JP2007161783A - Continuous volume-reduction system for polymer waste - Google Patents

Continuous volume-reduction system for polymer waste Download PDF

Info

Publication number
JP2007161783A
JP2007161783A JP2005356842A JP2005356842A JP2007161783A JP 2007161783 A JP2007161783 A JP 2007161783A JP 2005356842 A JP2005356842 A JP 2005356842A JP 2005356842 A JP2005356842 A JP 2005356842A JP 2007161783 A JP2007161783 A JP 2007161783A
Authority
JP
Japan
Prior art keywords
polymer waste
gas
oxygen
circulation system
pyrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005356842A
Other languages
Japanese (ja)
Inventor
Masaharu Fujimi
正治 藤見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJIMI ZOSEN KK
Original Assignee
FUJIMI ZOSEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJIMI ZOSEN KK filed Critical FUJIMI ZOSEN KK
Priority to JP2005356842A priority Critical patent/JP2007161783A/en
Publication of JP2007161783A publication Critical patent/JP2007161783A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Furnace Details (AREA)
  • Treating Waste Gases (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous volume-reduction system for polymer waste realizing a large capacity by the improvement in the thermal decomposition efficiency and treating speed. <P>SOLUTION: The continuous volume-reduction system 1 for polymer waste is provided with a circulation system 2 to perform the thermal decomposition of polymer waste with a circulating oxygen-free gas, an air-shielded continuous charging apparatus 3 to charge the polymer waste to the circulation system 2 in oxygen-free state, an air-shielded continuous discharging apparatus 4 to discharge the heat-decomposed polymer waste from the circulation system in oxygen-free state, and an exhaust gas treating apparatus 24 to clean and discharge the excess gas in the circulation system. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高分子系廃棄物を連続的に熱分解して減容処理するためのシステムに関する。   The present invention relates to a system for continuously pyrolyzing polymer waste to reduce the volume.

図2は、高分子系廃棄物を熱分解処理する従来のシステムの構成を示す模式図である。この図2に示すように従来のシステムの場合、主として前処理装置50と熱分解油化装置60とを備えている。   FIG. 2 is a schematic diagram showing the configuration of a conventional system for thermally decomposing polymer waste. As shown in FIG. 2, the conventional system mainly includes a pretreatment device 50 and a pyrolysis oil converting device 60.

前処理装置50では、高分子系廃棄物である原料40が、破砕機51,磁選機52,水洗機53,乾燥機54,及び脱気機55の順に経て前処理される。より具体的には、原料40は破砕機51にて粗破砕,細破砕,分離,分別され、磁選機52にて鉄分その他の夾雑物が除去され、水洗機53にて土砂類が除去され、乾燥機54にて水分が除去され、更に最後に脱気機55にて塩ビ等の混入により塩化水素ガスが除去される。   In the pretreatment device 50, the raw material 40 that is a polymer waste is pretreated through the crusher 51, the magnetic separator 52, the water washer 53, the dryer 54, and the deaerator 55 in this order. More specifically, the raw material 40 is roughly crushed, finely crushed, separated and separated by a crusher 51, iron and other impurities are removed by a magnetic separator 52, and earth and sand are removed by a water washing machine 53. Moisture is removed by the dryer 54, and finally the hydrogen chloride gas is removed by the deaerator 55 due to the inclusion of vinyl chloride or the like.

このような前処理を終えた高分子系廃棄物は次いで熱分解油化装置60へ送り込まれる。熱分解油化装置60では、まず高分子系廃棄物は加熱炉61へ投入され、バーナー62の熱によって炉壁を介して約250度に加熱され溶融される。溶融した高分子系廃棄物は熱分解炉63に送られ、バーナー62の熱によって炉壁を介して更に高温で加熱されて熱分解される。この熱分解の際、高分子系廃棄物から熱分解ガスが発生する。   The polymer waste after such pretreatment is then sent to the pyrolysis oil converting device 60. In the pyrolysis oil converting apparatus 60, first, the polymer waste is put into the heating furnace 61, and is heated and melted by the heat of the burner 62 to about 250 degrees through the furnace wall. The molten polymer waste is sent to the pyrolysis furnace 63, where it is further heated by the heat of the burner 62 through the furnace wall at a high temperature and pyrolyzed. During this pyrolysis, pyrolysis gas is generated from the polymer waste.

発生した熱分解ガスは、コンデンサ64にて冷却されることにより油分が凝縮し、この油分は油回収タンク65に回収される。そして、回収した油分はその後、回収油貯蔵タンク66に貯蔵される。また、油分が回収された後の残ガスは可燃性であるため、バーナー62の補助燃料として利用される。   The generated pyrolysis gas is cooled by the condenser 64 to condense the oil, and this oil is recovered in the oil recovery tank 65. The recovered oil is then stored in the recovered oil storage tank 66. Further, since the residual gas after the oil is recovered is flammable, it is used as an auxiliary fuel for the burner 62.

なお、図2に示すシステムでは、加熱炉61内と熱分解炉63内とで溶融物の滞留を防止するため、両炉61,63内の溶融物を循環ポンプ67によって循環させている。また、図2に示されている排ガス処理装置68は、加熱炉61にて高分子系廃棄物を加熱したときに発生する低分子量のガスを、冷却・除塵・洗浄した後に大気中に放出するものである。   In the system shown in FIG. 2, the melt in both the furnaces 61 and 63 is circulated by the circulation pump 67 in order to prevent stagnation of the melt in the heating furnace 61 and the pyrolysis furnace 63. In addition, the exhaust gas treatment device 68 shown in FIG. 2 releases the low molecular weight gas generated when the polymer waste is heated in the heating furnace 61 to the atmosphere after cooling, dust removal and washing. Is.

ところで、図2に示すような従来の高分子系廃棄物処理システムの場合、前処理工程が多いために非経済的である。また、熱分解炉では炉壁を介して高分子系廃棄物を加熱しなければならないのに加え、廃棄物が高分子系であって熱伝導率が低いため、十分な熱分解が行われないか熱分解に長時間を要するという効率性の問題もある。高分子系廃棄物の溶融物は高粘度であって対流が生じにくいという点も、熱分解に長時間を要する原因のひとつになっている。このようなことから、原料である高分子系廃棄物の投入から熱分解の完了に至るまでに長時間を要し、エネルギー消費量は大きくなってしまうため、システムの大型化を困難にしている。   Incidentally, the conventional polymer waste treatment system as shown in FIG. 2 is uneconomical because of many pretreatment steps. In addition, in the pyrolysis furnace, polymer waste must be heated through the furnace wall, and because the waste is polymer-based and has low thermal conductivity, sufficient pyrolysis is not performed. There is also a problem of efficiency that pyrolysis takes a long time. The fact that the polymer waste is highly viscous and difficult to cause convection is also one of the causes of the long time required for thermal decomposition. For this reason, it takes a long time from the introduction of polymer waste as a raw material to the completion of thermal decomposition, and the energy consumption increases, making it difficult to increase the size of the system. .

また、高分子系廃棄物の熱分解ガスの成分は、熱分解時の温度によって炭素数が変動し、高温で熱分解するほど熱分解ガスの炭素数は小さい値となり、しかもばらつきの範囲が狭まって、比較的一様な油分を回収することができる。しかしながら、従来の高分子系廃棄物処理システムの場合、高分子系廃棄物の熱分解炉での加熱が非効率的であるため、高温で熱分解しようとすると過剰加熱になりやすく、炉体を損傷する原因となってしまう。また、炉壁を介して加熱する上記システムでは、伝熱を阻害するコーキングが壁面に生じやすく、熱分解の効率性向上が困難になっている。   In addition, the pyrolysis gas component of polymer wastes varies in carbon number depending on the temperature during pyrolysis, and the pyrolysis gas has a smaller carbon number as the pyrolysis proceeds at a higher temperature, and the range of variation is narrower. Thus, a relatively uniform oil can be recovered. However, in the case of a conventional polymer waste treatment system, heating of polymer waste in a pyrolysis furnace is inefficient, so if it is attempted to pyrolyze at a high temperature, overheating tends to occur. It will cause damage. Moreover, in the said system heated via a furnace wall, the caulking which inhibits heat transfer tends to produce on a wall surface, and it is difficult to improve the efficiency of thermal decomposition.

そこで本発明は、高分子系廃棄物を処理するに際し、上述したような従来の問題点を解消できるような連続式高分子系廃棄物減容システムを提供することを目的とする。   Accordingly, an object of the present invention is to provide a continuous polymer waste volume reducing system capable of solving the above-mentioned conventional problems when processing polymer waste.

本発明は上述したような事情に鑑みてなされたものであり、本発明に係る連続式高分子系廃棄物減容システムは、高分子系廃棄物を循環する無酸素ガスによって熱分解処理する循環系と、該循環系へ高分子系廃棄物を無酸素状態で送り込む空気遮断連続投入装置と、熱分解後の高分子系廃棄物を無酸素状態で前記循環系外へ排出する空気遮断連続排出装置と、前記循環系内の余剰ガスを浄化排出する排ガス処理装置とを備え、前記循環系は、前記空気遮断連続投入装置により送り込まれた高分子系廃棄物を無酸素ガスによって熱分解する熱分解炉と、該熱分解炉での高分子系廃棄物の熱分解時に生じる熱分解ガスを冷却して油分を回収するコンデンサと、該コンデンサで油分が回収された後の熱分解ガスを無酸素ガスとして高温化する熱交換器と、前記無酸素ガスを、少なくとも前記熱分解炉、コンデンサ、及び熱交換器を経て系内で循環させる循環流路とを備えている。   The present invention has been made in view of the above-described circumstances, and the continuous polymer waste volume reduction system according to the present invention is a circulation in which pyrolysis treatment is performed by an oxygen-free gas that circulates polymer waste. System, an air-blocking continuous input device for sending polymer waste into the circulation system in an oxygen-free state, and an air-blocking continuous discharge for discharging the polymer waste after pyrolysis to the outside of the circulation system in an oxygen-free state And an exhaust gas treatment device that purifies and discharges surplus gas in the circulation system, and the circulation system is a heat that thermally decomposes the polymer waste fed by the air shut-off continuous input device with an oxygen-free gas. A cracking furnace, a condenser for recovering oil by cooling a pyrolysis gas generated during pyrolysis of polymer waste in the pyrolysis furnace, and an oxygen-free pyrolysis gas after the oil is recovered by the condenser Heat exchange that heats up as gas When the oxygen-free gas, at least the pyrolysis furnace, a capacitor, and a circulation flow path through a heat exchanger to circulate in the system.

このような構成とすることにより、多くの前処理を必要とせず熱分解することができると共に、熱分解効率の向上や循環系での処理速度の向上など、従来にない優れた効果を発揮することができ、システムの大型化(即ち、大容量化)を図ることも可能となる。   By adopting such a configuration, it can be thermally decomposed without requiring a lot of pretreatment, and exhibits excellent effects such as improved thermal decomposition efficiency and improved processing speed in the circulation system. It is possible to increase the size of the system (that is, increase the capacity).

また、前記循環系内の余剰ガスを前記熱交換器の熱源としていてもよい。このような構成とすることにより、余剰ガスの再利用が可能となるため、システムの経済性が向上する。   The surplus gas in the circulation system may be used as a heat source for the heat exchanger. By adopting such a configuration, it becomes possible to reuse the surplus gas, so that the economic efficiency of the system is improved.

また、運転開始時及び/又は運転停止時に前記循環系内を無酸素状態とすべく前記循環流路へ導入する窒素又は水蒸気を生成する導入ガス生成装置を更に備えていてもよい。このような構成とすることにより、燃焼性ガスを排除してシステムの安全性の向上を図ることができる。   Moreover, you may further provide the introduction gas production | generation apparatus which produces | generates the nitrogen or water vapor | steam introduced into the said circulation flow path so that the inside of the said circulation system may be made an oxygen-free state at the time of an operation start and / or an operation stop. By adopting such a configuration, the safety of the system can be improved by eliminating combustible gas.

本発明は、熱分解効率や処理速度の向上により、大容量化を実現可能な連続式高分子系廃棄物減容システムを提供することができる。   INDUSTRIAL APPLICABILITY The present invention can provide a continuous polymer waste volume reducing system capable of realizing a large capacity by improving thermal decomposition efficiency and processing speed.

以下、本発明に係る連続式高分子系廃棄物減容システムについて、添付図面を参照しながら説明する。図1は、本発明の実施の形態に係る連続式高分子系廃棄物減容システム(以下、単に「減容システム」という)の全体構成を示す図面である。図1に示すように本実施の形態に係る減容システム1は、投入された高分子系廃棄物を循環ガスで熱分解して減容処理するための循環系2と、該循環系2へ高分子系廃棄物を無酸素状態で連続的に投入することのできる空気遮断連続投入装置3と、減容処理後の高分子系廃棄物を無酸素状態で循環系2から連続的に排出することのできる空気遮断連続排出装置4とを主として備えている。   Hereinafter, a continuous polymer waste volume reducing system according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a diagram showing an overall configuration of a continuous polymer waste volume reduction system (hereinafter simply referred to as “volume reduction system”) according to an embodiment of the present invention. As shown in FIG. 1, a volume reduction system 1 according to the present embodiment includes a circulation system 2 for thermally decomposing charged polymer waste with a circulation gas to reduce the volume, and to the circulation system 2. Air shut-off continuous input device 3 that can continuously input polymer waste in an oxygen-free state, and continuously discharge the polymer waste after volume reduction from the circulation system 2 in an oxygen-free state It is mainly provided with an air shut-off continuous discharge device 4 that can be used.

循環系2は、空気遮断連続投入装置3によって系内に送り込まれた高分子系廃棄物を蓄えると共に熱分解する熱分解炉10を備えている。該熱分解炉10は、系内を循環する高温の無酸素ガスによって高分子系廃棄物を熱分解し、これに伴って熱分解ガスを発生させる。熱分解された高分子系廃棄物は、熱分解炉10から(即ち、循環系2から)空気遮断連続排出装置4によって排出されるようになっている。   The circulation system 2 includes a pyrolysis furnace 10 that stores the polymer waste sent into the system by the air shut-off continuous charging device 3 and thermally decomposes it. The pyrolysis furnace 10 pyrolyzes polymer waste with a high-temperature oxygen-free gas circulating in the system, and generates pyrolysis gas accordingly. The pyrolyzed polymer waste is discharged from the pyrolysis furnace 10 (that is, from the circulation system 2) by the air shut-off continuous discharge device 4.

循環系2内において熱分解炉10の下流側には、該熱分解炉10との間を流路11で接続されたコンデンサ12が設けられている。該コンデンサ12は、熱分解炉10で発生した熱分解ガスを冷却して油分を回収する。コンデンサ12の下方には、該コンデンサ12で回収された油分を一時的に蓄える集油ポット13が配設されており、該集油ポット13に蓄えられた油分は、該油分が後に送り込まれる分離タンク14にて、残存する水分が分離される。   A condenser 12 connected to the pyrolysis furnace 10 by a flow path 11 is provided on the downstream side of the pyrolysis furnace 10 in the circulation system 2. The capacitor 12 cools the pyrolysis gas generated in the pyrolysis furnace 10 and recovers oil. Below the condenser 12, an oil collecting pot 13 for temporarily storing the oil collected by the condenser 12 is disposed, and the oil stored in the oil collecting pot 13 is separated after the oil is sent to the oil collecting pot 13. The remaining moisture is separated in the tank 14.

コンデンサ12では、上述した油分の回収と同時に残ガスである無酸素ガスが発生する。コンデンサ12から系の下流方向へは、この無酸素ガスを系内に循環させるための流路15が延設され、該流路15は循環ブロワ16を介して熱交換器17に接続されている。熱交換器17は、流路15を通じて送り込まれた無酸素ガスを高温にするものであり、高温になった無酸素ガスは、循環ブロワ16で発生する送風圧で、熱交換器17から系の下流方向へ延設された流路18を通じて熱分解炉10へ送り込まれ、該熱分解炉10内の高分子系廃棄物を熱分解する。そして熱分解に供した後の無酸素ガスは、熱分解で生じた熱分解ガスと共に流路11を通じてコンデンサ12へ再び送り込まれる。   In the capacitor 12, an oxygen-free gas that is a residual gas is generated simultaneously with the recovery of the oil component described above. A flow path 15 for circulating the oxygen-free gas into the system extends from the condenser 12 in the downstream direction of the system, and the flow path 15 is connected to a heat exchanger 17 via a circulation blower 16. . The heat exchanger 17 raises the oxygen-free gas sent through the flow path 15 to a high temperature. The oxygen-free gas that has become a high temperature is a blowing pressure generated in the circulation blower 16 and is supplied from the heat exchanger 17 to the system. It is sent to the pyrolysis furnace 10 through the flow path 18 extending in the downstream direction, and the polymer waste in the pyrolysis furnace 10 is pyrolyzed. The oxygen-free gas after being subjected to pyrolysis is sent again to the capacitor 12 through the flow path 11 together with the pyrolysis gas generated by pyrolysis.

一方、熱分解炉10では熱分解に伴って常に熱分解ガスが発生するため、系内の循環に必要な量を超える余剰ガスが生じる。この余剰ガスは、熱分解炉10から延設された流路20を通じて熱風炉21へ送り込まれる。熱風炉21は、主として灯油やコンデンサ12で回収した油分を燃料とするバーナー22によって800度程度の火力で燃焼され、熱交換器17へ送り込まれる。なお、バーナー22の燃料としては、上記灯油や油分の他、系内の循環量を超える余剰ガスを用いてもよい。即ち、高分子系廃棄物の熱分解によって発生する熱分解ガスは、循環ブロワ16の送風圧により、一種の無酸素ガスとして循環系2内を循環するが、炭化水素換算の炭素数が3以下の成分および水素ガスは、余剰ガスとして高分子系廃棄物の熱分解の進行と共に徐々に増加する。この余剰ガスをバーナー22の燃料として再利用することができる。   On the other hand, since pyrolysis gas is always generated in the pyrolysis furnace 10 with pyrolysis, surplus gas exceeding the amount necessary for circulation in the system is generated. This surplus gas is sent to the hot stove 21 through a flow path 20 extending from the pyrolysis furnace 10. The hot stove 21 is burned with a heating power of about 800 degrees by a burner 22 that mainly uses kerosene or oil collected by the condenser 12 as fuel, and is sent to the heat exchanger 17. As the fuel for the burner 22, surplus gas exceeding the circulating amount in the system may be used in addition to the kerosene and oil. That is, the pyrolysis gas generated by pyrolysis of the polymer waste is circulated in the circulation system 2 as a kind of oxygen-free gas by the blowing pressure of the circulation blower 16, but the hydrocarbon conversion carbon number is 3 or less. These components and hydrogen gas gradually increase as the pyrolysis of the polymer waste as a surplus gas. This surplus gas can be reused as fuel for the burner 22.

熱交換器17に送り込まれた上記高温の余剰ガスは、コンデンサ12から熱交換器17へ送り込まれた無酸素ガスとは気密に仕切られた状態で熱交換器17内を通流し、その状態でコンデンサ12からの無酸素ガスを高温化するようになっている。そして、高温の余剰ガスは、コンデンサ12から送り込まれてきた無酸素ガスを熱交換器17内で加熱し、600度程度に減温された状態で排気ブロワ23によって排ガス処理装置24へ送り出される。   The high-temperature surplus gas sent to the heat exchanger 17 flows through the heat exchanger 17 in a state of being hermetically partitioned from the oxygen-free gas sent from the condenser 12 to the heat exchanger 17. The oxygen-free gas from the capacitor 12 is heated. The high-temperature surplus gas is sent to the exhaust gas treatment device 24 by the exhaust blower 23 in a state where the oxygen-free gas sent from the condenser 12 is heated in the heat exchanger 17 and reduced in temperature to about 600 degrees.

排ガス処理装置24には、苛性ソーダ注入装置25が接続されている。この苛性ソーダ注入装置25は、循環水ポンプ26から供給される循環水に苛性ソーダを注入するものであり、注入後の混合水は、排ガス処理装置24の排気筒(タンク)27の頂部からジェット状に噴射される。これにより、排ガス処理装置24内が洗浄されると同時に、排ガスは、その中に含まれていた粉塵やHCl及びSO等の成分が除去されて排気筒25から大気中へ放出される。 A caustic soda injection device 25 is connected to the exhaust gas treatment device 24. The caustic soda injection device 25 injects caustic soda into the circulating water supplied from the circulating water pump 26, and the mixed water after injection is jetted from the top of the exhaust pipe (tank) 27 of the exhaust gas treatment device 24. Be injected. As a result, the inside of the exhaust gas treatment device 24 is cleaned, and at the same time, the exhaust gas is discharged from the exhaust tube 25 into the atmosphere after the components such as dust, HCl and SO 2 contained therein are removed.

また、本実施の形態に係る減容システム1は、窒素ガス発生装置30を備えている。窒素ガス発生装置30は、運転開始時及び/又は運転終了(停止)時に、循環系2内を、酸素を含む空気から窒素雰囲気に変更するために用いられる。即ち、窒素ガス発生装置30が発生させた窒素は、系内に導入され循環することによって、系全体を窒素雰囲気(即ち、無酸素状態)としている。なお、窒素ガスに換えて水蒸気を用いてもよく、この場合、窒素ガス発生装置30に換えて水蒸気発生装置(図示せず)を減容システム1に備えればよい。   Further, the volume reduction system 1 according to the present embodiment includes a nitrogen gas generator 30. The nitrogen gas generator 30 is used to change the inside of the circulation system 2 from air containing oxygen to a nitrogen atmosphere at the start of operation and / or at the end of operation (stop). That is, the nitrogen generated by the nitrogen gas generator 30 is introduced into the system and circulated, thereby bringing the entire system into a nitrogen atmosphere (that is, an oxygen-free state). Note that water vapor may be used instead of nitrogen gas. In this case, the volume reduction system 1 may be provided with a water vapor generator (not shown) instead of the nitrogen gas generator 30.

本発明は、高分子系廃棄物の減容システムに適用することができる。   The present invention can be applied to a volume reduction system for polymer waste.

本発明の実施の形態に係る高分子系廃棄物減容システムの全体構成を示す図面である。It is drawing which shows the whole structure of the polymeric waste volume reduction system which concerns on embodiment of this invention. 高分子系廃棄物を熱分解処理する従来のシステムの構成を示す模式図である。It is a schematic diagram which shows the structure of the conventional system which pyrolyzes polymer waste.

符号の説明Explanation of symbols

1 連続式高分子系廃棄物減容システム
2 循環系
3 空気遮断連続投入装置
4 空気遮断連続排出装置
10 熱分解炉
12 コンデンサ
13 集油ポット
14 分離タンク
16 循環ブロワ
17 熱交換器
21 熱風炉
22 バーナー
23 排気ブロワ
24 排ガス処理装置
25 苛性ソーダ注入装置
26 循環水ポンプ
30 窒素ガス発生装置
DESCRIPTION OF SYMBOLS 1 Continuous polymer waste volume reduction system 2 Circulation system 3 Air interruption | blocking continuous injection | throwing-in apparatus 4 Air interruption | blocking continuous discharge | emission apparatus 10 Pyrolysis furnace 12 Capacitor 13 Oil collection pot 14 Separation tank 16 Circulation blower 17 Heat exchanger 21 Hot air furnace 22 Burner 23 Exhaust blower 24 Exhaust gas treatment device 25 Caustic soda injection device 26 Circulating water pump 30 Nitrogen gas generator

Claims (3)

高分子系廃棄物を循環する無酸素ガスによって熱分解処理する循環系と、該循環系へ高分子系廃棄物を無酸素状態で送り込む空気遮断連続投入装置と、熱分解後の高分子系廃棄物を無酸素状態で前記循環系外へ排出する空気遮断連続排出装置と、前記循環系内の余剰ガスを浄化排出する排ガス処理装置とを備え、
前記循環系は、前記空気遮断連続投入装置により送り込まれた高分子系廃棄物を無酸素ガスによって熱分解する熱分解炉と、該熱分解炉での高分子系廃棄物の熱分解時に生じる熱分解ガスを冷却して油分を回収するコンデンサと、該コンデンサで油分が回収された後の熱分解ガスを無酸素ガスとして高温化する熱交換器と、前記無酸素ガスを、少なくとも前記熱分解炉、コンデンサ、及び熱交換器を経て系内で循環させる循環流路とを備えていることを特徴とする連続式高分子系廃棄物減容システム。
A circulation system that performs thermal decomposition treatment with oxygen-free gas that circulates polymer waste, an air shut-off continuous input device that sends polymer waste to the circulation system in an oxygen-free state, and polymer waste after pyrolysis An air-blocking continuous discharge device that discharges substances out of the circulation system in an oxygen-free state, and an exhaust gas treatment device that purifies and discharges excess gas in the circulation system,
The circulation system includes a pyrolysis furnace for thermally decomposing the polymer waste sent by the air shut-off continuous input device with oxygen-free gas, and heat generated during pyrolysis of the polymer waste in the pyrolysis furnace. A condenser that cools the cracked gas and recovers oil; a heat exchanger that heats the pyrolyzed gas after the oil is recovered by the condenser as an oxygen-free gas; and the oxygen-free gas at least in the pyrolysis furnace A continuous polymer waste volume reduction system comprising: a circulation channel that circulates in the system through a condenser and a heat exchanger.
前記循環系内の余剰ガスを前記熱交換器の熱源としていることを特徴とする請求項1に記載の連続式高分子系廃棄物減容システム。   The continuous polymer waste volume reducing system according to claim 1, wherein surplus gas in the circulation system is used as a heat source of the heat exchanger. 運転開始時及び/又は運転停止時に前記循環系内を無酸素状態とすべく前記循環流路へ導入する窒素又は水蒸気を生成する導入ガス生成装置を更に備えることを特徴とする請求項1又は2に記載の連続式高分子系廃棄物減容システム。
The apparatus further comprises an introduction gas generation device for generating nitrogen or water vapor to be introduced into the circulation flow path so as to make the inside of the circulation system oxygen-free when the operation is started and / or stopped. The continuous polymer waste volume reduction system described in 1.
JP2005356842A 2005-12-09 2005-12-09 Continuous volume-reduction system for polymer waste Pending JP2007161783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005356842A JP2007161783A (en) 2005-12-09 2005-12-09 Continuous volume-reduction system for polymer waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005356842A JP2007161783A (en) 2005-12-09 2005-12-09 Continuous volume-reduction system for polymer waste

Publications (1)

Publication Number Publication Date
JP2007161783A true JP2007161783A (en) 2007-06-28

Family

ID=38245061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005356842A Pending JP2007161783A (en) 2005-12-09 2005-12-09 Continuous volume-reduction system for polymer waste

Country Status (1)

Country Link
JP (1) JP2007161783A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137079A (en) * 2009-12-28 2011-07-14 Bridgestone Corp Thermal decomposition apparatus for polymer-based waste
JP2019035553A (en) * 2017-08-18 2019-03-07 株式会社オメガ Thermal decomposition mechanism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137079A (en) * 2009-12-28 2011-07-14 Bridgestone Corp Thermal decomposition apparatus for polymer-based waste
JP2019035553A (en) * 2017-08-18 2019-03-07 株式会社オメガ Thermal decomposition mechanism

Similar Documents

Publication Publication Date Title
KR101448868B1 (en) Pyrolyzer for Emulsification Apparatus
JP4717139B2 (en) Waste tire recycling system
JP5917735B2 (en) Biomass power generation system
JP2008285523A (en) Liquefaction apparatus for polymer-based waste
KR100897521B1 (en) Recycling equipment and methode of waste electric wire
JP6251892B2 (en) Combustion system
KR20130018497A (en) Waste pyrolysis apparatus for combustible waste in vacuum without oxygen
JP2015007522A (en) Combustion system
KR101296267B1 (en) Recycling apparatus for waste wire
JP2007161783A (en) Continuous volume-reduction system for polymer waste
CN109233909A (en) A kind of method that the combustion gas that sludge cracking generates is recycled
JP2007216204A (en) Pyrolysis apparatus for waste product
KR100305113B1 (en) Vacuum pyrolysis method and equipment of waste tire using both direct and indirect heating
JP2009203474A (en) Heat treatment device and pyrolytic method
KR102547205B1 (en) Transfer equipment for Ultrasonic pyrolysis of Polymer waste
JP3506893B2 (en) Method for producing carbide from waste solid fuel
KR20060110552A (en) Multi recycling equipment of waste using exhaust heat and method thereof
KR20050104324A (en) Tunnel-type apparatus for recovering pyrolysis oil from waste plastics
KR101296272B1 (en) Recycling method for waste wire
JP2923909B2 (en) Pyrolysis furnace for polymer waste
CN107152689A (en) Clinical waste microwave plasma anaerobic cat-cracker
KR100988297B1 (en) High-temperature and high-pressure treatment system for energy recovery of liquid waste material
JP3501925B2 (en) Method for producing carbide from waste solid fuel
JPH0938618A (en) Treatment of shredder dust and device therefor
WO2011128990A1 (en) Dry distillation apparatus