JP5632661B2 - Carbon material for rubber reinforcement and method for producing the same - Google Patents

Carbon material for rubber reinforcement and method for producing the same Download PDF

Info

Publication number
JP5632661B2
JP5632661B2 JP2010141099A JP2010141099A JP5632661B2 JP 5632661 B2 JP5632661 B2 JP 5632661B2 JP 2010141099 A JP2010141099 A JP 2010141099A JP 2010141099 A JP2010141099 A JP 2010141099A JP 5632661 B2 JP5632661 B2 JP 5632661B2
Authority
JP
Japan
Prior art keywords
rubber
carbide
carbon black
carbon material
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010141099A
Other languages
Japanese (ja)
Other versions
JP2012001702A (en
Inventor
正徳 川村
正徳 川村
敬治 朝妻
敬治 朝妻
勇人 大谷
勇人 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2010141099A priority Critical patent/JP5632661B2/en
Priority to PCT/JP2011/003507 priority patent/WO2011161932A1/en
Publication of JP2012001702A publication Critical patent/JP2012001702A/en
Application granted granted Critical
Publication of JP5632661B2 publication Critical patent/JP5632661B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/14Carbides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/56Treatment of carbon black ; Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/19Oil-absorption capacity, e.g. DBP values

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、ゴム補強用炭素材料及び該ゴム補強用炭素材料の製造方法に関し、特には、高分子系廃棄物を有効利用することが可能なゴム補強用炭素材料の製造方法に関するものである。   The present invention relates to a carbon material for rubber reinforcement and a method for producing the carbon material for rubber reinforcement, and more particularly to a method for producing a carbon material for rubber reinforcement capable of effectively using polymer waste.

従来、機能性の材料を開発する目的で、ゴム材料や樹脂材料等、様々な高分子系材料の工業化がなされているが、他方で、高分子工業の発展は、汎用材料の大量生産、大量消費をもたらし、高分子系廃棄物の処理は早急に解決すべき重要課題となっている。そして、この課題を解決するためには、高分子系材料の再利用化、リサイクル化等の技術的進展が肝要となる。例えば、ゴム材料であるタイヤは、モータリゼーションの発展と共に自動車必需部材として大量生産、大量消費がなされ、使用済みタイヤの数が膨大になっていることから、使用済みタイヤのリサイクル化・有効利用の研究が進められ、特に有用材料の回収が大きな課題となっている。例えば、特開平8−27394号公報(特許文献1)には、有機系廃棄物を酸素含有ガスと水蒸気の混合ガス中で且つ酸素当量比1以下で部分燃焼及びガス化させ、得られた可燃ガスを理論酸素量以下の酸素不足状態で1000℃以上の温度で部分燃焼させ、得られる1000℃以上の部分燃焼ガスを不活性雰囲気下で700℃以下に急冷することを特徴とするカーボンブラックの製造方法が開示されている。   Conventionally, various polymer materials such as rubber materials and resin materials have been industrialized for the purpose of developing functional materials. On the other hand, the development of the polymer industry has led to mass production of general-purpose materials, mass production of general-purpose materials. Consuming and the disposal of polymer waste has become an important issue to be solved immediately. In order to solve this problem, technological progress such as reuse and recycling of polymer materials is essential. For example, tires made of rubber materials have been mass-produced and consumed in large quantities as automobile essential parts along with the development of motorization, and the number of used tires has become enormous. In particular, the recovery of useful materials has become a major issue. For example, in Japanese Patent Laid-Open No. 8-27394 (Patent Document 1), organic waste is partially combusted and gasified in a mixed gas of oxygen-containing gas and water vapor with an oxygen equivalent ratio of 1 or less, and the resulting combustible material is obtained. A carbon black characterized by partially burning a gas at a temperature of 1000 ° C. or higher in an oxygen-deficient state with a theoretical oxygen amount or less, and rapidly quenching the resulting partial combustion gas of 1000 ° C. or higher to 700 ° C. or lower in an inert atmosphere A manufacturing method is disclosed.

特開平8−27394号公報JP-A-8-27394

しかしながら、上記有機系廃棄物には、通常、炭化水素以外の物質が含まれており、これを不完全燃焼又は熱分解して得られる炭化物は、炭化水素の不完全燃焼又は熱分解によって得られる炭化物(即ち、本来の意味でのカーボンブラック)と異なり、ゴム配合時にゴム組成物に対して十分な補強効果が発揮できず、従って、高分子系廃棄物から元来持っている価値を回収して有効利用することについては依然として改良の余地があるのが現状である。   However, the organic waste usually contains substances other than hydrocarbons, and carbides obtained by incomplete combustion or thermal decomposition of these are obtained by incomplete combustion or thermal decomposition of hydrocarbons. Unlike carbides (ie, carbon black in the original sense), the rubber composition cannot be sufficiently reinforced when compounded with rubber, and thus recovers the inherent value from polymer waste. However, there is still room for improvement in terms of effective use.

そこで、本発明の目的は、上記従来技術の問題を解決し、高分子系廃棄物を有効利用することが可能なゴム補強用炭素材料の製造方法を提供することにある。また、本発明の他の目的は、高分子系廃棄物から得られる炭化物が含まれているにもかかわらず、ゴム成分に配合しても補強効果が十分に発揮できるゴム補強用炭素材料を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing a carbon material for reinforcing rubber capable of solving the above-described problems of the prior art and capable of effectively using polymer waste. Another object of the present invention is to provide a carbon material for rubber reinforcement that can sufficiently exert a reinforcing effect even if it is blended with a rubber component, even though it contains carbides obtained from polymer waste. There is to do.

本発明者らは、上記目的を達成するために鋭意検討した結果、高分子系廃棄物の熱分解又は不完全燃焼により得られる炭化物をカーボンブラックと混合することで、従来ではゴムへの補強性能が低いといわれている高分子系廃棄物から得られる炭化物が含まれているにもかかわらず、ゴム成分に配合しても補強効果が十分に発揮できるゴム補強用炭素材料が得られることを見出し、本発明を完成させるに至った。   As a result of intensive investigations to achieve the above-mentioned object, the present inventors have mixed carbon carbide obtained by thermal decomposition or incomplete combustion of polymer-based waste with carbon black. Despite the fact that it contains carbides derived from polymer waste, which is said to be low, it has been found that a carbon material for rubber reinforcement can be obtained that can sufficiently exert its reinforcing effect even if blended with a rubber component. The present invention has been completed.

即ち、本発明のゴム補強用炭素材料の製造方法は、高分子系廃棄物の熱分解又は不完全燃焼により得られる炭化物(A)と、カーボンブラック(B)とを混合する工程を含み、前記炭化物(A)と前記カーボンブラック(B)とをそれぞれ独立に造粒してから混合することを特徴とする。
この場合、上記炭化物(A)とカーボンブラック(B)を混合してから造粒することによって得たゴム補強用炭素材料と比較して、ゴム組成物の引張応力を向上させることができる。
That is, the manufacturing method of the rubber-reinforcing carbon material of the present invention, viewed contains a carbide (A) obtained by thermal decomposition or incomplete combustion of polymer waste, a step of mixing the carbon black (B), The carbide (A) and the carbon black (B) are granulated independently and then mixed .
In this case, the tensile stress of the rubber composition can be improved as compared to a carbon material for rubber reinforcement obtained by granulation after mixing the carbide (A) and the carbon black (B).

本発明のゴム補強用炭素材料の製造方法においては、前記炭化物(A)と前記カーボンブラック(B)との混合質量比(A/B)が1/99〜50/50の範囲内であることが好ましく、10/90〜50/50の範囲内であることが更に好ましい。この場合、高分子系廃棄物から得られる炭化物が含まれているにもかかわらず、純カーボンブラックの場合と同等なゴム物性を確保することができる。なお、炭化物(A)とカーボンブラック(B)との混合質量比(A/B)において、炭化物(A)の割合が1質量%を下回った場合にはカーボンブラック(B)単独配合時との差異が明確とならず、逆に炭化物(A)の割合が50%を上回った場合ではカーボンブラック(B)単独配合時でのゴム物性との差異が5%以上低下するおそれがあるので好ましくない。   In the method for producing a carbon material for reinforcing rubber of the present invention, the mixing mass ratio (A / B) of the carbide (A) and the carbon black (B) is within a range of 1/99 to 50/50. Is preferable, and it is still more preferable to be within the range of 10/90 to 50/50. In this case, rubber properties equivalent to those of pure carbon black can be ensured despite the inclusion of carbides obtained from polymer waste. In the mixing mass ratio (A / B) of the carbide (A) and the carbon black (B), when the ratio of the carbide (A) is less than 1% by mass, the carbon black (B) alone is blended. On the contrary, when the ratio of the carbide (A) exceeds 50%, the difference from the rubber physical properties when blended with carbon black (B) alone may decrease by 5% or more, which is not preferable. .

本発明によれば、高分子系廃棄物の熱分解又は不完全燃焼により得られる炭化物をカーボンブラックと混合し、ここで、炭化物(A)と前記カーボンブラック(B)とをそれぞれ独立に造粒してから混合することで、高分子系廃棄物から得られる炭化物が含まれているにもかかわらず、ゴム成分に配合しても補強効果が十分に発揮できるゴム補強用炭素材料を提供することができる。従って、高分子系廃棄物を有効利用することが可能となる。
According to the present invention, a carbide obtained by pyrolysis or incomplete combustion of polymer waste is mixed with carbon black , where the carbide (A) and the carbon black (B) are granulated independently. by mixing after, despite contains carbides obtained from polymer waste, also reinforcing effect by compounding the rubber component provides a rubber-reinforcing carbon material can be sufficiently exhibited Can do. Therefore, it is possible to effectively use the polymer waste.

炭化物(A)の製造に用いた熱分解装置の概略図である。It is the schematic of the thermal decomposition apparatus used for manufacture of a carbide | carbonized_material (A).

以下に、本発明を詳細に説明する。本発明のゴム補強用炭素材料の製造方法は、高分子系廃棄物の熱分解又は不完全燃焼により得られる炭化物(A)と、カーボンブラック(B)とを混合する工程を含むことを特徴とする。本発明の製造方法によって得られる炭素材料は、高分子系廃棄物から得られる炭化物(A)と共に、カーボンブラック(B)を含んでいるため、ゴムの物性低下を軽減し、ゴムに対する補強効果を十分に奏することができる。従って、高分子系廃棄物の熱分解又は不完全燃焼により得られる炭化物をゴム補強材として確実に利用するためには、カーボンブラックと混合することが必要である。なお、炭化物(A)とカーボンブラック(B)との混合には、例えば、容器回転式、機械攪拌式、気流式等の混合機が使用される。   The present invention is described in detail below. The method for producing a carbon material for reinforcing rubber of the present invention comprises a step of mixing a carbon black (B) with a carbide (A) obtained by thermal decomposition or incomplete combustion of a polymer waste. To do. Since the carbon material obtained by the production method of the present invention contains carbon black (B) together with the carbide (A) obtained from the polymer waste, it reduces the physical properties of the rubber and has a reinforcing effect on the rubber. You can play well. Therefore, in order to reliably use the carbide obtained by thermal decomposition or incomplete combustion of the polymer waste as a rubber reinforcing material, it is necessary to mix it with carbon black. In addition, for mixing the carbide (A) and the carbon black (B), for example, a mixer such as a container rotation type, a mechanical stirring type, or an air flow type is used.

本発明のゴム補強用炭素材料の製造方法においては、炭化物(A)とカーボンブラック(B)との混合比を制御することで、加硫特性、補強性等において純カーボンブラック単独配合時と比較しても遜色ない物性を確保することができる。本発明者らが炭化物(A)及びカーボンブラック(B)の混合比について最適化を試みたところ、補強効果の向上及びその他のゴム物性低下の軽減の観点から、上記炭化物(A)とカーボンブラック(B)との混合質量比(A/B)は1/99〜50/50の範囲内であることが好ましく、10/90〜50/50の範囲内であることが更に好ましい。   In the method for producing a carbon material for rubber reinforcement of the present invention, by controlling the mixing ratio of the carbide (A) and the carbon black (B), the vulcanization characteristics, the reinforcing property and the like are compared with those when pure carbon black is blended alone. Even if it is, the same physical property can be ensured. When the present inventors tried to optimize the mixing ratio of the carbide (A) and the carbon black (B), the above-mentioned carbide (A) and the carbon black were improved from the viewpoint of improving the reinforcing effect and reducing other physical properties of the rubber. The mixing mass ratio (A / B) with (B) is preferably in the range of 1/99 to 50/50, more preferably in the range of 10/90 to 50/50.

また、本発明の製造方法によって得られるゴム補強用炭素材料は、ゴム組成物中に配合するため、通常、カーボンブラックと同様に造粒してから使用される。ここで、本発明者らが更に検討したところ、造粒工程と混合工程の順番により、結果として得られるゴム補強用炭素材料のゴム物性に与える影響が異なることを見出した。具体的には、上記炭化物(A)と上記カーボンブラック(B)とをそれぞれ独立に造粒してから混合することで、即ち、混合工程より前に造粒工程を行うことにより、混合工程の後に造粒工程を行うことで得たゴム補強用炭素材料と比較して、ゴム組成物の引張応力を向上させることができる。なお、造粒法としては、水又はその他の液体を利用して造粒する湿式法及び媒体を使用しない乾式法のいずれも採用することができる。なお、造粒機及び乾燥機としては、カーボンブラックの造粒及び乾燥に通常使用されるものを用いることができ、具体例としては、転動式造粒機等の造粒機、及び回転乾燥機、気流乾燥機、流動乾燥機、トンネル乾燥機等の乾燥機が挙げられる。   Moreover, since the carbon material for rubber reinforcement obtained by the production method of the present invention is blended in a rubber composition, it is usually used after granulation in the same manner as carbon black. Here, when the present inventors further examined, it discovered that the influence which it has on the rubber physical property of the carbon material for rubber reinforcement obtained as a result changes with the order of a granulation process and a mixing process. Specifically, the carbide (A) and the carbon black (B) are granulated independently and then mixed, that is, by performing the granulation step before the mixing step, The tensile stress of the rubber composition can be improved compared to a carbon material for rubber reinforcement obtained by performing a granulation step later. In addition, as a granulation method, both the wet method which granulates using water or another liquid, and the dry method which does not use a medium are employable. In addition, as a granulator and a dryer, what is normally used for the granulation and drying of carbon black can be used, As a specific example, granulators, such as a rolling granulator, and rotary drying And dryers such as a dryer, a flow dryer, a fluid dryer, and a tunnel dryer.

本発明のゴム補強用炭素材料の製造方法において、炭化物(A)は、高分子系廃棄物の熱分解又は不完全燃焼により得られる炭化物であり、高分子系廃棄物を原料とした熱分解反応又は不完全燃焼反応によって原料中のガス体及び液状成分を放出した後に、生成されて残った固体を指し、灰分として無機物を含むこともある。高分子系廃棄物の熱分解又は不完全燃焼には、特に限定されず、各種熱分解法及び不完全燃焼法を採用することができる。例えば、熱分解炉内に高分子系廃棄物を収容し、該熱分解炉内に加熱された無酸素ガスを供給することで、高分子系廃棄物を熱分解させることができる。ここで、無酸素ガスは、酸素及び酸化物以外のガス体であり、例えば、窒素、アルゴン、ヘリウム等の不活性ガスや、水素、メタン、プロパン等の可燃性ガス等が挙げられる。また、熱分解炉は、特に限定されるものではないが、例えば、釜式熱分解炉、流動床式熱分解炉、キルン式熱分解炉等が使用される。   In the method for producing a carbon material for rubber reinforcement of the present invention, the carbide (A) is a carbide obtained by thermal decomposition or incomplete combustion of a polymer waste, and a pyrolysis reaction using the polymer waste as a raw material. Alternatively, it refers to a solid that is generated and left after the gas body and liquid component in the raw material are released by incomplete combustion reaction, and may contain an inorganic substance as ash. The thermal decomposition or incomplete combustion of the polymer waste is not particularly limited, and various thermal decomposition methods and incomplete combustion methods can be employed. For example, polymer waste can be pyrolyzed by containing polymer waste in a pyrolysis furnace and supplying heated oxygen-free gas into the pyrolysis furnace. Here, the oxygen-free gas is a gas body other than oxygen and oxide, and examples thereof include an inert gas such as nitrogen, argon, and helium, and a combustible gas such as hydrogen, methane, and propane. The pyrolysis furnace is not particularly limited, and for example, a pot-type pyrolysis furnace, a fluidized-bed pyrolysis furnace, a kiln-type pyrolysis furnace, or the like is used.

なお、高分子系廃棄物は、主として有機系廃棄物を指し、具体的には、タイヤ廃棄物(例えば、スピュー、バフ粉、4〜32分割されたタイヤ)等のゴム材料廃棄物や、炭化水素モノマーの(共)重合反応により得られた高分子材料、例えばポリエチレン、ポリプロピレン、スチレン−ブタジエン共重合体等、炭化水素モノマーと他のモノマーとの共重合体、例えばエチレン−酢酸ビニル共重合体、炭化水素モノマーのハロゲン誘導体の(共)重合体、例えばポリ塩化ビニル等の樹脂材料廃棄物が挙げられる。また、タイヤ廃棄物を熱分解処理した後の残渣には、スチールコードやワイヤ等が炭化物と混在している。   The polymer waste mainly refers to organic waste, and specifically, rubber material waste such as tire waste (eg, spew, buff powder, 4-32 divided tires), carbonization waste, and the like. Polymer materials obtained by (co) polymerization reaction of hydrogen monomers, such as polyethylene, polypropylene, styrene-butadiene copolymers, etc. Copolymers of hydrocarbon monomers with other monomers, such as ethylene-vinyl acetate copolymers And (co) polymers of halogen derivatives of hydrocarbon monomers, for example, resin material waste such as polyvinyl chloride. Further, steel cords, wires, and the like are mixed with carbides in the residue after the tire waste is pyrolyzed.

また、高分子系廃棄物の熱分解又は不完全燃焼においては、処理温度を300〜600℃の範囲に制御するのが好ましい。該処理温度が上記特定した範囲内にあれば、高分子系廃棄物が安定で且つ連続的な熱分解又は不完全燃焼を行うことができる。該処理温度が300℃未満では、熱分解反応又は不完全燃焼反応が十分に進行せず、これによって、分解されるべき成分が完全に除去されない炭化物を生成するおそれがあり、他方、600℃を超えると、生成した炭化物と反応系中に存在する他の成分との間で望ましくない二次反応や賦活反応が起こり、多孔性でゴムへの補強効果に悪影響を及ぼし得る炭化物を生成するおそれがある。   In the thermal decomposition or incomplete combustion of the polymer waste, it is preferable to control the treatment temperature in the range of 300 to 600 ° C. When the treatment temperature is within the specified range, the polymer waste can be stably and continuously pyrolyzed or incompletely combusted. If the treatment temperature is less than 300 ° C., the thermal decomposition reaction or incomplete combustion reaction does not proceed sufficiently, which may generate carbides in which components to be decomposed are not completely removed, while 600 ° C. If exceeded, undesirable secondary reactions and activation reactions may occur between the generated carbide and other components present in the reaction system, and there is a risk of generating a carbide that is porous and may adversely affect the reinforcing effect on the rubber. is there.

上記高分子系廃棄物の熱分解又は不完全燃焼により得られる炭化物(A)は、例えば、タイヤ廃棄物を用いた場合、タイヤの骨材であるスチールコードやワイヤ等と混在しているため、磁石、ふるい等を用いてスチールコードやワイヤ等と分離させて用いることが好ましい。また、上記炭化物(A)は、上述の通り、ゴム補強用炭化物の製造過程で造粒されることになるが、高分子系廃棄物の熱分解又は不完全燃焼により得られる炭化物は、炭化の過程で凝集した塊状部分と粉末状部分とからなる。従って、例えば、粉砕機等を用いた粉砕工程によって炭化物を微細に壊砕することが好ましい。   Carbide (A) obtained by thermal decomposition or incomplete combustion of the polymer waste, for example, when tire waste is used, because it is mixed with steel cords and wires that are aggregates of tires, It is preferable to use it separated from a steel cord or wire using a magnet, a sieve or the like. Further, as described above, the carbide (A) is granulated in the course of manufacturing the rubber reinforcing carbide, but the carbide obtained by thermal decomposition or incomplete combustion of the polymer waste is carbonized. It consists of an agglomerated part and a powdery part aggregated in the process. Therefore, for example, it is preferable to finely break the carbide by a pulverization process using a pulverizer or the like.

本発明のゴム補強用炭素材料の製造方法において、カーボンブラック(B)は、厳密な温度、各種パラメータをコントロールした条件下で行われる炭化水素の熱分解又は不完全燃焼によって得られる約純粋な元素状炭素である。ここで、カーボンブラック(B)の製造方法としては、特に限定されず、熱分解法、不完然燃焼法といった通常のカーボンブラックの製法を採用することができる。また、カーボンブラック(B)の原料としては、通常、ガス又は液状の炭化水素が使用され、ガソリン又はエチレンへの接触分解時に得られる石油系重質油、または石炭の乾留によるコークス生産に伴うクレオソート油等の石炭系重質油が主に用いられる。   In the method for producing a carbon material for reinforcing rubber according to the present invention, carbon black (B) is an approximately pure element obtained by thermal decomposition or incomplete combustion of hydrocarbons performed under conditions of controlling strict temperature and various parameters. Carbon. Here, the method for producing carbon black (B) is not particularly limited, and usual carbon black production methods such as a thermal decomposition method and an incomplete combustion method can be employed. In addition, as a raw material for carbon black (B), gas or liquid hydrocarbon is usually used, and petroleum heavy oil obtained at the time of catalytic cracking to gasoline or ethylene, or creo associated with coke production by dry distillation of coal. Heavy coal oil such as sort oil is mainly used.

なお、本発明のゴム補強用炭素材料の製造方法において、上記炭化物(A)と上記カーボンブラック(B)とをそれぞれ独立に造粒してから混合する場合、該カーボンブラック(B)には、市販のカーボンブラックを使用することができる。また、混合工程より前に造粒工程を行うことによって得たゴム補強用炭素材料は、補強効果の他、ゴム組成物の引張応力を向上でき、トレッド面等のタイヤ部材用のゴム組成物に好適である。従って、かかるタイヤ部材への適用の観点から、カーボンブラック(B)としては、GPF、FEF、HAF−LS、HAF、HAF−HS、ISAF、SAFグレードのものが特に好ましい   In the method for producing a carbon material for reinforcing rubber of the present invention, when the carbide (A) and the carbon black (B) are granulated independently and mixed, the carbon black (B) Commercially available carbon black can be used. Moreover, the carbon material for rubber reinforcement obtained by performing the granulation step before the mixing step can improve the tensile stress of the rubber composition in addition to the reinforcing effect, and can be used as a rubber composition for a tire member such as a tread surface. Is preferred. Therefore, from the viewpoint of application to such a tire member, as the carbon black (B), GPF, FEF, HAF-LS, HAF, HAF-HS, ISAF, and SAF grades are particularly preferable.

次に、本発明のゴム補強用炭素材料を詳細に説明する。本発明のゴム補強用炭素材料は、高分子系廃棄物の熱分解又は不完全燃焼により得られる炭化物(A)とカーボンブラック(B)とからなることを特徴とし、上述の製造方法によって製造できる。なお、本発明のゴム補強用炭素材料は、高分子系廃棄物から得られる炭化物が含まれているにもかかわらず、ゴム成分に配合しても補強効果を十分に発揮することができる。   Next, the rubber reinforcing carbon material of the present invention will be described in detail. The carbon material for rubber reinforcement of the present invention comprises a carbide (A) and carbon black (B) obtained by thermal decomposition or incomplete combustion of polymer waste, and can be manufactured by the above-described manufacturing method. . In addition, the carbon material for rubber reinforcement of the present invention can sufficiently exhibit the reinforcing effect even if it is blended with a rubber component, even though it contains carbides obtained from polymer waste.

上述の通り、炭化物(A)とカーボンブラック(B)との混合比を制御することで、ゴムに対する補強効果を向上させたり、その他のゴム物性を純カーボンブラックの場合と同程度に確保することができる。従って、本発明のゴム補強用炭素材料においては、上記炭化物(A)と上記カーボンブラック(B)との質量比(A/B)が1/99〜50/50の範囲内であることが好ましく、10/90〜50/50の範囲内であることが更に好ましい。   As described above, by controlling the mixing ratio of carbide (A) and carbon black (B), the reinforcing effect on rubber is improved, and other rubber properties are secured to the same extent as in the case of pure carbon black. Can do. Therefore, in the rubber material for reinforcing rubber of the present invention, the mass ratio (A / B) of the carbide (A) to the carbon black (B) is preferably in the range of 1/99 to 50/50. More preferably, it is within the range of 10/90 to 50/50.

また、本発明のゴム補強用炭素材料は、ゴム組成物中に配合されるカーボンブラック等のゴム補強用充填剤に代えて使用される観点から、該ゴム補強用充填剤の粒径程度に細かいことが好ましく、平均粒子径が50μm以下であることが好ましく、10μm以下であることが更に好ましい。   Also, the carbon material for rubber reinforcement of the present invention is as fine as the particle size of the rubber reinforcing filler from the viewpoint of being used in place of a rubber reinforcing filler such as carbon black blended in the rubber composition. The average particle size is preferably 50 μm or less, and more preferably 10 μm or less.

次に、本発明のゴム補強用炭素材料を配合してなるゴム組成物及びそれを用いたタイヤについて詳細に説明する。上記ゴム組成物は、上述の炭素材料を配合してなることを特徴とする。該ゴム組成物には、例えば、上記ゴム補強用炭素材料及びゴム成分の他、ゴム工業界で通常使用される配合剤、例えば、充填剤、軟化剤、シランカップリング剤、ステアリン酸、老化防止剤、亜鉛華、加硫促進剤、加硫剤等を目的に応じて適宜配合することができる。これら配合剤としては、市販品を好適に使用することができる。なお、上記ゴム組成物は、ゴム成分に、上記ゴム補強用炭素材料と共に、必要に応じて適宜選択した各種配合剤を配合して、混練り、熱入れ、押出等することにより調製することができる。   Next, a rubber composition obtained by blending the carbon material for rubber reinforcement of the present invention and a tire using the rubber composition will be described in detail. The rubber composition is characterized by blending the carbon material described above. The rubber composition includes, for example, the above-mentioned carbon material for rubber reinforcement and a rubber component, as well as compounding agents commonly used in the rubber industry, such as fillers, softeners, silane coupling agents, stearic acid, anti-aging An agent, zinc white, vulcanization accelerator, vulcanizing agent and the like can be appropriately blended depending on the purpose. As these compounding agents, commercially available products can be suitably used. The rubber composition can be prepared by blending the rubber component with various compounding agents appropriately selected as necessary together with the rubber reinforcing carbon material, kneading, heating, extruding, and the like. it can.

なお、上記ゴム成分には、特に制限はなく、天然ゴム(NR)の他、ポリイソプレンゴム(IR)、スチレン−ブタジエン共重合体ゴム(SBR)、ポリブタジエンゴム(BR)、エチレン−プロピレン−ジエンゴム(EPDM)、クロロプレンゴム(CR)、ハロゲン化ブチルゴム、アクリロニリトル−ブタジエンゴム(NBR)等の合成ゴムを使用することができ、これらゴム成分は、一種単独で用いてもよいし、二種以上をブレンドして用いてもよい。   The rubber component is not particularly limited. In addition to natural rubber (NR), polyisoprene rubber (IR), styrene-butadiene copolymer rubber (SBR), polybutadiene rubber (BR), ethylene-propylene-diene rubber. (EPDM), chloroprene rubber (CR), halogenated butyl rubber, acrylonitrile-butadiene rubber (NBR), and other synthetic rubbers can be used. These rubber components may be used alone or in combination. You may blend and use the above.

一方、上記タイヤは、上述のゴム組成物を用いたことを特徴とし、高分子系廃棄物から得られる炭化物が利用されているにもかかわらず、補強性を十分に確保しつつ、タイヤの物性低下を軽減することができる。なお、該タイヤは、上述のゴム組成物を用いる以外特に制限は無く、常法に従って製造することができる。また、該タイヤに充填する気体としては、通常の或いは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。   On the other hand, the tire is characterized by using the rubber composition described above, and despite the use of carbides obtained from polymer waste, the physical properties of the tire while ensuring sufficient reinforcement Reduction can be reduced. The tire is not particularly limited except that the rubber composition described above is used, and can be manufactured according to a conventional method. Moreover, as gas with which this tire is filled, inert gas, such as nitrogen, argon, helium other than normal or the air which adjusted oxygen partial pressure, can be used.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

(炭化物(A)の製造)
図1に示す熱分解装置を用いて、廃トラック用タイヤから炭化物を回収した。
なお、図1に示す熱分解装置は、炭化物(A)の製造に好適な熱分解装置であり、無酸素ガスを加熱するための熱交換器1と、内部に高分子系廃棄物6を収容する熱分解炉2及び該熱分解炉2を外部から加熱する外部加熱手段8を有し、該高分子系廃棄物6を熱交換器1で加熱した無酸素ガスと直接接触させることにより熱分解させて熱分解ガスを発生させるための分解装置7と、分解装置7で発生した熱分解ガスを冷却して、凝縮した油分を回収するための油分回収装置5と、油分回収装置5で油分を回収した後の残ガスを、無酸素ガスとして熱交換器1に供給するための循環路4と、熱交換器1に無酸素ガスを供給するための無酸素ガス供給源3とを備える。また、図1に示す熱分解装置は、無酸素ガス供給源3から無酸素ガスを供給するために無酸素ガス供給源3と熱交換器1とを接続する配管中に、流量計9、ダンパ10及び送風機11を備え、油分回収装置5で回収した後の残ガスを無酸素ガスとして熱交換器1に循環させるための循環路4中に、流量計9、ダンパ10、送風機11及び熱風炉14を備える。更に、図1に示す油分回収装置5は、回収される油分をその沸点に応じて分けるため、複数の乾留搭12a,12bを備え、ここで、各乾留塔12は、その下部で配管を通して回収タンク13に接続されており、回収した油分を貯蔵することができる。また更に、図1に示す熱分解装置において、余剰のガスは、排風機15を介して排ガス処理装置16で処理された後、大気中に放出することができる。
(Manufacture of carbide (A))
Carbides were recovered from the waste truck tires using the thermal decomposition apparatus shown in FIG.
The pyrolysis apparatus shown in FIG. 1 is a thermal decomposition apparatus suitable for the production of carbide (A), and contains a heat exchanger 1 for heating oxygen-free gas and a polymer waste 6 inside. Pyrolysis furnace 2 and external heating means 8 for heating the pyrolysis furnace 2 from the outside, and the polymer waste 6 is pyrolyzed by directly contacting the oxygen-free gas heated by the heat exchanger 1 The cracking device 7 for generating pyrolysis gas, the pyrolysis gas generated in the cracking device 7 is cooled, the oil recovery device 5 for recovering the condensed oil, and the oil recovery device 5 A circulation path 4 for supplying the recovered residual gas as an oxygen-free gas to the heat exchanger 1 and an oxygen-free gas supply source 3 for supplying the heat exchanger 1 with the oxygen-free gas are provided. Further, the pyrolysis apparatus shown in FIG. 1 includes a flow meter 9, a damper in a pipe connecting the oxygen-free gas supply source 3 and the heat exchanger 1 in order to supply oxygen-free gas from the oxygen-free gas supply source 3. 10 and a blower 11, a flow meter 9, a damper 10, a blower 11, and a hot stove in a circulation path 4 for circulating the residual gas recovered by the oil content recovery device 5 as an oxygen-free gas to the heat exchanger 1. 14. Further, the oil content recovery device 5 shown in FIG. 1 includes a plurality of dry distillation towers 12a and 12b in order to divide the recovered oil content according to the boiling point thereof. Here, each of the carbonization towers 12 is recovered through a pipe at the lower part thereof. It is connected to the tank 13 and can store the recovered oil. Furthermore, in the thermal decomposition apparatus shown in FIG. 1, surplus gas can be released into the atmosphere after being treated by the exhaust gas treatment device 16 via the exhaust fan 15.

詳細には、熱分解炉2(容量0.5m3)内に廃トラック用タイヤの裁断品(高分子系廃棄物6)約100kgを投入し、熱分解炉2内を窒素ガスで置換した後、熱分解装置内の窒素ガスを循環させながら熱交換器1によりガス温度を約500℃まで上昇させて、この温度を保持した。なお、熱分解炉2内に導入される窒素ガスのガス流量は0.005m3/s[ntp]に設定され、0.0045m3/s[ntp]〜0.0055m3/s[ntp]の範囲に制御し、熱分解装置系内での酸素濃度は1容量%以下の範囲に制御された。ここで、熱分解装置内の酸素濃度の測定には、ジルコニア式酸素センサーを用いた。熱交換器1による加熱を開始してから1時間で、熱分解ガスが乾留搭12aに溜出し始め、熱交換器1による加熱の開始から約4時間後に溜出が止まった。溜出の停止は熱分解反応が完了したことを示し、熱交換器1を止めて約12時間放置冷却した。その後、熱分解炉2から炭化物を取り出した。該炭化物中には、タイヤ材料であるスチールコード等が含まれるため、余分なタイヤ材料をマグネットセパレーターで除去した。余分なタイヤ材料が除去された炭化物をハンマー式の粉砕機で粒径が1mm以下の細粉に粉砕し、この粉砕物を、回転羽を有する風力分級機により分級することにより、粒径が50μm以上の粗粉を除去し、分級装置を用いて粒径が10μm以下の微細炭化物(A)を得た。
このゴム配合用微細炭化物は、表1に示すように窒素吸着比表面積(N2SA)が81.6m2/g、DBP吸収量が85.2ml/100gの特性を有していた。
Specifically, after putting about 100 kg of waste truck tire cut products (polymer waste 6) into the pyrolysis furnace 2 (capacity 0.5 m 3 ) and replacing the pyrolysis furnace 2 with nitrogen gas, While circulating the nitrogen gas in the thermal decomposition apparatus, the gas temperature was raised to about 500 ° C. by the heat exchanger 1 and this temperature was maintained. The gas flow rate of nitrogen gas introduced into the pyrolysis furnace 2 is set to 0.005m 3 / s [ntp], controlled in the range of 0.0045m 3 /s[ntp]~0.0055m 3 / s [ntp ] However, the oxygen concentration in the pyrolyzer system was controlled within a range of 1% by volume or less. Here, a zirconia oxygen sensor was used to measure the oxygen concentration in the thermal decomposition apparatus. One hour after the start of heating by the heat exchanger 1, the pyrolysis gas began to be accumulated in the dry distillation column 12a, and the distillation stopped about 4 hours after the start of heating by the heat exchanger 1. Stopping the distillation showed that the thermal decomposition reaction was completed, and the heat exchanger 1 was stopped and the system was left to cool for about 12 hours. Thereafter, the carbide was taken out from the pyrolysis furnace 2. Since the carbide includes a steel cord as a tire material, excess tire material was removed with a magnetic separator. Carbide from which excess tire material has been removed is pulverized into fine powder with a particle size of 1 mm or less with a hammer-type pulverizer, and this pulverized product is classified with an air classifier having rotating blades, resulting in a particle size of 50 μm. The above coarse powder was removed, and a fine carbide (A) having a particle size of 10 μm or less was obtained using a classifier.
As shown in Table 1, the fine carbide for rubber compounding had a characteristic of a nitrogen adsorption specific surface area (N 2 SA) of 81.6 m 2 / g and a DBP absorption of 85.2 ml / 100 g.

<実施例1>
(ゴム補強用炭素材料の製造)
特開昭61−34071号公報(出願人:旭カーボン株式会社)に開示のソフト系カーボンブラック製造装置を用い、特開昭61−34071号公報の請求項1に記載された製造条件を適用して、GPF級カーボンブラックを製造した。上記製造条件によるGPF級カーボンブラックの生産収率は150kg/hrであった。このGPF級カーボンブラック及び上記製造例で得られたゴム配合用微細炭化物を各々別個にピン型造粒装置にて造粒処理し、その後、得られた湿潤造粒物をカーボンブラック製造プロセスの常法に従って乾燥工程により乾燥させた。次に、これら二つの造粒物をそれぞれ500gずつV型混合機に入れ、20rpmで5分回転させて混合し、ゴム補強用炭素材料Iを得た。
<Example 1>
(Manufacture of carbon materials for rubber reinforcement)
Using the soft carbon black manufacturing apparatus disclosed in JP-A-61-34071 (Applicant: Asahi Carbon Co., Ltd.), the manufacturing conditions described in claim 1 of JP-A-61-34071 are applied. Thus, GPF grade carbon black was produced. The production yield of GPF grade carbon black under the above production conditions was 150 kg / hr. This GPF grade carbon black and the fine carbide for rubber compounding obtained in the above production example are each separately granulated with a pin type granulator, and then the obtained wet granulated product is used in the usual process for producing carbon black. It was dried by a drying process according to the method. Next, 500 g of each of these two granulated products was put into a V-type mixer and mixed by rotating at 20 rpm for 5 minutes to obtain a carbon material I for rubber reinforcement.

<実施例2>
炭化物(A)とカーボンブラック(B)との混合質量比(A/B)を20/80(炭化物200g、GPF800g)に変更した以外は、実施例1と同様にしてゴム補強用炭化物IIを得た。
<Example 2>
A rubber reinforcing carbide II is obtained in the same manner as in Example 1 except that the mixing mass ratio (A / B) of the carbide (A) and the carbon black (B) is changed to 20/80 (200 g of carbide, 800 g of GPF). It was.

<実施例3>
炭化物(A)とカーボンブラック(B)との混合質量比(A/B)を10/90(炭化物100g、GPF900g)に変更した以外は、実施例1と同様にしてゴム補強用炭化物IIIを得た。
<Example 3>
A rubber reinforcing carbide III is obtained in the same manner as in Example 1 except that the mixing mass ratio (A / B) of the carbide (A) and the carbon black (B) is changed to 10/90 (100 g of carbide, 900 g of GPF). It was.

<実施例4>
炭化物(A)とカーボンブラック(B)との混合質量比(A/B)を60/40(炭化物600g、GPF400g)に変更した以外は、実施例1と同様にしてゴム補強用炭化物IVを得た。
<Example 4>
Carbide reinforcing carbide IV is obtained in the same manner as in Example 1 except that the mixing mass ratio (A / B) of carbide (A) and carbon black (B) is changed to 60/40 (carbide 600 g, GPF 400 g). It was.

<実施例5>
上記GPF級カーボンブラック製造プロセス中の製造工程において、上記製造例で得られたゴム配合用微細炭化物500kgを、ピン型造粒装置内の粉体供給口から一定量ずつ定量フィーダーを用いてGPF級カーボンブラック粉末に添加し、造粒機の回転軸のトルクを検出して添加する水量を制御しながら両者を混合し、造流処理を実施した。生成した混合湿潤造粒物をカーボンブラック製造プロセスの常法に従って乾燥工程に移行させて乾燥を行い、ゴム補強用炭化物材料Vを得た。
<Example 5>
In the manufacturing process in the GPF class carbon black manufacturing process, 500 kg of the fine rubber compounding material for rubber blending obtained in the above manufacturing example is added to the GPF class by using a quantitative feeder from the powder supply port in the pin type granulator. It added to carbon black powder, both were mixed, detecting the torque of the rotating shaft of a granulator, and controlling the amount of water to add, and the flow forming process was implemented. The resulting mixed wet granulated product was transferred to a drying step in accordance with a conventional method for producing carbon black and dried to obtain a rubber material V for reinforcing rubber.

実施例1〜5から得られたゴム補強用炭素材料I〜V、ゴム配合用微細炭化物、及びGPF級カーボンブラック[旭カーボン(株)製,商品名:旭#55]について、ジブチルフタレート(DBP)吸油量及び窒素吸着比表面積(NSA)を下記の方法により測定した。結果を表1に示す。なお、得られた結果から、ゴム補強用炭素材料は、GPF級カーボンブラックと比較して、同程度のストラクチャーを有しているが、ずっと大きな比表面積(粒子径が小さい)を有していることが分かる。 Dibutyl phthalate (DBP) was used for rubber reinforcing carbon materials I to V obtained from Examples 1 to 5, fine carbide for rubber compounding, and GPF grade carbon black [manufactured by Asahi Carbon Co., Ltd., trade name: Asahi # 55]. ) Oil absorption and nitrogen adsorption specific surface area (N 2 SA) were measured by the following methods. The results are shown in Table 1. From the results obtained, the carbon material for rubber reinforcement has a structure comparable to that of GPF grade carbon black, but has a much larger specific surface area (small particle diameter). I understand that.

Figure 0005632661
Figure 0005632661

(1)窒素吸着比表面積(N2SA)
JIS K 6217−2:2001に準拠して、窒素吸着比表面積(N2SA)を測定した。
(2)ジブチルフタレート(DBP)吸油量
JIS K 6217−4:2008に準拠して、ジブチルフタレート(DBP)吸油量を測定した。
(1) Nitrogen adsorption specific surface area (N 2 SA)
The nitrogen adsorption specific surface area (N 2 SA) was measured according to JIS K 6217-2: 2001.
(2) Dibutyl phthalate (DBP) oil absorption The dibutyl phthalate (DBP) oil absorption was measured according to JIS K 6217-4: 2008.

実施例1〜5のゴム補強用炭素材料I〜V及びコントロールとしてGPF級カーボンブラック[旭カーボン(株)製,商品名:旭#55]を用いて、表2に示す配合処方のゴム組成物を調製し、該ゴム組成物の未加硫時及び加硫後のゴム特性を下記の方法により測定した。結果を表3に示す。   Rubber compositions having the compounding formulations shown in Table 2 by using carbon materials I to V for rubber reinforcement of Examples 1 to 5 and GPF class carbon black [manufactured by Asahi Carbon Co., Ltd., trade name: Asahi # 55] as a control. The rubber properties of the rubber composition before and after vulcanization were measured by the following method. The results are shown in Table 3.

Figure 0005632661
Figure 0005632661

*1 油展ゴム,ゴム成分100質量部に対して27.3質量部のアロマオイルで油展,JSR(株)製,商品名:SBR 1723.
*2 JSR(株)製,商品名:BROMOBUTYL 2255.
*3 表1に示す各試料を使用した.
*4 フレキシス社製,商品名:サントフレックス 6PPD.
*5 大内新興化学工業(株)製,商品名:ノクセラー DM−P.
*6 大内新興化学工業(株)製,商品名:ノクラック 224.
*7 大内新興化学工業(株)製,商品名:ノクセラー D.
*8 大内新興化学工業(株)製,商品名:ノクセラー NS.
* 1 Oil-extended rubber, oil-extended with 27.3 parts by mass of aroma oil for 100 parts by mass of rubber component, manufactured by JSR Corporation, product name: SBR 1723.
* 2 Product name: BROMOBUTYL 2255, manufactured by JSR Corporation.
* 3 Each sample shown in Table 1 was used.
* 4 Product name: Santoflex 6PPD, manufactured by Flexis.
* 5 Ouchi Shinsei Chemical Industry Co., Ltd., trade name: Noxeller DM-P.
* 6 Product name: NOCRACK manufactured by Ouchi Shinsei Chemical Co., Ltd.
* 7 Ouchi Shinsei Chemical Co., Ltd., trade name: Noxeller
* 8 Product name: NOXELLER NS.

(3)未加硫時のゴム特性
(a)ムーニー粘度
JIS K6300−1:2001に準拠し、ムーニー粘度計を用いて、130℃でのムーニー粘度[ML1+4(130℃)]を測定した。表1に示したGPF級カーボンブラックが配合されたゴム組成物を比較対照として、この組成物のムーニー粘度を100として表3に指数表示した。指数値が小さい程、加工性に優れることを示す。
(b)スコーチタイム
JIS K6300−1:2001に準拠し、ムーニー粘度計を用いて、ムーニー粘度−時間曲線を測定し、ムーニー粘度の最低値(Vm)から5ポイント上昇した時間(t5)を求め、これをスコーチタイム(分)とした。表1に示したGPF級カーボンブラックが配合されたゴム組成物を比較対照として、この組成物のスコーチタイムを100として表3に指数表示した。指数値が100に近い程、加硫時間が適正で、作業性に優れることを示す。
(3) Rubber properties when not vulcanized (a) Mooney viscosity Measured Mooney viscosity [ML 1 + 4 (130 ° C)] at 130 ° C using Mooney viscometer according to JIS K6300-1: 2001 did. The rubber composition containing the GPF grade carbon black shown in Table 1 was used as a comparative control, and the Mooney viscosity of this composition was taken as 100, and the index was shown in Table 3. It shows that it is excellent in workability, so that an index value is small.
(B) Scorch time In accordance with JIS K6300-1: 2001, a Mooney viscosity-time curve was measured using a Mooney viscometer, and a time (t5) increased by 5 points from the minimum value (Vm) of Mooney viscosity was obtained. This was the scorch time (minutes). The rubber composition containing the GPF grade carbon black shown in Table 1 was used as a comparative control, and the scorch time of this composition was taken as 100, and the index was shown in Table 3. The closer the index value is to 100, the better the vulcanization time and the better the workability.

(4)加硫後のゴム特性
(a)引張応力
140℃で30分間加硫して得た加硫ゴムに対して、JIS K6251:2004に準拠し、100℃で200%伸び時及び常温(23℃)で300%伸び時における引張応力を測定した。表1に示したGPF級カーボンブラックが配合されたゴム組成物を比較対照として、この組成物の引張応力を100として表3に指数表示した。指数値が大きい程、引張応力が大きく、弾性率が高いことを示す。
(b)引張強さ
140℃で30分間加硫して得た加硫ゴムに対して、JIS K6251:2004に準拠し、常温(23℃)及び100℃での引張強さ(Tb)を測定した。表1に示したGPF級カーボンブラックが配合されたゴム組成物を比較対照として、この組成物の引張強さを100として表3に指数表示した。指数値が大きい程、破壊に対する耐性が高く、補強性に優れることを示す。
(4) Rubber properties after vulcanization (a) Tensile stress
The vulcanized rubber obtained by vulcanization at 140 ° C for 30 minutes was measured for tensile stress at 200% elongation at 100 ° C and 300% elongation at normal temperature (23 ° C) according to JIS K6251: 2004. . The rubber composition containing the GPF grade carbon black shown in Table 1 was used as a comparative control, and the tensile stress of this composition was taken as 100, and the index was shown in Table 3. The larger the index value, the greater the tensile stress and the higher the elastic modulus.
(B) Tensile strength
The vulcanized rubber obtained by vulcanization at 140 ° C. for 30 minutes was measured for the tensile strength (Tb) at room temperature (23 ° C.) and 100 ° C. according to JIS K6251: 2004. The rubber composition containing the GPF grade carbon black shown in Table 1 was used as a comparative control, and the tensile strength of this composition was taken as 100, and the index was shown in Table 3. The larger the index value, the higher the resistance to fracture and the better the reinforcement.

Figure 0005632661
Figure 0005632661

表3記載の実施例1〜3の結果から、混合比を調整することにより、高分子系廃棄物から得られる炭化物が含まれているにもかかわらず、ゴム成分に配合しても補強効果が十分に発揮できるゴム補強用炭素材料が得られることが分かる。また、実施例4〜5から、炭化物(A)の過剰な配合や、所定の手順による混合を行わないことで、引張応力が低下することが分かる。   From the results of Examples 1 to 3 shown in Table 3, by adjusting the mixing ratio, the reinforcing effect is obtained even if it is added to the rubber component, even though the carbide obtained from the polymer waste is included. It turns out that the carbon material for rubber reinforcement which can fully exhibit is obtained. Moreover, from Examples 4-5, it turns out that tensile stress falls by not performing the mixing | blending by the excessive mixing | blending of a carbide | carbonized_material (A) or a predetermined procedure.

1 熱交換器
2 熱分解炉
3 無酸素ガス供給源
4 循環路
5 油分回収装置
6 高分子系廃棄物
7 分解装置
8 外部加熱手段
9 流量計
10 ダンパ
11 送風機
12 乾留搭
13 回収タンク
14 熱風炉
15 排風機
16 排ガス処理装置
DESCRIPTION OF SYMBOLS 1 Heat exchanger 2 Pyrolysis furnace 3 Anoxic gas supply source 4 Circulation path 5 Oil content recovery device 6 Polymer waste 7 Decomposition device 8 External heating means 9 Flowmeter 10 Damper 11 Blower 12 Dry distillation tower 13 Recovery tank 14 Hot air furnace 15 Ventilator 16 Exhaust gas treatment device

Claims (2)

高分子系廃棄物の熱分解又は不完全燃焼により得られる炭化物(A)と、カーボンブラック(B)とを混合する工程を含み、
前記炭化物(A)と前記カーボンブラック(B)とをそれぞれ独立に造粒してから混合する
ことを特徴とするゴム補強用炭素材料の製造方法。
Look-containing carbide obtained by pyrolysis or incomplete combustion of polymer waste (A), the step of mixing the carbon black (B),
The method for producing a rubber material for reinforcing rubber, wherein the carbide (A) and the carbon black (B) are granulated independently and then mixed .
前記炭化物(A)と前記カーボンブラック(B)との混合質量比(A/B)が10/90〜50/50の範囲内であることを特徴とする請求項1に記載のゴム補強用炭素材料の製造方法。   The carbon for rubber reinforcement according to claim 1, wherein a mixing mass ratio (A / B) of the carbide (A) and the carbon black (B) is within a range of 10/90 to 50/50. Material manufacturing method.
JP2010141099A 2010-06-21 2010-06-21 Carbon material for rubber reinforcement and method for producing the same Active JP5632661B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010141099A JP5632661B2 (en) 2010-06-21 2010-06-21 Carbon material for rubber reinforcement and method for producing the same
PCT/JP2011/003507 WO2011161932A1 (en) 2010-06-21 2011-06-20 Carbon material for rubber reinforcement and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010141099A JP5632661B2 (en) 2010-06-21 2010-06-21 Carbon material for rubber reinforcement and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012001702A JP2012001702A (en) 2012-01-05
JP5632661B2 true JP5632661B2 (en) 2014-11-26

Family

ID=45371139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010141099A Active JP5632661B2 (en) 2010-06-21 2010-06-21 Carbon material for rubber reinforcement and method for producing the same

Country Status (2)

Country Link
JP (1) JP5632661B2 (en)
WO (1) WO2011161932A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5813985B2 (en) 2011-04-19 2015-11-17 株式会社ブリヂストン Method for producing carbide for reinforcing rubber articles
DE102012105796B4 (en) * 2012-06-29 2016-01-21 Pyrolyx Ag Process and apparatus for producing hybrid carbon black particles
CN114874500B (en) * 2022-04-14 2024-02-13 沈阳建筑大学 Resin/plastic impact modifier and preparation method thereof
CN114874497B (en) * 2022-04-14 2024-02-13 沈阳建筑大学 Environment-friendly rubber reinforcing agent and preparation method thereof
CN118234809A (en) * 2023-04-26 2024-06-21 东海炭素株式会社 Method for producing modified recycled carbon black and modified recycled carbon black

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517704A (en) * 1991-07-16 1993-01-26 Nippon Steel Chem Co Ltd Production of granulated carbon black
JP3224692B2 (en) * 1994-07-20 2001-11-05 三菱重工業株式会社 Method and apparatus for producing carbon black from waste
CN101213263B (en) * 2005-05-16 2012-05-16 卡伯特公司 Blends of carbon blacks and products containing the same
JP2007154097A (en) * 2005-12-07 2007-06-21 Toyo Ink Mfg Co Ltd Carbon black dispersion

Also Published As

Publication number Publication date
WO2011161932A1 (en) 2011-12-29
JP2012001702A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
Dwivedi et al. Recycling of waste tire by pyrolysis to recover carbon black: Alternative & environment-friendly reinforcing filler for natural rubber compounds
Martínez et al. Carbon black recovery from waste tire pyrolysis by demineralization: Production and application in rubber compounding
Ren et al. Use of fly ash as eco-friendly filler in synthetic rubber for tire applications
JP5813985B2 (en) Method for producing carbide for reinforcing rubber articles
TWI789597B (en) Methods of preparing a composite having elastomer and filler
JP5632661B2 (en) Carbon material for rubber reinforcement and method for producing the same
Zhang et al. Fabrication and characterization of rice bran carbon/styrene butadiene rubber composites fabricated by latex compounding method
JP5878275B2 (en) Method of pyrolyzing polymer waste, method of recovering carbide, and carbide, rubber composition and tire
WO2015162814A1 (en) Carbon black and rubber composition
Zhang et al. Influence of a novel coupling agent on the performance of recovered carbon black filled natural rubber
Samaržija-Jovanović et al. Properties of vulcanized polyisoprene rubber composites filled with opalized white tuff and precipitated silica
JP7214561B2 (en) Method for producing amphiphilic silica-carbon composite
JP5693057B2 (en) CARBIDE, PROCESS FOR PRODUCING THE SAME, RUBBER COMPOSITION AND TIRE
WO2015011796A1 (en) Carbon black, method for producing carbon black, and rubber composition
WO2010137352A1 (en) Method and apparatus for thermally decomposing polymer waste, method for collecting carbide, carbide, rubber composition containing the carbide, and tire using the rubber composition
JP5483367B2 (en) Rubber composition for inner liner and pneumatic tire
Iluppalla et al. Silica/white rice husk ash hybrid filler for rubber composites for the manufacture of low speed castor wheel rubber treads
JP2009173783A (en) Diene-based rubber composition
JP2007246929A (en) Method for producing rubber product
JP5675061B2 (en) Polymer waste pyrolysis apparatus, pyrolysis method using the apparatus, carbide recovery method, carbide, rubber composition containing the carbide, and tire using the rubber composition
JP5548669B2 (en) Rubber composition for tire and pneumatic tire
Hasan et al. Comparation of Rubber Milling Process to Produce Natural Rubber Coumpounds Using Modified and Unmodified Local Clay Filler
Dechojarassri et al. Cure characteristics and mechanical properties of natural rubber vulcanizates filled with untreated pyrolytic tire char
Martínez Ángel et al. Carbon black recovery from waste tire pyrolysis by demineralization: Production and application in rubber compounding
Zhang et al. Preparation and properties of rice husk ash silica filled natural rubber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141010

R150 Certificate of patent or registration of utility model

Ref document number: 5632661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250