JP2011130581A - ガス圧監視装置ならびにガス絶縁電気機器 - Google Patents

ガス圧監視装置ならびにガス絶縁電気機器 Download PDF

Info

Publication number
JP2011130581A
JP2011130581A JP2009286452A JP2009286452A JP2011130581A JP 2011130581 A JP2011130581 A JP 2011130581A JP 2009286452 A JP2009286452 A JP 2009286452A JP 2009286452 A JP2009286452 A JP 2009286452A JP 2011130581 A JP2011130581 A JP 2011130581A
Authority
JP
Japan
Prior art keywords
temperature
pressure
value
sealed container
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009286452A
Other languages
English (en)
Inventor
Takashi Ito
隆史 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009286452A priority Critical patent/JP2011130581A/ja
Priority to US12/792,356 priority patent/US20110153232A1/en
Priority to CN2010102067506A priority patent/CN102104236A/zh
Publication of JP2011130581A publication Critical patent/JP2011130581A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • H02B13/065Means for detecting or reacting to mechanical or electrical defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/002Investigating fluid-tightness of structures by using thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/32Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • H02B13/065Means for detecting or reacting to mechanical or electrical defects
    • H02B13/0655Means for detecting or reacting to mechanical or electrical defects through monitoring changes of gas properties

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Gas-Insulated Switchgears (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Measuring Fluid Pressure (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

【課題】 密閉容器外に取付けた温度センサで測定される温度値を用いて、密閉容器内のガス漏れを検知する既存のガス圧監視装置では、実際の密閉容器内の温度値と測定される温度値に不確定な温度差が存在し、測定される密閉容器内の圧力値から所定温度に換算した換算圧力を求めることが困難であり、ガス漏れの早期検知ができなかった。
【解決手段】 24時間周期で定義される所定の時間帯で測定される圧力値と温度値の時系列的な推移からなる特性曲線の傾きから、密閉容器内外の不確定な温度差の影響を無くすことで、密閉容器内の換算圧力を高精度に求め、ガス漏れの早期検知を可能にした。
【選択図】 図1

Description

本発明は、たとえばガス絶縁開閉装置等のガス絶縁電気機器に封入されたガスの漏れを監視するガス圧監視装置ならびにそれを取付けたガス絶縁電気機器に関する。
従来のガス圧監視装置は、ガス絶縁電気機器の密閉容器にガス圧力センサと温度センサを設置し、それらによって測定される圧力値と温度値とを用いて、予め定めた所定の温度に対応する換算圧力を気体の状態方程式やBeattie−Bridgemanの式等を用いて算出し、その換算圧力の変化を監視することから、前記ガス絶縁電気機器のガス漏れを把握しようとしていた(例えば、特許文献1参照)。
ガス絶縁電気機器に備えられた密閉容器内の温度は外部環境の変化に依存し、また、密閉容器の壁のもつ熱伝導性やその容器内のガス対流の影響を受け、外部環境の変化からずれて変動する。そのため、密閉容器内の実際の温度は温度センサを取付けた部位に大きく依存し、例えば密閉容器の外あるいは密閉容器内に取付けた場合、外部環境の変化に対するその温度センサの追従性は大きく異なる。従って、ガス圧監視装置の任意の箇所に取付けた温度センサの温度値と圧力センサの圧力値から算出される換算圧力は共に変動し、その変動の補正も困難なため、ガス漏れ等の把握は容易でなかった。
そのような外部環境の変化の影響を減らすため、比較的温度変化の少ない所定の時刻である早朝の定時(例えば5時)においてのみ、密閉容器に設置された温度センサと圧力センサから温度値と圧力値を測定し、その密閉容器内の換算圧力を求める手段が提案されている(例えば、特許文献2参照)。
特開昭61−227327号公報 特開平3−222613号公報
しかしながら、上記のような所定の時刻の温度値と圧力値から求める換算圧力の日間変動は大きいため、その測定の再現精度に問題があった。また、換算圧力のトレンド傾向から精度の改善をはかろうとしても、例えば100点分の換算圧力を蓄積するには、3ヶ月の期間を必要とするため、ガス漏れの早期把握ができなかった。
本発明は上記の課題を解決し、温度センサを取付ける部位に依存することなく、ガス絶縁電気機器のガス漏れの早期把握ができるガス圧監視装置を得ることを目的とする。
本発明のガス圧監視装置は、密閉容器内の圧力値を測定する圧力センサと、前記密閉容器の温度値を測定する温度センサと、前記圧力センサならびに前記温度センサで測定された圧力値ならびに温度値を時系列的に記憶する記憶装置と、この記憶装置に記憶された所定の時間帯ごとの圧力値と温度値からなる特性曲線の傾きを演算する演算部とを備えた点を特徴とするものである。
上記のように構成されたガス圧監視装置によれば、所定の時間帯ごとの圧力値と温度値からなる特性曲線の傾きを演算するようにしたので、温度センサを取付ける部位に依存することなく、密閉容器内の封止圧力の変化を高精度に確認でき、ガス絶縁電気機器のガス漏れの早期把握が可能になる。
実施の形態1のガス絶縁電気機器の構成図である。 実施の形態1のガス圧監視装置に備わった演算処理装置の模式図である。 実施の形態1の封止圧力に対する特性曲線の一覧図である。 実施の形態1の封止圧力と特性曲線の傾きの相関図ある。 実施の形態1の各温度センサの温度値の時間推移を示す図である。 実施の形態1の第1温度センサに基づく特性曲線を示す図である。 実施の形態1の第2温度センサに基づく特性曲線を示す図である。 実施の形態1の第1、第2温度値の差分の時間推移を示す図である。 実施の形態1の第1温度センサに基づく特性曲線を示す図である。 実施の形態1の第2温度センサに基づく特性曲線を示す図である。
実施の形態1.
以下、図面に基づいて本発明の実施の形態1について詳細に説明する。図1はこの発明の実施の形態1のガス圧監視装置を取付けたガス絶縁電気機器の構成図、図2はガス圧監視装置に備わった演算処理装置の模式図、図3はガス圧監視装置に充填するSF6ガスの封止圧力(容器内の所定の温度における圧力)に対する特性曲線の一覧図、図4はSF6ガスの20℃での封止圧力と上記特性曲線の傾きの相関図、図5はガス圧監視装置の各温度センサの温度値の時間推移を示す図、図6は第1温度センサに基づく特性曲線を示す図、図7は第2温度センサに基づく特性曲線を示す図、図8は第1、第2温度値の差分の時間推移を示す図、図9は第1温度センサに基づく特性曲線を示す図、図10は第2温度センサに基づく特性曲線を示す図である。なお、各図中の同一符号は、同一または相当部分を示している。
図1に示すようにガス絶縁電気機器100の密閉容器1には、絶縁性に優れた図示しないSF6ガスが封止され、そのSF6ガスの状態を監視するための圧力センサ2と第1温度センサ3aと第2温度センサ3bを備えたガス圧監視装置200が取付けられている。密閉容器1の内部には、圧力センサ2と第1温度センサ3aが配置されている。なお、圧力センサ2の取付けられる箇所は、必ずしも密閉容器1の内部である必要性はなく、例えば密閉容器内と連通に通ずる図示しない配管等であっても良い。要するに密閉容器1内の圧力値が測定できるものであれば良い。密閉容器1の外側には、第2温度センサ3bが配置されている。これらの圧力センサ2、第1、第2温度センサ3a、3bによって、前記密閉容器内の圧力値Pと容器内外の温度値C1、C2が測定される。測定された圧力値Pと各温度値C1、C2は、演算処理装置4に送信され、後述詳細に説明する演算処理が実施される。なお、図1では密閉容器1は固定台5上に支持されている。
図2に示すように演算処理装置4は、圧力センサ2から送信された密閉容器1内の圧力値Pを随時時系列的に記録する圧力記憶装置11と、第1、第2温度センサ3a、3bから送信された密閉容器内外の各温度値C1、C2を随時時系列的に記録する温度記憶装置12を備えている。随時記録された圧力値Pと各温度値C1、C2は、演算部13に送られ、後述詳細に記する所定の手段に則って、密閉容器1内または外の温度変化に伴う密閉容器1内の圧力変化を示す特性曲線の示す傾きを算出し、それらの時間推移が表示装置14に表示される。以下、実施の形態1のガス圧監視装置に封入したSF6ガスの特性曲線について説明する。
一般に密閉容器内に封入されるSF6ガスの温度に対する圧力状態は、ボイルシャルルの法則に基づく気体の状態方程式や、さらに高精度に取り扱った例えば下記の1式によって表現されるBeattie−Bridgemanの式等を用いて取り扱われる。

P = R・T・(V+B)/V − A/V 1式

ここで、Pは圧力(atm.abs.)、Vはモル容積(liter/mol)、Tは温度(K)、Rは気体定数0.08207(liter atm.abs/mol K)であり、AおよびBは、下記の2式および3式で表現される。

A = 15.78・( 1 − 0.1062/V) 2式

B = 0.366・( 1 − 0.1236/V) 3式
図3は密閉容器内の温度を20℃均一としSF6ガスを種々の封止圧力で封入したときに得られる、各封止圧力ごとの密閉容器内の温度変化に対する圧力変化を示すSF6ガスの特性曲線の一覧(前記1式に則って算出した結果)である。各特性曲線は共に、温度上昇に伴って線形に圧力増加している。ところがそれぞれの特性曲線の傾きは、密閉容器内にSF6ガスを封入したときの封止圧力によって異なり、その封止圧力が大きくなるにつれ大きくなっている。
このことから、SF6ガスの特性曲線の傾きを求めることによって密閉容器内の温度20℃におけるSF6ガスの封止圧力が求まることがわかる。言い換えれば、換算圧力を求めることなく、特性曲線の傾きから密閉容器内に封入されたSF6ガスの減少や増加を知ることができる。例えば経年変化に伴って密閉容器内からSF6ガスが徐々に漏れる場合、その特性曲線の傾きは時間の経過と共に単調に減少する。従って、特性曲線の傾きの変化を測定することから密閉容器内のガス漏れの状態を把握することが理論上可能となる。
図4は前記1式に則って算出した20℃の特性曲線の傾きに対するSF6ガスの20℃における封止圧力を示す図である。測定された特性曲線の傾きをこの図4に当てはめ、その時系列的な封止圧力の推移を観測することで、密閉容器内の封止圧力の変化を推定できるため、容易にガス漏れ状態を把握することが理論上できる。従って、封止圧力の時系列的な変化を見守るのに必ずしも上記1式ないし3式を用いた計算をする必要性はない。以下、演算処理装置4の演算部13に採用する特性曲線の傾きを求める手段について説明する。
図5は本発明の実施の形態1のガス漏れのないガス絶縁電気機器100を雨ざらしの外部環境に設置し、その密閉容器1の内外に設けられた第1、第2温度センサ3a、3bで測定される第1、第2温度値C1、C2の2日間(晴れ時々曇りの2日間)の時間推移ならびに第1、第2温度値C1、C2の差分D1の時系列的な推移の一例を示す。
図6、7は密閉容器1の内外に設けられた第1、第2温度センサ3a、3bで測定される第1、第2温度値C1、C2と密閉容器1内の圧力値Pの関係を示す特性曲線である。密閉容器1の内外の特性曲線は、共にヒステリシスを有している。密閉容器1に設置したセンサ3の示す各温度値Cに対応する圧力値Pは、測定するタイミングの影響を受けた形で複数存在する(ばらついている)ことがわかる。言い換えると、特定のタイミングで測定された温度値Cと圧力値Pを用いて求める既存の換算圧力の測定法は、正確な封止圧力を求めていないことになる。一方、特性曲線の傾きSを求める手段は、特性曲線そのものにはヒステリシスが存在するものの数多くの温度値Cに対する圧力値Pを用いて求められるから(平均化処理が成されている)、比較的正確な値になる。従って、密閉容器1内の封止圧力を求める場合、従来の換算圧力から求める方法に比べて、特性曲線の傾きSから求める方が高精度になる。
密閉容器1の内側の第1温度センサ3aの示す特性曲線のヒステリシスの面積は、第2温度センサ3bの特性曲線のヒステリシスの面積より狭くなっている。このことから密閉容器1の内側の第1温度センサ3aの示す特性曲線の方が、温度値に対する圧力値Pのばらつきが小さく、より精度の高い特性曲線の傾きSが求まり、その結果、より精度の高い密閉容器1内の封止圧力になることがわかる。ただし、上記特性曲線にはヒステリシスが依然として存在するため、特性曲線の傾きSを求めても(各温度値C1、C2に対する圧力値P用いた平均化処理に対応)、不確定な誤差が含まれている。
上記特性曲線にヒステリシスが存在する理由について説明する。図8は図5に示した第1、第2温度値C1、C2の差分D1の時間推移と、その差分D1の温度軸を拡大した拡大差分D2を重ねて示した結果である。朝の6時ごろから夕方の19時ごろの時間帯で、密閉容器1の内側の温度が外側の温度より数度高くなっている。一方、それ以外の19時ごろから翌朝の6時ごろの時間帯で、密閉容器1の内外の温度差がほぼ一定になっている。他の多くの結果(図示しない)から、このような24時間周期の変化は、雨天等の悪天候の日を除いて毎日繰り返される。要するに、明るい時には密閉容器1の内外の温度差が大きくなり、暗くなるとその温度差は一定の値に収束する。このような密閉容器1の内外の温度差が原因となって、特性曲線にヒステリシスを与えているのである。
図9、10は、19時ごろから翌朝の6時ごろの時間滞における密閉容器1の内外に設けられた第1、第2温度センサ3a、3bで測定される第1、第2温度値C1、C2と密閉容器1内の圧力値Pの関係を示す特性曲線である。それぞれの特性曲線の傾きS3、S4は、ほぼ一致する。また、特性曲線にヒステリシスは殆どない。従って、密閉容器1の内外に設けられた第1、第2温度センサ3a、3bで測定される第1、第2温度値C1、C2の温度差の変動が所定の低い値の範囲内になった低変動の時間帯(例えば、午後21時ごろから午前3時ごろの夜中)で測定される圧力値Pと、第1温度値C1または第2温度値C2の何れかの温度値の組合せから得られる特性曲線を用いることで、きわめて再現性の高い特性曲線の傾きSを求めることが可能であることがわかる。
なお、実施の形態1のガス圧監視装置の第1温度センサは密閉容器内に取付けられたが、第2温度センサと同様に密閉容器外に取付けても良い。すなわち第1、第2温度センサを共に密閉容器外に取付けても第1、第2温度値の温度差を求めることができるので、低変動の時間帯が求まるからである。その場合、例えば第1温度センサの設置位置を日向とし、第2温度センサを日陰にするなどして、設置箇所を異ならせておけばよい。
また、例えば夜中の低変動の時間帯での特性曲線の傾きSが、上記の通り密閉容器1の内外に設けられた第1、第2温度センサ3a、3bに依存せずにほぼ一致する点から、温度センサ3の設置位置を考慮することなく、密閉容器1内の封止圧力を求めることができるという特筆すべきことがわかる。言い換えると、第1、第2温度値C1、C2の温度差の変動が、所定の値の範囲内になる低変動の時間帯ないし低変動の時間帯と見なせる所定の時間帯で測定された圧力値Pと温度値Cを用いることで、特性曲線に不確定な誤差が含まれ難くなるため、より精度の高い密閉容器1内の封止圧力を、任意の位置に設置した一個の温度センサ3の温度値から求められることがわかる。
上記の理由から、低変動の時間帯ないし所定の時間帯の測定により、気体の状態方程式等によって換算圧力を求める従来の方法においても再現性の高い封止圧力を求めるように改良できることがわかる。具体的には、上記低変動の時間帯ないし所定の時間帯の圧力値Pと温度値Cから時系列的に換算圧力を求めておき、その時系列的に求めた各換算圧力の平均値を封止圧力とすることで、再現性の高い封止圧力が求まるようになる。
ただし、密閉容器1の内外に設けられた第1、第2温度センサ3a、3bが測定する温度値C1、C2には、一定の値の温度差が存在する点から、換算圧力を求める方法では、用いたセンサの配置位置によって求まる換算圧力の値が異なる。従って、換算圧力から正確な封止圧力は求め難いと判断される。とはいえ、個々の温度センサ3を用いて求められる換算圧力には、高い再現性があるため、密閉容器1内の封止圧力と連動する換算圧力の増減は、極めて高精度に測定できる。以上説明した特性曲線の傾きSないし換算圧力を求める手段が、適宜、演算部13に採用される。
演算処理装置4の演算部13は、圧力記憶装置11と温度記憶装置12に時系列的に記録された低変動の時間帯ないし所定の時間帯で測定された圧力値Pと温度値Cを用いて、高精度に特性曲線の傾きSや換算圧力を求めるものである。特性曲線の傾きSまたは換算圧力を求めるのに用いる圧力値Pと温度値Cのサンプリング間隔を、例えば24時間間隔とすることで、24時間周期の低変動の時間帯ないし所定の時間帯で測定された圧力値Pと温度値Cを用いて特性曲線の傾きSまたは換算圧力をそれぞれ求めておき、その求めた24時間周期の特性曲線の傾きSまたは換算圧力の時系列推移を表示装置14に表示させている。
表示装置14に表示された特性曲線の傾きSまたは換算圧力の時間推移を確認することから、ガス絶縁電気機器100の密閉容器1内の封止圧力の日間の変化を確認することができる。その結果、特性曲線の傾きSまたは換算圧力の日々の時間推移が減少傾向にあれば、ガス漏れの存在が確認できる。従って、所定の時間帯ごとに演算部で時系列的に求められた特性曲線の各傾きまたは各換算圧力の時系列的な増減を比較する図示しない判断部を表示装置14に備えておいて、所定以上のガス漏れの進行があったときに、警報を発するようにしておいても良い。また、演算部13に特性曲線の傾きSから現時点での封止圧力を求めさせることも可能である。
以上説明したとおり、本発明の実施の形態1の発明は、温度センサを取付ける部位に依存しない低変動の時間帯ないし所定の時間帯で測定された圧力値Pと温度値Cを用いて、再現性の高い特性曲線を得るものであるから、密閉容器内の封止圧力の時系列的な変化を高精度に確認したり、高精度に封止圧力を測定したりすることができ、ガス漏れの早期把握を高精度に実現できるという効果を有する。
1 密閉容器、 2 圧力センサ、
3a 第1温度センサ、 3b 第1温度センサ、
4 演算処理装置、
11 圧力記憶装置、 12 温度記憶装置、
13 演算部、 14 表示装置、
100 ガス絶縁電気機器

Claims (7)

  1. 密閉容器内の圧力値を測定する圧力センサと、前記密閉容器の温度値を測定する温度センサと、前記圧力センサならびに前記温度センサで測定された圧力値ならびに温度値を時系列的に記憶する記憶装置と、この記憶装置に記憶された所定の時間帯ごとの圧力値と温度値からなる特性曲線の傾きを演算する演算部とを備えたガス圧監視装置。
  2. 密閉容器内の圧力値を測定する圧力センサと、前記密閉容器の温度値を測定する温度センサと、前記圧力センサならびに前記温度センサで測定された圧力値ならびに温度値を時系列的に記憶する記憶装置と、この記憶装置に記憶された所定の時間帯ごとの圧力値と温度値から各換算圧力を演算し、その演算した各換算圧力の平均値を演算する演算部とを備えたガス圧監視装置。
  3. 請求項1または請求項2に記載のガス圧監視装置であって、演算に用いる記憶装置に記憶された所定の時間帯ごとの圧力値と温度値が、夜中の圧力値と温度値であることを特徴とするガス圧監視装置。
  4. 密閉容器内の圧力値を測定する圧力センサと、前記密閉容器の異なる部位の温度値を測定する第1、第2温度センサと、
    前記圧力センサで測定された圧力値ならびに前記第1、第2温度センサで測定された第1、第2温度値を時系列的に記憶する記憶装置と、この記憶装置に記憶された第1、第2温度値の温度差が、所定の値の範囲内である低変動の時間帯ごとで測定された圧力値と第1温度値または前記圧力値と第2温度値からなる特性曲線の傾きを演算する演算部とを備えたガス圧監視装置。
  5. 密閉容器内の圧力値を測定する圧力センサと、前記密閉容器の異なる部位の温度値を測定する第1、第2温度センサと、
    前記圧力センサで測定された圧力値ならびに前記第1、第2温度センサで測定された第1、第2温度値を時系列的に記憶する記憶装置と、この記憶装置に記憶された第1、第2温度値の温度差が、所定の値の範囲内である低変動の時間帯ごとで測定された圧力値と第1温度値または前記圧力値と第2温度値から各換算圧力を演算し、その演算した各換算圧力の平均値を演算する演算部とを備えたガス圧監視装置。
  6. 請求項4または請求項5に記載のガス圧監視装置であって、密閉容器の内側に第1温度センサが、密閉容器の外側に第2温度センサが設置されていることを特徴とするガス圧監視装置。
  7. 請求項1ないし請求項6のいずれかに記載のガス圧監視装置を備えたことを特徴とするガス絶縁電気機器。
JP2009286452A 2009-12-17 2009-12-17 ガス圧監視装置ならびにガス絶縁電気機器 Pending JP2011130581A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009286452A JP2011130581A (ja) 2009-12-17 2009-12-17 ガス圧監視装置ならびにガス絶縁電気機器
US12/792,356 US20110153232A1 (en) 2009-12-17 2010-06-02 Gas pressure monitoring system and gas-insulated electric apparatus
CN2010102067506A CN102104236A (zh) 2009-12-17 2010-06-11 气压监视装置及气体绝缘电气设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009286452A JP2011130581A (ja) 2009-12-17 2009-12-17 ガス圧監視装置ならびにガス絶縁電気機器

Publications (1)

Publication Number Publication Date
JP2011130581A true JP2011130581A (ja) 2011-06-30

Family

ID=44152293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009286452A Pending JP2011130581A (ja) 2009-12-17 2009-12-17 ガス圧監視装置ならびにガス絶縁電気機器

Country Status (3)

Country Link
US (1) US20110153232A1 (ja)
JP (1) JP2011130581A (ja)
CN (1) CN102104236A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016038908A1 (ja) * 2014-09-09 2016-03-17 株式会社日立製作所 ガスリーク検知装置およびガスリーク検査方法
US10190935B2 (en) 2015-07-28 2019-01-29 Hitachi, Ltd. Gas leak detection device and gas leak detection method

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2666997A1 (en) * 2012-05-25 2013-11-27 Inergy Automotive Systems Research (Société Anonyme) Method for detecting a presence or absence of a leak in a fuel system
DE102013020388A1 (de) * 2012-12-13 2014-06-18 Tesat-Spacecom Gmbh & Co. Kg Verfahren zur Dichteprüfung eines Gehäuses
JP2014167706A (ja) * 2013-02-28 2014-09-11 Azbil Corp 監視装置および制御システム
US9739248B2 (en) * 2013-03-15 2017-08-22 Ford Global Technologies, Llc Fuel system leak detection using passive valves
CN103346487B (zh) * 2013-06-26 2016-03-23 基元电气有限公司 一种密封开关柜
US9884197B2 (en) * 2013-07-01 2018-02-06 Newsouth Innovations Pty Ltd Encapsulated electronic circuit
CN105509976A (zh) * 2014-10-16 2016-04-20 大陆汽车电子(长春)有限公司 发动机控制单元泄露测试方法和装置
ES2898722T3 (es) * 2017-12-19 2022-03-08 Michele Tognetti Procedimientos de prueba de fugas para tanques
CN108007818B (zh) * 2017-12-20 2020-10-02 国网河北省电力有限公司电力科学研究院 一种sf6及sf6混合气体密度检测装置和方法
JP6971920B2 (ja) * 2018-06-22 2021-11-24 三菱電機ビルテクノサービス株式会社 漏液検出装置
CN109916577A (zh) * 2019-03-28 2019-06-21 国家电网有限公司 油枕胶囊检测方法、系统及终端设备
KR102559767B1 (ko) * 2019-07-19 2023-07-26 가부시끼가이샤 도시바 가스 리크 검출 시스템 및 가스 리크 검출 방법
GB2586651A (en) 2019-09-02 2021-03-03 Rolls Royce Plc Power electronics unit
CN111276895B (zh) * 2019-12-14 2021-11-16 芜湖伊莱特电气有限公司 一种用于防泄露的环网柜
CN111521349B (zh) * 2020-04-21 2022-07-01 博众精工科技股份有限公司 一种充放气控制方法、装置、系统、电子设备和介质
CN112649153A (zh) * 2020-11-27 2021-04-13 国网冀北电力有限公司电力科学研究院 一种封闭设备的气密性检测方法、装置、设备
CN112763163B (zh) * 2020-12-23 2023-05-12 常州西电变压器有限责任公司 密闭容器的气密性检测方法、装置、设备及存储介质
CN112835397B (zh) * 2021-01-04 2022-01-28 中车青岛四方车辆研究所有限公司 箱体密封状态监测与评估方法及监测系统
CN113758653A (zh) * 2021-09-09 2021-12-07 河南平高电气股份有限公司 一种对sf6密度继电器实时监测并预判断漏气的方法
WO2023044819A1 (en) * 2021-09-24 2023-03-30 Abb Schweiz Ag Method and apparatus for gas leak detection
CN114284909B (zh) * 2021-11-24 2022-08-26 云南人民电力电气有限公司 一种新型环保气体全绝缘充气柜
WO2023150917A1 (en) * 2022-02-08 2023-08-17 Abb Schweiz Ag Method and apparatus for gas leak detection
EP4269976A1 (en) * 2022-04-28 2023-11-01 Schneider Electric Industries SAS Method for determining a gas quantity in an insulated switchgear

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667113B2 (ja) * 1990-01-26 1994-08-24 日新電機株式会社 ガス絶縁式電気設備のガス漏れ監視装置
JPH0862082A (ja) * 1994-08-23 1996-03-08 Nissin Electric Co Ltd 圧力センサの点検装置
FR2762940B1 (fr) * 1997-04-30 1999-06-04 Gec Alsthom T & D Sa Methode pour surveiller un taux de fuite d'une enveloppe d'appareillage electrique a haute tension
JP3932669B2 (ja) * 1997-05-16 2007-06-20 三井化学株式会社 ポリアミド樹脂組成物および製造方法
JP3621812B2 (ja) * 1997-08-05 2005-02-16 株式会社鷺宮製作所 Sf6 ガスの状態監視装置及びsf6 ガスの状態監視装置の制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016038908A1 (ja) * 2014-09-09 2016-03-17 株式会社日立製作所 ガスリーク検知装置およびガスリーク検査方法
US10190935B2 (en) 2015-07-28 2019-01-29 Hitachi, Ltd. Gas leak detection device and gas leak detection method

Also Published As

Publication number Publication date
CN102104236A (zh) 2011-06-22
US20110153232A1 (en) 2011-06-23

Similar Documents

Publication Publication Date Title
JP2011130581A (ja) ガス圧監視装置ならびにガス絶縁電気機器
JP4495103B2 (ja) ガス漏れ検出装置及びガス漏れ検出方法
JP6514598B2 (ja) ガスリーク検知装置およびガスリーク検知方法
US10145754B2 (en) Method and apparatus for detecting gas leakage from radioactive material sealed container
US7558691B2 (en) Method for determining a characteristic of a sensor arrangement
US20150308938A1 (en) Gas insulated switchgear monitoring apparatus and method
US11187596B2 (en) Apparatus for determining and/or monitoring temperature of a medium
US20170074744A1 (en) Method and Apparatus for Detecting Gas Leakage From Radioactive Material Sealed Container
JP2016057135A (ja) ガスリーク検知装置およびガスリーク検査方法
JP2006311756A (ja) スローリーク検出装置
US8342741B2 (en) Method for operating a sensor arrangement
CN1199857A (zh) 监测高电压设备外壳的漏气率的方法
US20230349787A1 (en) Method for determining a gas quantity in an insulated switchgear
US7941393B2 (en) Method for predictive determination of a process variable based on an assignment of a discrete measured value
JP2007198812A (ja) 震度計
JP2014142996A (ja) 密閉型開閉装置の真空度劣化検出装置
JP5233728B2 (ja) ガス圧監視装置ならびにガス絶縁電気機器
JPH03222613A (ja) ガス絶縁式電気設備のガス漏れ監視装置
WO2023210040A1 (ja) ガスリーク検知装置およびガスリーク検知方法
JP5142783B2 (ja) ガス絶縁開閉装置のガス圧力検出装置
JPH05336629A (ja) ガス絶縁開閉装置のガス密度監視装置
RU2655000C1 (ru) Контрольная течь
JP2924987B2 (ja) ガス絶縁開閉装置のガス漏れ検出方法
US20180356535A1 (en) Dose calculation device, dose calculation method, and measurement device with dose calculation function
CN112763163B (zh) 密闭容器的气密性检测方法、装置、设备及存储介质