WO2011128990A1 - Dry distillation apparatus - Google Patents

Dry distillation apparatus Download PDF

Info

Publication number
WO2011128990A1
WO2011128990A1 PCT/JP2010/056674 JP2010056674W WO2011128990A1 WO 2011128990 A1 WO2011128990 A1 WO 2011128990A1 JP 2010056674 W JP2010056674 W JP 2010056674W WO 2011128990 A1 WO2011128990 A1 WO 2011128990A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
tar
pitch
gasification furnace
dry distillation
Prior art date
Application number
PCT/JP2010/056674
Other languages
French (fr)
Japanese (ja)
Inventor
清治 道前
Original Assignee
Michimae Kiyoharu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michimae Kiyoharu filed Critical Michimae Kiyoharu
Priority to JP2012510504A priority Critical patent/JPWO2011128990A1/en
Priority to PCT/JP2010/056674 priority patent/WO2011128990A1/en
Publication of WO2011128990A1 publication Critical patent/WO2011128990A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/024Dust removal by filtration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to a carbonization apparatus for carbonizing various organic wastes and objects to be processed such as peat, and particularly, when carbonizing using an inert gas containing a large amount of CO 2 generated in a molten layer. It is effective for improving the stability of operation, and relates to a carbonization apparatus having high energy efficiency by devising a method for treating tar and pitch.
  • Patent Document 1 A technique for melting and reducing industrial waste, sludge and the like by burning while supplying oxygen-enriched air is known (Patent Document 1).
  • Patent Document 2 a technique of using a gas recovered from a dry distillation gas of organic waste and an oily product as a dry distillation heat source is also known (Patent Document 2).
  • the melt-solidifying device disclosed in Patent Document 1 is one that uses oxygen-enriched air to perform high-temperature combustion in a burner, and the melting process involves much energy consumption.
  • the method for treating organic waste by dry distillation disclosed in Patent Document 2 is to deodorize and purify the dry distillation gas at 600 to 800 ° C., which also consumes a large amount of energy.
  • the carbonization apparatus disclosed in the publication needs to be bound with a binding material having good thermal conductivity, or steam must be injected.
  • the present invention uses a straight tube type furnace, uses an inert gas generated in the lower molten layer to form a dry distillation layer in the upper part, and allows discharge of unmelted material from the hearth while operating.
  • An object of the present invention is to provide a carbonization apparatus with high energy recovery efficiency and excellent energy saving.
  • the carbonization apparatus has an inlet for processing objects at the top, a seal damper for dropping the processing objects in a sealed manner at a predetermined amount by a predetermined amount, and an inclination so that the melt discharge side is lowered at the bottom.
  • a gasification furnace having a straight cylinder structure having an inclined floor portion, and a tar / pitch recovery device for recovering tar and pitch from gas generated from the gasification furnace, wherein the gasification furnace is provided with an air blowing port provided near the bottom
  • At least a molten layer and a dry distillation layer are formed in order from the inclined floor portion upward by blowing warm air from the inclined floor portion, and the tar / pitch recovery device converts the gas generated from the gasifier into the tar / pitch content and moisture. It is characterized by being separated into gas components.
  • the object to be treated by the carbonization treatment of the present invention is called not only organic industrial waste, but also composite material waste and peat including metal wires such as old tires. Peat and the like, and is characterized in that it can be stably operated according to the type of the object to be treated.
  • the seal damper means a member in which outside air does not enter at least the dry distillation layer or the molten layer when the workpiece is put into the furnace.
  • a straight tube structure gasification furnace is one in which the furnace wall is almost vertical so that a dry distillation layer, a dry layer, and an untreated layer are sequentially stacked on the molten layer formed in the hearth.
  • the horizontal cross-sectional shape of the furnace is not limited, either round or square.
  • a CO 2 system containing a large amount of CO 2 when part of the object to be burned is combusted when air is blown from the air inlet after the object is ignited by a conventional ignition burner near the hearth of the gasifier Gas (inert gas) is generated.
  • the CO 2 gas temperature is usually about 800 to 900 ° C. by simply blowing air.
  • hot air of 200 to 500 ° C. is blown, the CO 2 gas becomes a high temperature of 900 to 1000 ° C.
  • the carbonization reaction proceeds efficiently even if a relatively low calorie content is contained in the upper layer to be processed.
  • CO 2 gas at a high temperature of 900 to 1000 ° C. rises uniformly, reacts with the object to be processed, and generates a combustible gas containing a large amount of hydrocarbons and CO gas.
  • This combustible gas uniformly rises in the workpiece layer located above the dry distillation layer, and a dry layer is formed.
  • the combustible gas temperature at this time is 280 to 380 ° C. Accordingly, in this combustible gas temperature range of 280 to 380 ° C., tar and pitch components generated in the dry distillation process are mixed in the gas as gasification or suspended matter.
  • the gas generated from the gasifier is separated into a gas component, a tar pitch component, and moisture by a tar / pitch recovery device. More specifically, the gas at 280 to 380 ° C. generated from the gasifier is cooled to the range of 200 to 100 ° C. by the first gas cooler. During this cooling, the tar content that has become a heavy liquid and the solidified pitch content are condensed and dropped on the surface of the heat exchange pipe having a surface temperature of 50 to 100 ° C. provided in the first gas cooler. About 90% of the tar pitch is recovered by this first gas cooler. Next, the gas temperature is cooled in the range of 100 to 50 ° C.
  • the gas temperature is cooled to 50 to 30 ° C. below 50 ° C. with the third gas cooler.
  • the second gas cooler low-boiling oily products are recovered
  • the third gas cooler moisture is condensed and recovered.
  • the pitch portion solidified when the gas temperature is cooled by the gas cooler is washed away by the oil component, it is not necessary to provide a cleaning device for heat exchange of the gas cooler.
  • moisture content was removed from gas, the combustion calorie of combustible gas improves.
  • the gas whose moisture has been recovered by the third gas cooler includes harmful gas components such as sulfide and chloride, and also includes particulate dust. Therefore, after raising the temperature to a range of 100 to 170 ° C. using a heat exchanger, harmful gas components are removed using a conventional bag filter, neutralization washing, or the like. After that, the combustible gas is stored in the gas holder (gas tank). The pressure can be adjusted with a gas holder, and power can be generated with a gas power generation device. The surplus hot air in this gas power generation can be used as a temperature raising heat source for the gas after the third gas cooler.
  • harmful gas components such as sulfide and chloride, and also includes particulate dust. Therefore, after raising the temperature to a range of 100 to 170 ° C. using a heat exchanger, harmful gas components are removed using a conventional bag filter, neutralization washing, or the like. After that, the combustible gas is stored in the gas holder (gas tank). The pressure can be adjusted with
  • the inclined bed portion of the gasification furnace has a pusher device that pushes the unmelted material toward the melt discharge side, and the melt discharge portion is controlled to open and close in the vertical direction.
  • the control door has a plurality of slit portions in the upward direction, and has a needle-like rooster that can be inserted toward the inclined floor portion through the slit portions.
  • the present invention is further characterized in that it has a recovered tar pitch reforming device.
  • This tar / pitch reformer is a tar / pitch reformer that separates light and heavy components by dropping the tar / pitch recovered by the tar / pitch recovery device onto an inclined plate at 200 to 300 ° C. It has the apparatus.
  • Light tar is mixed in the tar pitch recovered by the first and second gas coolers. Therefore, the tar pitch recovered on a metal inclined plate heated to 200 to 300 ° C. was dropped and separated into a light component and a heavy component. Further, the heavy component burns and can be used for heating the inclined plate and can be used as an energy source such as steam using a waste heat boiler or the like. Therefore, the carbonization apparatus according to the present invention can be used as an energy source in addition to simply detoxifying the object to be treated such as waste.
  • a gasification furnace having a straight tube structure is adopted, a hot layer is blown in the vicinity of the hearth portion to form a molten layer, and a high-temperature CO 2 gas generated from the molten layer Can be used to form a dry distillation layer on top of the molten layer.
  • the tar pitch contained in the hydrocarbon and CO combustible gas generated from the dry distillation layer can be used as an energy source by separating light components and heavy components in the reformer. If the material to be treated has a large amount of carbonized components such as peat, the coke will be mixed in the melt or remain as an unmelted material in the hearth, and this will be discharged and cooled with water to increase the amount of coke. can get.
  • a sectional view of a gasifier is shown.
  • the principal part figure of the hearth part vicinity of a gasification furnace is shown.
  • the state which ignited to-be-processed object and formed the molten layer, the dry distillation layer, and the dry layer is shown typically.
  • a state in which a rooster is inserted into the melted layer and the unmelted material is discharged by a pusher is schematically shown.
  • the state where the tip of the rooster is inserted to the tip of the pusher is shown.
  • the pusher is advanced with the tip of the rooster.
  • FIG. 1 shows the figure which looked at the control door from the front
  • FIG. 1 shows the state which inserted the front-end
  • FIG. 1 shows the state which has received the unburned material by the rooster.
  • FIG. 1 shows the figure which looked at the control door from the front
  • FIG. 1 shows the figure which looked at the control door from the front
  • FIG. 1 shows the state which inserted the front-end
  • FIG. 1 shows the state which has received the unburned material by the rooster. Show.
  • the internal schematic diagram which looked at the tar pitch reformer from the side is shown.
  • An A view internal view of the tar pitch reforming apparatus is shown.
  • B view internal view of the tar pitch reforming apparatus is shown.
  • FIG. 1 shows a flowchart of the carbonization system according to the present invention.
  • An organic material to be treated is introduced into the gasification furnace 10, the outside air is shut off, the furnace floor is ignited with an ignition burner using the fuel in the fuel tank 120, and air is blown into the furnace. Turn off the ignition burner when the workpiece begins to burn.
  • an ignition burner when the workpiece begins to burn.
  • the combustible gas is guided to a tar / pitch recovery apparatus including a first gas cooler, a second gas cooler, and a third gas cooler after removing particulate matter by the cyclone 110.
  • the first to third gas coolers are provided with heat exchange pipes 21c, 22c, and 23c, respectively, and pump the coolant in the cooling water tanks 21b, 22b, and 23b to the heat exchange pipe.
  • the first gas cooler 21 is cooled so that the gas temperature is in the range of 200 to 100 ° C.
  • the surface temperature of the heat exchanger pipe is about 50 to 100 ° C.
  • the liquefied tar portion and the solidified pitch are accumulated in the first recovery tank 21a.
  • the second gas cooler 22 is cooled so that the gas temperature is in the range of 100 to 50 ° C.
  • the remaining tar pitch is recovered in the second recovery tank 22a.
  • the heat exchange pipe is washed with components that are co-extracted when the tar and pitch are recovered by the first gas cooler and the second gas cooler. Water vapor is mixed in the generated gas when it passes through the second gas cooler.
  • the third cooler 23 cools the gas temperature to a range of about 50 to 30 ° C., which is less than 50 ° C. Thereby, moisture is condensed and collected in the third collection tank 23a. As a result, the moisture in the combustible gas is reduced to 10% or less, and the heat-generated calories of the gas are improved. However, harmful gases such as SO 2 gas still exist in the gas. Therefore, the temperature is raised to 100 to 170 ° C. in the first heat exchanger 31 using a heat source obtained by the gas generator 70 described later. Thereafter, suspended fine particles are removed by a first filter device (bag filter), and SO 2 gas and the like are neutralized and washed by a gas washer 51.
  • a first filter device bag filter
  • the cleaned combustible gas is collected in the gas holder 60, pressure-adjusted, sent to the gas generator 70, and used for power generation. At this time, surplus energy is used for the first heat exchanger 31 and is discharged via the chimney 100.
  • the tar and pitch recovered by the tar / pitch recovery apparatus are mixed with light and heavy components. Accordingly, the tar pitch recovered by the heater 86 is heated to about 80 ° C. and dropped into a tar pitch reformer (hereinafter referred to as a reformer) 80 as shown in FIGS.
  • a metal inclined plate 84 is installed inside the reformer 80, and after burning the surplus gas in the front chamber 82 and the gas generator 70, which are blocked from the outside air, and heavy components recovered by the reformer.
  • a chamber 83 is provided inside the reformer 80.
  • the angle of the inclined plate 84 is 10 to 30 °, and its surface is 200 to 300 ° C.
  • the hydrocarbons and light oil components generated from the dropped tar pitch are recovered from the discharge port 87.
  • the pitch is removed by the fourth gas cooler 24 and fed into the gas holder 60. Further, the heavy components that have flowed down the inclined plate 84 are collected by the conveyor 82b sealed with water and burned in the rear chamber. The removed pitch is stored in the fourth recovery tank 24a and then processed via the second heat exchanger 32 and the like.
  • Reference numeral 24b denotes a fourth cooling water tank.
  • a scraper 85 is held on a cylinder 85a fixed to a holder 85b in a state of being water-sealed and cooled 85c above the inclined plate 84. The scraper 85 scrapes off the residue.
  • the residue and heavy components recovered by the water-sealed conveyor 82b are burned in the rear chamber 84.
  • the rear chamber 84 has a surplus gas intake port 89 a and operates the waste heat boiler 90 using hot air generated by combustion at the combustion port 89.
  • the exhaust gas is rendered harmless by passing through the desalter 52 and the second filter device 42 and is discharged through the chimney 100.
  • the hearth 12 of the gasification furnace 10 is a tilted floor portion with the melt discharge port 12 a on the lower side. It has a straight tube structure in which the furnace wall 11 rises almost vertically from the hearth 12.
  • the upper part of the furnace is a three-stage seal damper composed of first to third tampers 13a, 13b, 13c, and an object to be processed is dropped into the furnace using the upper conveyor 13d while being shut off from the outside air. . Further, cooling water is passed through the furnace wall 11.
  • a gas discharge port 19a is provided below the third damper 13c and in the upper part of the furnace.
  • a pusher 14 that is controlled to move forward and backward along the inclined floor portion toward the discharge port 12a is provided.
  • the pusher 14 is controlled to move by the cylinder 14a.
  • An air blowing port 15 is provided in the vicinity of the hearth 12.
  • the discharge port 12a has a control door 17 formed with a plurality of slits 17c in the vertical direction and a shielding door 18 that completely shields the front surface, and cylinders 17a, 18a as shown in FIG.
  • the vertical height is controlled by.
  • a needle-shaped rooster 16 inserted from the outside is provided in the slit portion 17c. As shown in FIG.
  • the cylinder 16a holding the rooster 16 and the rod 16b are operated to move forward and backward, and the upper and lower cylinders 16c control the rooster.
  • the insertion angle of 16 is controlled.
  • the cooling water circulates inside the rooster 16 through the cooling water inlet 16d and the outlet 16e.
  • the rooster 16 is taken out, the control door 17 and the shielding door 18 are fully closed, and the workpiece M is put into the furnace.
  • the ignition burner 15a is ignited, and the object to be processed is heated and burned.
  • warm air 200 to 500 ° C. is blown from the air blowing port 15.
  • the formed melt layer M 1 in the hearth as shown in FIG. 4, the O 2 in the warm air is consumed, CO 2 is generated.
  • the inert gas in which O 2 is consumed contains a large amount of CO 2 and reaches a high temperature of 900 to 1000 ° C.
  • the high-temperature CO 2 gas rises uniformly, reacts with the organic matter on the top, and thermally decomposes.
  • Carbonization layer M 2 is formed by the thermal decomposition.
  • Hydrocarbon and CO gas are generated from the dry distillation layer M 2 , which rises to form a dry layer M 3 in which the object to be processed is dried, and from the gasifier 10 to the cyclone 110 side via the gas discharge port 19 a. Dispense towards.
  • the melt M 5 is eluted from the elution groove 17 b and the unmelted material M 4 is accumulated in the hearth 12.
  • This inmelt includes carbonized coke.
  • melt M 4 is insert the grate 16 from the slit portion 17c, as shown in FIG.
  • the carbonization apparatus according to the present invention can be used in many fields such as processing of old tires, peat processing, as well as general industrial waste, because it can handle all organic processing objects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Chimneys And Flues (AREA)
  • Industrial Gases (AREA)

Abstract

Provided is a dry distillation apparatus having a high recovery efficiency of tar and pitch, and an excellent energy saving property, wherein a straight cylinder-type furnace is used; inert gas generated in a molten layer on the lower side is used to form a dry distillation layer on the upper side; and an infusible substance can be discharged from the bottom of the furnace during an operation. The dry distillation apparatus is provided with a gasification furnace and a tar and pitch recovery device for recovering tar and pitch from gas generated in the gasification furnace, said gasification furnace having an inlet port for an object to be treated, seal dampers for hermetically dispensing the object to be treated toward the lower side by a predetermined amount, and an inclined floor portion inclined so that the molten substance discharge-side portion is lower than the other portion, said inlet port being provided on the upper portion of the gasification furnace, said inclined floor portion being provided on the lower portion of the gasification furnace. In the gasification furnace, hot air is introduced to the inclined floor portion through an air introduction port provided in the vicinity of the bottom portion, so that at least a molten layer and a dry distillation layer are formed upward in this order on the inclined floor portion. The tar and pitch recovery device separates gas generated from the gasification furnace into tar and pitch, water, and gas.

Description

乾留装置Dry distillation equipment
 本発明は各種有機系の廃棄物やピート(Peat)等の被処理物を乾留する乾留装置に関し、特に溶融層にて発生させたCOを多く含む不活性ガスを用いて乾留処理する際に操業の安定性を向上させるのに有効で、タール・ピッチの処理方法の工夫によりエネルギー的に効率性が高い乾留装置に係る。 TECHNICAL FIELD The present invention relates to a carbonization apparatus for carbonizing various organic wastes and objects to be processed such as peat, and particularly, when carbonizing using an inert gas containing a large amount of CO 2 generated in a molten layer. It is effective for improving the stability of operation, and relates to a carbonization apparatus having high energy efficiency by devising a method for treating tar and pitch.
 産業廃棄物や汚泥等を酸素富化空気等を供給しながら燃焼させることで溶融処理し、減容する技術は公知である(特許文献1)。
 また、有機性廃棄物の乾留ガスから回収したガスと油化物を乾留熱源にする技術も公知である(特許文献2)。
 しかし、特許文献1に開示する溶融固化装置は、酸素富化空気を用いてバーナーにて高温燃焼させるものであって、溶融処理には多くのエネルギー消費を伴うものである。
 一方、特許文献2に開示する乾留による有機性廃棄物の処理方法は、乾留ガスを600~800℃にて加熱し脱臭精製するものであり、やはりエネルギー消費が大きい。
 また、同公報に開示する乾留装置は熱伝導性のよい結束材で結束したり、蒸気を圧入することが必要である。
A technique for melting and reducing industrial waste, sludge and the like by burning while supplying oxygen-enriched air is known (Patent Document 1).
In addition, a technique of using a gas recovered from a dry distillation gas of organic waste and an oily product as a dry distillation heat source is also known (Patent Document 2).
However, the melt-solidifying device disclosed in Patent Document 1 is one that uses oxygen-enriched air to perform high-temperature combustion in a burner, and the melting process involves much energy consumption.
On the other hand, the method for treating organic waste by dry distillation disclosed in Patent Document 2 is to deodorize and purify the dry distillation gas at 600 to 800 ° C., which also consumes a large amount of energy.
In addition, the carbonization apparatus disclosed in the publication needs to be bound with a binding material having good thermal conductivity, or steam must be injected.
特開2008-202803号公報JP 2008-202803 A 特開2010-36164号公報JP 2010-36164 A
 本発明は直筒式の炉を用い、下部の溶融層で発生した不活性ガスをその上部の乾留層形成に用いるとともに、操業しながら炉床部から不溶融物の排出が可能で、タール・ピッチの回収効率が高い省エネルギー性に優れた乾留装置の提供を目的とする。 The present invention uses a straight tube type furnace, uses an inert gas generated in the lower molten layer to form a dry distillation layer in the upper part, and allows discharge of unmelted material from the hearth while operating. An object of the present invention is to provide a carbonization apparatus with high energy recovery efficiency and excellent energy saving.
 本発明に係る乾留装置は、上部に被処理物の投入口と、当該被処理物を所定量ずつ下部に密閉式に落下投入するシールダンパーと、下部に溶融物排出側が低くなるように傾斜した傾床部とを有する直筒構造のガス化炉と、ガス化炉から発生したガスからタール及びピッチを回収するタール・ピッチ回収装置とを備え、前記ガス化炉は底部付近に設けた空気吹き込み口から温風を吹き込むことで傾床部から上方に向けて順に少なくとも溶融層と乾留層とが形成され、タール・ピッチ回収装置は、前記ガス化炉から発生したガスをタール・ピッチ分と水分とガス分に分離させるものであることを特徴とする。 The carbonization apparatus according to the present invention has an inlet for processing objects at the top, a seal damper for dropping the processing objects in a sealed manner at a predetermined amount by a predetermined amount, and an inclination so that the melt discharge side is lowered at the bottom. A gasification furnace having a straight cylinder structure having an inclined floor portion, and a tar / pitch recovery device for recovering tar and pitch from gas generated from the gasification furnace, wherein the gasification furnace is provided with an air blowing port provided near the bottom At least a molten layer and a dry distillation layer are formed in order from the inclined floor portion upward by blowing warm air from the inclined floor portion, and the tar / pitch recovery device converts the gas generated from the gasifier into the tar / pitch content and moisture. It is characterized by being separated into gas components.
 本発明の乾留処理にて処理することができる被処理物は、有機性の産業廃棄物のみならず、古タイヤ等の金属ワイヤー等が含まれる複合材料の廃棄物やピート(Peat)と称される泥炭等であってもよく、被処理物の種類に応じて安定的に操作できる点に特徴がある。
 本発明にてシールダンパーは被処理物を炉内に投入する際に少なくとも乾留層や溶融層に外気が進入しないようにしたものをいう。
 また、直筒構造のガス化炉とは、炉床部に形成される溶融層の上に乾留層、乾燥層、未処理層が順次重なり形成されるように炉壁がほぼ垂直状になったものをいい、炉の水平断面形状は円形でも四角形でも限定はない。
The object to be treated by the carbonization treatment of the present invention is called not only organic industrial waste, but also composite material waste and peat including metal wires such as old tires. Peat and the like, and is characterized in that it can be stably operated according to the type of the object to be treated.
In the present invention, the seal damper means a member in which outside air does not enter at least the dry distillation layer or the molten layer when the workpiece is put into the furnace.
In addition, a straight tube structure gasification furnace is one in which the furnace wall is almost vertical so that a dry distillation layer, a dry layer, and an untreated layer are sequentially stacked on the molten layer formed in the hearth. The horizontal cross-sectional shape of the furnace is not limited, either round or square.
 ガス化炉の炉床付近にて常法の着火バーナーにて被処理物に着火した後に空気吹き込み口から空気を吹き込むと被処理物の一部が燃焼し、COが多く含まれるCO系ガス(不活性ガス)が発生する。
 ここで、単に空気を吹き込むだけでは通常CO系ガス温は800~900℃位である。
 これに対して200~500℃の温風空気を吹き込むと、CO系ガスが900~1000℃の高温になる。
 また、溶融層が高温になるとそれよりも上層の被処理物の中に相対的に低カロリー性のものが含まれていても効率よく炭化反応が進む。
 溶融層の上部では高温900~1000℃のCOガスが均一に上昇し、被処理物と反応し、炭化水素及びCOガスが多く含まれる燃焼性ガスが発生する。
 この燃焼性ガスは乾留層より上部に位置する被処理物層を均一に上昇し、乾燥層が形成される。
 このときの燃焼性ガス温は280~380℃になる。
 従って、この燃焼性ガス温度280~380℃の領域では乾留工程にて発生したタールやピッチ分がガス中にガス化あるいは浮遊物として混在する。
 そこで本発明ではガス化炉から発生したガスをタール・ピッチ回収装置にてガス分とタール・ピッチ分と水分に分離した。
 より具体的にはガス化炉から発生した280~380℃のガスを第1ガスクーラーにて200~100℃の範囲に冷却する。
 この冷却の際に第1ガスクーラー内に設けた表面温度50~100℃の熱交パイプの表面にて重質の液体となったタール分や固化したピッチ分が凝縮落下する。
 この第1ガスクーラーにてタール・ピッチ分の約90%は回収される。
 次に第2ガスクーラーにてガス温を100~50℃の範囲にて冷却し、さらに第3ガスクーラーにてガス温を50℃未満の50~30℃に冷却する。
 第2ガスクーラーでは、低沸点の油化物が回収され、第3ガスクーラーでは水分が凝縮回収される。
 なお、ガスクーラーにてガス温を冷却する際に固化されるピッチ分は油化分にて洗い落とされるので、ガスクーラーの熱交には特にクリーニング装置を設ける必要がない。
 また、ガス中から水分を除去したので燃焼性ガスの燃焼カロリーが向上する。
A CO 2 system containing a large amount of CO 2 when part of the object to be burned is combusted when air is blown from the air inlet after the object is ignited by a conventional ignition burner near the hearth of the gasifier Gas (inert gas) is generated.
Here, the CO 2 gas temperature is usually about 800 to 900 ° C. by simply blowing air.
On the other hand, when hot air of 200 to 500 ° C. is blown, the CO 2 gas becomes a high temperature of 900 to 1000 ° C.
Further, when the molten layer becomes high temperature, the carbonization reaction proceeds efficiently even if a relatively low calorie content is contained in the upper layer to be processed.
In the upper part of the molten layer, CO 2 gas at a high temperature of 900 to 1000 ° C. rises uniformly, reacts with the object to be processed, and generates a combustible gas containing a large amount of hydrocarbons and CO gas.
This combustible gas uniformly rises in the workpiece layer located above the dry distillation layer, and a dry layer is formed.
The combustible gas temperature at this time is 280 to 380 ° C.
Accordingly, in this combustible gas temperature range of 280 to 380 ° C., tar and pitch components generated in the dry distillation process are mixed in the gas as gasification or suspended matter.
Therefore, in the present invention, the gas generated from the gasifier is separated into a gas component, a tar pitch component, and moisture by a tar / pitch recovery device.
More specifically, the gas at 280 to 380 ° C. generated from the gasifier is cooled to the range of 200 to 100 ° C. by the first gas cooler.
During this cooling, the tar content that has become a heavy liquid and the solidified pitch content are condensed and dropped on the surface of the heat exchange pipe having a surface temperature of 50 to 100 ° C. provided in the first gas cooler.
About 90% of the tar pitch is recovered by this first gas cooler.
Next, the gas temperature is cooled in the range of 100 to 50 ° C. with the second gas cooler, and further the gas temperature is cooled to 50 to 30 ° C. below 50 ° C. with the third gas cooler.
In the second gas cooler, low-boiling oily products are recovered, and in the third gas cooler, moisture is condensed and recovered.
In addition, since the pitch portion solidified when the gas temperature is cooled by the gas cooler is washed away by the oil component, it is not necessary to provide a cleaning device for heat exchange of the gas cooler.
Moreover, since the water | moisture content was removed from gas, the combustion calorie of combustible gas improves.
 第3ガスクーラーにて水分を回収したガス中には、硫化分、塩化分等の有害ガス分も含まれ、微粒子ダストも含まれる。
 そこで、熱交換器を使用して100~170℃の範囲に昇温した後に常法のバグフィルター、中和洗浄等を用いて有害ガス分を除く。
 その後にガスホルダー(ガスタンク)に燃焼性ガスを溜める。
 ガスホルダーにて圧力調整し、ガス発電装置にて発電を行うことができる。
 このガス発電での余剰熱風は第3ガスクーラー後のガスの昇温熱源に用いることができる。
The gas whose moisture has been recovered by the third gas cooler includes harmful gas components such as sulfide and chloride, and also includes particulate dust.
Therefore, after raising the temperature to a range of 100 to 170 ° C. using a heat exchanger, harmful gas components are removed using a conventional bag filter, neutralization washing, or the like.
After that, the combustible gas is stored in the gas holder (gas tank).
The pressure can be adjusted with a gas holder, and power can be generated with a gas power generation device.
The surplus hot air in this gas power generation can be used as a temperature raising heat source for the gas after the third gas cooler.
 従来の乾留炉は被処理物を完全に炭化処理し、その炭化処理物を排出後に次の被処理物を炉に投入する前提であったことから炉の高さを大きくとるのが難しく、またバッチ処理であるためにその都度、乾留条件が変化する問題があった。
 これに対して本発明に係る乾留装置は、前記ガス化炉の傾床部は溶融物排出側に向けて不溶融物を押し出すプッシャー装置を有し、溶融物排出部は上下方向に開閉制御された制御扉を有し、制御扉は上方方向に複数のスリット部を有し、当該スリット部を介して傾床部に向けて挿入自在の針状のロストルを有することを特徴とする。
 これにより、針状のロストルにて未処理物の落下を抑えながらプッシャー装置にて炉床部から未溶融物を排出できるので、溶融及び乾留処理を続けることができる。
 このように未溶融物の排出操作とシールダンパーを介して被処理物を投入する操作とを繰り返すことで連続的に乾留処理ができる。
Since the conventional carbonization furnace completely carbonizes the object to be treated, and after discharging the carbonized object, it is difficult to increase the height of the furnace. Because of batch processing, there was a problem that the dry distillation conditions changed each time.
On the other hand, in the dry distillation apparatus according to the present invention, the inclined bed portion of the gasification furnace has a pusher device that pushes the unmelted material toward the melt discharge side, and the melt discharge portion is controlled to open and close in the vertical direction. The control door has a plurality of slit portions in the upward direction, and has a needle-like rooster that can be inserted toward the inclined floor portion through the slit portions.
Thereby, since unmelted material can be discharged | emitted from a hearth part with a pusher apparatus, suppressing the fall of untreated material with a needle-shaped rooster, a melting | fusing and dry distillation process can be continued.
In this way, the dry distillation treatment can be continuously performed by repeating the operation of discharging the unmelted material and the operation of supplying the workpiece through the seal damper.
 本発明において、さらに特徴的なのは回収したタール・ピッチの改質装置を有している点にある。
 このタール・ピッチ改質装置は、前記タール・ピッチ回収装置にて回収したタール・ピッチを200~300℃の傾斜板上に落下させることで軽質成分と重質成分を分離するタール・ピッチ改質装置を有することを特徴とする。
 前記第1及び第2ガスクーラーで回収したままのタール・ピッチには、軽質分が混入している。
 そこで、200~300℃に加熱した金属製の傾斜板上に回収したタール・ピッチ分を落下し、軽質成分と重質成分とに分離した。
 また、重質成分は燃焼し、傾斜板の加熱に用いるとともに廃熱ボイラー等を用いて蒸気等のエネルギー源として使用することもできる。
 よって、本発明に係る乾留装置は廃棄物等被処理物を単に無害化するだけでなく、エネルギー源として使用できる。
The present invention is further characterized in that it has a recovered tar pitch reforming device.
This tar / pitch reformer is a tar / pitch reformer that separates light and heavy components by dropping the tar / pitch recovered by the tar / pitch recovery device onto an inclined plate at 200 to 300 ° C. It has the apparatus.
Light tar is mixed in the tar pitch recovered by the first and second gas coolers.
Therefore, the tar pitch recovered on a metal inclined plate heated to 200 to 300 ° C. was dropped and separated into a light component and a heavy component.
Further, the heavy component burns and can be used for heating the inclined plate and can be used as an energy source such as steam using a waste heat boiler or the like.
Therefore, the carbonization apparatus according to the present invention can be used as an energy source in addition to simply detoxifying the object to be treated such as waste.
 本発明に係る乾留装置にあっては、直筒構造のガス化炉を採用し、炉床部付近に温風を吹き込むことで溶融層を形成し、この溶融層から発生する高温のCO系ガスを利用し、溶融層の上部に乾留層を形成することができる。
 乾留層から発生した炭化水素やCOの燃焼性ガスに含まれるタール・ピッチは改質装置にて軽質成分と重質成分とを分離することでそれぞれエネルギー源として活用できる。
 被処理物がピート等、炭化成分が多い場合にはコークス分が溶融物中に混在し、あるいは炉床部に不溶融物として残ることになり、これを排出、水冷却することでコークスが多く得られる。
In the carbonization apparatus according to the present invention, a gasification furnace having a straight tube structure is adopted, a hot layer is blown in the vicinity of the hearth portion to form a molten layer, and a high-temperature CO 2 gas generated from the molten layer Can be used to form a dry distillation layer on top of the molten layer.
The tar pitch contained in the hydrocarbon and CO combustible gas generated from the dry distillation layer can be used as an energy source by separating light components and heavy components in the reformer.
If the material to be treated has a large amount of carbonized components such as peat, the coke will be mixed in the melt or remain as an unmelted material in the hearth, and this will be discharged and cooled with water to increase the amount of coke. can get.
本発明に係る乾留システムの全体フロー図を示す。The whole flowchart of the carbonization system which concerns on this invention is shown. ガス化炉の断面図を示す。A sectional view of a gasifier is shown. ガス化炉の炉床部付近の要部図を示す。The principal part figure of the hearth part vicinity of a gasification furnace is shown. 被処理物に着火し、溶融層、乾留層及び乾燥層を形成した状態を模式的に示す。The state which ignited to-be-processed object and formed the molten layer, the dry distillation layer, and the dry layer is shown typically. 溶融層にロストルを差し込み、プッシャーで不溶融物を排出する状態を模式的に示す。A state in which a rooster is inserted into the melted layer and the unmelted material is discharged by a pusher is schematically shown. ロストルの先端をプッシャーの先端部まで差し込んだ状態を示す。The state where the tip of the rooster is inserted to the tip of the pusher is shown. ロストルの先端とともにプッシャーを先進させる状態を示す。The pusher is advanced with the tip of the rooster. (a)は制御扉を正面から見た図を示し、(b)はロストルの先端を炉内に差し込んだ状態を示し、(c)はロストルで未燃物を受けている状態を模式的に示す。(A) shows the figure which looked at the control door from the front, (b) shows the state which inserted the front-end | tip of a rooster in the furnace, (c) typically shows the state which has received the unburned material by the rooster. Show. タール・ピッチ改質装置を横から見た内部模式図を示す。The internal schematic diagram which looked at the tar pitch reformer from the side is shown. タール・ピッチ改質装置のA視内部図を示す。An A view internal view of the tar pitch reforming apparatus is shown. タール・ピッチ改質装置のB視内部図を示す。B view internal view of the tar pitch reforming apparatus is shown.
10   ガス化炉
11   炉壁
12   炉床
12a  排出口
13a  第1ダンパー
13b  第2ダンパー
13c  第3ダンパー
14   プッシャー
15   空気吹き込み口
15a  着火バーナー
16   ロストル
17   制御扉
17a  スリット部
17b  溶出溝
18   遮蔽扉
19a  ガス吐出口
21   第1ガスクーラー
22   第2ガスクーラー
23   第3ガスクーラー
24   第4ガスクーラー
31   第1熱交換器
32   第2熱交換器
41   第1フィルター装置
42   第2フィルター装置
51   ガス洗浄機
52   脱塩機
60   ガスホルダー
70   ガス発電機
80   タール・ピッチ改質装置
82   前室
83   後室
90   廃熱ボイラー
100  煙突
110  サイクロン
120  燃料タンク
   溶融層
   乾留層
   乾燥層
   不溶融物
DESCRIPTION OF SYMBOLS 10 Gasification furnace 11 Furnace wall 12 Hearth 12a Exhaust port 13a 1st damper 13b 2nd damper 13c 3rd damper 14 Pusher 15 Air blowing port 15a Ignition burner 16 Rooster 17 Control door 17a Slit part 17b Elution groove 18 Shielding door 19a Gas Discharge port 21 1st gas cooler 22 2nd gas cooler 23 3rd gas cooler 24 4th gas cooler 31 1st heat exchanger 32 2nd heat exchanger 41 1st filter device 42 2nd filter device 51 Gas washing machine 52 Desorption Salt machine 60 Gas holder 70 Gas generator 80 Tar / pitch reformer 82 Front chamber 83 Rear chamber 90 Waste heat boiler 100 Chimney 110 Cyclone 120 Fuel tank M 1 Molten layer M 2 Distilled layer M 3 Dry layer M 4 Unmelted material
 図1に本発明に係る乾留システムのフロー図を示す。
 ガス化炉10に有機系の被処理物を投入、外気を遮断し、燃料タンク120の燃料を用いて炉床部に着火バーナーで着火し、空気を吹き込む。
 被処理物が燃焼し始めると着火バーナーを消す。
 詳細は後述するが、ガス化炉10内では溶融層、乾留層、乾燥層が形成され、このガス化炉10から有機系の被処理物が分解し、生成した炭化水素とCOガスが多く含まれる燃焼性を有するガスが吐出する。
 燃焼性ガスはサイクロン110にて粒子状物質を除いた後に第1ガスクーラー、第2ガスクーラー及び第3ガスクーラーで構成されたタール・ピッチ回収装置に誘導される。
 第1~第3ガスクーラーはそれぞれ内部に熱交パイプ21c,22c,23cを配設してあり、冷却水タンク21b,22b,23bの冷却水を熱交パイプにポンプ循環させる。
FIG. 1 shows a flowchart of the carbonization system according to the present invention.
An organic material to be treated is introduced into the gasification furnace 10, the outside air is shut off, the furnace floor is ignited with an ignition burner using the fuel in the fuel tank 120, and air is blown into the furnace.
Turn off the ignition burner when the workpiece begins to burn.
Although details will be described later, a melted layer, a carbonized layer, and a dry layer are formed in the gasification furnace 10, and an organic material to be processed is decomposed from the gasification furnace 10, and contains a large amount of generated hydrocarbons and CO gas. A combustible gas is discharged.
The combustible gas is guided to a tar / pitch recovery apparatus including a first gas cooler, a second gas cooler, and a third gas cooler after removing particulate matter by the cyclone 110.
The first to third gas coolers are provided with heat exchange pipes 21c, 22c, and 23c, respectively, and pump the coolant in the cooling water tanks 21b, 22b, and 23b to the heat exchange pipe.
 例えば、図2に示すような上部に第1~第3ダンパーからなるシール構造の3段式ダンパーを備えた直筒構造のガス化炉にて褐炭系の被処理物を投入し、ガス化処理すると、Nm/h換算割合でCO:0.7%、CO:15.7%,H:4.0%、N:26.9%、O:0.8%、SO:0.4%、HO:47.6%、C:3.8%のガスが発生した。
 また、ガス化炉から発生したガス温は280~380℃であり、常温では液状のタール分や、固化しやすいピッチ分が含まれる。
For example, when a lignite-based object to be treated is introduced into a gasification furnace having a straight cylinder structure having a three-stage damper having a seal structure composed of first to third dampers at the upper portion as shown in FIG. , In terms of Nm 3 / h, CO 2 : 0.7%, CO: 15.7%, H 2 : 4.0%, N 2 : 26.9%, O 2 : 0.8%, SO 2 : Gases of 0.4%, H 2 O: 47.6%, and C 2 H 4 : 3.8% were generated.
Further, the gas temperature generated from the gasification furnace is 280 to 380 ° C., and includes a liquid tar component and a pitch component that is easily solidified at room temperature.
 そこで、第1ガスクーラー21にてガス温が200~100℃の範囲になるように冷却する。
 このときに熱交パイプの表面温度は約50~100℃になっているので、液状化したタール部や固化したピッチ分は第1回収タンク21aに溜まる。
 この時点でタール・ピッチ分は約90%回収される。
 次に第2ガスクーラー22にてガス温が100~50℃の範囲になるように冷却する。
 これにより残りのタール・ピッチ分が第2回収タンク22aに回収される。
 なお、第1ガスクーラー、第2ガスクーラーにてタール・ピッチを回収する際に共抽出する成分にて熱交パイプが洗浄される。
 第2ガスクーラーを通過した時点にて発生ガス中には水蒸気が混在している。
 そこで、第3クーラー23にてガス温が50℃未満の約50~30℃の範囲まで冷却する。
 これにより水分が凝縮し、第3回収タンク23aに回収される。
 この結果、燃焼性ガス中の水分が10%以下に低下し、ガスの熱発生カロリーが向上する。
 しかし、ガス中には未だSOガス等の有害ガスが存在する。
 そこで、後述するガス発電機70で得られた熱源を利用し、第1熱交換器31にて100~170℃まで昇温する。
 その後に第1フィルター装置(バグフィルター)にて浮遊微粒子を除去し、ガス洗浄機51にてSOガス等を中和洗浄する。
 このようなステップを経て、洗浄化された燃焼性ガスはガスホルダー60に集められ、圧力調整した上でガス発電機70に送り込まれ、発電に利用される。
 この際に余剰のエネルギーは第1熱交換器31に利用され、煙突100を経由して排出される。
Therefore, the first gas cooler 21 is cooled so that the gas temperature is in the range of 200 to 100 ° C.
At this time, since the surface temperature of the heat exchanger pipe is about 50 to 100 ° C., the liquefied tar portion and the solidified pitch are accumulated in the first recovery tank 21a.
At this point, about 90% of the tar pitch is recovered.
Next, the second gas cooler 22 is cooled so that the gas temperature is in the range of 100 to 50 ° C.
As a result, the remaining tar pitch is recovered in the second recovery tank 22a.
The heat exchange pipe is washed with components that are co-extracted when the tar and pitch are recovered by the first gas cooler and the second gas cooler.
Water vapor is mixed in the generated gas when it passes through the second gas cooler.
Therefore, the third cooler 23 cools the gas temperature to a range of about 50 to 30 ° C., which is less than 50 ° C.
Thereby, moisture is condensed and collected in the third collection tank 23a.
As a result, the moisture in the combustible gas is reduced to 10% or less, and the heat-generated calories of the gas are improved.
However, harmful gases such as SO 2 gas still exist in the gas.
Therefore, the temperature is raised to 100 to 170 ° C. in the first heat exchanger 31 using a heat source obtained by the gas generator 70 described later.
Thereafter, suspended fine particles are removed by a first filter device (bag filter), and SO 2 gas and the like are neutralized and washed by a gas washer 51.
Through these steps, the cleaned combustible gas is collected in the gas holder 60, pressure-adjusted, sent to the gas generator 70, and used for power generation.
At this time, surplus energy is used for the first heat exchanger 31 and is discharged via the chimney 100.
 タール・ピッチ回収装置にて回収されたタール及びピッチ分には軽質分と重質分とが混合している。
 そこで、加熱機86にて回収したタール・ピッチを約80℃に加熱し、図9~11に示すようなタール・ピッチ改質装置(以下、改質装置という)80に滴下する。
 改質装置80の内部は金属製の傾斜板84を設置し、外気と遮断された前室82とガス発電機70での余剰ガスや、この改質装置で回収した重質成分を燃焼する後室83を有する。
 傾斜板84の角度は10~30°であり、その表面は200℃~300℃になっていて、滴下されたタール・ピッチから発生した炭化水素や軽質油化成分は、排出口87から回収され、第4ガスクーラー24にてピッチ分を除去し、ガスホルダー60に送り込まれる。
 また、傾斜板84を流れ落ちた重質成分は水封82されたコンベア82bで回収され、後室にて燃焼する。
 除去したピッチ分は第4回収タンク24aに溜められ、その後に第2熱交換器32等を経由して処理される。
 なお、24bは第4冷却水タンクである。
 傾斜板84の上部にはスクレーパー85が水封冷却85cされた状態で、ホルダー85bに固定されたシリンダー85aに保持されている。
 このスクレーパー85にて残渣物をかき落とす。
 この残渣物、水封コンベア82bで回収された重質成分は後室84にて燃焼させる。
 また、後室84は余剰ガスの取込口89aを有し、燃焼口89にて燃焼させ発生した熱風を用いて廃熱ボイラー90を稼働する。
 排ガスは脱塩機52、第2フィルター装置42を経由することで無害化し、煙突100を介して排出される。
The tar and pitch recovered by the tar / pitch recovery apparatus are mixed with light and heavy components.
Accordingly, the tar pitch recovered by the heater 86 is heated to about 80 ° C. and dropped into a tar pitch reformer (hereinafter referred to as a reformer) 80 as shown in FIGS.
Inside the reformer 80, a metal inclined plate 84 is installed, and after burning the surplus gas in the front chamber 82 and the gas generator 70, which are blocked from the outside air, and heavy components recovered by the reformer. A chamber 83 is provided.
The angle of the inclined plate 84 is 10 to 30 °, and its surface is 200 to 300 ° C. The hydrocarbons and light oil components generated from the dropped tar pitch are recovered from the discharge port 87. Then, the pitch is removed by the fourth gas cooler 24 and fed into the gas holder 60.
Further, the heavy components that have flowed down the inclined plate 84 are collected by the conveyor 82b sealed with water and burned in the rear chamber.
The removed pitch is stored in the fourth recovery tank 24a and then processed via the second heat exchanger 32 and the like.
Reference numeral 24b denotes a fourth cooling water tank.
A scraper 85 is held on a cylinder 85a fixed to a holder 85b in a state of being water-sealed and cooled 85c above the inclined plate 84.
The scraper 85 scrapes off the residue.
The residue and heavy components recovered by the water-sealed conveyor 82b are burned in the rear chamber 84.
Further, the rear chamber 84 has a surplus gas intake port 89 a and operates the waste heat boiler 90 using hot air generated by combustion at the combustion port 89.
The exhaust gas is rendered harmless by passing through the desalter 52 and the second filter device 42 and is discharged through the chimney 100.
 次にガス化炉の構造及びガス化方法について説明する。
 図2に示すようにガス化炉10の炉床12は、溶融物の排出口12aが下側になった傾床部になっている。
 炉床12から炉壁11がほぼ垂直に立ち上がった直筒構造になっている。
 炉の上部には第1~第3タンパー13a,13b,13cからなる3段式のシールダンパーになっていて、外気と遮断しながら上部のコンベア13dを用いて被処理物を炉内に投下する。
 また、炉壁11の内部には冷却水が通水される。
 第3ダンパー13cの下側であって炉内の上部にはガス吐出口19aを有する。
 傾床部に沿って排出口12a側に前進、後退制御されたプッシャー14を有する。
 本実施例ではプッシャー14をシリンダー14aにて移動制御した例になっている。
 また、炉床12の付近には空気吹き込み口15を有する。
 排出口12a側には図8に示すように上下方向に複数のスリット部17cを形成した制御扉17と前面を完全に遮蔽する遮蔽扉18を有し、図3に示すようにシリンダー17a,18aにて上下高さが制御されている。
 制御扉17の内側には溶融物が抽出流れ落ちる溶出溝17bを形成してある。
 スリット部17cに外側から差し込む針状のロストル16が備えられ、図2に示すようにロストル16を保持するシリンダー16aとロッド16bの作動にて前進・後退制御するとともに上下方向のシリンダー16cにてロストル16の差し込み角度を制御する。
 また、ロストル16の内部には冷却水の注入口16dと排出口16eとを介して冷却水が循環するようになっている。
Next, the structure of the gasification furnace and the gasification method will be described.
As shown in FIG. 2, the hearth 12 of the gasification furnace 10 is a tilted floor portion with the melt discharge port 12 a on the lower side.
It has a straight tube structure in which the furnace wall 11 rises almost vertically from the hearth 12.
The upper part of the furnace is a three-stage seal damper composed of first to third tampers 13a, 13b, 13c, and an object to be processed is dropped into the furnace using the upper conveyor 13d while being shut off from the outside air. .
Further, cooling water is passed through the furnace wall 11.
A gas discharge port 19a is provided below the third damper 13c and in the upper part of the furnace.
A pusher 14 that is controlled to move forward and backward along the inclined floor portion toward the discharge port 12a is provided.
In this embodiment, the pusher 14 is controlled to move by the cylinder 14a.
An air blowing port 15 is provided in the vicinity of the hearth 12.
As shown in FIG. 8, the discharge port 12a has a control door 17 formed with a plurality of slits 17c in the vertical direction and a shielding door 18 that completely shields the front surface, and cylinders 17a, 18a as shown in FIG. The vertical height is controlled by.
On the inner side of the control door 17, an elution groove 17 b is formed in which the melt flows out.
A needle-shaped rooster 16 inserted from the outside is provided in the slit portion 17c. As shown in FIG. 2, the cylinder 16a holding the rooster 16 and the rod 16b are operated to move forward and backward, and the upper and lower cylinders 16c control the rooster. The insertion angle of 16 is controlled.
In addition, the cooling water circulates inside the rooster 16 through the cooling water inlet 16d and the outlet 16e.
 操業開始時は図3に示すようにロストル16を外部に出し、制御扉17及び遮蔽扉18を全閉状態にし、炉内に被処理物Mを投入する。
 この状態で着火バーナー15aを点火し、被処理物を加熱燃焼し始める。
 被処理物の一部が燃焼し始めると、200~500℃の温風を空気吹き込み口15から吹き込む。
 すると、図4に示すように炉床部に溶融層Mが形成され、温風中のOが消費され、COが発生する。
 Oが消費された不活性ガスはCOを多く含み、900~1000℃の高温になる。
 高温になったCOガスは均一に上昇し、上部の有機物と反応し熱分解する。
 この熱分解により乾留層Mが形成される。
 乾留層Mからは炭化水素、COガスが発生し、これが上昇し被処理物が乾燥した乾燥層Mが形成されるとともにガス吐出口19aを経由してガス化炉10からサイクロン110側に向けて吐出する。
 図4に示すように溶融が進行すると溶融物Mが溶出溝17bから溶出するとともに炉床12に不溶融物Mが溜まる。
 この不溶融物中には炭化されたコークスも含まれる。
 不溶融物Mが所定量発生したら図5に示すようにスリット部17cからロストル16を差し込み、未然物Mが落下するのを防ぎ、この状態でプッシャー14を前進させ、ウォーター19cにて水封されたコンベア19bを作動し、冷却排出する。
 溶出から冷却排出までの工程は遮蔽板18cにて外気から完全に遮断されている。
 ここで発生したガスも改質装置80にて燃焼させる。
 図5に示した例は被処理物に金属ワイヤー等の複合素材が多く含まない場合に有効であるが、古タイヤの処理等、ワイヤー成分等が多く含まれている場合やプッシャー14の押し出しだけでは不溶融物の排出が困難な場合には、図6,7に示すようにロストル16の先端部16fをプッシャー14の先端部14bに位置させながら、ロストル16の先端部でかき出すようにしてもよい。
 このようにすると図8(c)に模式的に示したように溶融と乾留処理の操業を続けながら不溶融物を炉外に排出できるので連続的な操業が可能である。
At the start of operation, as shown in FIG. 3, the rooster 16 is taken out, the control door 17 and the shielding door 18 are fully closed, and the workpiece M is put into the furnace.
In this state, the ignition burner 15a is ignited, and the object to be processed is heated and burned.
When a part of the workpiece starts to burn, warm air of 200 to 500 ° C. is blown from the air blowing port 15.
Then, the formed melt layer M 1 in the hearth, as shown in FIG. 4, the O 2 in the warm air is consumed, CO 2 is generated.
The inert gas in which O 2 is consumed contains a large amount of CO 2 and reaches a high temperature of 900 to 1000 ° C.
The high-temperature CO 2 gas rises uniformly, reacts with the organic matter on the top, and thermally decomposes.
Carbonization layer M 2 is formed by the thermal decomposition.
Hydrocarbon and CO gas are generated from the dry distillation layer M 2 , which rises to form a dry layer M 3 in which the object to be processed is dried, and from the gasifier 10 to the cyclone 110 side via the gas discharge port 19 a. Dispense towards.
As shown in FIG. 4, when melting progresses, the melt M 5 is eluted from the elution groove 17 b and the unmelted material M 4 is accumulated in the hearth 12.
This inmelt includes carbonized coke.
Not melt M 4 is insert the grate 16 from the slit portion 17c, as shown in FIG. 5 After a predetermined amount occurs, prevents the advance product M 6 falls to advance pusher 14 in this state, the water in a water 19c The sealed conveyor 19b is operated to cool and discharge.
The process from elution to cooling discharge is completely shielded from the outside air by the shielding plate 18c.
The gas generated here is also burned by the reformer 80.
The example shown in FIG. 5 is effective when the object to be processed does not contain a lot of composite materials such as metal wires. Then, when it is difficult to discharge the unmelted material, the tip 16f of the rooster 16 may be scraped out by the tip of the rooster 16 while the tip 16f of the rooster 16 is positioned at the tip 14b of the pusher 14 as shown in FIGS. Good.
If it does in this way, as shown typically in Drawing 8 (c), since a non-melting thing can be discharged out of a furnace, continuing operation of melting and dry distillation processing, continuous operation is possible.
 本発明に係る乾留装置は有機系の被処理物全般に対応できることから、一般産業廃棄物のみならず、古タイヤの処理、ピートの処理等多くの分野にて利用できる。 The carbonization apparatus according to the present invention can be used in many fields such as processing of old tires, peat processing, as well as general industrial waste, because it can handle all organic processing objects.

Claims (5)

  1.  上部に被処理物の投入口と、当該被処理物を所定量ずつ下部に密閉式に落下投入するシールダンパーと、下部に溶融物排出側が低くなるように傾斜した傾床部とを有する直筒構造のガス化炉と、ガス化炉から発生したガスからタール及びピッチを回収するタール・ピッチ回収装置とを備え、
    前記ガス化炉は底部付近に設けた空気吹き込み口から温風を吹き込むことで傾床部から上方に向けて順に少なくとも溶融層と乾留層とが形成され、
    タール・ピッチ回収装置は、前記ガス化炉から発生したガスをタール・ピッチ分と水分とガス分に分離させるものであることを特徴とする乾留装置。
    A straight cylinder structure having a workpiece inlet at the top, a seal damper that drops the workpiece in a sealed manner into the lower portion by a predetermined amount, and an inclined floor portion inclined so that the melt discharge side is lowered at the bottom And a tar / pitch recovery device for recovering tar and pitch from the gas generated from the gasification furnace,
    In the gasification furnace, at least a molten layer and a dry distillation layer are formed in order from the inclined floor portion upward by blowing warm air from an air blowing port provided near the bottom,
    The tar / pitch recovery apparatus separates the gas generated from the gasification furnace into a tar / pitch component, moisture, and a gas component.
  2.  前記ガス化炉の傾床部は溶融物排出側に向けて不溶融物を押し出すプッシャー装置を有し、
    溶融物排出部は上下方向に開閉制御された制御扉を有し、
    制御扉は上方方向に複数のスリット部を有し、当該スリット部を介して傾床部に向けて挿入自在の針状のロストルを有することを特徴とする請求の範囲1記載の乾留装置。
    The inclined bed portion of the gasification furnace has a pusher device for extruding an unmelted material toward the melt discharge side,
    The melt discharge part has a control door that is controlled to open and close in the vertical direction,
    The dry distillation apparatus according to claim 1, wherein the control door has a plurality of slit portions in an upward direction, and has a needle-like rooster that can be inserted through the slit portions toward the inclined floor portion.
  3.  前記タール・ピッチ回収装置は、ガス温を200~100℃の範囲に冷却する第1ガスクーラーと、ガス温を100~50℃の範囲に冷却する第2ガスクーラーと、ガス温を50℃未満に冷却する第3ガスクーラーとを有することを特徴とする請求の範囲1又は2記載の乾留装置。 The tar / pitch recovery apparatus includes a first gas cooler that cools a gas temperature to a range of 200 to 100 ° C., a second gas cooler that cools a gas temperature to a range of 100 to 50 ° C., and a gas temperature of less than 50 ° C. The dry distillation apparatus according to claim 1 or 2, further comprising a third gas cooler that cools the gas.
  4.  前記ガス温を50℃未満にし、凝縮水を除去した後に100~170℃まで昇温する熱交換器とその後に浮遊微粒子を除去するフィルター装置及び有害ガスを洗浄除去するガス洗浄装置を有し、その後のガスを用いて発電するガス発電装置を有することを特徴とする請求の範囲3記載の乾留装置。 A heat exchanger that raises the gas temperature to less than 50 ° C. and removes condensed water and then raises the temperature to 100 to 170 ° C., a filter device that removes suspended particulates, and a gas cleaning device that removes harmful gases, The dry distillation apparatus according to claim 3, further comprising a gas power generation apparatus that generates electric power using the subsequent gas.
  5.  前記タール・ピッチ回収装置にて回収したタール・ピッチを200~300℃の傾斜板上に落下させることで軽質成分と重質成分を分離するタール・ピッチ改質装置を有することを特徴とする請求の範囲1~3のいずれかに記載の乾留装置。 2. A tar pitch reforming device for separating a light component and a heavy component by dropping the tar pitch recovered by the tar / pitch recovery device onto an inclined plate at 200 to 300 ° C. 4. The carbonization apparatus according to any one of the ranges 1 to 3.
PCT/JP2010/056674 2010-04-14 2010-04-14 Dry distillation apparatus WO2011128990A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012510504A JPWO2011128990A1 (en) 2010-04-14 2010-04-14 Dry distillation equipment
PCT/JP2010/056674 WO2011128990A1 (en) 2010-04-14 2010-04-14 Dry distillation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/056674 WO2011128990A1 (en) 2010-04-14 2010-04-14 Dry distillation apparatus

Publications (1)

Publication Number Publication Date
WO2011128990A1 true WO2011128990A1 (en) 2011-10-20

Family

ID=44798383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056674 WO2011128990A1 (en) 2010-04-14 2010-04-14 Dry distillation apparatus

Country Status (2)

Country Link
JP (1) JPWO2011128990A1 (en)
WO (1) WO2011128990A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220090034A (en) * 2020-12-22 2022-06-29 한국에너지기술연구원 Apparatus for drying and thermolysis of particles, and method for drying and thermolysis of particles using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128585A (en) * 1984-06-08 1986-02-08 クルツプ−コツパ−ス・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Retreatment of carbonized gas upon cracking waste
JPS63251496A (en) * 1987-04-08 1988-10-18 Kawasaki Steel Corp Method of purifying gas mainly composed of carbon monoxide
JP2000291927A (en) * 1999-04-08 2000-10-20 Seiji Michimae Dry distillation-type incinerator
JP2002206092A (en) * 2001-01-11 2002-07-26 Kawasaki Heavy Ind Ltd Method and device for recovering energy from gas obtained by refuse gasification
JP2003535298A (en) * 2000-05-29 2003-11-25 エンバイロメンタル エナジー リソースィズ エヌ.ヴィ. Waste treatment equipment
JP2006097918A (en) * 2004-09-28 2006-04-13 Hitachi Metals Ltd Combustion furnace and waste treatment facility
JP2008222978A (en) * 2007-03-15 2008-09-25 Mitsui Eng & Shipbuild Co Ltd Wood charcoal gasification apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128585A (en) * 1984-06-08 1986-02-08 クルツプ−コツパ−ス・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Retreatment of carbonized gas upon cracking waste
JPS63251496A (en) * 1987-04-08 1988-10-18 Kawasaki Steel Corp Method of purifying gas mainly composed of carbon monoxide
JP2000291927A (en) * 1999-04-08 2000-10-20 Seiji Michimae Dry distillation-type incinerator
JP2003535298A (en) * 2000-05-29 2003-11-25 エンバイロメンタル エナジー リソースィズ エヌ.ヴィ. Waste treatment equipment
JP2002206092A (en) * 2001-01-11 2002-07-26 Kawasaki Heavy Ind Ltd Method and device for recovering energy from gas obtained by refuse gasification
JP2006097918A (en) * 2004-09-28 2006-04-13 Hitachi Metals Ltd Combustion furnace and waste treatment facility
JP2008222978A (en) * 2007-03-15 2008-09-25 Mitsui Eng & Shipbuild Co Ltd Wood charcoal gasification apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220090034A (en) * 2020-12-22 2022-06-29 한국에너지기술연구원 Apparatus for drying and thermolysis of particles, and method for drying and thermolysis of particles using the same
KR102485267B1 (en) 2020-12-22 2023-01-05 한국에너지기술연구원 Apparatus for drying and thermolysis of particles, and method for drying and thermolysis of particles using the same

Also Published As

Publication number Publication date
JPWO2011128990A1 (en) 2013-07-11

Similar Documents

Publication Publication Date Title
KR101448868B1 (en) Pyrolyzer for Emulsification Apparatus
JP6924305B2 (en) Furnace
KR101156195B1 (en) Pyrolysis apparatus using molten metal
CZ305021B6 (en) Process and reactor for gasifying and/or melting substances
US10829693B2 (en) Apparatus, system, and method for shale pyrolysis
EP3013740B1 (en) Direct-fired heating method and facility for implementing same
WO2011032354A1 (en) External combustion and internal heating type coal retort furnace
NL8501035A (en) METHOD FOR CLEANING WASTE GASES AND APPARATUS THEREFOR
KR100897521B1 (en) Recycling equipment and methode of waste electric wire
CN109825315A (en) A kind of cooling coke and sewage gasification burning processing unit and method
CN207435285U (en) A kind of innocuity disposal system of oily sludge
WO2011128990A1 (en) Dry distillation apparatus
CN206279174U (en) Skid-mounted type greasy filth pyrolysis treatment systems
WO2016036278A2 (en) Device for processing petroleum waste
KR100639643B1 (en) Multi recycling equipment of waste using exhaust heat and method thereof
JP2005068435A (en) Method and plant for producing decontaminated syngas at high efficiency from feedstock rich in organic substance
WO2007060281A1 (en) Continuous retort
CN101125271A (en) Method for regenerating filtering absorbing material used for water treatment
CN106433797A (en) Skid-mounted oil sludge pyrolysis treatment system and application thereof
KR101898255B1 (en) A thermal decomposition unit with a fixed solids retention and combustion gas induction chiller
CN205026651U (en) Burning furnace is spouted in gasification of living beings high temperature
RU2616079C1 (en) Method and device for plasma gasification of solid carbonaceous material and synthesis gas production
JP3998127B2 (en) Pyrolysis equipment
JP2005120211A (en) System for gasifying waste disposal
JP2005172276A (en) High temperature treating method and high temperature treating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849828

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012510504

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10849828

Country of ref document: EP

Kind code of ref document: A1