examples 1 to 4 are all in that the flow rate of oxygen-free gas introduced into the pyrolysis furnace exceeds 0.0095 m 3 / s [ntp].
  • the acidity will exceed 0.1 meq / g, and as a result, the rubber composition of the comparative example has a rubber property that is reduced by 5% or more in any of the various rubber properties of unvulcanized rubber and vulcanized rubber. It was confirmed to have.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

Disclosed is a method for thermally decomposing polymer waste, wherein oxidation of carbides that remain after the thermal decomposition of the polymer waste can be suppressed. Specifically disclosed is a method for thermally decomposing polymer waste, which comprises: a step in which an oxygen-free gas is heated within a heat exchanger (1); and a step in which the heated oxygen-free gas is introduced into a thermal decomposition furnace (3) in which polymer waste (2) is contained, so that the polymer waste (2) and the oxygen-free gas are brought into direct contact with each other, thereby generating a thermal decomposition gas. The method for thermally decomposing polymer waste is characterized in that the gas flow rate of the oxygen-free gas to be introduced into the thermal decomposition furnace (3) is controlled within the range from 0.0015 m3/s [ntp] to 0.0095 m3/s [ntp].

Description

高分子系廃棄物の熱分解方法及び熱分解装置、炭化物の回収方法、並びに炭化物、該炭化物を含むゴム組成物及び該ゴム組成物を用いたタイヤThermal decomposition method and thermal decomposition apparatus for polymer waste, recovery method of carbide, carbide, rubber composition containing the carbide, and tire using the rubber composition
 本発明は、高分子系廃棄物の熱分解方法及び熱分解装置、該高分子系廃棄物からの炭化物の回収方法、該熱分解方法又は回収方法より得た炭化物、該炭化物を配合してなるゴム組成物、及び該ゴム組成物を用いたタイヤに関し、特には、高分子系廃棄物の熱分解後に残る炭化物の酸化を抑えることが可能な高分子系廃棄物の熱分解方法に関するものである。 The present invention includes a thermal decomposition method and thermal decomposition apparatus for polymer waste, a method for recovering carbide from the polymer waste, a carbide obtained from the thermal decomposition method or the recovery method, and a mixture of the carbide. The present invention relates to a rubber composition and a tire using the rubber composition, and more particularly, to a thermal decomposition method for a polymeric waste that can suppress oxidation of carbides remaining after thermal decomposition of the polymeric waste. .
 従来、機能性の材料を開発する目的で、ゴム材料や樹脂材料等、様々な高分子系材料の工業化がなされているが、一方で、高分子工業の発展は、汎用材料の大量生産、大量消費をもたらし、高分子系廃棄物の処理は解決すべき課題となっている。そして、この課題を解決するためには、高分子系材料の再利用化、リサイクル化等が重要となる。例えば、ゴム材料であるタイヤは、汎用材料として大量生産、大量消費がなされ、使用済みタイヤの数も多いことから、使用済みタイヤのリサイクル化の研究が進められている。 Conventionally, various polymer materials such as rubber materials and resin materials have been industrialized for the purpose of developing functional materials. On the other hand, the development of the polymer industry has led to mass production of general-purpose materials, Consuming and the treatment of polymer waste is a problem to be solved. In order to solve this problem, it is important to recycle and recycle polymer materials. For example, a tire made of a rubber material is mass-produced and consumed as a general-purpose material, and the number of used tires is large. Therefore, research on recycling of used tires is underway.
 特開2004-277687号公報(特許文献1)では、廃タイヤを乾留処理して得た炭化物を微粉砕して、これを密閉容器中で500℃以上に加熱し結晶化させ、タイヤへの添加剤としてリサイクルできることが報告されている。しかしながら、高温処理により炭化物が黒鉛化することはよく知られており、また、特開2004-277687号公報に記載の電子顕微鏡像は、カーボンブラックではなく黒鉛化した微粉末のものであると判断できる。従って、特開2004-277687号公報に記載の炭化物が、ゴム用配合剤として適していないことは明らかである。 In Japanese Patent Application Laid-Open No. 2004-277687 (Patent Document 1), carbide obtained by dry distillation treatment of a waste tire is finely pulverized and heated to 500 ° C. or higher in a sealed container to be crystallized, and added to the tire. It can be recycled as an agent. However, it is well known that carbide is graphitized by high-temperature treatment, and the electron microscopic image described in JP-A-2004-277687 is judged to be a graphitized fine powder instead of carbon black. it can. Therefore, it is clear that the carbide described in JP-A-2004-277687 is not suitable as a rubber compounding agent.
 特開2006-349224号公報(特許文献2)では、廃タイヤをマイクロ波照射により予備加熱し、これをキルン型加熱炉内で熱分解し、得られる炭化物を活性炭として利用できることが報告されている。しかしながら、該炭化物がゴム用配合剤として利用できるとの記載はなく、更に特開2006-349224号公報に記載の加熱炉の構造から、空気が比較的容易に加熱炉内に流入し、得られる炭化物の酸化が進み多孔質となるため、活性炭として利用できるものと思われる。従って、特開2006-349224号公報に記載の炭化物は、ゴム用配合剤として適していないことは明らかである。 Japanese Patent Application Laid-Open No. 2006-349224 (Patent Document 2) reports that a waste tire is preheated by microwave irradiation, pyrolyzed in a kiln type furnace, and the resulting carbide can be used as activated carbon. . However, there is no description that the carbide can be used as a compounding agent for rubber, and further, air can flow into the heating furnace relatively easily from the structure of the heating furnace described in JP-A-2006-349224. It seems that it can be used as activated carbon because the carbides are oxidized and become porous. Therefore, it is clear that the carbide described in JP-A-2006-349224 is not suitable as a rubber compounding agent.
 特開2007-70167号公報(特許文献3)では、回転式の乾留炉内で廃タイヤを500~560℃にて2~3時間加熱することで、ガラス状炭素が得られることが報告されているが、該ガラス状炭素はゴム成分に対する相互作用が殆ど無いので、ゴム用配合剤として適さない。 Japanese Patent Application Laid-Open No. 2007-70167 (Patent Document 3) reports that glassy carbon can be obtained by heating a waste tire at 500 to 560 ° C. for 2 to 3 hours in a rotary dry distillation furnace. However, since the glassy carbon has almost no interaction with the rubber component, it is not suitable as a compounding agent for rubber.
 国際公開第2007/121166号(特許文献4)では、使用済みタイヤからカーボンブラックをリサイクルする目的で、タイヤを350°F(177℃)~850°F(566℃)で熱分解し、次いで得られた炭化物をスクリューにて空気が導入された管中を通して上昇させるときに900°F(482℃)~1200°F(648℃)で加熱し揮発分の除去を行う方法と、その装置とが報告されている。しかしながら、管中に空気が導入され且つ加熱温度が高いため、表面が酸化されたカーボンブラックを回収する可能性があり、ゴム用配合剤として適さないと思われる。 In WO 2007/121166 (Patent Document 4), the tire is pyrolyzed at 350 ° F. (177 ° C.) to 850 ° F. (566 ° C.) for the purpose of recycling carbon black from the used tire, and then obtained. A method of removing volatile matter by heating at 900 ° F. (482 ° C.) to 1200 ° F. (648 ° C.) when the generated carbide is raised through a pipe into which air is introduced with a screw, and an apparatus thereof It has been reported. However, since air is introduced into the tube and the heating temperature is high, there is a possibility that the carbon black whose surface has been oxidized may be recovered, which is not suitable as a rubber compounding agent.
 以上のように、表面が酸化されたカーボンブラックをゴム組成物に配合した場合、ゴム組成物の引張応力や強度が顕著に低下するため、該カーボンブラックがゴム用配合剤として不適であることが広く知られている。また、カーボンブラックが高温で且つ長時間の熱履歴を受けると黒鉛化が進行し、ゴム組成物に配合すると、同様に引張応力や強度を顕著に低下させることも広く知られている。 As described above, when carbon black having an oxidized surface is blended with a rubber composition, the tensile stress and strength of the rubber composition are significantly reduced, and therefore the carbon black may be unsuitable as a rubber compounding agent. Widely known. It is also widely known that graphitization proceeds when carbon black is subjected to a high temperature and a long thermal history, and when it is blended with a rubber composition, the tensile stress and strength are similarly significantly reduced.
 一方、米国特許第5037628号(特許文献5)では、スクラップゴムを熱分解した炭化物を温和な粉砕条件で粉砕し、風力分級機を用いてカーボンブラックを含む凝集粒子(agglomerated particle)を分離する方法が報告されている。ここで、分離されたカーボンブラックのゴム材料への適合性は、熱分解条件に大きく影響を受けることになるのだが、米国特許第5037628号においては、熱分解に関する記載がなく、ゴム用配合剤として適当であるか否かの判断をすることができない。 On the other hand, in US Pat. No. 5,037,628 (Patent Document 5), a method in which carbide obtained by pyrolyzing scrap rubber is pulverized under mild pulverization conditions, and aggregated particles containing carbon black are separated using an air classifier. Has been reported. Here, the compatibility of the separated carbon black with the rubber material is greatly affected by the thermal decomposition conditions. However, in US Pat. No. 5,037,628, there is no description regarding thermal decomposition, and the compounding agent for rubber It is impossible to judge whether or not it is appropriate.
 最近では、高分子系廃棄物から有用物質として利用可能な成分を回収する油化設備として、無酸素ガスを加熱するための熱交換器、内部に高分子系廃棄物を収容する熱分解炉と該熱分解炉を外部から加熱する外部加熱手段とを有する熱分解装置、該熱分解装置で発生した熱分解ガスを冷却して、凝縮した油分を回収するための油分回収装置、及び該油分回収装置で油分を回収した後の残ガスを、無酸素ガスとして上記熱交換器に循環させるための循環路とを備えた循環型の油化設備が報告されている(特開2008-285523号公報(特許文献6)参照)。しかしながら、熱分解後の炭化物を好適なゴム用配合剤として回収する観点から、熱分解条件を最適化する試みはなされていない。 Recently, as an oiling facility for recovering components that can be used as useful substances from polymer waste, a heat exchanger for heating oxygen-free gas, a pyrolysis furnace containing polymer waste inside, A pyrolysis apparatus having an external heating means for heating the pyrolysis furnace from the outside, an oil content recovery apparatus for recovering condensed oil by cooling the pyrolysis gas generated in the pyrolysis apparatus, and the oil recovery There has been reported a circulation type oil making facility provided with a circulation path for circulating the residual gas after the oil is recovered by an apparatus as an oxygen-free gas to the heat exchanger (Japanese Patent Laid-Open No. 2008-285523). (See Patent Document 6). However, no attempt has been made to optimize the pyrolysis conditions from the viewpoint of recovering the pyrolyzed carbide as a suitable rubber compounding agent.
特開2004-277687号公報JP 2004-277687 A 特開2006-349224号公報JP 2006-349224 A 特開2007-70167号公報JP 2007-70167 A 国際公開第2007/121166号International Publication No. 2007/121166 米国特許第5037628号US Pat. No. 5,037,628 特開2008-285523号公報JP 2008-285523 A
 そこで、本発明の目的は、上記従来技術の問題を解決し、高分子系廃棄物の熱分解後に残る炭化物の酸化を抑えることが可能な高分子系廃棄物の熱分解方法及び熱分解装置を提供することにある。また、本発明の他の目的は、品質が劣化せず、ゴム成分に配合してもゴム特性を十分に維持できる熱分解回収炭化物を得ることが可能な回収方法を提供することにある。更に、本発明の他の目的は、上記熱分解方法又は回収方法により得た炭化物、該炭化物を配合してなるゴム組成物、及び該ゴム組成物を用いたタイヤを提供することにある。 Therefore, an object of the present invention is to provide a thermal decomposition method and thermal decomposition apparatus for polymer waste that can solve the above-described problems of the prior art and can suppress oxidation of carbides remaining after thermal decomposition of the polymer waste. It is to provide. Another object of the present invention is to provide a recovery method capable of obtaining a pyrolytic recovery carbide that can maintain rubber characteristics sufficiently even when blended with a rubber component without deterioration in quality. Still another object of the present invention is to provide a carbide obtained by the above pyrolysis method or recovery method, a rubber composition obtained by blending the carbide, and a tire using the rubber composition.
 本発明者らは、上記目的を達成するために鋭意検討した結果、高分子系廃棄物を加熱された無酸素ガスと直接に接触させ、熱分解ガスを発生させる工程において、熱分解炉内に導入される無酸素ガスのガス流量を0.0015m3/s[ntp]~0.0095m3/s[ntp]の範囲内に制御することによって、熱分解後の熱分解炉内に残る炭化物の酸化を抑制できることを見出し、本発明を完成させるに至った。 As a result of intensive investigations to achieve the above object, the inventors of the present invention brought a polymer waste directly into contact with a heated oxygen-free gas to generate a pyrolysis gas. by controlling the gas flow rate of oxygen-free gas introduced in the range of 0.0015m 3 /s[ntp]~0.0095m 3 / s [ntp ], oxidation of the carbide remaining in the pyrolysis furnace after pyrolysis The inventors have found that it can be suppressed, and have completed the present invention.
 即ち、本発明の高分子系廃棄物の熱分解方法は、
 熱交換器内で無酸素ガスを加熱する工程と、
 高分子系廃棄物を収容する熱分解炉内に加熱された無酸素ガスを導入し、該高分子系廃棄物を該無酸素ガスと直接に接触させ、熱分解ガスを発生させる工程と
 を含む高分子系廃棄物の熱分解方法において、
 前記熱分解炉内に導入される無酸素ガスのガス流量を0.0015m3/s[ntp]~0.0095m3/s[ntp]の範囲内に制御することを特徴とする。
That is, the thermal decomposition method for polymer waste according to the present invention includes:
Heating the oxygen-free gas in the heat exchanger;
Introducing a heated oxygen-free gas into a pyrolysis furnace containing the polymer waste, bringing the polymer waste into direct contact with the oxygen-free gas, and generating a pyrolysis gas. In the thermal decomposition method of polymer waste,
And controlling the gas flow rate of oxygen-free gas to be introduced into the pyrolysis furnace in the range of 0.0015m 3 /s[ntp]~0.0095m 3 / s [ntp ].
 なお、「ガス流量」とは、高分子系廃棄物100kg当たりに送るガスの流量を指す。また、ntpは、基準状態を意味し、ガス流量が0℃、1気圧での体積を基準にして表される。 “Gas flow rate” refers to the flow rate of gas sent per 100 kg of polymer waste. Ntp means a reference state, and is expressed on the basis of a volume at a gas flow rate of 0 ° C. and 1 atm.
 本発明の高分子系廃棄物の熱分解方法は、前記熱分解ガスを発生させる工程において、熱分解時の温度を300~600℃に制御するのが好ましい。この場合、熱分解後に残る炭化物の酸化をより確実に抑制することができる。 In the thermal decomposition method for polymer waste according to the present invention, it is preferable to control the temperature during thermal decomposition to 300 to 600 ° C. in the step of generating the thermal decomposition gas. In this case, oxidation of the carbide remaining after the thermal decomposition can be more reliably suppressed.
 本発明の高分子系廃棄物の熱分解方法は、前記無酸素ガス中の酸素濃度を1容量%以下に制御することが好ましい。この場合、熱分解後に残る炭化物の酸化をより確実に抑制することができる。 In the thermal decomposition method for polymer waste according to the present invention, the oxygen concentration in the oxygen-free gas is preferably controlled to 1% by volume or less. In this case, oxidation of the carbide remaining after the thermal decomposition can be more reliably suppressed.
 本発明の高分子系廃棄物の熱分解方法に用いる熱分解装置は、内部に高分子系廃棄物を収容する熱分解炉と、該熱分解炉を外部から加熱する外部加熱手段とを備えることが好ましく、該熱分解装置内の酸素濃度が1容量%以下であるのが好ましい。 The pyrolysis apparatus used in the thermal decomposition method for polymer waste according to the present invention includes a pyrolysis furnace that contains polymer waste therein, and an external heating means that heats the pyrolysis furnace from the outside. It is preferable that the oxygen concentration in the thermal decomposition apparatus is 1% by volume or less.
 また、本発明の炭化物の回収方法は、
 熱交換器内で無酸素ガスを加熱する工程と、
 高分子系廃棄物を収容する熱分解炉内に加熱された無酸素ガスを導入し、該高分子系廃棄物を該無酸素ガスと直接に接触させ、熱分解ガスを発生させる工程と、
 前記熱分解ガスを冷却し、凝縮した油分を回収する工程と
 前記高分子系廃棄物の熱分解後の熱分解炉内に残る炭化物を回収する工程と
 を含む炭化物の回収方法において、
 前記熱分解炉中に導入される無酸素ガスのガス流量を0.0015m3/s[ntp]~0.0095m3/s[ntp]の範囲内に制御することを特徴とする。
Further, the method for recovering the carbide of the present invention includes:
Heating the oxygen-free gas in the heat exchanger;
Introducing a heated oxygen-free gas into a pyrolysis furnace containing a polymer waste, bringing the polymer waste into direct contact with the oxygen-free gas, and generating a pyrolysis gas;
In the method for recovering carbide, the method includes cooling the pyrolysis gas and recovering the condensed oil, and recovering carbide remaining in the pyrolysis furnace after the thermal decomposition of the polymer waste.
And controlling the gas flow rate of oxygen-free gas to be introduced into the pyrolysis furnace in the range of 0.0015m 3 /s[ntp]~0.0095m 3 / s [ntp ].
 この「炭化物」とは有機物を含む物質を原料とし、この原料を加熱による熱分解反応によって原料中のガス体及び液体成分を放出した後に、生成されて残った固体を指し、例えば灰分として無機物を含むこともある。 This “carbide” refers to a solid that is generated and left after a gas body and liquid components in the raw material are released by a thermal decomposition reaction by heating using a substance containing organic matter as a raw material. May be included.
 本発明の炭化物の回収方法は、前記熱分解ガスを発生させる工程において、熱分解時の温度を300~600℃に制御するのが好ましい。この場合、炭化物の品質を劣化させることなく、ゴム成分に配合してもゴム特性を十分に維持することが可能な炭化物をより確実に得ることができる。 In the method for recovering carbide according to the present invention, it is preferable to control the temperature during pyrolysis to 300 to 600 ° C. in the step of generating the pyrolysis gas. In this case, a carbide capable of sufficiently maintaining rubber characteristics even when blended with a rubber component can be more reliably obtained without deteriorating the quality of the carbide.
 本発明の炭化物の回収方法は、前記無酸素ガス中の酸素濃度を1容量%以下に制御することが好ましい。この場合、炭化物の品質を劣化させることなく、ゴム成分に配合してもゴム特性を十分に維持することが可能な炭化物をより確実に得ることができる。 In the carbide recovery method of the present invention, it is preferable to control the oxygen concentration in the oxygen-free gas to 1% by volume or less. In this case, a carbide capable of sufficiently maintaining rubber characteristics even when blended with a rubber component can be more reliably obtained without deteriorating the quality of the carbide.
 本発明の炭化物の回収方法に用いる熱分解装置は、
 無酸素ガスを加熱するための熱交換器と、
 内部に高分子系廃棄物を収容する熱分解炉及び該熱分解炉を外部から加熱する外部加熱手段を有し、該高分子系廃棄物を前記熱交換器で加熱した無酸素ガスと直接接触させることにより熱分解させて熱分解ガスを発生させるための分解装置と、
 前記分解装置で発生した熱分解ガスを冷却して、凝縮した油分を回収するための油分回収装置と、
 前記油分回収装置で油分を回収した後の残ガスを、無酸素ガスとして前記熱交換器に供給するための循環路と、
 前記熱分解炉中に導入する不活性ガスを生成するためのガス発生器と、
 熱分解装置系内の酸素濃度を検出するための酸素濃度検出器とを備える。
The pyrolysis apparatus used in the method for recovering carbide according to the present invention is:
A heat exchanger for heating anoxic gas;
It has a pyrolysis furnace containing polymer waste inside and an external heating means for heating the pyrolysis furnace from outside, and the polymer waste is in direct contact with oxygen-free gas heated by the heat exchanger. A decomposition device for generating pyrolysis gas by pyrolyzing by,
An oil recovery device for recovering the condensed oil by cooling the pyrolysis gas generated in the decomposition device;
A circulation path for supplying the residual gas after the oil is recovered by the oil recovery device to the heat exchanger as an oxygen-free gas;
A gas generator for generating an inert gas to be introduced into the pyrolysis furnace;
An oxygen concentration detector for detecting the oxygen concentration in the thermal decomposition apparatus system.
 更に、本発明の炭化物は、上記の熱分解方法又は回収方法によって得た炭化物であることを特徴とし、その全酸性度が0.1meq/g以下であることが好ましく、更に、粉砕工程及び分級工程のうち少なくとも一方の工程を経て得た微細炭化物であることが更に好ましい。また更に、本発明のゴム組成物は、該炭化物を配合してなることを特徴とし、本発明のタイヤは、該ゴム組成物を用いたことを特徴とする。 Furthermore, the carbide of the present invention is characterized in that it is a carbide obtained by the above pyrolysis method or recovery method, and its total acidity is preferably 0.1 meq / g or less, and further, a pulverization step and a classification step Of these, fine carbide obtained through at least one of the steps is more preferable. Furthermore, the rubber composition of the present invention is characterized by blending the carbide, and the tire of the present invention is characterized by using the rubber composition.
 本発明によれば、高分子系廃棄物の熱分解方法における高分子系廃棄物を加熱された無酸素ガスと直接に接触させ、熱分解ガスを発生させる工程において、熱分解炉内に導入される無酸素ガスのガス流量を0.0015m3/s[ntp]~0.0095m3/s[ntp]の範囲内に制御することによって、高分子系廃棄物の熱分解後の熱分解炉内に残る炭化物の酸化を抑えることができる。また、高分子系廃棄物の熱分解後の熱分解炉内に残る炭化物の酸化が抑えられることで、品質が劣化せず、ゴム成分に配合してもゴム特性を十分に維持できる炭化物を得ることが可能な回収方法を提供することができる。更に、上記熱分解方法又は回収方法により得た炭化物、該炭化物を配合してなるゴム組成物、及び該ゴム組成物を用いたタイヤを提供することができる。 According to the present invention, the polymer waste in the thermal decomposition method for polymer waste is directly introduced into the pyrolysis furnace in the step of bringing the polymer waste into direct contact with the heated oxygen-free gas to generate the pyrolysis gas. by controlling the gas flow rate that oxygen free gas within the 0.0015m 3 /s[ntp]~0.0095m 3 / s [ntp ], remain in the pyrolysis furnace after pyrolysis of polymer waste Oxidation of carbide can be suppressed. In addition, by suppressing the oxidation of the carbide remaining in the pyrolysis furnace after the thermal decomposition of the polymer waste, it is possible to obtain a carbide that can maintain the rubber characteristics sufficiently even when blended with the rubber component without deteriorating the quality. A possible recovery method can be provided. Furthermore, the carbide | carbonized_material obtained by the said thermal decomposition method or the collection | recovery method, the rubber composition formed by mix | blending this carbide | carbonized_material, and the tire using this rubber composition can be provided.
本発明の実施に好適な高分子系廃棄物の熱分解装置を示す一例の概略図である。It is the schematic of an example which shows the thermal decomposition apparatus of the polymer waste suitable for implementation of this invention. 無酸素ガスのガス流量と全酸性度との関係を示す図である。It is a figure which shows the relationship between the gas flow rate of an oxygen-free gas, and total acidity. ゴム組成物のゴム特性と全酸性度との関係を示す図である。It is a figure which shows the relationship between the rubber characteristic of a rubber composition, and total acidity. 熱分解装置系内の酸素濃度と全酸性度との関係を示す図である。It is a figure which shows the relationship between the oxygen concentration in a thermal decomposition apparatus system, and total acidity.
 以下に、図を参照しながら、本発明を詳細に説明する。図1は、本発明の高分子系廃棄物の熱分解方法及び本発明の炭化物の回収方法に用いられる高分子系廃棄物の熱分解装置の概略図である。本発明の熱分解方法及び回収方法においては、まず、熱交換器1内で無酸素ガスを加熱する。熱交換器1で加熱した無酸素ガスを熱分解炉3に供給することで、熱分解炉3内の高分子系廃棄物を熱分解させる。ここで、無酸素ガスは、酸素及び酸化物以外のガス体であり、例えば、窒素、アルゴン、ヘリウム等の不活性ガスや、水素、メタン、プロパン等の可燃性ガス等が挙げられ、該無酸素ガスを使用することで、高分子系廃棄物の熱分解後の熱分解炉3内に残る炭化物の酸化を防止することができる。なお、本発明の熱分解方法及び回収方法において、熱交換器1は、特に限定されるものではないが、スパイラル式熱交換器、プレート式熱交換器等を使用することができる。また、熱交換器1に無酸素ガスを供給するには、非循環型のガス発生器7から送る他、後述する循環路6を介して、油分回収装置9で回収した後の残ガスを無酸素ガスとして熱交換器1に循環させてもよい。 Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram of a polymer waste pyrolysis apparatus used in the polymer waste pyrolysis method of the present invention and the carbide recovery method of the present invention. In the thermal decomposition method and the recovery method of the present invention, first, the oxygen-free gas is heated in the heat exchanger 1. By supplying the oxygen-free gas heated by the heat exchanger 1 to the pyrolysis furnace 3, the polymer waste in the pyrolysis furnace 3 is pyrolyzed. Here, the oxygen-free gas is a gas body other than oxygen and oxide, and examples thereof include inert gases such as nitrogen, argon and helium, and combustible gases such as hydrogen, methane and propane. By using oxygen gas, it is possible to prevent oxidation of carbides remaining in the pyrolysis furnace 3 after pyrolysis of polymer waste. In the thermal decomposition method and recovery method of the present invention, the heat exchanger 1 is not particularly limited, but a spiral heat exchanger, a plate heat exchanger, or the like can be used. Further, in order to supply the oxygen-free gas to the heat exchanger 1, in addition to being sent from the non-circulating gas generator 7, there is no residual gas after being recovered by the oil recovery device 9 via the circulation path 6 described later. You may circulate to the heat exchanger 1 as oxygen gas.
 次に、本発明の熱分解方法及び回収方法においては、高分子系廃棄物2を収容する熱分解炉3内に加熱された無酸素ガスを導入し、該高分子系廃棄物2を該無酸素ガスと直接に接触させ、熱分解ガスを発生させる。高分子系廃棄物2を無酸素ガスと直接に接触させることで、無酸素状態での熱分解が可能となる。熱分解炉3は、特に限定されるものではないが、通常の釜式熱分解炉、流動床式熱分解炉、キルン式熱分解炉等が使用される。また、高分子系廃棄物2は、主として有機系廃棄物を指し、具体的には、タイヤ(例えば、スピュー、バフ粉、4~32分割されたタイヤ)、ゴムホース、チューブ、コンベアベルト等のゴム材料廃棄物や、ポリエチレン、ポリエチレンテレフタレート、ポリ塩化ビニル、ナイロン等の樹脂材料廃棄物等が挙げられる。更に、本発明の熱分解方法及び回収方法に用いる分解装置5は、内部に高分子系廃棄物2を収容する熱分解炉3の他、該熱分解炉3を外部から加熱する外部加熱手段4を備えるのが好ましい。分解装置5が外部加熱手段4を備えることで、熱分解炉3内の高分子系廃棄物2を熱分解炉3の外側から間接的に加熱することができるため、無酸素ガスのガス流量を低減することが可能となる。これによって、熱分解炉3内から舞い上げられガス中に混入して該ガスと共に装置内を循環する固形ダスト分(高分子系廃棄物由来の微細浮遊物)の発生を抑え、窒素酸化物等の発生をも抑制することができる。外部加熱手段4は、特に限定されるものではないが、例えば、熱分解炉3を囲んで配設される外熱炉等が好ましい。また、外部加熱手段4に使用される熱媒体は、高分子系廃棄物2を熱分解炉3の外側から間接的に加熱するため、無酸素ガスに限定されず、種々の物質を利用することができる。 Next, in the thermal decomposition method and the recovery method of the present invention, a heated oxygen-free gas is introduced into a thermal decomposition furnace 3 containing the polymer waste 2 to remove the polymer waste 2 from the waste. Directly contact with oxygen gas to generate pyrolysis gas. By bringing the polymer waste 2 into direct contact with the oxygen-free gas, thermal decomposition in an oxygen-free state becomes possible. The pyrolysis furnace 3 is not particularly limited, but a normal kettle type pyrolysis furnace, fluidized bed type pyrolysis furnace, kiln type pyrolysis furnace or the like is used. The polymer waste 2 mainly refers to organic waste. Specifically, rubber such as tires (for example, spew, buff powder, tires divided into 4 to 32), rubber hoses, tubes, conveyor belts, and the like. Examples include material waste and resin material waste such as polyethylene, polyethylene terephthalate, polyvinyl chloride, and nylon. Furthermore, the decomposition apparatus 5 used in the thermal decomposition method and the recovery method of the present invention includes an external heating means 4 that heats the thermal decomposition furnace 3 from the outside, in addition to the thermal decomposition furnace 3 that contains the polymer waste 2 inside. Is preferably provided. Since the cracking device 5 includes the external heating means 4, the polymer waste 2 in the pyrolysis furnace 3 can be indirectly heated from the outside of the pyrolysis furnace 3. It becomes possible to reduce. This suppresses the generation of solid dust (fine suspended matter derived from polymer waste) that is swollen from the pyrolysis furnace 3 and mixed in the gas and circulates in the apparatus together with the gas. Can also be suppressed. The external heating means 4 is not particularly limited, but for example, an external heating furnace disposed around the pyrolysis furnace 3 is preferable. In addition, the heating medium used for the external heating means 4 indirectly heats the polymer waste 2 from the outside of the pyrolysis furnace 3, so that it is not limited to oxygen-free gas but uses various substances. Can do.
 ここで、本発明の熱分解方法及び回収方法においては、上記熱分解炉3内に導入される無酸素ガスのガス流量を0.0015m3/s[ntp]~0.0095m3/s[ntp]の範囲内に制御することを要する。本発明の熱分解方法及び回収方法は、熱分解後の熱分解炉3内に残る炭化物の酸化を抑制し、ゴム用配合物として好適な炭化物を回収することを目的としている。炭化物の酸化の度合いを評価する指標には、「全酸性度」があり、この値が大きいと、炭化物の表面が酸化されていることを意味し、該炭化物はゴム用配合剤として適さないことを意味する。本発明の熱分解方法及び回収方法においては、上記無酸素ガスの流量を上記特定した範囲内に制御し、温和な条件で熱分解を行うことで、その後に回収される炭化物の全酸性度を0.1meq/g以下に抑えることができる。該全酸性度が0.1meq/g以下であれば、その回収炭化物を純カーボンブラック(100%カーボンブラック)に混合した場合、ゴム組成物の物性低下を5%以内に抑えることができ、回収した炭化物を再利用することが可能となる。また、熱分解炉3内に導入される無酸素ガスのガス流量が0.0015m3/s[ntp]未満では、熱分解により発生する熱分解ガスの移動が遅延するため、熱分解反応の効率が低下し、一方、0.0095m3/s[ntp]を超えると、加熱された無酸素ガスと高分子系廃棄物の接触が多くなり過ぎ、上記固形ダスト分の発生や窒素酸化物等の酸化物の発生が起こり得るので好ましくない。 Here, the present invention in the thermal cracking process and recovery process, the gas flow rate of 0.0015m 3 /s[ntp]~0.0095m 3 / s of oxygen-free gas to be introduced into the pyrolysis furnace 3 [ntp] It needs to be controlled within the range. The thermal decomposition method and the recovery method of the present invention are intended to suppress the oxidation of the carbide remaining in the thermal decomposition furnace 3 after the thermal decomposition and recover a carbide suitable as a rubber compound. An index for evaluating the degree of oxidation of carbides is “total acidity”. If this value is large, it means that the surface of the carbide is oxidized, and the carbide is not suitable as a compounding agent for rubber. Means. In the thermal decomposition method and the recovery method of the present invention, the flow rate of the oxygen-free gas is controlled within the specified range, and the thermal decomposition is performed under mild conditions, so that the total acidity of the subsequently recovered carbides is reduced. It can be suppressed to 0.1 meq / g or less. If the total acidity is 0.1 meq / g or less, when the recovered carbide is mixed with pure carbon black (100% carbon black), the physical properties of the rubber composition can be reduced within 5% and recovered. The carbide can be reused. In addition, if the flow rate of the oxygen-free gas introduced into the pyrolysis furnace 3 is less than 0.0015 m 3 / s [ntp], the movement of the pyrolysis gas generated by pyrolysis is delayed, so the efficiency of the pyrolysis reaction is increased. On the other hand, if it exceeds 0.0095m 3 / s [ntp], the contact between the heated oxygen-free gas and the polymer waste becomes excessive, and the generation of solid dust and oxides such as nitrogen oxides This is not preferable because it can occur.
 ここで、図2は、無酸素ガスのガス流量と全酸性度との関係を示す図であり、図3は、ゴム組成物のゴム特性と全酸性度との関係を示す図である。図3の縦軸は、GPF級カーボンブラックのみが配合されたゴム組成物の300%伸び時における引張応力を100として指数表示した場合において本発明の熱分解方法又は回収方法で得た回収炭化物20質量%とGPF級カーボンブラック80質量%との混合物を配合したゴム組成物の300%伸び時における引張応力の指数値を示し、図3の横軸は、ゴム組成物に用いる回収炭化物の全酸性度を示す。図2及び3から、上記熱分解炉3内に導入される無酸素ガスのガス流量は、0.003m3/s[ntp]~0.007m3/s[ntp]の範囲であるのが望ましい。この理由としては、熱分解ガスの移動による熱分解反応効率は無酸素ガスのガス流量が0.003m3/s[ntp]付近で最大となるため、無酸素ガスのガス流量を0.003m3/s[ntp]以上にすることが好ましく、一方、無酸素ガスのガス流量を0.007m3/s[ntp]以下にすることで、回収された炭化物の全酸性度が0.07meq/g以下に抑えられ、ゴム組成物に用いた際の物性低下が殆ど見られないためである。 Here, FIG. 2 is a diagram showing the relationship between the gas flow rate of the oxygen-free gas and the total acidity, and FIG. 3 is a diagram showing the relationship between the rubber properties of the rubber composition and the total acidity. The vertical axis in FIG. 3 represents the recovered carbide 20 obtained by the thermal decomposition method or recovery method of the present invention when the rubber composition containing only GPF grade carbon black is expressed as an index with the tensile stress at 300% elongation as 100. The index value of the tensile stress at 300% elongation of a rubber composition containing a mixture of mass% and GPF grade carbon black 80 mass% is shown, and the horizontal axis in FIG. 3 represents the total acidity of the recovered carbide used in the rubber composition Degrees. Figures 2 and 3, the gas flow rate of oxygen-free gas to be introduced into the pyrolysis furnace 3 is desirably in the range of 0.003m 3 /s[ntp]~0.007m 3 / s [ntp ]. The reason for this is that the pyrolysis reaction efficiency due to the movement of pyrolysis gas is maximized when the oxygen-free gas flow rate is around 0.003 m 3 / s [ntp], so the oxygen-free gas flow rate is 0.003 m 3 / s. [ntp] or more is preferable. On the other hand, when the gas flow rate of the oxygen-free gas is 0.007 m 3 / s [ntp] or less, the total acidity of the recovered carbide can be suppressed to 0.07 meq / g or less. This is because there is almost no decrease in physical properties when used in a rubber composition.
 なお、上記全酸性度の測定方法は、次のとおりである。まず、カーボンブラック1gを精秤し、これを平底フラスコに移して0.002NのNaOH水溶液50mlを加え、超音波で分散させる。その後、該平底フラスコに冷却管を付け、還流させながら2時間煮沸する。該分散液を冷却し、定溶した後、その一部を0.002NのNaOH水溶液で滴定し、反応せずに残ったNaOHの残量からカーボンブラック1gにつき中和反応に使用されたNaOH量を求める。単位は、単位質量当たりのミリ当量(meq/g)で表される。 In addition, the measuring method of the said total acidity is as follows. First, 1 g of carbon black is precisely weighed, transferred to a flat bottom flask, added with 50 ml of 0.002N NaOH aqueous solution, and dispersed with ultrasonic waves. Then, a condenser tube is attached to the flat bottom flask and boiled for 2 hours while refluxing. The dispersion was cooled and solubilized, and a portion thereof was titrated with 0.002N NaOH aqueous solution, and the amount of NaOH used in the neutralization reaction per 1 g of carbon black was determined from the remaining amount of NaOH left unreacted. Ask. The unit is expressed in milliequivalents (meq / g) per unit mass.
 また、本発明の熱分解方法及び回収方法では、上記熱分解炉3内に導入される無酸素ガスのガス流量を制御するため、酸素濃度を測定するための酸素濃度検出器8、酸素濃度に伴ってガス流量を調整するための流量制御手段13、ガス流量を一定に保つための送風機10等を利用することができる。例えば、図1に示すように、ガス発生器7から無酸素ガスを供給するためにガス発生器7と熱交換器1とを接続する配管中に、酸素濃度検出器8、流量制御手段13及び送風機10を設けてもよいし、油分回収装置9で回収した後の残ガスを無酸素ガスとして熱交換器1に循環させるための循環路6中に、酸素濃度検出器8、流量制御手段13及び送風機10を設けてもよい。 Further, in the thermal decomposition method and the recovery method of the present invention, in order to control the gas flow rate of the oxygen-free gas introduced into the thermal decomposition furnace 3, the oxygen concentration detector 8 for measuring the oxygen concentration, Accordingly, the flow rate control means 13 for adjusting the gas flow rate, the blower 10 for keeping the gas flow rate constant, and the like can be used. For example, as shown in FIG. 1, in a pipe connecting the gas generator 7 and the heat exchanger 1 for supplying oxygen-free gas from the gas generator 7, an oxygen concentration detector 8, a flow control means 13 and An air blower 10 may be provided, or an oxygen concentration detector 8 and a flow rate control means 13 are provided in a circulation path 6 for circulating the residual gas recovered by the oil content recovery device 9 to the heat exchanger 1 as an oxygen-free gas. And a blower 10 may be provided.
 本発明の熱分解方法及び回収方法は、高分子系廃棄物2と無酸素ガスとから熱分解ガスを発生させる工程において、熱分解時の温度を300~600℃に制御するのが好ましい。熱分解時の温度が上記特定した範囲内にあれば、高分子系廃棄物が安定で且つ連続的な熱分解を行うことができる。該熱分解時の温度が300℃未満では、熱分解反応が十分に進行せず、これによって、分解されるべき成分が完全に除去されない炭化物を生成するおそれがあり、他方、600℃を超えると、生成した炭化物とガス中に含まれ得る成分との間で望ましくない改質反応や賦活反応が起こり、炭化物中の全酸性度を上昇させたり、又は多孔性でゴムへの補強効果に悪影響を及ぼし得る炭化物を生成するおそれがある。ここで、熱分解時の温度を制御するには、上述した、熱交換器1内で加熱される無酸素ガスの流量や、熱分解炉3を外部から加熱する外部加熱手段4等を利用すればよい。 In the pyrolysis method and the recovery method of the present invention, it is preferable to control the temperature at the time of pyrolysis to 300 to 600 ° C. in the step of generating pyrolysis gas from the polymer waste 2 and oxygen-free gas. If the temperature at the time of thermal decomposition is within the above specified range, the polymer waste can be stably and continuously decomposed. If the temperature during the pyrolysis is less than 300 ° C., the pyrolysis reaction does not proceed sufficiently, which may result in the formation of carbides in which the components to be decomposed are not completely removed. Undesirable reforming reactions and activation reactions occur between the generated carbides and the components that can be contained in the gas, increasing the total acidity in the carbides, or being porous and adversely affecting the reinforcing effect on the rubber. There is a risk of forming carbides that can be affected. Here, in order to control the temperature at the time of pyrolysis, the flow rate of the oxygen-free gas heated in the heat exchanger 1, the external heating means 4 for heating the pyrolysis furnace 3 from the outside, etc. are used. That's fine.
 次に、本発明の回収方法においては、上記熱分解ガスを冷却し、凝縮した油分を回収する。このため、本発明の回収方法に用いる熱分解装置においては、分解装置5で発生した熱分解ガスを冷却して、凝縮した油分を回収するため、一つ又はそれ以上の油分回収装置9を備えるのが好ましい。図1に示すように、複数の油分回収装置9を利用すれば、分解装置5で発生した熱分解ガスを、その沸点に応じて回収される油分に分けることができる。詳細には、ガス流路の上流側にある第一の油分回収装置9aと、ガス流路の下流側にある第二の油分回収装置9bとを備える。ガス流路の下流側にある第二の油分回収装置9bは、第一の油分回収装置9aと同様な構成をとるが、第一の油分回収装置9aが対象とする油分の沸点と比べて低い領域の沸点を有する油分を回収する。このように、複数の油分回収装置9を設置することで、組成が一定で品質の安定した油分を高い回収率で回収することができる。また、各油分回収装置9は、例えば、その下部で配管を通して回収タンク10に接続され、回収した油分を貯蔵することができる。更に、油分回収装置9の下流側に凝縮装置等を設け、該凝縮装置内で凝縮される油分を回収することもできる。 Next, in the recovery method of the present invention, the pyrolysis gas is cooled and the condensed oil is recovered. For this reason, in the thermal decomposition apparatus used for the recovery method of the present invention, one or more oil content recovery devices 9 are provided to cool the pyrolysis gas generated in the decomposition device 5 and recover the condensed oil content. Is preferred. As shown in FIG. 1, if a plurality of oil content recovery devices 9 are used, the pyrolysis gas generated in the cracking device 5 can be divided into oil content recovered in accordance with the boiling point thereof. Specifically, the first oil content recovery device 9a on the upstream side of the gas flow path and the second oil content recovery device 9b on the downstream side of the gas flow path are provided. The second oil recovery unit 9b on the downstream side of the gas flow path has the same configuration as the first oil recovery unit 9a, but is lower than the boiling point of the oil component targeted by the first oil recovery unit 9a. An oil having a boiling point in the region is recovered. In this way, by installing a plurality of oil content recovery devices 9, it is possible to recover an oil content having a constant composition and stable quality with a high recovery rate. Moreover, each oil content collection | recovery apparatus 9 is connected to the collection tank 10 through piping at the lower part, for example, and can collect | recover the collect | recovered oil content. Further, a condensing device or the like can be provided on the downstream side of the oil content recovery device 9, and the oil content condensed in the condensing device can be recovered.
 次に、本発明の回収方法においては、高分子系廃棄物の熱分解後の熱分解炉内に残る炭化物を回収する。例えば、熱分解ガスを発生させ、該熱分解ガスを凝縮した油分を回収すると、熱分解炉3内には、熱分解後の炭化物が残るため、該炭化物を回収することができる。なお、上述の回収方法により炭化物が得られるが、一般的には塊状物として回収されるので、例えば、粉砕機等を用いた粉砕工程によって回収された炭化物を微細に壊砕し、更に分級機等を用いた分級工程によって特定の粒度を持つ炭化物を抽出することができる。 Next, in the recovery method of the present invention, the carbide remaining in the pyrolysis furnace after the thermal decomposition of the polymer waste is recovered. For example, when pyrolyzed gas is generated and an oil component obtained by condensing the pyrolyzed gas is recovered, the pyrolyzed carbide remains in the pyrolysis furnace 3, so that the carbide can be recovered. Although the carbide is obtained by the above-described recovery method, generally, it is recovered as a lump, so for example, the carbide recovered by a pulverization process using a pulverizer or the like is finely crushed and further classified. A carbide having a specific particle size can be extracted by a classification process using the like.
 本発明の熱分解方法及び回収方法においては、酸素濃度を1容量%以下に制御するのが好ましい。これは、本発明の熱分解方法及び回収方法に用いる熱分解装置内の酸素濃度が1容量%以下に制御されることを意味する。該熱分解装置内の酸素濃度が1容量%以下であれば、熱分解後の熱分解炉内に残る炭化物の酸化をより確実に抑制でき、品質が劣化せず、ゴム成分に配合してもゴム特性を十分に維持できる炭化物をより確実に得ることができる。本発明の熱分解方法又は回収方法に用いる熱分解装置には、上述の分解装置5や油分回収装置9の他、これらに加えて、熱交換器1、ガス発生器7、循環路6、酸素濃度検出器8、流量制御手段13、送風機10、回収タンク10、排風機11、排ガス処理装置12等を適宜選択して備える熱分解装置も含まれる。なお、熱分解装置内の酸素濃度は、例えば、固体電解質ジルコニアベースの酸素濃淡セルを用いるジルコニア式酸素センサー等により測定できる。ここで、図4は、熱分解装置系内の酸素濃度と全酸性度との関係を示す図であるが、図4から、高品質の炭化物を得ることができる全酸性度を得るためには、熱分解装置系内の酸素濃度が1.0容量%以下であることが好ましいことがわかる。 In the thermal decomposition method and the recovery method of the present invention, the oxygen concentration is preferably controlled to 1% by volume or less. This means that the oxygen concentration in the thermal decomposition apparatus used in the thermal decomposition method and the recovery method of the present invention is controlled to 1% by volume or less. If the oxygen concentration in the pyrolysis apparatus is 1% by volume or less, oxidation of carbides remaining in the pyrolysis furnace after pyrolysis can be more reliably suppressed, quality does not deteriorate, and even if blended with a rubber component Carbide that can sufficiently maintain rubber properties can be obtained more reliably. The thermal decomposition apparatus used for the thermal decomposition method or the recovery method of the present invention includes, in addition to the above-described decomposition apparatus 5 and oil content recovery apparatus 9, in addition to these, the heat exchanger 1, the gas generator 7, the circulation path 6, oxygen A pyrolysis apparatus including the concentration detector 8, the flow rate control means 13, the blower 10, the recovery tank 10, the exhaust fan 11, the exhaust gas treatment device 12 and the like as appropriate is also included. The oxygen concentration in the thermal decomposition apparatus can be measured by, for example, a zirconia oxygen sensor using a solid electrolyte zirconia-based oxygen concentration cell. Here, FIG. 4 is a diagram showing the relationship between the oxygen concentration in the pyrolyzer system and the total acidity. From FIG. 4, in order to obtain the total acidity capable of obtaining high-quality carbides. It can be seen that the oxygen concentration in the thermal decomposition apparatus system is preferably 1.0% by volume or less.
 次に、図1を参照しながら、本発明による熱分解装置の説明をする。図1に示す熱分解装置は、無酸素ガスを加熱するための熱交換器1と、内部に高分子系廃棄物2を収容する熱分解炉3及び該熱分解炉3を外部から加熱する外部加熱手段4を有し、該高分子系廃棄物2を前記熱交換器1で加熱した無酸素ガスと直接接触させることにより熱分解させて熱分解ガスを発生させるための分解装置5と、前記分解装置5で発生した熱分解ガスを冷却して、凝縮した油分を回収するための油分回収装置9と、前記油分回収装置9で油分を回収した後の残ガスを、無酸素ガスとして前記熱交換器1に供給するための循環路6と、前記熱分解炉3中に導入する無酸素ガスを生成するためのガス発生器7と、熱分解装置系内の酸素濃度を検出するための酸素濃度検出器8とを備える。 Next, the thermal decomposition apparatus according to the present invention will be described with reference to FIG. The thermal decomposition apparatus shown in FIG. 1 includes a heat exchanger 1 for heating an oxygen-free gas, a thermal decomposition furnace 3 that contains a polymer waste 2 inside, and an external heating unit that heats the thermal decomposition furnace 3 from the outside. A decomposition apparatus 5 having heating means 4 for generating thermal decomposition gas by thermally decomposing the polymer waste 2 by directly contacting the oxygen-free gas heated by the heat exchanger 1; The pyrolysis gas generated in the cracking device 5 is cooled to recover the condensed oil component, and the residual gas after the oil component is recovered by the oil recovery device 9 is used as the oxygen free gas as the heat. A circulation path 6 for supplying to the exchanger 1, a gas generator 7 for generating oxygen-free gas introduced into the pyrolysis furnace 3, and oxygen for detecting the oxygen concentration in the pyrolysis apparatus system A concentration detector 8;
 本発明の熱分解装置において、分解装置5は、内部に高分子系廃棄物2を収容する熱分解炉3及び該熱分解炉3を外部から加熱する外部加熱手段4を備える。ここで、高分子系廃棄物2を収容する熱分解炉3内に熱交換器1で加熱された無酸素ガスを導入し、該高分子系廃棄物2を該無酸素ガスと直接接触させ、熱分解ガスを発生させる。高分子系廃棄物2を無酸素ガスと直接に接触させることで、無酸素状態での熱分解が可能となる。また、分解装置5は、外部加熱手段4を備えることで、熱分解炉3内の高分子系廃棄物2を熱分解炉3の外側から間接的に加熱することができるため、無酸素ガスのガス流量を低減することが可能となる。これによって、熱分解炉3内から舞い上げられガス中に混入して該ガスと共に装置内を循環する固形ダスト分(高分子系廃棄物の微細浮遊物)の発生を抑え、窒素酸化物等の発生をも抑制することができる。 In the thermal decomposition apparatus of the present invention, the decomposition apparatus 5 includes a thermal decomposition furnace 3 that accommodates the polymer waste 2 inside and an external heating means 4 that heats the thermal decomposition furnace 3 from the outside. Here, the oxygen-free gas heated by the heat exchanger 1 is introduced into the pyrolysis furnace 3 containing the polymer-based waste 2, and the polymer-based waste 2 is brought into direct contact with the oxygen-free gas, Generate pyrolysis gas. By bringing the polymer waste 2 into direct contact with the oxygen-free gas, thermal decomposition in an oxygen-free state becomes possible. In addition, since the decomposition apparatus 5 includes the external heating means 4, the polymer waste 2 in the pyrolysis furnace 3 can be indirectly heated from the outside of the pyrolysis furnace 3. The gas flow rate can be reduced. This suppresses the generation of solid dust (fine suspended matter of polymer waste) that is swollen from the pyrolysis furnace 3 and mixed in the gas and circulates in the apparatus together with the gas. Occurrence can also be suppressed.
 本発明の熱分解装置において、循環路6は、油分回収装置9で油分を回収した後の残ガスを、無酸素ガスとして前記熱交換器1に供給するため、例えば、油分回収装置9と熱交換器1とを配管で接続してなる。循環路6を通して熱交換器1に供給される残ガスは、熱交換器1へ直接供給することもできるが、熱風炉(図示せず)で加熱してから熱交換器1に供給してもよい。なお、図1では、第二の油分回収装置9bのみに循環路6が接続されているが、本発明においては、これに限定されず、第一の油分回収装置9aに循環路6を接続してもよい。また、本発明の熱分解装置において、余剰のガスは、排風機11を介して排ガス処理装置12で処理された後、大気中に放出することができる。 In the thermal decomposition apparatus of the present invention, the circulation path 6 supplies the residual gas after the oil content is recovered by the oil content recovery device 9 to the heat exchanger 1 as an oxygen-free gas. The exchanger 1 is connected by piping. The residual gas supplied to the heat exchanger 1 through the circulation path 6 can be directly supplied to the heat exchanger 1, but can also be supplied to the heat exchanger 1 after being heated in a hot stove (not shown). Good. In FIG. 1, the circulation path 6 is connected only to the second oil recovery unit 9b. However, the present invention is not limited to this, and the circulation path 6 is connected to the first oil recovery unit 9a. May be. In the thermal decomposition apparatus of the present invention, surplus gas can be released into the atmosphere after being treated by the exhaust gas treatment device 12 via the exhaust fan 11.
 本発明の熱分解装置は、装置系内の酸素濃度を一定値以下に制御するため、熱分解炉3中に導入する不活性ガスを生成するためのガス発生器7と、熱分解装置系内の酸素濃度を検出するための酸素濃度検出器8とを備える。ここで、ガス発生器7と酸素濃度検出器8とを併用することで、熱分解装置系内の酸素濃度を監視し、その検出結果に応じて熱分解炉3中に不活性ガスを導入することが可能となり、熱分解後の熱分解炉3内に残る炭化物の酸化を抑制し、ゴム用配合物として好適な炭化物を回収することができる。
 なお、上述した全酸性度を0.1meq/g以下に抑えるためには、熱分解装置系内の酸素濃度を1.0容量%以下に制御することが好ましい。そこで、本発明の熱分解装置は、更に、酸素濃度検出器8によって検出された前記熱分解装置系内の酸素濃度に基づき、前記ガス発生器から該熱分解装置系内への不活性ガス導入流量を制御する装置を備えるのが好ましい。これにより、酸素濃度検出器8によって検出された熱分解装置系内の酸素濃度の検出結果に基づき、不活性ガスの流量制御手段13に信号が伝達され、この信号によりガス発生器7が稼動して不活性ガスを発生させ、この不活性ガスは上記信号により開度が変更される流量制御手段13を経て熱分解装置系内に導入される。
In order to control the oxygen concentration in the apparatus system to a certain value or less, the pyrolysis apparatus of the present invention has a gas generator 7 for generating an inert gas to be introduced into the pyrolysis furnace 3, and a pyrolysis apparatus system. And an oxygen concentration detector 8 for detecting the oxygen concentration. Here, by using the gas generator 7 and the oxygen concentration detector 8 together, the oxygen concentration in the pyrolysis apparatus system is monitored, and an inert gas is introduced into the pyrolysis furnace 3 according to the detection result. It becomes possible, the oxidation of the carbide | carbonized_material remaining in the thermal decomposition furnace 3 after thermal decomposition can be suppressed, and the carbide | carbonized_material suitable as a compound for rubber | gum can be collect | recovered.
In order to suppress the above total acidity to 0.1 meq / g or less, it is preferable to control the oxygen concentration in the thermal decomposition apparatus system to 1.0 volume% or less. Therefore, the thermal decomposition apparatus of the present invention further introduces an inert gas from the gas generator into the thermal decomposition apparatus system based on the oxygen concentration in the thermal decomposition apparatus system detected by the oxygen concentration detector 8. It is preferable to provide a device for controlling the flow rate. As a result, a signal is transmitted to the inert gas flow rate control means 13 based on the detection result of the oxygen concentration in the thermal decomposition system detected by the oxygen concentration detector 8, and the gas generator 7 is operated by this signal. An inert gas is generated, and this inert gas is introduced into the thermal decomposition system through the flow rate control means 13 whose opening degree is changed by the signal.
 上記酸素濃度検出器8があらかじめ設定された基準値を超えた酸素濃度を検出した場合には、この検出結果に連動して不活性ガスを供給するためのガス発生器7が作動し、同時に流量制御手段13の開度を調節させて不活性ガスが循環路6内に導入される。この不活性ガスの導入により、酸素濃度検出器8で検出される酸素濃度は低下され、熱分解装置系内の酸素濃度は基準値以下に制御することができる。具体的には、酸素濃度検出器8によって検出される熱分解装置系内の酸素濃度が1.0容量%を超えたところでガス発生器9が作動し、同時に流量制御手段13を介して循環路6内に不活性ガスが供給され、熱分解装置系内の酸素濃度は低下される。次いで、循環路6内の酸素濃度が0.2容量%まで低下したところで各装置(ガス発生器7及び流量制御手段13)に対して停止信号が出され、不活性ガスの供給は停止される。これにより、熱分解装置系内の酸素濃度を基準値以下に制御することができる。なお、熱分解炉3内に不活性ガスを供給する場合、酸素濃度を0容量%まで低減させることが理想的であるが、不活性ガスを供給するコストの面から、熱分解装置系内の酸素濃度が0.2容量%まで低下したところで、熱分解炉3への不活性ガスの供給を停止するのが好ましい。なお、酸素濃度検出器8としては、例えば、固体電解質ジルコニアベースの酸素濃度セルを用いたジルコニア式酸素センサー等が用いられる。また、ガス発生器7としては、例えば、P.S.A(Pressure Swing Adsorption)方式を用いた窒素ガス発生器等が用いられる。 When the oxygen concentration detector 8 detects an oxygen concentration exceeding a preset reference value, the gas generator 7 for supplying an inert gas operates in conjunction with the detection result, and at the same time the flow rate Inert gas is introduced into the circulation path 6 by adjusting the opening of the control means 13. By introducing the inert gas, the oxygen concentration detected by the oxygen concentration detector 8 is lowered, and the oxygen concentration in the thermal decomposition apparatus system can be controlled to a reference value or less. Specifically, the gas generator 9 operates when the oxygen concentration in the thermal decomposition system detected by the oxygen concentration detector 8 exceeds 1.0 vol%, and at the same time, in the circulation path 6 via the flow rate control means 13. An inert gas is supplied to the gas, and the oxygen concentration in the thermal decomposition apparatus system is lowered. Next, when the oxygen concentration in the circulation path 6 is reduced to 0.2% by volume, a stop signal is issued to each device (the gas generator 7 and the flow rate control means 13), and the supply of the inert gas is stopped. Thereby, the oxygen concentration in the thermal decomposition apparatus system can be controlled to a reference value or less. When supplying an inert gas into the pyrolysis furnace 3, it is ideal to reduce the oxygen concentration to 0% by volume. However, from the viewpoint of the cost of supplying the inert gas, When the oxygen concentration is lowered to 0.2% by volume, it is preferable to stop the supply of the inert gas to the pyrolysis furnace 3. As the oxygen concentration detector 8, for example, a zirconia oxygen sensor using a solid electrolyte zirconia-based oxygen concentration cell is used. As the gas generator 7, for example, P.I. S. A nitrogen gas generator using the A (Pressure Swing Adsorption) method is used.
 上記ガス発生器7によって供給される不活性ガスは、図1に示すように、油分回収装置9よりガス流路の下流側で且つ熱交換器1よりガス流路の上流側に導入されることが好ましい。不活性ガスを油分回収装置9の上流側に導入すると、油分を含む熱分解ガスの温度を低下させ、油分回収効率を低下させたり、油で配管を閉塞したりするおそれがある。一方、不活性ガスを熱交換器1の下流側に導入すると、高分子系廃棄物を油化するための熱ガス温度を低下させ、熱分解効率の低下を招く。また、本発明の熱分解装置においては、酸素濃度検出器8と連動する流量制御手段13を設置することが好ましく、これにより、酸素濃度検出器8からの検出信号により不活性ガスを系内に導入することができる。 As shown in FIG. 1, the inert gas supplied by the gas generator 7 is introduced to the downstream side of the gas flow path from the oil content recovery device 9 and to the upstream side of the gas flow path from the heat exchanger 1. Is preferred. If the inert gas is introduced to the upstream side of the oil content recovery device 9, the temperature of the pyrolysis gas containing the oil content may be lowered, the oil content recovery efficiency may be reduced, or the piping may be blocked with oil. On the other hand, when the inert gas is introduced to the downstream side of the heat exchanger 1, the temperature of the hot gas for liquefying the polymer waste is lowered, and the thermal decomposition efficiency is lowered. Further, in the thermal decomposition apparatus of the present invention, it is preferable to install a flow rate control means 13 that works in conjunction with the oxygen concentration detector 8, whereby inert gas is introduced into the system by a detection signal from the oxygen concentration detector 8. Can be introduced.
 次に、本発明の炭化物を詳細に説明する。本発明の炭化物は、上述の熱分解方法又は回収方法によって得た炭化物であって、その全酸性度が0.1meq/g以下であることが好ましく、0.07meq/g以下であることが更に好ましい。該炭化物の全酸性度が0.1meq/g以下であれば、上述の通り、回収された炭化物をゴム補強用充填剤として再利用することができる。また、本発明の炭化物は、更に、粉砕工程及び分級工程のうち少なくとも一方の工程を経て得られる微細炭化物であるのが好ましい。上述の通り、炭化物は一般に塊状物として回収されるため、粉砕機等を用いた粉砕工程を経て炭化物を微細に壊砕したり、分級機等を用いた分級工程を経て炭化物の粒度を選別することで、炭化物の品質を向上させることができる。 Next, the carbide of the present invention will be described in detail. The carbide of the present invention is a carbide obtained by the above pyrolysis method or recovery method, and its total acidity is preferably 0.1 meq / g or less, more preferably 0.07 meq / g or less. If the total acidity of the carbide is 0.1 meq / g or less, as described above, the recovered carbide can be reused as a filler for rubber reinforcement. Moreover, it is preferable that the carbide | carbonized_material of this invention is a fine carbide | carbonized_material obtained through at least one process among a grinding | pulverization process and a classification process further. As described above, since the carbide is generally recovered as a lump, the carbide is finely crushed through a pulverization process using a pulverizer or the like, and the particle size of the carbide is selected through a classification process using a classifier or the like. Thus, the quality of the carbide can be improved.
 次に、本発明のゴム組成物及びタイヤを詳細に説明する。本発明のゴム組成物は、上述の熱分解方法又は回収方法によって得た炭化物を配合してなることを特徴とする。本発明のゴム組成物には、例えば、上記炭化物及びゴム成分の他、ゴム工業界で通常使用される配合剤、例えば、充填剤、軟化剤、シランカップリング剤、ステアリン酸、老化防止剤、亜鉛華、加硫促進剤、加硫剤等を目的に応じて適宜配合することができる。これら配合剤としては、市販品を好適に使用することができる。なお、上記ゴム組成物は、ゴム成分に、上記炭化物と共に、必要に応じて適宜選択した各種配合剤を配合して、混練り、熱入れ、押出等することにより製造することができる。 Next, the rubber composition and tire of the present invention will be described in detail. The rubber composition of the present invention is characterized by blending a carbide obtained by the above-described thermal decomposition method or recovery method. In the rubber composition of the present invention, for example, in addition to the above carbide and rubber components, compounding agents usually used in the rubber industry, such as fillers, softeners, silane coupling agents, stearic acid, anti-aging agents, Zinc white, a vulcanization accelerator, a vulcanizing agent, and the like can be appropriately blended depending on the purpose. As these compounding agents, commercially available products can be suitably used. In addition, the said rubber composition can be manufactured by mix | blending various compounding agents suitably selected with the said carbide | carbonized_material with the said carbide | carbonized_material as needed, knead | mixing, heat-inserting, extrusion, etc.
 なお、本発明のゴム組成物に用いることができるゴム成分としては、特に制限はなく、天然ゴム(NR)の他、ポリイソプレンゴム(IR)、スチレン-ブタジエン共重合体ゴム(SBR)、ポリブタジエンゴム(BR)、エチレン-プロピレン-ジエンゴム(EPDM)、クロロプレンゴム(CR)、ハロゲン化ブチルゴム、アクリロニリトル-ブタジエンゴム(NBR)等の合成ゴムを使用することができ、これらゴム成分は、一種単独で用いてもよいし、二種以上をブレンドして用いてもよい。 The rubber component that can be used in the rubber composition of the present invention is not particularly limited, and in addition to natural rubber (NR), polyisoprene rubber (IR), styrene-butadiene copolymer rubber (SBR), polybutadiene. Synthetic rubbers such as rubber (BR), ethylene-propylene-diene rubber (EPDM), chloroprene rubber (CR), halogenated butyl rubber, acrylonitrile-butadiene rubber (NBR) can be used. You may use individually and may blend and use 2 or more types.
 また、本発明のゴム組成物には、上述の熱分解方法又は回収方法によって得た回収炭化物を純カーボンブラックと組み合わせて配合することができる。該回収炭化物を純カーボンブラックと組み合わせることで、ゴム組成物の物性低下を5%以内に抑えることができる。該回収炭化物と純カーボンブラックとの合計に占める回収炭化物の含有量は、1~20質量%の範囲が好ましい。該回収炭化物の含有量が上記に特定した範囲内にあれば、ゴム組成物の物性低下を確実に抑制することができる。 In the rubber composition of the present invention, the recovered carbide obtained by the above pyrolysis method or recovery method can be blended with pure carbon black. By combining the recovered carbide with pure carbon black, the physical property deterioration of the rubber composition can be suppressed to within 5%. The recovered carbide content in the total of the recovered carbide and pure carbon black is preferably in the range of 1 to 20% by mass. If content of this collection | recovery carbide | carbonized_material exists in the range specified above, the physical property fall of a rubber composition can be suppressed reliably.
 本発明のタイヤは、上述のゴム組成物を用いたことを特徴とし、高分子系廃棄物から回収した炭化物が再利用されているにもかかわらず、タイヤの物性低下を軽減することができる。なお、本発明のタイヤは、上述のゴム組成物を用いる以外特に制限は無く、常法に従って製造することができる。また、該タイヤに充填する気体としては、通常の或いは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。 The tire of the present invention is characterized by using the above-mentioned rubber composition, and can reduce the deterioration of physical properties of the tire even though the carbide recovered from the polymer waste is reused. The tire of the present invention is not particularly limited except that the above rubber composition is used, and can be manufactured according to a conventional method. Moreover, as gas with which this tire is filled, inert gas, such as nitrogen, argon, helium other than normal or the air which adjusted oxygen partial pressure, can be used.
 以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
(実施例1)
 図1に示す熱分解装置を用いて、廃トラック用タイヤから炭化物を回収した。なお、図1に示す熱分解装置は、熱交換器1、高分子系廃棄物2、熱分解炉3、外部加熱手段4、循環路6、ガス発生器7、酸素濃度検出器8、油分回収装置9、回収タンク10、排風機11、排ガス処理装置12及び流量制御手段13を備え、油分回収装置9の下流側に回収タンク10を備える。
 詳細には、熱分解炉3(容量0.5m3)内に廃トラック用タイヤの裁断品(高分子系廃棄物2)約100kgを投入し、熱分解炉3内を窒素ガスで置換した後、熱分解装置内の窒素ガスを循環させながら熱交換器1によりガス温度を約500℃まで上昇させて、この温度を保持した。なお、熱分解炉3内に導入される窒素ガスのガス流量は0.005m3/s[ntp]に設定され、0.0045m3/s[ntp]~0.0055m3/s[ntp]の範囲に制御し、熱分解装置系内での酸素濃度は1容量%以下の範囲に制御された。ここで、熱分解装置内の酸素濃度の測定には、ジルコニア式酸素センサー等を用いた。熱交換器1による加熱を開始してから1時間で、熱分解ガスが油分回収装置9aに溜出し始め、熱交換器1による加熱の開始から約4時間後に溜出が止まった。溜出の停止は熱分解反応が完了したことを示し、熱交換器1を止めて約12時間放置冷却した。その後、熱分解炉3から炭化物を取り出した。該炭化物中には、タイヤ材料であるスチールコード等が含まれるため、余分なタイヤ材料をマグネットセパレーターで除去した。余分なタイヤ材料が除去された炭化物をハンマー式の粉砕機で粒径が1mm以下の細粉に粉砕し、この粉砕物を、回転羽を有する風力分級機により分級することにより、粒径が50μm以上の粗粉を除去し、ゴム配合用微細炭化物を回収した。
 次に、回収したゴム配合用微細炭化物に対して、全酸性度を上記の方法により測定したところ、0.0594meq/gであった。
Example 1
Carbides were recovered from the waste truck tires using the thermal decomposition apparatus shown in FIG. 1 includes a heat exchanger 1, a polymer waste 2, a pyrolysis furnace 3, an external heating means 4, a circulation path 6, a gas generator 7, an oxygen concentration detector 8, an oil recovery. The apparatus 9, the recovery tank 10, the exhaust fan 11, the exhaust gas treatment device 12, and the flow rate control means 13 are provided, and the recovery tank 10 is provided downstream of the oil content recovery device 9.
Specifically, after putting about 100 kg of waste truck tire cut products (polymer waste 2) into the pyrolysis furnace 3 (capacity 0.5 m 3 ) and replacing the pyrolysis furnace 3 with nitrogen gas, While circulating the nitrogen gas in the thermal decomposition apparatus, the gas temperature was raised to about 500 ° C. by the heat exchanger 1, and this temperature was maintained. The gas flow rate of nitrogen gas introduced into the pyrolysis furnace 3 is set to 0.005m 3 / s [ntp], controlled in the range of 0.0045m 3 /s[ntp]~0.0055m 3 / s [ntp ] However, the oxygen concentration in the pyrolyzer system was controlled within a range of 1% by volume or less. Here, a zirconia oxygen sensor or the like was used for measuring the oxygen concentration in the thermal decomposition apparatus. One hour after the start of heating by the heat exchanger 1, the pyrolysis gas started to be accumulated in the oil recovery device 9a, and the distillation stopped about 4 hours after the start of the heating by the heat exchanger 1. Stopping the distillation showed that the thermal decomposition reaction was completed, and the heat exchanger 1 was stopped and the system was left to cool for about 12 hours. Thereafter, the carbide was taken out from the pyrolysis furnace 3. Since the carbide includes a steel cord as a tire material, excess tire material was removed with a magnetic separator. Carbide from which excess tire material has been removed is pulverized into fine powder with a particle size of 1 mm or less with a hammer-type pulverizer, and this pulverized product is classified with an air classifier having rotating blades to obtain a particle size of 50 μm The above coarse powder was removed, and fine carbide for rubber compounding was recovered.
Next, the total acidity of the collected fine carbide for rubber compounding was measured by the above method and found to be 0.0594 meq / g.
(実施例2)
 熱分解炉3内に導入される窒素ガスのガス流量を0.008m3/s[ntp]に設定し、0.0075m3/s[ntp]~0.0085m3/s[ntp]の範囲に制御した以外は、上記実施例1と同様にして熱分解反応を行った。なお、この例でのガス流量は、実施例1より高いため、熱交換器1による加熱を開始してから45分後に溜出が始まり、熱交換器1による加熱の開始から3時間後に溜出が止まった。
 次に、回収した後、粉砕・分級を行って得たゴム配合用微細炭化物に対して、全酸性度を上記の方法により測定したところ、0.0908meq/gであった。
(Example 2)
The gas flow rate of nitrogen gas introduced into the pyrolysis furnace 3 is set to 0.008m 3 / s [ntp], except for controlling the range of 0.0075m 3 /s[ntp]~0.0085m 3 / s [ntp ] Were subjected to a thermal decomposition reaction in the same manner as in Example 1 above. In addition, since the gas flow rate in this example is higher than that in Example 1, distillation starts 45 minutes after the start of heating by the heat exchanger 1, and after 3 hours from the start of heating by the heat exchanger 1. Stopped.
Next, the total acidity of the fine carbide for rubber compounding obtained by pulverization and classification after recovery was measured by the above method and found to be 0.0908 meq / g.
(実施例3)
 熱分解炉3内に導入される窒素ガスのガス流量を0.002m3/s[ntp]に設定し、0.0015m3/s[ntp]~0.0025m3/s[ntp]の範囲に制御した以外は、上記実施例1と同様にして熱分解反応を行った。なお、この例でのガス流量は、実施例1より低いため、熱交換器1による加熱を開始してから1.5時間後に溜出が始まり、熱交換器1による加熱の開始から6時間後に溜出が止まった。
 次に、回収した後、粉砕・分級を行って得たゴム配合用微細炭化物に対して、全酸性度を上記の方法により測定したところ、0.0365meq/gであった。
(Example 3)
The gas flow rate of nitrogen gas introduced into the pyrolysis furnace 3 is set to 0.002m 3 / s [ntp], except for controlling the range of 0.0015m 3 /s[ntp]~0.0025m 3 / s [ntp ] Were subjected to a thermal decomposition reaction in the same manner as in Example 1 above. In addition, since the gas flow rate in this example is lower than that in Example 1, the distillation started 1.5 hours after the start of heating by the heat exchanger 1 and 6 hours after the start of heating by the heat exchanger 1 Stopped.
Next, after collecting, the total acidity of the fine carbide for rubber compounding obtained by pulverization and classification was measured by the above method and found to be 0.0365 meq / g.
(比較例1)
 熱分解炉3内に導入される窒素ガスのガス流量を0.011m3/s[ntp]に設定し、0.0105m3/s[ntp]~0.0115m3/s[ntp]の範囲に制御した以外は、上記実施例1と同様にして熱分解反応を行った。なお、この例でのガス流量は、実施例1より高いため、熱交換器1による加熱を開始してから40分後に溜出が始まり、熱交換器1による加熱の開始から2.5時間後に溜出が止まった。
 次に、回収した後、粉砕・分級を行って得たゴム配合用微細炭化物に対して、全酸性度を上記の方法により測定したところ、0.104meq/gであった。
(Comparative Example 1)
The gas flow rate of nitrogen gas introduced into the pyrolysis furnace 3 is set to 0.011m 3 / s [ntp], except for controlling the range of 0.0105m 3 /s[ntp]~0.0115m 3 / s [ntp ] Were subjected to a thermal decomposition reaction in the same manner as in Example 1 above. In addition, since the gas flow rate in this example is higher than that in Example 1, the distillation starts 40 minutes after the start of heating by the heat exchanger 1, and the distillation is started 2.5 hours after the start of heating by the heat exchanger 1. Stopped.
Next, after collecting, the total acidity of the fine carbide for rubber compounding obtained by pulverization and classification was measured by the above method and found to be 0.104 meq / g.
(比較例2)
 熱分解炉3内に導入される窒素ガスのガス流量を0.013m3/s[ntp]に設定し、0.0125m3/s[ntp]~0.0135m3/s[ntp]の範囲に制御した以外は、上記実施例1と同様にして熱分解反応を行った。なお、この例でのガス流量は、実施例1より高いため、熱交換器1による加熱を開始してから35分後に溜出が始まり、熱交換器1による加熱の開始から2.5時間後に溜出が止まった。
 次に、回収した後、粉砕・分級を行って得たゴム配合用微細炭化物に対して、全酸性度を上記の方法により測定したところ、0.145meq/gであった。
(Comparative Example 2)
The gas flow rate of nitrogen gas introduced into the pyrolysis furnace 3 is set to 0.013m 3 / s [ntp], except for controlling the range of 0.0125m 3 /s[ntp]~0.0135m 3 / s [ntp ] Were subjected to a thermal decomposition reaction in the same manner as in Example 1 above. In addition, since the gas flow rate in this example is higher than that in Example 1, the distillation started 35 minutes after the start of heating by the heat exchanger 1, and the distillation was started 2.5 hours after the start of heating by the heat exchanger 1. Stopped.
Next, after collecting, the total acidity of the fine carbide for rubber compounding obtained by pulverization and classification was measured by the above method and found to be 0.145 meq / g.
(比較例3)
 図1に示す熱分解装置の中で、ガス発生器7と流量制御手段13を稼動させなかった以外は、上記実施例1と同様にして廃トラック用タイヤを熱分解し、炭化物を回収した(即ち、比較例1では、熱分解反応中での酸素濃度に対してなんらの制御手段をとることなく熱分解処理を行った)。
 次に、回収した後、粉砕・分級を行って得たゴム配合用微細炭化物に対して、全酸性度を上記の方法により測定したところ、0.151meq/gであった。
(Comparative Example 3)
1 except that the gas generator 7 and the flow rate control means 13 were not operated in the pyrolysis apparatus shown in FIG. 1, the waste truck tire was pyrolyzed in the same manner as in Example 1 to recover the carbides ( That is, in Comparative Example 1, the thermal decomposition treatment was performed without taking any control means with respect to the oxygen concentration during the thermal decomposition reaction).
Next, the total acidity of the fine carbide for rubber compounding obtained by pulverization and classification after recovery was measured by the above method and found to be 0.151 meq / g.
(比較例4)
 熱分解炉3内に導入される無酸素ガスのガス流量を、0℃、1気圧換算で27.0m3/h~30.6m3/hの範囲に制御した以外は、上記比較例1と同様にして熱分解装置系内の酸素濃度の制御を実施することなく、廃トラック用タイヤの熱分解処理を行った。
 次に、回収した後、粉砕・分級を行って得たゴム配合用微細炭化物に対して、全酸性度を上記の方法により測定したところ、0.205meq/gであった。
(Comparative Example 4)
Except that the flow rate of oxygen-free gas introduced into the pyrolysis furnace 3 was controlled in the range of 27.0 m3 / h to 30.6 m3 / h in terms of 1 atm at 0 ° C, The waste truck tire was pyrolyzed without controlling the oxygen concentration in the cracker system.
Next, after collecting, the total acidity of the fine carbide for rubber compounding obtained by pulverization and classification was measured by the above method and found to be 0.205 meq / g.
(比較例5)
 熱分解炉3内に導入される窒素ガスのガス流量を0.0010m3/s[ntp]に設定し、0.00095m3/s[ntp]~0.00105m3/s[ntp]の範囲に制御した以外は、上記実施例1と同様にして熱分解反応を行った。なお、この例でのガス流量は、0.0015m3/s[ntp]を下回っており、熱交換器1による加熱を開始してから2時間経過しても、少量の溜出物のみが認められるだけで、ほとんど熱分解反応は進行しなかったため、途中で中止した。
(Comparative Example 5)
The gas flow rate of nitrogen gas introduced into the pyrolysis furnace 3 is set to 0.0010m 3 / s [ntp], except for controlling the range of 0.00095m 3 /s[ntp]~0.00105m 3 / s [ntp ] Were subjected to a thermal decomposition reaction in the same manner as in Example 1 above. In addition, the gas flow rate in this example is less than 0.0015 m 3 / s [ntp], and only a small amount of distillate is observed even after 2 hours have passed since the heating by the heat exchanger 1 was started. However, since the thermal decomposition reaction hardly proceeded, it was stopped halfway.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~3及び比較例1~4から得られたゴム配合用微細炭化物を用いて、表2に示す配合処方のゴム組成物を調製し、該ゴム組成物の未加硫時及び加硫後のゴム特性を上記の方法により測定した。結果を表3~5に示す。 Using the fine carbides for rubber compounding obtained in Examples 1 to 3 and Comparative Examples 1 to 4, rubber compositions having the compounding formulations shown in Table 2 were prepared, and the rubber compositions were unvulcanized and vulcanized. The later rubber properties were measured by the above method. The results are shown in Tables 3-5.
(1)未加硫時のゴム特性
(a)ムーニー粘度
 JIS K6300-1:2001に準拠し、ムーニー粘度計を用いて、130℃でのムーニー粘度[ML1+4(130℃)]を測定し、GPF級カーボンブラック[旭カーボン(株)製,商品名:旭#55]のみが配合されたゴム組成物のムーニー粘度を100として指数表示した。指数値が小さい程、加工性に優れることを示す。
(b)スコーチタイム
 JIS K6300-1:2001に準拠し、ムーニー粘度計を用いて、ムーニー粘度-時間曲線を測定し、ムーニー粘度の最低値(Vm)から5ポイント上昇した時間(t5)を求め、これをスコーチタイム(分)とした。ここで、GPF級カーボンブラック[旭カーボン(株)製,商品名:旭#55]のみが配合されたゴム組成物のスコーチタイムを100として指数表示した。指数値が100に近い程、加硫時間が適正で、作業性に優れることを示す。
(1) Rubber properties when not vulcanized (a) Mooney viscosity Measured Mooney viscosity [ML 1 + 4 (130 ° C)] at 130 ° C using Mooney viscometer according to JIS K6300-1: 2001 The rubber composition containing only GPF grade carbon black [manufactured by Asahi Carbon Co., Ltd., trade name: Asahi # 55] was indexed with the Mooney viscosity as 100. It shows that it is excellent in workability, so that an index value is small.
(B) Scorch time In accordance with JIS K6300-1: 2001, a Mooney viscosity-time curve is measured using a Mooney viscometer, and a time (t5) when the Mooney viscosity is increased by 5 points is obtained. This was the scorch time (minutes). Here, the scorch time of a rubber composition in which only GPF grade carbon black [manufactured by Asahi Carbon Co., Ltd., trade name: Asahi # 55] was blended was shown as an index. The closer the index value is to 100, the better the vulcanization time and the better the workability.
(2)加硫後のゴム特性
(a)硬さ
 140℃で30分間加硫して得た加硫ゴムに対して、JIS K6253:2006に準拠し、デュロメータ硬さ試験機(タイプA)を用いて評価した。詳細には、加硫ゴムのゴム試験片の表面に押針を3秒間押し込み、その押針の押込み深さから該ゴム試験片の硬さを求めた。ここで、GPF級カーボンブラック[旭カーボン(株)製,商品名:旭#55]のみが配合されたゴム組成物の硬さを100として指数表示した。指数値が大きい程、ゴム組成物の硬さが高いことを示す。
(b)引張応力
 140℃で30分間加硫して得た加硫ゴムに対して、JIS K6251:2004に準拠し、室温で100%伸び時及び300%伸び時における引張応力を測定し、GPF級カーボンブラック[旭カーボン(株)製,商品名:旭#55]のみが配合されたゴム組成物の引張応力を100として指数表示した。指数値が大きい程、引張応力が大きく、弾性率が高いことを示す。
(c)引張強さ
 140℃で30分間加硫して得た加硫ゴムに対して、JIS K6251:2004に準拠し、室温での引張強さ(Tb)を測定し、GPF級カーボンブラック[旭カーボン(株)製,商品名:旭#55]のみが配合されたゴム組成物の引張強さを100として指数表示した。指数値が大きい程、破壊対する耐性が高く、補強性に優れることを示す。
(d)切断時伸び
 140℃で30分間加硫して得た加硫ゴムに対して、JIS K6251:2004に準拠し、室温での切断時伸びを測定し、GPF級カーボンブラック[旭カーボン(株)製,商品名:旭#55]のみが配合されたゴム組成物の切断時伸びを100として指数表示した。指数値が大きい程、配合される充填剤成分のゴム組成物への補強効果が高いことを示す。
(2) Rubber characteristics after vulcanization (a) Hardness For vulcanized rubber obtained by vulcanization at 140 ° C for 30 minutes, a durometer hardness tester (type A) is used in accordance with JIS K6253: 2006. Evaluated. Specifically, a push needle was pushed into the surface of the rubber test piece of vulcanized rubber for 3 seconds, and the hardness of the rubber test piece was obtained from the push depth of the push needle. Here, the hardness of a rubber composition in which only GPF grade carbon black [manufactured by Asahi Carbon Co., Ltd., trade name: Asahi # 55] was blended was expressed as an index. The larger the index value, the higher the hardness of the rubber composition.
(B) Tensile stress For vulcanized rubber obtained by vulcanization at 140 ° C for 30 minutes, the tensile stress at 100% elongation and 300% elongation at room temperature was measured in accordance with JIS K6251: 2004, and GPF A rubber composition containing only grade grade carbon black [manufactured by Asahi Carbon Co., Ltd., trade name: Asahi # 55] was expressed as an index with the tensile stress as 100. The larger the index value, the greater the tensile stress and the higher the elastic modulus.
(C) Tensile strength A vulcanized rubber obtained by vulcanization at 140 ° C. for 30 minutes was measured for a tensile strength (Tb) at room temperature in accordance with JIS K6251: 2004. The rubber composition containing only Asahi Carbon Co., Ltd., trade name: Asahi # 55] was indexed with the tensile strength as 100. The larger the index value, the higher the resistance to fracture and the better the reinforcement.
(D) Elongation at cutting The vulcanized rubber obtained by vulcanization at 140 ° C. for 30 minutes was measured for elongation at room temperature in accordance with JIS K6251: 2004, and GPF grade carbon black [Asahi Carbon ( The rubber composition containing only the product name “Asahi # 55” manufactured by Co., Ltd. was indexed with the elongation at break as 100. It shows that the reinforcement effect to the rubber composition of the filler component mix | blended is so high that an index value is large.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
*1 油展ゴム,ゴム成分100質量部に対して27.3質量部のアロマオイルで油展,JSR(株)製,商品名:SBR 1723.
*2 JSR(株)製,商品名:BROMOBUTYL 2255.
*3 実施例1~3及び比較例1~2のうちいずれかのゴム配合用微細炭化物20質量%とGPF級カーボンブラック80質量%との混合物.
*4 フレキシス社製,商品名:サントフレックス 6PPD.
*5 大内新興化学工業(株)製,商品名:ノクセラー DM-P.
*6 大内新興化学工業(株)製,商品名:ノクラック 224.
*7 大内新興化学工業(株)製,商品名:ノクセラー D.
*8 大内新興化学工業(株)製,商品名:ノクセラー NS.
* 1 Oil-extended rubber, oil-extended with 27.3 parts by mass of aroma oil for 100 parts by mass of rubber component, manufactured by JSR Corporation, product name: SBR 1723.
* 2 Product name: BROMOBUTYL 2255, manufactured by JSR Corporation.
* 3 A mixture of 20% by mass of fine carbide for rubber blending of any of Examples 1 to 3 and Comparative Examples 1 and 2 and 80% by mass of GPF grade carbon black.
* 4 Product name: Santoflex 6PPD, manufactured by Flexis.
* 5 Product name: Noxeller DM-P.
* 6 Product name: NOCRACK manufactured by Ouchi Shinsei Chemical Co., Ltd.
* 7 Ouchi Shinsei Chemical Co., Ltd., trade name: Noxeller
* 8 Product name: NOXELLER NS.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表3~5から、実施例により回収された炭化物は、熱分解炉内に導入される無酸素ガスのガス流量が0.0015m3/s[ntp]~0.0095m3/s[ntp]の範囲内に制御されることで、ゴムへの補強性等の基準となる全酸性度が0.1meq/g以下となり、これによって、該炭化物がGPF級カーボンブラックと共に配合された実施例1~3のゴム組成物(全補強充填剤中のゴム配合用微細炭化物の割合:20質量%)は、GPF級カーボンブラックのみが配合されたゴム組成物と比較し、未加硫ゴム及び加硫ゴムの各種ゴム特性に対していずれも5%以上低減することがなかった。これに対し、比較例1~4により回収されたゴム配合用微細炭化物は、熱分解炉内に導入される無酸素ガスのガス流量が0.0095m3/s[ntp]を超えることで、その全酸性度は0.1meq/gを超えることになり、これによって、比較例のゴム組成物は、未加硫ゴム及び加硫ゴムの各種ゴム特性のいずれかの特性で5%以上低下したゴム特性を有することが確認された。 Tables 3 to 5, the range of carbide recovered by example, the gas flow rate of oxygen-free gas to be introduced into the pyrolysis furnace 0.0015m 3 /s[ntp]~0.0095m 3 / s [ntp ] Thus, the total acidity, which is a standard for reinforcing the rubber, becomes 0.1 meq / g or less, whereby the rubber composition of Examples 1 to 3 in which the carbide is blended with GPF grade carbon black. Compared with the rubber composition containing only GPF grade carbon black, the product (ratio of fine carbide for rubber compounding in the total reinforcing filler: 20% by mass) has various rubber properties of unvulcanized rubber and vulcanized rubber. On the other hand, there was no reduction of 5% or more. On the other hand, the fine carbides for rubber compounding recovered in Comparative Examples 1 to 4 are all in that the flow rate of oxygen-free gas introduced into the pyrolysis furnace exceeds 0.0095 m 3 / s [ntp]. The acidity will exceed 0.1 meq / g, and as a result, the rubber composition of the comparative example has a rubber property that is reduced by 5% or more in any of the various rubber properties of unvulcanized rubber and vulcanized rubber. It was confirmed to have.
 1  熱交換器
 2  高分子系廃棄物
 3  熱分解炉
 4  外部加熱手段
 5  分解装置
 6  循環路
 7  ガス発生器
 8  酸素濃度検出器
 9  油分回収装置
 10  回収タンク
 11  排風機
 12  排ガス処理装置
 13  流量制御手段
DESCRIPTION OF SYMBOLS 1 Heat exchanger 2 Polymer waste 3 Pyrolysis furnace 4 External heating means 5 Decomposition device 6 Circulation path 7 Gas generator 8 Oxygen concentration detector 9 Oil content recovery device 10 Recovery tank 11 Exhaust device 12 Exhaust gas processing device 13 Flow control means

Claims (13)

  1.  熱交換器内で無酸素ガスを加熱する工程と、
     高分子系廃棄物を収容する熱分解炉内に加熱された無酸素ガスを導入し、該高分子系廃棄物を該無酸素ガスと直接に接触させ、熱分解ガスを発生させる工程と
     を含む高分子系廃棄物の熱分解方法において、
     前記熱分解炉内に導入される無酸素ガスのガス流量を0.0015m3/s[ntp]~0.0095m3/s[ntp]の範囲内に制御することを特徴とする高分子系廃棄物の熱分解方法。
    Heating the oxygen-free gas in the heat exchanger;
    Introducing a heated oxygen-free gas into a pyrolysis furnace containing the polymer waste, bringing the polymer waste into direct contact with the oxygen-free gas, and generating a pyrolysis gas. In the thermal decomposition method of polymer waste,
    Of polymer waste, characterized in that controlling the gas flow rate of oxygen-free gas to be introduced into the pyrolysis furnace in the range of 0.0015m 3 /s[ntp]~0.0095m 3 / s [ntp ] Thermal decomposition method.
  2.  前記熱分解ガスを発生させる工程において、熱分解時の温度を300~600℃に制御することを特徴とする請求項1に記載の高分子系廃棄物の熱分解方法。 2. The method for pyrolyzing polymer waste according to claim 1, wherein, in the step of generating the pyrolysis gas, the temperature during pyrolysis is controlled to 300 to 600 ° C.
  3.  前記無酸素ガス中の酸素濃度を1容量%以下に制御することを特徴とする請求項1に記載の高分子系廃棄物の熱分解方法。 The method for thermal decomposition of polymer waste according to claim 1, wherein the oxygen concentration in the oxygen-free gas is controlled to 1% by volume or less.
  4.  熱交換器内で無酸素ガスを加熱する工程と、
     高分子系廃棄物を収容する熱分解炉内に加熱された無酸素ガスを導入し、該高分子系廃棄物を該無酸素ガスと直接に接触させ、熱分解ガスを発生させる工程と、
     前記熱分解ガスを冷却し、凝縮した油分を回収する工程と、
     前記高分子系廃棄物の熱分解後の熱分解炉内に残る炭化物を回収する工程と
     を含む炭化物の回収方法において、
     前記熱分解炉中に導入される無酸素ガスのガス流量を0.0015m3/s[ntp]~0.0095m3/s[ntp]の範囲内に制御することを特徴とする炭化物の回収方法。
    Heating the oxygen-free gas in the heat exchanger;
    Introducing a heated oxygen-free gas into a pyrolysis furnace containing a polymer waste, bringing the polymer waste into direct contact with the oxygen-free gas, and generating a pyrolysis gas;
    Cooling the pyrolysis gas and recovering the condensed oil;
    Recovering the carbide remaining in the pyrolysis furnace after pyrolysis of the polymer waste,
    Method for recovering carbide and controlling the gas flow rate of oxygen-free gas to be introduced into the pyrolysis furnace in the range of 0.0015m 3 /s[ntp]~0.0095m 3 / s [ntp ].
  5.  前記熱分解ガスを発生させる工程において、熱分解時の温度を300~600℃に制御することを特徴とする請求項4に記載の炭化物の回収方法。 The method for recovering carbide according to claim 4, wherein, in the step of generating the pyrolysis gas, the temperature during pyrolysis is controlled to 300 to 600 ° C.
  6.  前記無酸素ガス中の酸素濃度を1容量%以下に制御することを特徴とする請求項4に記載の炭化物の回収方法。 The method for recovering carbide according to claim 4, wherein the oxygen concentration in the oxygen-free gas is controlled to 1% by volume or less.
  7.  無酸素ガスを加熱するための熱交換器と、
     内部に高分子系廃棄物を収容する熱分解炉及び該熱分解炉を外部から加熱する外部加熱手段を有し、該高分子系廃棄物を前記熱交換器で加熱した無酸素ガスと直接接触させることにより熱分解させて熱分解ガスを発生させるための分解装置と、
     前記分解装置で発生した熱分解ガスを冷却して、凝縮した油分を回収するための油分回収装置と、
     前記油分回収装置で油分を回収した後の残ガスを、無酸素ガスとして前記熱交換器に供給するための循環路と、
     前記熱分解炉中に導入する不活性ガスを生成するためのガス発生器と、
     熱分解装置系内の酸素濃度を検出するための酸素濃度検出器と
     を備えることを特徴とする高分子系廃棄物の熱分解装置。
    A heat exchanger for heating anoxic gas;
    It has a pyrolysis furnace containing polymer waste inside and an external heating means for heating the pyrolysis furnace from outside, and the polymer waste is in direct contact with oxygen-free gas heated by the heat exchanger. A decomposition device for generating pyrolysis gas by pyrolyzing by,
    An oil recovery device for recovering the condensed oil by cooling the pyrolysis gas generated in the decomposition device;
    A circulation path for supplying the residual gas after the oil is recovered by the oil recovery device to the heat exchanger as an oxygen-free gas;
    A gas generator for generating an inert gas to be introduced into the pyrolysis furnace;
    An oxygen concentration detector for detecting an oxygen concentration in the pyrolysis apparatus system. A thermal decomposition apparatus for polymer waste, comprising:
  8.  更に、前記酸素濃度検出器によって検出された前記熱分解装置系内の酸素濃度に基づき、前記ガス発生器から該熱分解装置系内への不活性ガス導入流量を制御する装置を備えることを特徴とする請求項7に記載の高分子系廃棄物の熱分解装置。 The apparatus further comprises a device for controlling an inert gas introduction flow rate from the gas generator into the pyrolysis device system based on an oxygen concentration in the pyrolysis device system detected by the oxygen concentration detector. The thermal decomposition apparatus for polymer waste according to claim 7.
  9.  請求項1~3に記載の熱分解方法及び請求項4~6に記載の回収方法のいずれかによって得られた炭化物。 Carbides obtained by any one of the thermal decomposition method according to claims 1 to 3 and the recovery method according to claims 4 to 6.
  10.  全酸性度が0.1meq/g以下であることを特徴とする請求項9に記載の炭化物。 The carbide according to claim 9, wherein the total acidity is 0.1 meq / g or less.
  11.  更に、粉砕工程及び分級工程のうち少なくとも一方の工程を経て得た微細炭化物であることを特徴とする請求項9又は10に記載の炭化物。 Furthermore, the carbide according to claim 9 or 10, which is a fine carbide obtained through at least one of a pulverization step and a classification step.
  12.  請求項7~11のいずれかに記載の炭化物を配合してなるゴム組成物。 A rubber composition comprising the carbide according to any one of claims 7 to 11.
  13.  請求項12に記載のゴム組成物を用いたタイヤ。 A tire using the rubber composition according to claim 12.
PCT/JP2010/003650 2009-05-29 2010-05-31 Method and apparatus for thermally decomposing polymer waste, method for collecting carbide, carbide, rubber composition containing the carbide, and tire using the rubber composition WO2010137352A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-131232 2009-05-29
JP2009131232A JP5878275B2 (en) 2009-05-29 2009-05-29 Method of pyrolyzing polymer waste, method of recovering carbide, and carbide, rubber composition and tire
JP2009-131610 2009-05-29
JP2009131610A JP5675061B2 (en) 2009-05-29 2009-05-29 Polymer waste pyrolysis apparatus, pyrolysis method using the apparatus, carbide recovery method, carbide, rubber composition containing the carbide, and tire using the rubber composition

Publications (1)

Publication Number Publication Date
WO2010137352A1 true WO2010137352A1 (en) 2010-12-02

Family

ID=43222478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003650 WO2010137352A1 (en) 2009-05-29 2010-05-31 Method and apparatus for thermally decomposing polymer waste, method for collecting carbide, carbide, rubber composition containing the carbide, and tire using the rubber composition

Country Status (1)

Country Link
WO (1) WO2010137352A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144188A1 (en) * 2011-04-19 2012-10-26 株式会社ブリヂストン Method for producing carbide for reinforcing rubber article
CN104031665A (en) * 2014-06-23 2014-09-10 北京建筑材料科学研究总院有限公司 Directional pyrolysis method of combustible wastes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158094A (en) * 1987-08-14 1989-06-21 American Tire Reclamation Inc Regeneration and utilization of carbon materials from waste
JPH07286063A (en) * 1994-04-15 1995-10-31 Mitsui Petrochem Ind Ltd Production of oily matter by thermal decomposition of synthetic polymer
JP2006036806A (en) * 2004-07-22 2006-02-09 Mugen System Kk Method of thermal decomposition and apparatus for thermal decomposition
JP2008285523A (en) * 2007-05-15 2008-11-27 Kazuteru Shinohara Liquefaction apparatus for polymer-based waste

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158094A (en) * 1987-08-14 1989-06-21 American Tire Reclamation Inc Regeneration and utilization of carbon materials from waste
JPH07286063A (en) * 1994-04-15 1995-10-31 Mitsui Petrochem Ind Ltd Production of oily matter by thermal decomposition of synthetic polymer
JP2006036806A (en) * 2004-07-22 2006-02-09 Mugen System Kk Method of thermal decomposition and apparatus for thermal decomposition
JP2008285523A (en) * 2007-05-15 2008-11-27 Kazuteru Shinohara Liquefaction apparatus for polymer-based waste

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144188A1 (en) * 2011-04-19 2012-10-26 株式会社ブリヂストン Method for producing carbide for reinforcing rubber article
JP2012224746A (en) * 2011-04-19 2012-11-15 Bridgestone Corp Method for producing carbide for reinforcing rubber article
US9358549B2 (en) 2011-04-19 2016-06-07 Bridgestone Corporation Method for manufacturing carbide for reinforcing rubber articles
CN104031665A (en) * 2014-06-23 2014-09-10 北京建筑材料科学研究总院有限公司 Directional pyrolysis method of combustible wastes

Similar Documents

Publication Publication Date Title
JP5878275B2 (en) Method of pyrolyzing polymer waste, method of recovering carbide, and carbide, rubber composition and tire
Dwivedi et al. Recycling of waste tire by pyrolysis to recover carbon black: Alternative & environment-friendly reinforcing filler for natural rubber compounds
Nabil et al. Compounding, mechanical and morphological properties of carbon-black-filled natural rubber/recycled ethylene-propylene-diene-monomer (NR/R-EPDM) blends
Nabil et al. Comparison of thermo-oxidative ageing and thermal analysis of carbon black-filled NR/Virgin EPDM and NR/Recycled EPDM blends
Vishvanathperumal et al. Effect of nanosilica on the mechanical properties, compression set, morphology, abrasion and swelling resistance of sulphur cured EPDM/SBR composites
US9358549B2 (en) Method for manufacturing carbide for reinforcing rubber articles
Karabörk et al. Influence of pyrolytic carbon black and pyrolytic oil made from used tires on the curing and (dynamic) mechanical properties of natural rubber (NR)/styrene-butadiene rubber (SBR) blends
Kong et al. Carbon nanodots as dual role of crosslinking and reinforcing chloroprene rubber
Zhang et al. Influence of a novel coupling agent on the performance of recovered carbon black filled natural rubber
JP5632661B2 (en) Carbon material for rubber reinforcement and method for producing the same
WO2010137352A1 (en) Method and apparatus for thermally decomposing polymer waste, method for collecting carbide, carbide, rubber composition containing the carbide, and tire using the rubber composition
Paul et al. Effects of tire‐derived pyrolytic carbon black and pyrolytic heavy oil on the curing and mechanical properties of styrene‐butadiene rubber composites
JP5693057B2 (en) CARBIDE, PROCESS FOR PRODUCING THE SAME, RUBBER COMPOSITION AND TIRE
Srinivas et al. The effect of nanosilica on mechanical and swelling resistance properties of ternary rubber (NR/SBR/NBR) blends nanocomposites with and without bis (triethoxysilylpropyl) tetrasulfane
JP5675061B2 (en) Polymer waste pyrolysis apparatus, pyrolysis method using the apparatus, carbide recovery method, carbide, rubber composition containing the carbide, and tire using the rubber composition
JP7214561B2 (en) Method for producing amphiphilic silica-carbon composite
JP5620095B2 (en) Polymer waste pyrolysis equipment
Mondal et al. Back to the origin: A spick‐and‐span sustainable approach for the devulcanization of ground tire rubber
Chandran et al. Evaluation of performance of natural rubber composites with different sizes of waste tyre rubber (WTR) and precipitated silica on C–M–M
Umunakwe et al. Evaluating the Effect of Carbon Black and Silica Hybrid Reinforcement on the Rheological Behavior, Rebound Resilience, Tensile Properties and Tear Strength of Solid Tire Tread Compound Containing Ground Tire Rubber
Balasubramanian et al. Rubber—CNT nanocomposites
Worlee et al. Influence of filler network on thermo-chemical de-vulcanization efficiency of carbon black filled natural rubber
Bureewong et al. Mechanical and thermal properties of NR/XSBR composite reinforced with rice husk silica
Shokoohi et al. Natural rubber/natural rubber reclaim nanocomposites: Role of functional nanoparticles, mixing sequences and coupling agents
Saleh et al. Evaluation of Thermal and Mechanical Properties of Crumb/Natural Rubber Nanocomposites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10780312

Country of ref document: EP

Kind code of ref document: A1