JP2011129563A - Multilayer wiring board, and method of manufacturing the same - Google Patents

Multilayer wiring board, and method of manufacturing the same Download PDF

Info

Publication number
JP2011129563A
JP2011129563A JP2009283914A JP2009283914A JP2011129563A JP 2011129563 A JP2011129563 A JP 2011129563A JP 2009283914 A JP2009283914 A JP 2009283914A JP 2009283914 A JP2009283914 A JP 2009283914A JP 2011129563 A JP2011129563 A JP 2011129563A
Authority
JP
Japan
Prior art keywords
layer
wiring pattern
metal foil
insulating resin
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009283914A
Other languages
Japanese (ja)
Other versions
JP5527585B2 (en
Inventor
Takanori Nishida
貴紀 西田
Satoshi Isoda
聡 磯田
Masayuki Kodaira
正幸 小平
Mitsuyasu Ishihara
光泰 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2009283914A priority Critical patent/JP5527585B2/en
Publication of JP2011129563A publication Critical patent/JP2011129563A/en
Application granted granted Critical
Publication of JP5527585B2 publication Critical patent/JP5527585B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayer wiring board and a method of manufacturing the same such that an amount of warpage can be suppressed, and operability and a yield are satisfactory even for coreless technique employed in which wiring layers are stacked only on one side of a copper foil. <P>SOLUTION: This invention relates to: the multilayer wiring board that includes a first layer wiring pattern formed by circuit-processing a metal foil A, and at least one high layer-side wiring layer having an insulating resin layer disposed on the first layer wiring pattern and a wiring pattern disposed on the insulating resin layer, wherein a high layer-side wiring pattern is formed on the insulating resin layer by circuit-processing the metal foil and a conductor layer formed by plating, and a highest layer-side wiring pattern is larger in thickness than the first layer wiring pattern or larger in conductor layer remaining ratio than the first layer wiring pattern, or a highest layer-side insulating resin layer is smaller in thickness than the insulating resin layer on the first layer wiring pattern; and the method of manufacturing the same. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、SAW(Surface Acoustic Wave:表面弾性波)圧電素子や半導体素子等の電子部品素子を搭載する基板に用いられる多層配線基板及びその製造方法に関する。   The present invention relates to a multilayer wiring board used for a substrate on which an electronic component element such as a SAW (Surface Acoustic Wave) piezoelectric element or a semiconductor element is mounted, and a method for manufacturing the same.

近年、電子機器の小型化、軽量化、多機能化が一段と進み、これらに用いられる多層配線基板においても、多層化や配線の微細化とともに、多層配線基板の薄型化が求められている。これに伴い、多層配線基板の製造プロセスにおいては、より薄型の配線基板を取り扱う必要が生じている。つまり、従来一般の電子部品素子搭載用の多層配線基板は、いわゆるビルドアップ工法により製造されており、これは、コア基板となる薄型の配線基板の両側に、絶縁樹脂層と配線パターンとからなる配線層を積み上げて多層配線基板を製造する製法であるため、配線層の層数が少ない段階では、例えば0.1mm以下の薄型の配線基板の状態で製造プロセスを進める必要があるためである。薄型の配線基板は製造プロセスの中で、寸法変動による反りや、製造装置内での引っかかりによる折れ、破損などが生じ易いため、取り扱いが困難になっている。このような薄型の配線基板の取り扱いを容易にする方法としては、配線基板の1枚1枚に、機械的な強度を持たせる目的で、治具や支持基板を取付ける方法が考えられる。しかしながら、この方法では、大幅に工数が増加し、コストアップとなる問題がある。   In recent years, electronic devices have been further reduced in size, weight, and functionality, and multilayer wiring boards used for these devices are required to have a thinner multilayer wiring board as well as multilayering and wiring miniaturization. Accordingly, in the manufacturing process of the multilayer wiring board, it is necessary to handle a thinner wiring board. That is, a conventional multilayer wiring board for mounting an electronic component element is manufactured by a so-called build-up method, which includes an insulating resin layer and a wiring pattern on both sides of a thin wiring board serving as a core board. This is because it is a manufacturing method in which wiring layers are stacked to manufacture a multilayer wiring board, and therefore, in a stage where the number of wiring layers is small, it is necessary to proceed with the manufacturing process with a thin wiring board having a thickness of 0.1 mm or less, for example. Thin wiring boards are difficult to handle because they are prone to warpage due to dimensional fluctuations, breakage, breakage, etc. due to catching in the manufacturing apparatus during the manufacturing process. As a method for facilitating the handling of such a thin wiring board, a method of attaching a jig or a supporting board for the purpose of giving mechanical strength to each of the wiring boards can be considered. However, this method has a problem that the number of man-hours is greatly increased and the cost is increased.

このような問題を回避するための方法としては、両側に剥離性銅箔を積層した支持体を準備し、この支持体の両側に多層配線基板を形成した後、剥離性銅箔の剥離作用を利用して、多層配線基板と支持体を分離する方法(特許文献1)、2枚を貼り合わせた支持体を準備し、この両側に多層配線基板を形成した後、貼り合わせてあった支持体を多層配線板ごと分離し、その後多層配線基板から支持体を除去する方法(特許文献2)、支持体として両側に銅箔を有するコア基板を準備し、このコア基板の両側の銅箔上に、ひとまわり小さい銅箔Aを直接重ねて配置し、この銅箔A上に配線層を積み重ねて多層配線基板を形成した後、銅箔同士が直接重ねられた領域は接着しないことを利用して、多層配線基板とコア基板とを分離する方法(特許文献3)などが知られている。これらの製法は、従来のビルドアップ工法と違い、製造される多層配線基板自体の構成には、支持体となるコア基板を必要としない。このため、このような製法を、本発明においては、以下、コアレス工法という。   As a method for avoiding such a problem, after preparing a support having laminated peelable copper foils on both sides and forming a multilayer wiring board on both sides of the support, the peeling action of the peelable copper foil is performed. A method of separating a multilayer wiring board and a support by using (Patent Document 1) A support having two substrates bonded together is prepared, a multilayer wiring substrate is formed on both sides, and then the bonded substrates are bonded together Is separated from the multilayer wiring board, and then the support is removed from the multilayer wiring board (Patent Document 2). A core substrate having copper foil on both sides is prepared as a support, and the copper substrate on both sides of the core substrate is prepared. By using the fact that a small copper foil A is directly stacked and wiring layers are stacked on the copper foil A to form a multilayer wiring board, the area where the copper foils are directly stacked is not bonded. , A method of separating a multilayer wiring board and a core board (patent Document 3) and the like are known. Unlike the conventional build-up method, these manufacturing methods do not require a core substrate as a support for the structure of the manufactured multilayer wiring board itself. For this reason, such a manufacturing method is hereinafter referred to as a coreless construction method in the present invention.

これらのコアレス工法によれば、支持体の機械的強度に加え、配線基板が2枚分の厚みとなるため、層数の少ない段階の薄型の配線基板の状態であっても、支持体と配線基板を含めた全体の厚みが厚くなり、剛性が増すので、製造設備内での引っかかりによる折れ、破損などを抑制できる。また、支持体の両側に、対称な構成で多層配線基板が形成されるため、製造プロセスの中で寸法変動による反りが生じても、反りによる応力が支持体の両側でほぼ釣り合うことにより、支持体と多層配線基板を含めた全体としては、反りを抑制することができる。さらに、特許文献3のコアレス工法では、従来のビルドアップ法のように内層となるコア基板の両側に配線層を積み上げるのではなく、銅箔Aの片側にだけ配線層を積み上げることになる。このため、多層配線基板の最外層の一方の導体層は、銅箔Aだけで構成できるので、微細配線パターンの形成に有利となる。なお、支持体の両側に形成される多層配線基板を個別にみれば、従来のビルドアップ工法のように、内層となるコア基板の両側に、1回の積層工程で同時に配線層を積み上げるのではなく、片側にだけ配線層を積み上げることになるが、1回の積層工程で2枚分の積層を行うことになるので、従来のビルドアップ法と同等の生産性を維持することができる。   According to these coreless construction methods, in addition to the mechanical strength of the support, the thickness of the wiring board is two, so the support and the wiring can be provided even in a thin wiring board with a small number of layers. Since the entire thickness including the substrate is increased and the rigidity is increased, it is possible to suppress breakage, breakage, and the like due to catching in the manufacturing facility. In addition, since the multilayer wiring board is formed on both sides of the support body in a symmetrical configuration, even if warpage due to dimensional variation occurs in the manufacturing process, the stress due to warpage is almost balanced on both sides of the support body. As a whole including the body and the multilayer wiring board, warpage can be suppressed. Furthermore, in the coreless construction method of Patent Document 3, the wiring layers are stacked only on one side of the copper foil A, instead of stacking the wiring layers on both sides of the core substrate that is the inner layer as in the conventional build-up method. For this reason, since one of the outermost conductor layers of the multilayer wiring board can be formed of only the copper foil A, it is advantageous for forming a fine wiring pattern. In addition, if the multilayer wiring boards formed on both sides of the support are viewed individually, the wiring layers are not stacked at the same time on one side of the core board, which is the inner layer, as in the conventional build-up method. However, the wiring layers are stacked only on one side, but since two sheets are stacked in one stacking process, productivity equivalent to that of the conventional build-up method can be maintained.

特許第4273895号公報Japanese Patent No. 4273895 特開2008−047936号公報JP 2008-047936 A 特開2009−252827号公報JP 2009-252827 A

しかしながら、一般に、低層側の配線層の上に、絶縁樹脂層と導体層を重ねて高層側の配線層を積み上げる場合、既に硬化した低層側の配線層の硬化収縮よりも、新たに積み上げる高層側の配線層の硬化収縮の方が大きいので、多層配線基板は、高層側の配線層の方が内側となる状態で反りを生じる。上記の従来のコアレス工法においては、支持体と多層配線基板を含めた全体としては、反りを抑制したり、剛性を向上することが可能であるものの、多層配線基板が単体になった場合の反りについては考慮されていない。つまり、コアレス工法では、従来のビルドアップ法のように内層となるコア基板の両側に配線層を積み上げるのではなく、片側にだけ配線層を積み上げることになるが、コアレス工法によって製造された個別の多層配線基板においては、絶縁樹脂層の硬化収縮が多層配線基板の片側のみに偏って生じることになるため、特に配線層の層数が大きくなる場合は、反りが拡大する傾向がある。一方、多層配線基板の支持体と接した側の導体層は、支持体と分離してからでないと、回路形成以降の製造プロセスを行なうことができないため、多層配線基板を完成させるためには、多層配線基板と支持体とを分離する必要があり、多層配線基板単体で行なう製造プロセスが残ることになる。このため、支持体を分離して多層配線基板単体となったときに、反りを生じてしまう点が問題となる。   However, in general, when a high-layer wiring layer is stacked on top of a low-layer wiring layer by stacking an insulating resin layer and a conductor layer, the higher-layer side is newly stacked rather than the cured shrinkage of the already hardened low-layer wiring layer. Therefore, the multilayer wiring board warps in a state where the higher wiring layer is on the inner side. In the above conventional coreless construction method, it is possible to suppress warping or improve rigidity as a whole including the support and the multilayer wiring board, but warpage when the multilayer wiring board becomes a single body. Is not considered. In other words, in the coreless method, the wiring layer is not stacked on both sides of the core substrate that is the inner layer as in the conventional build-up method, but the wiring layer is stacked only on one side. In the multilayer wiring board, since the shrinkage of the insulating resin layer is caused to be biased to only one side of the multilayer wiring board, the warp tends to increase particularly when the number of wiring layers increases. On the other hand, the conductor layer on the side in contact with the support of the multilayer wiring board must be separated from the support before the manufacturing process after circuit formation can be performed. It is necessary to separate the multilayer wiring board and the support, and a manufacturing process performed by the multilayer wiring board alone remains. For this reason, when a support body is isolate | separated and it becomes a multilayer wiring board single-piece | unit, the point which generate | occur | produces curvature will be a problem.

この問題に対しては、配線層の層数が大きくなって反りが拡大する前に、即ち必要な配線層の層数まで積み上げる前に、支持体を分離して単体の多層配線基板とし、その後は、従来のビルドアップ工法を用いて、分離した後の多層配線基板に対して、その両側に必要な層数の配線層を積み上げる方法が考えられる。しかしながら、従来のビルドアップ工法を用いる場合、両側に配線層を積み上げる際には、分離した後の多層配線基板上の両側に、絶縁樹脂層と銅箔を積層した後、コンフォーマル工法を用いて非貫通孔を開け、層間接続用のめっきを行い、その後、エッチングにより配線パターンを形成する。この場合は、最終的に最外層となる第1層配線パターンが、銅箔とその上に層間接続により生じるめっき層とを有することになる。このため、第1層配線パターンの厚みが厚くなり、微細パターンの形成に不利になる問題がある。また、銅箔上に形成される層間接続により生じるめっき層は、突起を生じ易いので、銅箔単体の場合に比べて、凹凸が拡大し易い。最外層である第1層配線パターンは、通常はさらに表面に保護めっきを行うため、凹凸がさらに拡大することになる。   To solve this problem, before the number of wiring layers increases and warping expands, that is, before stacking up to the required number of wiring layers, the support is separated into a single multilayer wiring board, and then The conventional build-up method may be used to stack the necessary number of wiring layers on both sides of the separated multilayer wiring board. However, when using the conventional build-up method, when stacking the wiring layers on both sides, after laminating the insulating resin layer and copper foil on both sides of the separated multilayer wiring board, use the conformal method. A non-through hole is opened, plating for interlayer connection is performed, and then a wiring pattern is formed by etching. In this case, the first layer wiring pattern which will be the outermost layer finally has a copper foil and a plating layer formed by interlayer connection thereon. For this reason, there is a problem that the thickness of the first layer wiring pattern is increased, which is disadvantageous for forming a fine pattern. Moreover, since the plating layer produced by the interlayer connection formed on the copper foil is likely to generate protrusions, the unevenness is easily enlarged as compared with the case of the copper foil alone. Since the first layer wiring pattern which is the outermost layer is usually further subjected to protective plating on the surface, the unevenness is further enlarged.

ところで、電子部品素子を搭載する多層配線基板の用途として、SAW(Surface Acoustic Wave:表面弾性波)デバイスを構成する多層配線基板としての用途があるが、小型化・薄型化の要求に伴い、ファイスダウンでフリップチップ接続されたSAW圧電素子の活性面(表面弾性波の振動部分)と多層配線基板表面の第1層配線パターンとの隙間に形成される振動空間が、より狭く(例えば、10μm程度)なるように設計される傾向がある。このため、多層配線基板表面の第1層配線パターンの表面凹凸が大きいと、配線パターンとSAW圧電素子の活性面が接触する可能性があり、フィルタとしての機能を確保できない問題がある。   By the way, as a use of a multilayer wiring board on which electronic component elements are mounted, there is a use as a multilayer wiring board constituting a SAW (Surface Acoustic Wave) device. The vibration space formed in the gap between the active surface of the SAW piezoelectric element flip-chip connected down (surface acoustic wave vibration part) and the first layer wiring pattern on the surface of the multilayer wiring board is narrower (for example, about 10 μm). ) Tends to be designed to be. For this reason, if the surface unevenness of the first layer wiring pattern on the surface of the multilayer wiring board is large, there is a possibility that the wiring pattern and the active surface of the SAW piezoelectric element may come into contact with each other, and there is a problem that the function as a filter cannot be secured.

本発明は、上記問題点に鑑みなされたものであり、銅箔の片側だけに配線層を積み上げて多層化するコアレス工法を用いても、反り量を抑制でき、作業性や歩留りのよい多層配線基板及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and even when using a coreless construction method in which wiring layers are stacked on only one side of a copper foil to form a multilayer, the amount of warpage can be suppressed, and multilayer wiring with good workability and yield. An object of the present invention is to provide a substrate and a manufacturing method thereof.

本発明は、以下のものに関する。
1. 金属箔Aを回路加工して形成された第1層配線パターンと、この第1層配線パターン上に配置された絶縁樹脂層及びこの絶縁樹脂層上に配置された配線パターンを有する少なくとも1層の高層側の配線層と、を有する多層配線基板であって、前記高層側の配線パターンは、前記絶縁樹脂層上に金属箔とめっきにより形成された導体層を回路加工することにより形成され、前記第1層配線パターンより最も高層側の配線パターンの厚みが厚く、または前記第1層配線パターンより最も高層側の配線パターンの導体層残存率が大きく、または前記第1層配線パターン上の絶縁樹脂層より最も高層側の絶縁樹脂層の厚みが薄くなるように形成される多層配線基板。
2. 上記1において、高層側にいくにつれて、配線パターンの厚みが厚く、または配線パターンの導体層残存率が大きく、または絶縁樹脂層の厚みが薄くなるように形成される多層配線基板。
3. 上記1または2において、最も高層側の導体層に、この導体層が平面方向に伸長するように機械的処理が施される多層配線板。
4. コア基板の金属箔上に、直接金属箔Aを重ね、この上に絶縁樹脂層及びこの絶縁樹脂層上に配置された配線パターンを有する少なくとも1層の高層側の配線層を形成し、この上にさらに高層側の配線層を形成するための絶縁樹脂層及び導体層を積層することによって、前記コア基板の金属箔上に直接接触した金属箔Aと、この金属箔A上の配線層と、この配線層上に形成された絶縁樹脂層及び導体層を有する多層基板を形成する工程と、前記コア基板の金属箔と金属箔Aとの界面で、前記コア基板と多層基板とを分離する工程と、この多層基板の前記金属箔A及び導体層を回路加工することにより、一方に前記金属箔Aを回路加工して形成された第1層配線パターンを、他方に前記導体層を回路加工して形成された高層側の配線パターンを有する多層配線基板を形成する工程と、を有する多層配線基板の製造方法であって、前記第1層配線パターンより最も高層側の配線パターンの厚みが厚く、または前記第1層配線パターンより最も高層側の配線パターンの導体層残存率が大きく、または前記第1層配線パターン上の絶縁樹脂層より最も高層側の絶縁樹脂層の厚みが薄くなるように形成する多層配線基板の製造方法。
5. コア基板の金属箔上に、直接金属箔Aを重ね、この上に絶縁樹脂層及びこの絶縁樹脂層上に配置された配線パターンを有する少なくとも1層の高層側の配線層を形成し、この上にさらに高層側の配線層を形成するための絶縁樹脂層及び導体層を重ねることによって、前記コア基板の金属箔上に直接接触した金属箔Aと、この金属箔A上の配線層と、この配線層上に形成された絶縁樹脂層及び導体層を有する多層基板を形成する工程と、この多層基板の前記導体層を回路加工する工程と、前記コア基板の金属箔と金属箔Aとの界面で、前記コア基板と多層基板とを分離する工程と、この多層基板の前記金属箔Aを回路加工することにより、一方に前記金属箔Aを回路加工して形成された第1層配線パターンを、他方に前記導体層を回路加工して形成された高層側の配線パターンを有する多層配線基板を形成する工程と、を有する多層配線基板の製造方法であって、前記第1層配線パターンより最も高層側の配線パターンの厚みが厚く、または前記第1層配線パターンより最も高層側の配線パターンの導体層残存率が大きく、または前記第1層配線パターン上の絶縁樹脂層より最も高層側の絶縁樹脂層の厚みが薄くなるように形成する多層配線基板の製造方法。
6. 上記4または5において、高層側にいくにつれて、配線パターンの厚みが厚く、または配線パターンの導体層残存率が大きく、または絶縁樹脂層の厚さが薄くなるよう形成される多層配線基板の製造方法。
7. 上記4から6の何れかにおいて、最も高層側の導体層に、この導体層が平面方向に伸長するように機械的処理が施される多層配線板の製造方法。
The present invention relates to the following.
1. A first layer wiring pattern formed by circuit processing of the metal foil A, an insulating resin layer disposed on the first layer wiring pattern, and at least one layer having a wiring pattern disposed on the insulating resin layer A wiring layer on the high layer side, wherein the wiring pattern on the high layer side is formed by circuit processing a conductor layer formed by plating a metal foil on the insulating resin layer, The wiring pattern on the highest layer side is thicker than the first layer wiring pattern, or the conductor layer remaining rate of the wiring pattern on the highest layer side is larger than that of the first layer wiring pattern, or the insulating resin on the first layer wiring pattern A multilayer wiring board formed such that the insulating resin layer on the highest layer side is thinner than the upper layer.
2. In the above 1, the multilayer wiring board is formed so that the wiring pattern is thicker, the conductor layer remaining rate of the wiring pattern is larger, or the insulating resin layer is thinner as going to the higher layer side.
3. 3. The multilayer wiring board according to 1 or 2, wherein a mechanical treatment is applied to the highest conductive layer so that the conductive layer extends in a planar direction.
4). On the metal foil of the core substrate, the metal foil A is directly stacked, and an insulating resin layer and at least one wiring layer on the upper layer side having a wiring pattern arranged on the insulating resin layer are formed thereon. Further, by laminating an insulating resin layer and a conductor layer for forming a wiring layer on the higher layer side, a metal foil A directly in contact with the metal foil of the core substrate, a wiring layer on the metal foil A, A step of forming a multilayer substrate having an insulating resin layer and a conductor layer formed on the wiring layer; and a step of separating the core substrate and the multilayer substrate at an interface between the metal foil and the metal foil A of the core substrate. Then, by processing the metal foil A and the conductor layer of the multilayer substrate, the first layer wiring pattern formed by processing the metal foil A on one side and the conductor layer on the other side are processed. A high-layer wiring pattern Forming a multilayer wiring board having a thickness higher than the first layer wiring pattern or higher than the first layer wiring pattern. A method for manufacturing a multilayer wiring board, wherein the conductor layer residual ratio of the wiring pattern on the side is large, or the insulating resin layer on the highest layer side is thinner than the insulating resin layer on the first layer wiring pattern.
5). On the metal foil of the core substrate, the metal foil A is directly stacked, and an insulating resin layer and at least one wiring layer on the upper layer side having a wiring pattern arranged on the insulating resin layer are formed thereon. A metal foil A that is in direct contact with the metal foil of the core substrate, a wiring layer on the metal foil A, and A step of forming a multilayer substrate having an insulating resin layer and a conductor layer formed on the wiring layer, a step of processing the conductor layer of the multilayer substrate, and an interface between the metal foil and the metal foil A of the core substrate Then, a step of separating the core substrate and the multilayer substrate, and a first layer wiring pattern formed by circuit processing of the metal foil A on one side by circuit processing of the metal foil A of the multilayer substrate And the other conductor layer is circuit processed Forming a multilayer wiring board having a high-layer side wiring pattern formed, wherein the thickness of the wiring layer on the highest layer side is thicker than the first layer wiring pattern, or The conductive layer remaining rate of the wiring layer on the highest layer side is larger than that of the first layer wiring pattern, or the insulating resin layer on the highest layer side is thinner than the insulating resin layer on the first layer wiring pattern. A method for manufacturing a multilayer wiring board.
6). In 4 or 5 above, the multilayer wiring board is formed such that the wiring pattern is thicker, the conductor layer remaining rate of the wiring pattern is larger, or the insulating resin layer is thinner as going to the higher layer side. .
7). 7. The method for producing a multilayer wiring board according to any one of 4 to 6, wherein the highest conductive layer is subjected to mechanical treatment so that the conductive layer extends in a planar direction.

本発明によれば、銅箔の片側だけに配線層を積み上げて多層化するコアレス工法を用いても、反り量を抑制でき、作業性や歩留りのよい多層配線基板及びその製造方法を提供することができる。   According to the present invention, it is possible to suppress the amount of warp even when using a coreless construction method in which wiring layers are stacked on only one side of a copper foil to form a multilayer, and to provide a multilayer wiring board with good workability and yield and a manufacturing method thereof. Can do.

本発明の多層配線基板及びこれを用いて作製した電子部品モジュールの断面図を示す。Sectional drawing of the multilayer wiring board of this invention and an electronic component module produced using this is shown. 本発明の多層配線基板の断面図を示す。1 is a sectional view of a multilayer wiring board according to the present invention. 本発明の多層配線基板の製造工程の一部を示す。A part of manufacturing process of the multilayer wiring board of the present invention is shown. 本発明の多層配線基板の製造工程の一部を示す。A part of manufacturing process of the multilayer wiring board of the present invention is shown. 本発明の多層配線基板の製造工程の一部を示す。A part of manufacturing process of the multilayer wiring board of the present invention is shown. 本発明の多層配線基板の製造工程の一部を示す。A part of manufacturing process of the multilayer wiring board of the present invention is shown. 本発明の多層配線基板の製造工程の一部を示す。A part of manufacturing process of the multilayer wiring board of the present invention is shown. 本発明の多層配線基板の製造工程の一部を示す。A part of manufacturing process of the multilayer wiring board of the present invention is shown. 本発明の多層配線基板の製造工程の一部を示す。A part of manufacturing process of the multilayer wiring board of the present invention is shown.

本発明の多層配線基板は、電子部品素子を搭載するための基板である。本発明において、電子部品素子とは、半導体素子、SAW圧電素子、PA(パワーアンプ)素子などのフリップチップ接続やワイヤーボンド接続によって、配線基板上の接続端子に接続される表面実装型の電子部品素子をいう。電子部品素子を、フリップチップ接続またはワイヤーボンド接続して搭載する用途であれば、特に限定はないが、例えばSAW圧電素子もしくはPA(パワーアンプ)素子を搭載して、いわゆるSAWフィルタパッケージもしくはPAモジュールなどの通信モジュールを形成するための部材として、主に携帯電話などの通信モジュールでベアチップ実装用途に用いられるのが望ましい。   The multilayer wiring board of the present invention is a board for mounting electronic component elements. In the present invention, an electronic component element is a surface-mount type electronic component that is connected to a connection terminal on a wiring board by flip-chip connection or wire bond connection, such as a semiconductor element, SAW piezoelectric element, or PA (power amplifier) element. Refers to an element. There is no particular limitation as long as the electronic component element is mounted by flip chip connection or wire bond connection. For example, a SAW piezoelectric element or PA (power amplifier) element is mounted, so-called SAW filter package or PA module. As a member for forming a communication module such as a mobile phone, it is preferably used for a bare chip mounting application mainly in a communication module such as a mobile phone.

本発明の多層配線基板の一形態としては、図1、図2に示すように、金属箔A19を回路加工して形成された第1層配線パターン8と、この第1層配線パターン8上に配置された絶縁樹脂層及びこの絶縁樹脂層上に配置された配線パターンを有する少なくとも1層の高層側の配線層と、を有する多層配線基板1であって、前記高層側の配線パターンは、前記絶縁樹脂層上に金属箔とめっきにより形成された導体層を回路加工することにより形成され、前記第1層配線パターン8より最も高層側の配線パターンの厚みが厚く、または前記第1層配線パターン8より最も高層側の配線パターンの導体層残存率が大きく、または前記第1層配線パターン8上の絶縁樹脂層より最も高層側の絶縁樹脂層の厚みが薄くなるように形成される多層配線基板1が挙げられる。   As one form of the multilayer wiring board of the present invention, as shown in FIGS. 1 and 2, a first layer wiring pattern 8 formed by circuit processing of a metal foil A19, and on the first layer wiring pattern 8 are provided. A multilayer wiring board 1 having an arranged insulating resin layer and at least one high-layer wiring layer having a wiring pattern arranged on the insulating resin layer, wherein the high-layer wiring pattern includes: A conductive layer formed by metal foil and plating on the insulating resin layer is formed by circuit processing, and the wiring layer on the highest layer side is thicker than the first layer wiring pattern 8, or the first layer wiring pattern The multilayer wiring board is formed so that the conductor layer remaining rate of the wiring pattern on the highest layer side is higher than 8, or the insulating resin layer on the highest layer side is thinner than the insulating resin layer on the first layer wiring pattern 8. And the like.

本発明の多層配線基板の一形態をより具体的に説明すると、図1、図2に示す例では、一方の面にフリップチップ接続端子5を含む第1層配線パターン8が、第1絶縁樹脂層9に形成された第1フィルドビア10を層間接続として、第2層配線パターン11に電気的に接続された配線構造を有し、さらに第2絶縁樹脂層12に形成された第2フィルドビア13を層間接続として第3層配線パターン14に電気的に接続された配線構造を有し、さらに第3絶縁樹脂層15に形成された第3フィルドビア16を層間接続として、裏面電極7となる部分を含む第4層配線パターン17に電気的に接続された配線構造を備える多層配線基板1である。第1層配線パターン8は金属箔A19を回路加工して形成され、それよりも高層側の配線パターン(第2層配線パターン11、第3層配線パターン14及び第4層配線パターン17)は、金属箔B20、C23、D24とこれらの上部に形成される層間接続の際に生じるめっき層31とで構成される第1層導体層30、第2層導体層33、第3層導体層35を回路形成して形成される。最外層となる第1層配線パターン8及び第4層配線パターン17は、その上に保護めっき22を備えており、第1フィルドビア10の直上には、電子部品素子3を搭載するためのフリップチップ接続端子5が設けられる。各配線パターンの厚み、各配線パターンの導体層残存率、各絶縁樹脂層の厚みの詳細は図示しないが、第1層配線パターン8より最も高層側の配線パターン11、14、17の厚みが厚く、または第1層配線パターン8より最も高層側の配線パターン11、14、17の導体層残存率が大きく、または第1層配線パターン8上の第1絶縁樹脂層9より最も高層側の絶縁樹脂層12、15の厚みが薄くなるように形成される。   The embodiment of the multilayer wiring board according to the present invention will be described in more detail. In the example shown in FIGS. 1 and 2, the first layer wiring pattern 8 including the flip chip connection terminal 5 on one surface is a first insulating resin. The first filled via 10 formed in the layer 9 is used as an interlayer connection, and has a wiring structure electrically connected to the second layer wiring pattern 11, and further the second filled via 13 formed in the second insulating resin layer 12 is provided. It has a wiring structure electrically connected to the third layer wiring pattern 14 as an interlayer connection, and further includes a portion that becomes the back electrode 7 with the third filled via 16 formed in the third insulating resin layer 15 as an interlayer connection. The multilayer wiring board 1 includes a wiring structure electrically connected to the fourth layer wiring pattern 17. The first layer wiring pattern 8 is formed by processing the metal foil A19, and the wiring patterns on the higher layer side (the second layer wiring pattern 11, the third layer wiring pattern 14, and the fourth layer wiring pattern 17) are: A first layer conductor layer 30, a second layer conductor layer 33, and a third layer conductor layer 35 constituted by the metal foils B20, C23, D24 and a plating layer 31 formed at the time of interlayer connection formed on the metal foils B20, C23, D24. It is formed by forming a circuit. The first layer wiring pattern 8 and the fourth layer wiring pattern 17 which are the outermost layers are provided with protective plating 22 thereon, and a flip chip for mounting the electronic component element 3 immediately above the first filled via 10. A connection terminal 5 is provided. Although details of the thickness of each wiring pattern, the conductor layer remaining rate of each wiring pattern, and the thickness of each insulating resin layer are not shown, the thickness of the wiring patterns 11, 14, and 17 on the highest layer side of the first layer wiring pattern 8 is thicker. Alternatively, the conductor layer remaining rate of the wiring layers 11, 14, and 17 on the highest layer side than the first layer wiring pattern 8 is larger, or the insulating resin on the highest layer side than the first insulating resin layer 9 on the first layer wiring pattern 8 The layers 12 and 15 are formed to be thin.

第1層配線パターンより、最も高層側の配線パターンの厚みを厚くすることによって、最も高層側の絶縁樹脂層を積み上げる際に生じる、最も高層側の絶縁樹脂層の硬化収縮を抑制することができる。これは、配線パターンの寸法変化は、絶縁樹脂層よりも小さいので、配線パターンの厚みを厚くすることにより、配線パターンの厚みが薄い場合よりも、絶縁樹脂層の寸法変化(この場合は、硬化収縮)を抑制する作用が大きくなるためである。これにより、既に硬化している低層側の絶縁樹脂層の硬化収縮との収縮率の差が小さくなるので、多層配線基板全体としての反りを抑制することができる。   By increasing the thickness of the wiring pattern on the highest layer side from the first layer wiring pattern, curing shrinkage of the insulating resin layer on the highest layer side that occurs when the insulating resin layer on the highest layer side is stacked can be suppressed. . This is because the dimensional change of the wiring pattern is smaller than that of the insulating resin layer. Therefore, by increasing the thickness of the wiring pattern, the dimensional change of the insulating resin layer (in this case, the hardening) This is because the effect of suppressing (shrinkage) is increased. As a result, the difference in shrinkage rate from the cured shrinkage of the insulating resin layer on the lower layer side that has already been cured is reduced, so that the warpage of the entire multilayer wiring board can be suppressed.

第1層配線パターンより、最も高層側の配線パターンの導体層残存率を大きくすることによって、最も高層側の絶縁樹脂層を積み上げる際に生じる、最も高層側の絶縁樹脂層の硬化収縮を抑制することができる。これは、配線パターンの寸法変化は、絶縁樹脂層よりも小さいので、配線パターンの導体層残存率を大きくすることにより、配線パターンの導体残存率が小さい場合よりも、絶縁樹脂層の寸法変化(この場合は、硬化収縮)を抑制する作用が大きくなるためである。これにより、既に硬化している低層側の絶縁樹脂層の硬化収縮との収縮率の差が小さくなるので、多層配線基板全体としての反りを抑制することができる。   Suppressing the curing shrinkage of the insulating resin layer on the highest layer, which occurs when the insulating resin layer on the highest layer is stacked, by increasing the conductor layer remaining rate of the wiring layer on the highest layer side than the first layer wiring pattern. be able to. This is because the dimensional change of the wiring pattern is smaller than that of the insulating resin layer. By increasing the conductor layer residual rate of the wiring pattern, the dimensional change of the insulating resin layer ( In this case, the effect of suppressing curing shrinkage is increased. As a result, the difference in shrinkage rate from the cured shrinkage of the insulating resin layer on the lower layer side that has already been cured is reduced, so that the warpage of the entire multilayer wiring board can be suppressed.

第1層配線パターン上の絶縁樹脂層より、最も高層側の絶縁樹脂層の厚みを薄くすることによって、最も高層側の絶縁樹脂層を積み上げる際に生じる、最も高層側の絶縁樹脂層の硬化収縮を抑制することができる。これは、高層側の絶縁樹脂層を積み上げる際の、高層側の絶縁樹脂の硬化収縮は、既に硬化している低層側の絶縁樹脂の硬化収縮よりも大きいが、最も高層側の絶縁樹脂の厚みが低層側よりも薄いことによって、低層側の絶縁樹脂層の寸法変化の方が支配的になるためである。これにより、高層側の絶縁樹脂層の硬化収縮の影響が小さくなるので、多層配線基板全体としての反りを抑制することができる。   Curing shrinkage of the insulating resin layer on the highest layer that occurs when the insulating resin layer on the highest layer side is stacked by making the thickness of the insulating resin layer on the highest layer side thinner than the insulating resin layer on the first layer wiring pattern Can be suppressed. This is because the curing shrinkage of the insulating resin on the high layer side when the insulating resin layer on the high layer side is stacked is larger than the curing shrinkage of the insulating resin on the low layer side that has already been cured, but the thickness of the insulating resin on the highest layer side This is because the dimensional change of the insulating resin layer on the lower layer side becomes dominant due to the fact that is thinner than the lower layer side. Thereby, since the influence of the curing shrinkage of the insulating resin layer on the higher layer side is reduced, it is possible to suppress the warpage of the entire multilayer wiring board.

高層側にいくにつれて、配線パターンの厚みが厚く、または配線パターンの導体層残存率が大きく、または絶縁樹脂層の厚みが薄くなるように形成されるのが望ましい。これにより、上述したような、配線パターンの厚みを厚くすることによる作用、配線パターンの導体層残存率を大きくすることにより作用、絶縁樹脂層の厚みが薄くなるように形成することによる作用が、積み上げる配線層毎に作用するので、多層配線基板の内部での歪みを押さえつつ、反りを抑制することができる。   It is desirable that the wiring pattern is thicker, the conductor layer remaining rate of the wiring pattern is larger, or the insulating resin layer is thinner as it goes to the higher layer side. Thereby, as described above, the effect by increasing the thickness of the wiring pattern, the effect by increasing the conductor layer residual rate of the wiring pattern, the effect by forming the insulating resin layer to be thin, Since it acts for each wiring layer to be stacked, warping can be suppressed while suppressing distortion inside the multilayer wiring board.

最も高層側の導体層に、この導体層が平面方向に伸長するように機械的処理が施されるのが望ましい。これにより、支持体と分離した後の多層配線基板に反りが残っても、機械的処理が施された導体層が、平面方向に伸長するので、反りを矯正することができる。導体層が平面方向に伸長するように施される機械的処理としては、バフ研磨やベルトサンダーが挙げられる。   It is desirable that a mechanical treatment is performed on the highest conductive layer so that the conductive layer extends in the planar direction. Thereby, even if a warp remains in the multilayer wiring board after being separated from the support, the conductor layer subjected to the mechanical treatment extends in the plane direction, so that the warp can be corrected. Examples of the mechanical treatment applied so that the conductor layer extends in the plane direction include buffing and belt sander.

また、図1、図2に示す形態では、フリップチップ接続端子5となる部分を含む第1層配線パターン8は、金属箔A19だけで構成され、その上部には、フィルドビアめっきにより層間接続を形成する際にも、フィルドビアめっき21a、21b、21cが形成されない。このため、このような層間接続の際に生じるめっき層31により、金属箔A19の表面粗さや凹凸が拡大することがない。ここで、層間接続の際に生じるめっき層31とは、例えば、コンフォーマル工法において、ビア内に層間接続のためのフィルドビアめっき等を行なうと、表面の金属箔上にもフィルドビアめっき等が形成され、表面の導体層の厚みが厚くなるが、このときの金属箔上に形成されたフィルドビアめっき等のことをいう。また、金属箔A19で構成される第1層導体層30(図4に示す。)の厚みが、層間接続の際に生じるめっき層31によって増大することがないので、微細パターンを形成する場合でも、それに応じた厚みの金属箔A19を選択することができ、ハーフエッチングやバフ研磨を行なう必要がないので、金属箔A19の表面粗さが拡大することがない。したがって、金属箔A19の表面平滑性をほぼそのまま利用することができ、優れた表面平滑性を有する第1層配線パターン8を形成することができる。また、フリップチップ接続端子5となる部分を含む第1層配線パターン上に保護めっき22を形成する場合でも、第1層配線パターン8の表面が平滑なので、その上に形成する保護めっき22の表面も平滑性を維持することができる。このため、表面平滑性に優れたフリップチップ接続端子5を形成できるので、フリップチップ接続性に優れる多層配線基板1を提供できる。また、フリップチップ接続端子5を、ワイヤーボンド接続端子として形成した場合は、ワイヤーボンド接続性に優れる多層配線基板1を提供できる。なお、ここでハーフエッチングとは、回路加工によって配線パターンを形成する前に、エッチングによって導体層の厚みを薄くしておき、微細な回路加工を容易にするための処理をいう。   In the form shown in FIG. 1 and FIG. 2, the first layer wiring pattern 8 including the portion to be the flip chip connection terminal 5 is composed only of the metal foil A19, and an interlayer connection is formed on the upper portion thereof by filled via plating. Also when filled, filled via plating 21a, 21b, 21c is not formed. For this reason, the surface roughness and unevenness | corrugation of metal foil A19 do not expand by the plating layer 31 produced in the case of such an interlayer connection. Here, the plated layer 31 generated at the time of interlayer connection is, for example, when filled via plating for interlayer connection is performed in the via in the conformal method, filled via plating or the like is also formed on the metal foil on the surface. Although the thickness of the conductor layer on the surface increases, it means filled via plating or the like formed on the metal foil at this time. Further, since the thickness of the first conductor layer 30 (shown in FIG. 4) composed of the metal foil A19 is not increased by the plating layer 31 generated at the time of interlayer connection, even when a fine pattern is formed. The metal foil A19 having a thickness corresponding to that can be selected, and it is not necessary to perform half etching or buffing, so that the surface roughness of the metal foil A19 does not increase. Therefore, the surface smoothness of the metal foil A19 can be used almost as it is, and the first layer wiring pattern 8 having excellent surface smoothness can be formed. Even when the protective plating 22 is formed on the first layer wiring pattern including the portion to become the flip chip connection terminal 5, the surface of the first layer wiring pattern 8 is smooth, so the surface of the protective plating 22 formed thereon Can also maintain smoothness. For this reason, since the flip chip connection terminal 5 excellent in surface smoothness can be formed, the multilayer wiring board 1 excellent in flip chip connection can be provided. Moreover, when the flip chip connection terminal 5 is formed as a wire bond connection terminal, the multilayer wiring board 1 excellent in wire bond connectivity can be provided. Here, half-etching refers to a process for facilitating fine circuit processing by reducing the thickness of a conductor layer by etching before forming a wiring pattern by circuit processing.

さらに、図1、図2に示す形態では、フリップチップ接続端子5となる部分以外においても、第1層配線パターン8上の保護めっき22の表面は、同様に平滑性を有している。このため、電子部品素子3としてSAW圧電素子3を搭載する場合、第1層配線パターン8が、SAW圧電素子3の活性面39(表面弾性波の振動部分)の下方領域に形成された場合でも、SAW圧電素子3のフィルタ機能を確保することができる。例えば、0.45〜4.0GHzの高周波領域に用いるSAWデバイスでは、小型化・薄型化の要求から、多層配線基板1に搭載されるSAW圧電素子3の下面(活性面39)と、多層配線基板1の第1層配線パターン8上の保護めっき22との間に設ける隙間(振動空間)が10μm程度になるように設計される場合がある。このため、SAW圧電素子3を搭載する面の第1層配線パターン8上の保護めっき22の表面凹凸が、8μm未満の表面平滑性を有するように調整すれば、0.45〜4.0GHz程度の高周波のSAWフィルタ用の基板として用いられた場合に、フィルタ機能を確保するのに有効である。   Furthermore, in the form shown in FIGS. 1 and 2, the surface of the protective plating 22 on the first layer wiring pattern 8 similarly has smoothness other than the portion that becomes the flip chip connection terminal 5. For this reason, even when the SAW piezoelectric element 3 is mounted as the electronic component element 3, even when the first layer wiring pattern 8 is formed in a region below the active surface 39 (vibration portion of the surface acoustic wave) of the SAW piezoelectric element 3. The filter function of the SAW piezoelectric element 3 can be ensured. For example, in a SAW device used in a high frequency region of 0.45 to 4.0 GHz, the lower surface (active surface 39) of the SAW piezoelectric element 3 mounted on the multilayer wiring board 1 and the multilayer wiring are required in order to reduce the size and thickness. In some cases, the gap (vibration space) provided between the substrate 1 and the protective plating 22 on the first layer wiring pattern 8 is designed to be about 10 μm. For this reason, if the surface unevenness of the protective plating 22 on the first layer wiring pattern 8 on the surface on which the SAW piezoelectric element 3 is mounted is adjusted to have a surface smoothness of less than 8 μm, it is about 0.45 to 4.0 GHz. When used as a substrate for a high-frequency SAW filter, it is effective to ensure the filter function.

また、図1、図2に示す形態では、第1層配線パターン8は、金属箔A19をエッチング等で回路加工するだけで形成できるので、厚みの薄い金属箔A19を用いれば、配線パターンの高密度化を図ることができる。さらに、第1層配線パターン8には、その上部に、層間接続の際に生じるめっき層31が形成されないので、微細な配線パターンを形成する場合でも、いわゆるハーフエッチングやバフ研磨等によって、導体層の厚みを薄くする工程が必要ないため、工数が増加せず、安価な多層配線基板1を提供することが可能になる。また、ハーフエッチングやバフ研磨等を行なうと、導体層の表面粗さが大きくなるため、これらの工程が不要であることは、工数低減ばかりでなく、第1層配線パターン8及びその上の保護めっき22の表面の表面平滑性を維持する効果を有する。このように、本発明によれば、特にフリップチップ接続端子5を含む第1層配線パターン8上の保護めっき22の表面平滑性を要求される、電子部品素子3搭載用途に適した多層配線基板1を提供することができる。   In the form shown in FIGS. 1 and 2, the first layer wiring pattern 8 can be formed only by processing the metal foil A19 by etching or the like. Therefore, if the thin metal foil A19 is used, the wiring pattern height increases. Densification can be achieved. Further, since the plating layer 31 generated at the time of interlayer connection is not formed on the first layer wiring pattern 8, even when a fine wiring pattern is formed, the conductor layer is formed by so-called half etching, buffing or the like. Since a process for reducing the thickness of the wiring board 1 is not required, the number of steps is not increased and the inexpensive multilayer wiring board 1 can be provided. In addition, when half etching or buffing is performed, the surface roughness of the conductor layer increases, so that these steps are not necessary, not only reducing man-hours, but also protecting the first layer wiring pattern 8 and the protection thereon. It has the effect of maintaining the surface smoothness of the surface of the plating 22. As described above, according to the present invention, the multilayer wiring board suitable for the electronic component element 3 mounting application, in which the surface smoothness of the protective plating 22 on the first layer wiring pattern 8 including the flip chip connection terminal 5 is particularly required. 1 can be provided.

本発明の多層配線基板は、電子部品素子を搭載するための基板であり、例えばSAW圧電素子もしくはPA(パワーアンプ)素子を搭載していわゆるSAWフィルタパッケージもしくはPAモジュールなどの通信モジュールを形成するための部材として用いることができる。主に携帯電話などの通信モジュールでベアチップ実装用途に用いられるのが、本発明の第1層配線パターンが高密度で、その上に形成される保護めっきが平滑表面を有するという特徴を生かすことができる点で望ましい。   The multilayer wiring board of the present invention is a board on which electronic component elements are mounted. For example, a SAW piezoelectric element or a PA (power amplifier) element is mounted to form a communication module such as a so-called SAW filter package or PA module. It can be used as a member. It is mainly used for bare chip mounting applications in communication modules such as mobile phones. The first layer wiring pattern of the present invention has a high density, and the protective plating formed thereon has a smooth surface. This is desirable because it can be done.

本発明において、導体層とは、絶縁樹脂層の表面に設けられ、上部に層間接続の際に生じるめっき層を有する金属箔または金属箔のみで構成される、回路加工前の状態のものをいう。導体層残存率とは、回路加工前の導体層の面積に対する回路加工後に残った配線パターンの面積の比をいう。配線パターンとは、この導体層を回路加工して配線や接続端子のパターンが形成されたものをいい、例えばコンフォーマルマスク用の開口を設けただけのもの等は含まない。層間接続の際に生じるめっき層とは、例えば、コンフォーマル工法において、ビア内に層間接続のためのフィルドビアめっき等を行なうと、表面の金属箔上にもフィルドビアめっき等が形成され、表面の導体層の厚みが厚くなるが、このときの金属箔上に形成されたフィルドビアめっき等のことをいう。また、第1層配線パターンとは、上記の配線パターンのうち、電子部品素子との接続端子を有する側の表層(第1層)に設けられる配線パターンをいう。各層の配線パターンは、フィルドビアで形成される層間接続の直上の位置を含むように形成される。配線層とは、絶縁樹脂層と配線パターンとを有し、多層配線基板を構成する一つの層の配線基板をいう。   In the present invention, the conductor layer is a metal foil or a metal foil that is provided on the surface of the insulating resin layer and has a plating layer formed at the time of interlayer connection, or a state before circuit processing. . The conductor layer remaining rate is the ratio of the area of the wiring pattern remaining after circuit processing to the area of the conductor layer before circuit processing. The wiring pattern means a pattern in which wiring and connection terminals are formed by processing this conductor layer, and does not include, for example, a pattern in which an opening for a conformal mask is provided. For example, in the conformal method, the plated layer generated in the interlayer connection is a filled via plating or the like for the interlayer connection in the via, and the filled via plating or the like is also formed on the surface metal foil. Although the thickness of the layer is increased, it means filled via plating or the like formed on the metal foil at this time. Further, the first layer wiring pattern refers to a wiring pattern provided on the surface layer (first layer) on the side having a connection terminal with the electronic component element among the above wiring patterns. The wiring pattern of each layer is formed so as to include a position immediately above the interlayer connection formed by filled vias. The wiring layer refers to a single-layer wiring board having an insulating resin layer and a wiring pattern and constituting a multilayer wiring board.

フィルドビアで形成される層間接続の直上に位置する配線パターンのうち、第1層配線パターンは、金属箔Aにより形成される。つまり、第1層配線パターンでは、回路加工前の金属箔Aの上部には、層間接続の際に生じるめっき層は形成されておらず、金属箔Aが露出し、金属箔Aのみで第1層導体層が構成されており、第1層配線パターンは、この第1層導体層を回路加工することにより形成される。このため、第1層配線パターンは、金属箔Aの表面平滑性をほぼそのまま利用することができ、優れた表面平滑性を備えることができる。このため、第1層配線パターン上に形成する保護めっきの表面も平滑になる。また、第1層配線パターンは、金属箔Aのみをエッチングして回路加工するので、導体層の厚みが薄いため、微細な配線パターンの形成が可能になる。このため、回路加工前に、ハーフエッチングやバフ研磨等によって、導体層の厚みを薄くする工程が不要である。   Of the wiring patterns located immediately above the interlayer connection formed by filled vias, the first layer wiring pattern is formed of metal foil A. That is, in the first layer wiring pattern, the plating layer generated at the time of interlayer connection is not formed on the upper part of the metal foil A before circuit processing, the metal foil A is exposed, and only the metal foil A is the first. A layer conductor layer is formed, and the first layer wiring pattern is formed by circuit processing of the first layer conductor layer. For this reason, the first layer wiring pattern can use the surface smoothness of the metal foil A almost as it is, and can have excellent surface smoothness. For this reason, the surface of the protective plating formed on the first layer wiring pattern is also smoothed. Further, since the first layer wiring pattern is processed by etching only the metal foil A, the conductor layer is thin, so that a fine wiring pattern can be formed. For this reason, the process of reducing the thickness of the conductor layer by half etching, buffing or the like before the circuit processing is unnecessary.

第1層配線パターンを除く各層の配線パターンの回路加工の方法としては、一般の電子部品素子実装用基板に用いられる回路形成方法によって行なうことができる。このような回路形成方法として、サブトラクト法、セミアディティブ法等が挙げられる。   As a circuit processing method for the wiring patterns of each layer excluding the first layer wiring pattern, a circuit forming method used for a general electronic component element mounting substrate can be used. Examples of such a circuit forming method include a subtractive method and a semi-additive method.

本発明に用いる金属箔Aとしては、一般の電子部品素子実装用基板に用いられるものを使用することができるが、電気特性や回路加工性等の点から、特には銅箔が望ましい。このような銅箔としては、3EC−VLP−12(三井金属鉱業株式会社製、商品名)等が例示できる。また、金属箔は、アルミニウム、真鍮、ニッケル、鉄等の単独、合金又は複合箔からなる金属箔、または銅箔にアルミニウム、ニッケル、銀、金等の金属をめっきや蒸着したものに置き換えることができる。   As the metal foil A used in the present invention, those used for a general electronic component element mounting substrate can be used, and a copper foil is particularly desirable from the viewpoint of electrical characteristics, circuit workability, and the like. Examples of such a copper foil include 3EC-VLP-12 (trade name, manufactured by Mitsui Kinzoku Mining Co., Ltd.). In addition, the metal foil may be replaced with a metal foil made of aluminum, brass, nickel, iron or the like alone, an alloy or a composite foil, or a copper foil plated or evaporated with a metal such as aluminum, nickel, silver, or gold. it can.

本発明において、層間接続とは、絶縁樹脂層に設けられた層間接続孔を介して、各層の配線パターン同士を電気的に接続するものをいい、いわゆるフィルドビアめっきにより形成されるものが挙げられる。フィルドビアめっきとしては、例えば、一般の電子部品素子実装用基板に用いられる電気銅めっきを用いたフィルドビアめっきが挙げられる。   In the present invention, the interlayer connection refers to one that electrically connects the wiring patterns of each layer through interlayer connection holes provided in the insulating resin layer, and includes those formed by so-called filled via plating. Examples of the filled via plating include filled via plating using electrolytic copper plating used for a general electronic component element mounting substrate.

本発明において、フィルドビアとは、フィルドビアめっきにより形成される層間接続であり、層間接続孔の内部がフィルドビアめっきにより形成された金属で充填されているものをいう。フィルドビアは、絶縁樹脂層をレーザー等により加工して、直径1μmから300μm程度の層間接続孔を形成した後、この層間接続孔を、フィルドビアめっきで満たすことにより形成することができる。   In the present invention, the filled via is an interlayer connection formed by filled via plating, and the inside of the interlayer connection hole is filled with a metal formed by filled via plating. The filled via can be formed by processing the insulating resin layer with a laser or the like to form an interlayer connection hole having a diameter of about 1 μm to 300 μm and then filling the interlayer connection hole with filled via plating.

本発明に用いる絶縁樹脂層は、各層間及び同一層内の配線パターン同士の電気的な絶縁を図るものであるとともに、各層の導体層を貼り合わせたり、各層の配線パターンの支持体になるものである。一般の電子部品素子搭載用基板の製造において使用される一般的なものを使用することができる。例えば、熱硬化性樹脂プリプレグ、高分子量エポキシ樹脂を主成分としたものやBTレジンを主成分とする熱硬化タイプの液状やシート状の絶縁樹脂層を使用することができる。熱硬化性樹脂プリプレグとしては、高分子量エポキシ樹脂を主成分としたGEA−679FG(日立化成工業株式会社製、商品名)やBTレジンを主成分としたGHPL−830NX Type A(三菱ガス化学株式会社製、商品名)等が、液状接着剤としては、SFX513(信越化学工業株式会社製、商品名)等が、シート状接着剤としては、AS−3000、AS2600W(何れも日立化成工業株式会社製、商品名)、電子部品用高性能接着シート TAS(東レ株式会社製、商品名)等が例示できるが、これらに限定されるわけではない。絶縁樹脂層は、1種類のものを単独で用いても良いし、2種類以上をシート状のものは重ねて、液状のものは混合して用いても良い。   The insulating resin layer used in the present invention is intended to electrically insulate the wiring patterns in each layer and in the same layer, as well as to bond the conductor layers of each layer, or to support the wiring pattern of each layer It is. The general thing used in manufacture of the board | substrate for a general electronic component element mounting can be used. For example, a thermosetting resin prepreg, a material mainly composed of a high molecular weight epoxy resin, or a thermosetting liquid or sheet-like insulating resin layer mainly composed of BT resin can be used. As thermosetting resin prepregs, GEA-679FG (trade name, manufactured by Hitachi Chemical Co., Ltd.) mainly composed of high molecular weight epoxy resin and GHPL-830NX Type A (Mitsubishi Gas Chemical Co., Ltd.) mainly composed of BT resin. SFX513 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) and the like as the liquid adhesive, and AS-3000 and AS2600W (both manufactured by Hitachi Chemical Co., Ltd.) as the sheet adhesive. ) (Trade name), high-performance adhesive sheet for electronic parts TAS (trade name, manufactured by Toray Industries, Inc.) and the like, but are not limited thereto. One type of insulating resin layer may be used alone, or two or more types of insulating resin layers may be stacked, and liquid types may be mixed and used.

金属箔Aの一方の面にのみ、絶縁樹脂層と配線パターンとそれぞれの配線パターン間を接続する層間接続とを積み上げて形成し、第1層配線パターンは前記金属箔Aを回路加工して形成する。つまり、金属箔Aの一方の面にのみ多層化を行ない、金属箔Aの他方の面には多層化せずにそのまま回路加工する。金属箔Aの他方の面は、絶縁樹脂層や配線パターンは形成されず、金属箔Aの初期の表面状態が維持されている。この金属箔Aを回路加工することによって、層間接続の直上に位置する配線パターンのうち、第1層配線パターンが金属箔Aにより形成される。これにより、第1層配線パターンは、金属箔Aの表面平滑性をそのまま利用することができ、優れた表面平滑性を備えることができる。このため、第1層配線パターン上に形成される保護めっきの表面平滑性も優れている。また、第1層配線パターンは、金属箔Aのみをエッチングして回路加工するので、導体層の厚みが薄いため、微細な配線パターンの形成が可能になる。このため、回路加工前に、ハーフエッチングやバフ研磨等によって、導体層の厚みを薄くする工程が不要である。   Only on one surface of the metal foil A, an insulating resin layer, wiring patterns, and interlayer connections for connecting the respective wiring patterns are stacked and formed, and the first layer wiring pattern is formed by processing the metal foil A. To do. That is, multilayering is performed only on one surface of the metal foil A, and circuit processing is performed on the other surface of the metal foil A as it is without multilayering. On the other surface of the metal foil A, the insulating resin layer and the wiring pattern are not formed, and the initial surface state of the metal foil A is maintained. By processing this metal foil A, the first layer wiring pattern is formed of the metal foil A among the wiring patterns located immediately above the interlayer connection. Thereby, the 1st layer wiring pattern can use the surface smoothness of metal foil A as it is, and can be provided with the outstanding surface smoothness. For this reason, the surface smoothness of the protective plating formed on the first layer wiring pattern is also excellent. Further, since the first layer wiring pattern is processed by etching only the metal foil A, the conductor layer is thin, so that a fine wiring pattern can be formed. For this reason, the process of reducing the thickness of the conductor layer by half etching, buffing or the like before the circuit processing is unnecessary.

接続端子となる部分を含む第1層配線パターン上には、保護めっきとして、ニッケルめっきまたはニッケルめっきと金めっきとを有するのが望ましい。ニッケルめっき上にパラジウムめっきを行なってから金めっきを行なうのが、電子部品素子との接続信頼性を向上できる点でさらに望ましい。金めっきの代わりに銀めっきを用いてもよい。これらのめっき方法としては、電子部品素子実装用基板で用いられる無電解めっきや電気めっき、置換めっきを用いることができる。なお、保護めっきとは、配線パターンを保護して、フリップチップ接続性やワイヤーボンド接続性を付与するため、回路形成後の配線パターンの上部に設けられるめっき層をいう。   It is desirable to have nickel plating or nickel plating and gold plating as protective plating on the first layer wiring pattern including the portion to be the connection terminal. It is more desirable to perform gold plating after performing palladium plating on nickel plating in terms of improving the connection reliability with the electronic component element. Silver plating may be used instead of gold plating. As these plating methods, electroless plating, electroplating, or displacement plating used for an electronic component element mounting substrate can be used. In addition, protective plating means the plating layer provided in the upper part of the wiring pattern after circuit formation, in order to protect a wiring pattern and to provide flip chip connectivity and wire bond connectivity.

第1層配線パターンを構成する金属箔Aが、厚さ1〜18μmの銅箔であるのが望ましい。本発明の多層配線基板では、第1層配線パターンが、金属箔Aを回路加工することにより形成されるため、適切な金属箔Aの厚さを選択できるが、金属箔Aが、厚さ1〜18μmの銅箔であれば、例えば、ライン/スペースが、30μm/30μm以下の高密度配線パターンを形成するのが容易である。   The metal foil A constituting the first layer wiring pattern is desirably a copper foil having a thickness of 1 to 18 μm. In the multilayer wiring board of the present invention, since the first layer wiring pattern is formed by processing the metal foil A, an appropriate thickness of the metal foil A can be selected, but the metal foil A has a thickness of 1 With a copper foil of ˜18 μm, for example, it is easy to form a high-density wiring pattern with a line / space of 30 μm / 30 μm or less.

層間接続の直上に位置する第1層配線パターンが、フリップチップ接続端子またはワイヤーボンド接続端子を形成するのが望ましい。本発明の多層配線基板では、第1層配線パターンが、金属箔Aを回路加工することにより形成されるため、金属箔Aの表面状態が維持されるので、金属箔Aの表面平滑性をそのまま利用することができる。このため、この金属箔Aで形成される配線パターンを、フリップチップ接続端子またはワイヤーボンド接続端子として形成することにより、配線パターン上に形成される保護めっきの表面平滑性も優れるので、フリップチップ接続性及びワイヤーボンド接続性に優れた多層配線基板を提供することができる。   It is desirable that the first layer wiring pattern located immediately above the interlayer connection forms a flip chip connection terminal or a wire bond connection terminal. In the multilayer wiring board of the present invention, since the first layer wiring pattern is formed by processing the metal foil A, the surface state of the metal foil A is maintained, so that the surface smoothness of the metal foil A is maintained as it is. Can be used. For this reason, since the wiring pattern formed with this metal foil A is formed as a flip chip connection terminal or a wire bond connection terminal, the surface smoothness of the protective plating formed on the wiring pattern is excellent. It is possible to provide a multilayer wiring board having excellent properties and wire bond connectivity.

本発明において、接続端子とは、一般の電子部品素子実装用基板で用いられるものと同様に、バンプやワイヤーボンドによって、電子部品素子と電気的接続を行なうための端子である。接続端子は、金属箔Aで形成した第1層配線パターンの表面を金や銀等の保護めっきで被覆して形成するのが、バンプやワイヤーボンドもしくははんだによる接続を行う際の作業性や信頼性上、好ましい。   In the present invention, the connection terminal is a terminal for making an electrical connection with the electronic component element by bumps or wire bonds, similar to those used in a general electronic component element mounting substrate. The connection terminal is formed by covering the surface of the first layer wiring pattern formed of the metal foil A with a protective plating such as gold or silver, so that workability and reliability when connecting with bumps, wire bonds, or solder are used. It is preferable in terms of properties.

接続端子の上部に設けられる保護めっき表面は、金めっきであるのが望ましい。これにより、フリップチップ接続に用いるバンプとして金バンプを用いる際に、接続端子とバンプとの接合を強固にすることができる。ワイヤーボンド接続に金ワイヤを用いた場合も同様に、接続端子と金ワイヤとの接合を強固にできる。さらに、はんだ付けを行う際のはんだ濡れ性を確保することができる。また、金めっきの下地としてニッケルめっきを設けるのが望ましく、さらにニッケルめっき上にパラジウムめっきを設けてから金めっきするのが望ましい。本発明において、接続端子となる部分を含む第1層配線パターンは、銅箔等の金属箔Aを用いて形成されるが、金めっきの下地としてニッケルめっきを設けることにより、銅が金めっき表面に拡散し、バンプとの接続信頼性を低下させるのを抑制することができる。   The protective plating surface provided on the upper part of the connection terminal is preferably gold plating. Thereby, when using a gold bump as a bump used for flip chip connection, the connection between the connection terminal and the bump can be strengthened. Similarly, when a gold wire is used for wire bond connection, the connection between the connection terminal and the gold wire can be strengthened. Furthermore, solder wettability at the time of soldering can be ensured. Moreover, it is desirable to provide nickel plating as a base for gold plating, and it is desirable to perform gold plating after providing palladium plating on the nickel plating. In the present invention, the first layer wiring pattern including a portion to be a connection terminal is formed using a metal foil A such as a copper foil. However, by providing nickel plating as a base for gold plating, copper is a gold plating surface. It can be suppressed that the connection reliability with the bump is lowered.

金めっきの厚さは、0.01〜3μmが望ましい。これにより、金めっきは、バンプとの接合強度を確保することができ、下地ニッケルめっきの酸化を防止することができる。また、下地のニッケルめっきの厚さは、1〜20μmが望ましい。さらにニッケルめっき上に設けるパラジウムめっきの厚さは、0.01〜1μmが望ましい。これにより、ニッケルめっきが、銅の金めっき表面への拡散を抑制するため、バンプ接続の信頼性を確保できる。   The thickness of the gold plating is desirably 0.01 to 3 μm. Thereby, the gold plating can ensure the bonding strength with the bumps, and can prevent oxidation of the underlying nickel plating. The thickness of the underlying nickel plating is preferably 1 to 20 μm. Furthermore, the thickness of the palladium plating provided on the nickel plating is preferably 0.01 to 1 μm. Thereby, since nickel plating suppresses the spreading | diffusion to the gold plating surface of copper, the reliability of bump connection is securable.

本発明において、裏面電極とは、多層配線基板の接続端子が設けられる面(一方の面)の反対面(他方の面)に設けられる電極をいい、本発明の多層配線板を用いて作製した通信モジュール等が、他の基板に実装される際に、他の基板の実装端子と接続するために用いられる。裏面電極と他の基板の実装端子との接続は、導電性接着剤を用いた圧着や、はんだ付けなどで行うことができる。   In the present invention, the back electrode refers to an electrode provided on the surface (one surface) opposite to the surface (one surface) on which the connection terminal of the multilayer wiring board is provided, and is produced using the multilayer wiring board of the present invention. When a communication module or the like is mounted on another substrate, it is used to connect with a mounting terminal on the other substrate. The connection between the back electrode and the mounting terminal of another substrate can be performed by pressure bonding using a conductive adhesive or soldering.

本発明の多層配線基板の製造方法の一形態としては、コア基板の金属箔上に、直接金属箔Aを重ね、この上に絶縁樹脂層及びこの絶縁樹脂層上に配置された配線パターンを有する少なくとも1層の高層側の配線層を形成し、この上にさらに高層側の配線層を形成するための絶縁樹脂層及び導体層を積層することによって、前記コア基板の金属箔上に直接接触した金属箔Aと、この金属箔A上の配線層と、この配線層上に形成された絶縁樹脂層及び導体層を有する多層基板を形成する工程と、前記コア基板の金属箔と金属箔Aとの界面で、前記コア基板と多層基板とを分離する工程と、この多層基板の前記金属箔A及び導体層を回路加工することにより、一方に前記金属箔Aを回路加工して形成された第1層配線パターンを、他方に前記導体層を回路加工して形成された高層側の配線パターンを有する多層配線基板を形成する工程と、を有する多層配線基板の製造方法であって、前記第1層配線パターンより最も高層側の配線パターンの厚みが厚く、または前記第1層配線パターンより最も高層側の配線パターンの導体層残存率が大きく、または前記第1層配線パターン上の絶縁樹脂層より最も高層側の絶縁樹脂層の厚みが薄くなるように形成する多層配線基板の製造方法が挙げられる。ここで、多層基板の一つの面に形成される導体層の回路加工は、コア基板と多層基板とを分離する工程の前に行ってもよい。なお、本発明において、多層基板とは、一方の面に金属箔Aを、他方の面に導体層を有し、内部に少なくとも1層の配線層を有するものをいう。   As one form of the manufacturing method of the multilayer wiring board of this invention, metal foil A is directly piled up on the metal foil of a core board | substrate, and it has the wiring pattern arrange | positioned on this on the insulating resin layer and this insulating resin layer. At least one high-layer wiring layer was formed, and an insulating resin layer and a conductor layer for forming a high-layer wiring layer were further laminated thereon, thereby directly contacting the metal foil of the core substrate. Forming a metal foil A, a wiring layer on the metal foil A, a multilayer substrate having an insulating resin layer and a conductor layer formed on the wiring layer, the metal foil of the core substrate and the metal foil A, A step of separating the core substrate and the multi-layer substrate at the interface, and by processing the metal foil A and the conductor layer of the multi-layer substrate, the metal foil A is formed on one side by circuit processing. One layer wiring pattern, the other conductor layer Forming a multilayer wiring board having a wiring pattern on the higher layer side formed by circuit processing, the method of manufacturing a multilayer wiring board having a thickness of the wiring layer on the highest layer side than the first layer wiring pattern. Is thicker, or the conductor layer remaining rate of the wiring layer on the highest layer side than the first layer wiring pattern is large, or the thickness of the insulating resin layer on the highest layer side becomes thinner than the insulating resin layer on the first layer wiring pattern. The manufacturing method of the multilayer wiring board formed in this way is mentioned. Here, the circuit processing of the conductor layer formed on one surface of the multilayer substrate may be performed before the step of separating the core substrate and the multilayer substrate. In the present invention, the multilayer substrate refers to a substrate having a metal foil A on one surface, a conductor layer on the other surface, and at least one wiring layer inside.

本発明の多層配線基板の製造方法の一形態について、より具体的に、図を用いて説明する。まず、図3に示すように、両面に金属箔38を有するコア基板25と、表層の第1層導体層30(図4に示す。)となる金属箔A19を準備し(工程(1))、コア基板25の金属箔38の上に、表層の第1層導体層30となる金属箔A19を直接重ねる。金属箔A19は、コア基板25の金属箔38よりも一回り小さいサイズのものを用いる。その後、金属箔A19の一方の面上に第1絶縁樹脂層9と金属箔B20とを積層する(工程(2))。第1絶縁樹脂層9は、金属箔A19よりも一回り大きいサイズのものを用いる。このように積層された状態では、金属箔A19の他方の面と、コア基板25の金属箔38とは、接触しているだけで接着はされていない状態であり、一方、金属箔A19の周囲にはみ出した第1層絶縁樹脂層9と、コア基板25の金属箔38とは、接着された状態となっている。このため、金属箔A19の他方の面(コア基板25の金属箔25側の面)はコア基板25の金属箔38に保護された状態となるため、この後に続く多層配線基板1の製造プロセスにおいても、金属箔A19の他方の面は表面状態が当初の状態のまま維持される。なお、図3の実施形態では、金属箔A19の表面は、コア基板25の金属箔38により保護されるが、金属箔A19の表面を保護でき、かつ剥離可能なものであれば、その材料・方法について特に限定はなく、樹脂製のフィルム等を用いることもできる。なお、図3の実施形態では、コア基板25の両面の金属箔38上に金属箔A19を重ねて多層化プロセスを行うが、この場合、1回の多層化プロセスを行うだけで、2枚の多層配線基板1を製造することができ、生産効率がよい。また、コア基板25の上下両側に多層化プロセスを行うので、反りが生じ難く、製造プロセスにおけるトラブルが生じ難い。さらに、コア基板25が支持体となるので、薄い多層配線基板1の場合でも、製造プロセスでの取り扱いが容易であり、作業性が向上する。なお、支持体となるコア基板25の剛性が大きい場合は、コア基板25の片方の金属箔38上にのみ金属箔A19を重ねて多層化プロセスを行うこともできる。   One form of the manufacturing method of the multilayer wiring board of this invention is demonstrated more concretely using figures. First, as shown in FIG. 3, a core substrate 25 having a metal foil 38 on both sides and a metal foil A19 to be a first layer conductor layer 30 (shown in FIG. 4) are prepared (step (1)). Then, the metal foil A19 to be the first conductor layer 30 as the surface layer is directly overlaid on the metal foil 38 of the core substrate 25. As the metal foil A19, one having a size slightly smaller than the metal foil 38 of the core substrate 25 is used. Thereafter, the first insulating resin layer 9 and the metal foil B20 are laminated on one surface of the metal foil A19 (step (2)). The first insulating resin layer 9 has a size that is slightly larger than the metal foil A19. In such a laminated state, the other surface of the metal foil A19 and the metal foil 38 of the core substrate 25 are in contact with each other and are not bonded to each other. The protruding first insulating resin layer 9 and the metal foil 38 of the core substrate 25 are bonded. For this reason, since the other surface of the metal foil A19 (the surface of the core substrate 25 on the metal foil 25 side) is protected by the metal foil 38 of the core substrate 25, in the subsequent manufacturing process of the multilayer wiring substrate 1 However, the other surface of the metal foil A19 is maintained in its original state. In the embodiment of FIG. 3, the surface of the metal foil A19 is protected by the metal foil 38 of the core substrate 25. However, if the surface of the metal foil A19 can be protected and can be peeled off, the material / The method is not particularly limited, and a resin film or the like can also be used. In the embodiment of FIG. 3, the metal foil A19 is overlapped on the metal foils 38 on both surfaces of the core substrate 25 to perform the multilayering process. In this case, only one multilayering process is performed, and two sheets are formed. The multilayer wiring board 1 can be manufactured, and the production efficiency is good. In addition, since the multi-layer process is performed on both the upper and lower sides of the core substrate 25, warpage hardly occurs and trouble in the manufacturing process hardly occurs. Furthermore, since the core substrate 25 serves as a support, even in the case of the thin multilayer wiring substrate 1, handling in the manufacturing process is easy and workability is improved. In addition, when the rigidity of the core board | substrate 25 used as a support body is large, the metal foil A19 can be piled up only on one metal foil 38 of the core board | substrate 25, and a multilayering process can also be performed.

次に、図4に示すように、第1絶縁樹脂層9に、金属箔B20から第1層導体層30に到る第1層間接続孔29を形成する(工程(3))。第1層間接続孔29の形成は、金属箔B20にエッチングにより開口を形成し、この開口に炭酸ガスレーザ等を照射するコンフォーマル工法、金属箔B20に開口を形成せずに直接UVレーザ等を照射するダイレクトレーザ工法等を用いて行なうことができる。   Next, as shown in FIG. 4, a first interlayer connection hole 29 extending from the metal foil B20 to the first conductor layer 30 is formed in the first insulating resin layer 9 (step (3)). The first interlayer connection hole 29 is formed by forming an opening in the metal foil B20 by etching and irradiating the opening with a carbon dioxide gas laser or the like, or directly irradiating a UV laser or the like without forming an opening in the metal foil B20. The direct laser method can be used.

次に、図4に示すように、第1層間接続孔29内及び金属箔B20上に、第1層導体層30と金属箔B20とを電気的に接続するためのフィルドビアめっき21aを行なう(工程(4))。第1層間接続孔29内には、第1フィルドビア10が形成され、金属箔B20の上には層間接続の際に生じるめっき層31が形成される。また、金属箔B20と層間接続の際に生じるめっき層31の両者により、第2層導体層33が形成される。   Next, as shown in FIG. 4, filled via plating 21a for electrically connecting the first layer conductor layer 30 and the metal foil B20 is performed in the first interlayer connection hole 29 and on the metal foil B20 (step). (4)). A first filled via 10 is formed in the first interlayer connection hole 29, and a plating layer 31 generated at the time of interlayer connection is formed on the metal foil B20. Further, the second conductor layer 33 is formed by both the metal foil B20 and the plating layer 31 generated at the time of interlayer connection.

次に、図5に示すように、フィルドビアめっき後の第2層導体層33(図4に示す。)を回路加工して、第2層配線パターン11を形成する(工程(5))。フィルドビアめっき後の第2層導体層33は、銅箔B20の厚みに、層間接続の際に生じるめっき層31の厚みが加わっているため、これらの両者を合わせた厚みの導体層に対して回路加工が必要である。第2層導体層33の厚みを薄くする必要がある場合は、回路加工の前に、ハーフエッチングやバフ研磨等を行う。   Next, as shown in FIG. 5, the second layer conductor layer 33 (shown in FIG. 4) after filled via plating is processed to form the second layer wiring pattern 11 (step (5)). Since the thickness of the plated layer 31 generated at the time of interlayer connection is added to the thickness of the copper foil B20, the second layer conductor layer 33 after filled via plating has a circuit with respect to the conductor layer having a thickness obtained by combining these two. Processing is required. When it is necessary to reduce the thickness of the second conductor layer 33, half etching, buffing or the like is performed before circuit processing.

次に、第2層配線パターン11上に、工程(2)〜(5)を必要な回数繰り返す(工程(6))。この工程(6)は、具体的には、図5に示すように、第2層配線パターン11上に、第2絶縁樹脂層12と金属箔C23とを積層し(工程(2))、次に、図6に示すように、第2絶縁樹脂層12に金属箔C23から第2層導体層33に到る第2層間接続孔32を形成し(工程(3))、第2層間接続孔32内及び金属箔C23上に、第2層導体層33(図4に示す。)と金属箔C23とを電気的に接続するためのフィルドビアめっき21bを行ない、第2フィルドビア13及び第3層導体層35とを形成し(工程(4))、次に、図7に示すように、フィルドビアめっき後の第3層導体層35(図6に示す。)を回路加工して、第3層配線パターン14を形成した後(工程(5))、さらに第3層配線パターン14上に、第3絶縁樹脂層15と金属箔D24とを積層し(工程(2))、第3絶縁樹脂層15に金属箔D24から第3層導体層35に到る第3層間接続孔34を形成し(工程(3))、第3層間接続孔34内及び金属箔D24上に、第3層導体層35と金属箔D24とを電気的に接続するためのフィルドビアめっき21cを行ない、第3フィルドビア16及び第4層導体層37とを形成する(工程(4))。次に、フィルドビアめっき後の第4層導体層37を回路加工して、第4層配線パターン17(図9に示す。)を形成する(工程(5))。なお、この工程(5)の第4層導体層37の回路加工は、コア基板25と、多層基板40とを分離する前に行なってもよいし、図8に示すように、これらを分離した後で行なってもよく、また、後述する第1層導体層30の回路加工と同時に行なってもよい。   Next, steps (2) to (5) are repeated as many times as necessary on the second layer wiring pattern 11 (step (6)). Specifically, in this step (6), as shown in FIG. 5, the second insulating resin layer 12 and the metal foil C23 are laminated on the second-layer wiring pattern 11 (step (2)). As shown in FIG. 6, a second interlayer connection hole 32 extending from the metal foil C23 to the second conductor layer 33 is formed in the second insulating resin layer 12 (step (3)), and the second interlayer connection hole is formed. Filled via plating 21b for electrically connecting the second layer conductor layer 33 (shown in FIG. 4) and the metal foil C23 is performed inside and on the metal foil C23, and the second filled via 13 and the third layer conductor. Next, as shown in FIG. 7, the third-layer conductor layer 35 (shown in FIG. 6) after filled via plating is subjected to circuit processing to form a third-layer wiring. After the pattern 14 is formed (step (5)), the third insulating resin layer 1 is further formed on the third layer wiring pattern 14. And the metal foil D24 are laminated (step (2)), and the third interlayer connection hole 34 extending from the metal foil D24 to the third conductor layer 35 is formed in the third insulating resin layer 15 (step (3)). The filled via plating 21c for electrically connecting the third layer conductor layer 35 and the metal foil D24 is performed in the third interlayer connection hole 34 and on the metal foil D24, and the third filled via 16 and the fourth layer conductor layer are formed. 37 (step (4)). Next, the fourth layer conductor layer 37 after filled via plating is processed to form a fourth layer wiring pattern 17 (shown in FIG. 9) (step (5)). The circuit processing of the fourth conductor layer 37 in this step (5) may be performed before the core substrate 25 and the multilayer substrate 40 are separated, or these are separated as shown in FIG. It may be performed later or may be performed simultaneously with the circuit processing of the first conductor layer 30 described later.

次に、図8に示すように、コア基板25と多層基板40とを分離し、図9に示すように、第1層導体層30である金属箔A19を回路加工して、第1層配線パターン8を形成することにより、フィルドビアめっきを行なった第1層間接続孔29の直上に接続端子5を形成する(工程(7))。第1層導体層30である金属箔A19の上には、層間接続の際にも、層間接続の際に生じるめっき層31が生じないため、第1層導体層30の厚みは、金属箔A19の厚みそのものとなる。このため、第1層導体層30の回路加工は、金属箔A19をエッチングするだけで行うことができるので、金属箔A19の厚みを1μm〜18μmに設定すれば、高密度な配線パターンを形成することが可能となる。また、このため、第1層導体層30に対して、ハーフエッチングやバフ研磨を行う必要がないので、表面の平滑性が保たれる。なお、工程(7)の第1層導体層30の回路加工は、工程(5)の第4層導体層37の回路加工と同時に行なってもよい。なお、各配線パターンの厚み、各配線パターンの導体層残存率、各絶縁樹脂層の厚みの詳細は図示しないが、第1層配線パターン8より最も高層側の配線パターン11、14、17の厚みが厚く、または第1層配線パターン8より最も高層側の配線パターン11、14、17の導体層残存率が大きく、または第1層配線パターン8上の第1絶縁樹脂層9より最も高層側の絶縁樹脂層12、15の厚みが薄くなるように形成する。   Next, as shown in FIG. 8, the core substrate 25 and the multilayer substrate 40 are separated, and as shown in FIG. 9, the metal foil A <b> 19 that is the first layer conductor layer 30 is processed into a first layer wiring. By forming the pattern 8, the connection terminal 5 is formed immediately above the first interlayer connection hole 29 subjected to filled via plating (step (7)). On the metal foil A19, which is the first layer conductor layer 30, the plating layer 31 generated during the interlayer connection does not occur even during the interlayer connection. Therefore, the thickness of the first layer conductor layer 30 is the metal foil A19. It becomes the thickness itself. For this reason, circuit processing of the first conductor layer 30 can be performed only by etching the metal foil A19. Therefore, if the thickness of the metal foil A19 is set to 1 μm to 18 μm, a high-density wiring pattern is formed. It becomes possible. For this reason, it is not necessary to perform half etching or buffing on the first conductor layer 30, so that the surface smoothness is maintained. The circuit processing of the first conductor layer 30 in the step (7) may be performed simultaneously with the circuit processing of the fourth conductor layer 37 in the step (5). Although details of the thickness of each wiring pattern, the conductor layer remaining rate of each wiring pattern, and the thickness of each insulating resin layer are not shown, the thickness of the wiring patterns 11, 14, and 17 on the highest layer side of the first layer wiring pattern 8 is not shown. Is thicker or the conductor layer remaining rate of the wiring patterns 11, 14, and 17 on the highest layer side than the first layer wiring pattern 8 is larger, or on the highest layer side than the first insulating resin layer 9 on the first layer wiring pattern 8. The insulating resin layers 12 and 15 are formed to be thin.

次に、図9に示すように、第1層間接続孔29の直上に形成された接続端子5の上に保護めっき22を形成する。保護めっき22としては、ニッケルめっきまたはニッケルめっきと金めっきとを有するのが望ましい。これにより、第1配線パターン8を保護して、フリップチップ接続性やワイヤーボンド接続性を付与することができる。また、ニッケルめっきと金めっきとの間にパラジウムめっきを形成すると、電子部品素子3との接続信頼性が向上するので更に望ましい。金めっきの代わりに銀めっきを用いることもできる。   Next, as shown in FIG. 9, the protective plating 22 is formed on the connection terminals 5 formed immediately above the first interlayer connection holes 29. As the protective plating 22, it is desirable to have nickel plating or nickel plating and gold plating. Thereby, the 1st wiring pattern 8 can be protected and flip chip connectivity and wire bond connectivity can be provided. Further, it is more desirable to form palladium plating between nickel plating and gold plating because the connection reliability with the electronic component element 3 is improved. Silver plating can also be used instead of gold plating.

以下、図3から図9を用いて、本発明の実施例について説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, examples of the present invention will be described with reference to FIGS. 3 to 9, but the present invention is not limited to these examples.

(実施例1)
図3に示すように、支持体となるコア基板25として、銅厚18μmの両面銅張積層板(日立化成工業株式会社製MCL−E679FG)厚さ0.20mmを準備した。次に、その両面に、金属箔A19として、サイズがコア基板25よりひと回り小さく、厚さが12μmの銅箔(三井金属株式会社製3EC−VLP−12)を、平面視においてコア基板25の上下左右均等に、且つ銅箔光沢面をコア基板25に向けて配置した。次に、更にその上に、第1絶縁樹脂層9として、厚さ0.03mmのプリプレグ(ガラス布を基材としエポキシ樹脂を含浸したプリプレグ日立化成工業株式会社製GEA−679FG)と、金属箔B20として厚さ5μmの銅箔(三井金属株式会社製MT18SDH5)を順次重ねた構成体を作製した。これらを加熱加圧処理(185℃、3MPa、90分のプレス成形処理)により積層し、積層板a26を作製した。
Example 1
As shown in FIG. 3, a double-sided copper-clad laminate (MCL-E679FG manufactured by Hitachi Chemical Co., Ltd.) having a thickness of 18 μm and a thickness of 0.20 mm was prepared as the core substrate 25 serving as a support. Next, a copper foil (3EC-VLP-12 manufactured by Mitsui Kinzoku Co., Ltd.) having a size slightly smaller than the core substrate 25 and having a thickness of 12 μm as metal foil A19 is formed on both sides of the core substrate 25 in plan view. The copper foil glossy surface was disposed on the core substrate 25 evenly on the left and right sides. Next, a prepreg having a thickness of 0.03 mm (a prepreg made of glass cloth as a base material and impregnated with an epoxy resin, GEA-679FG) as a first insulating resin layer 9, and a metal foil A structure in which a copper foil having a thickness of 5 μm (MT18SDH5 manufactured by Mitsui Kinzoku Co., Ltd.) was sequentially stacked as B20 was produced. These were laminated by heat and pressure treatment (185 ° C., 3 MPa, press molding treatment for 90 minutes) to produce a laminate a26.

積層板a26にエッチングレジストをラミネートし、所望のパターンを有するネガマスクを当て、平行露光機にて回路パターン焼付けを行った。その後、炭酸ナトリウム水溶液で現像を行い、塩化第二鉄水溶液で不要な銅箔をエッチング除去した。その後、水酸化ナトリウム水溶液にてエッチングレジストを除去し、第1層導体層30となる金属箔A19との接続をとるための第1層間接続孔29の設置場所となる部分にコンフォーマルマスク及びレーザー加工時の位置認識パターンを形成した。   An etching resist was laminated on the laminate a26, a negative mask having a desired pattern was applied, and a circuit pattern was printed by a parallel exposure machine. Thereafter, development was performed with an aqueous sodium carbonate solution, and unnecessary copper foil was removed by etching with an aqueous ferric chloride solution. Thereafter, the etching resist is removed with an aqueous sodium hydroxide solution, and a conformal mask and a laser are formed on a portion where the first interlayer connection hole 29 for connection with the metal foil A19 to be the first conductor layer 30 is installed. A position recognition pattern during processing was formed.

図4に示すように、積層板a26に対して、炭酸ガスレーザーを用いて、ビーム照射径Φ0.2mm、周波数500Hz、パルス幅10μs、照射回数3ショットの条件にて、第1層間接続孔29を加工した。その後、温度80±5℃、濃度55±10g/Lの過マンガン酸ナトリウム水溶液を用いてデスミア処理を施し、無電解銅めっきにて0.4〜7.0μmの厚みのめっきをした後、耐水研磨紙#1200を用いて表面の手研磨を行い、電解銅めっきにて、第1層間接続孔29及び表面にフィルドビアめっき21aを形成した。これらの無電解銅めっき及び電解銅めっきによって、金属箔B20の表面には15〜30μmの厚みのめっき(層間接続の際に生じるめっき層31)が形成された。その後ソフトエッチング液(メック株式会社製メックパワーエッチHE−7002A、硫酸、過酸化水素)を用いて、12μmの銅厚までソフトエッチングを行い、第2層導体層33を形成した。   As shown in FIG. 4, the first interlayer connection hole 29 is formed on the laminated plate a26 using a carbon dioxide gas laser under the conditions of a beam irradiation diameter of 0.2 mm, a frequency of 500 Hz, a pulse width of 10 μs, and the number of irradiations of 3 shots. Was processed. Thereafter, desmear treatment was performed using a sodium permanganate aqueous solution having a temperature of 80 ± 5 ° C. and a concentration of 55 ± 10 g / L, and after plating with a thickness of 0.4 to 7.0 μm by electroless copper plating, The surface was hand-polished using abrasive paper # 1200, and filled via plating 21a was formed on the first interlayer connection hole 29 and the surface by electrolytic copper plating. By these electroless copper plating and electrolytic copper plating, plating with a thickness of 15 to 30 μm (plating layer 31 generated at the time of interlayer connection) was formed on the surface of the metal foil B20. Thereafter, soft etching was performed to a copper thickness of 12 μm using a soft etching solution (MEC Power Etch HE-7002A manufactured by MEC Co., Ltd., sulfuric acid, hydrogen peroxide) to form the second layer conductor layer 33.

図4、図5に示すように、第2層導体層33上に、エッチングレジストをラミネートし、所望のパターンを有するネガマスクを当て、平行露光機にて回路パターン焼付けを行った。その後、炭酸ナトリウム水溶液で現像を行い、塩化第二鉄水溶液で不要な銅箔をエッチング除去した。その後、水酸化ナトリウム水溶液にてエッチングレジストを除去し内層パターンとなる第2層配線パターン11を形成した。第2層配線パターン11の導体層残存率は、20%であった。その後、銅表面粗化液(マクダーミッド株式会社製マルチボンドMB−100)を用いて粗化を行い、第2絶縁樹脂層12となる厚さ0.03mmのプリプレグ(日立化成工業株式会社製GEA−679FG)と、金属箔C23となる厚さ5μmの銅箔(三井金属株式会社製MT18SDH5)を、順次重ねた構成体を作製した。これらを加熱加圧処理(185℃、3MPa、90分のプレス成形処理)により積層し、積層板b27を作製した。   As shown in FIGS. 4 and 5, an etching resist was laminated on the second conductor layer 33, a negative mask having a desired pattern was applied, and a circuit pattern was printed by a parallel exposure machine. Thereafter, development was performed with an aqueous sodium carbonate solution, and unnecessary copper foil was removed by etching with an aqueous ferric chloride solution. Thereafter, the etching resist was removed with an aqueous sodium hydroxide solution to form a second layer wiring pattern 11 serving as an inner layer pattern. The conductor layer remaining rate of the second layer wiring pattern 11 was 20%. Then, it roughens using a copper surface roughening liquid (Mc bond mid Co., Ltd. multibond MB-100), and the 0.03 mm-thick prepreg (Hitachi Chemical Industry Co., Ltd. GEA-) used as the 2nd insulating resin layer 12 679FG) and a copper foil (MT18SDH5 manufactured by Mitsui Kinzoku Co., Ltd.) having a thickness of 5 μm to be the metal foil C23 were sequentially stacked. These were laminated by heat and pressure treatment (185 ° C., 3 MPa, press molding treatment for 90 minutes) to produce a laminate b27.

図6に示すように、積層板b27に対して、積層板a26に対するときと同様にして、コンフォーマルマスク及びレーザー加工時の位置認識パターンを形成した。次に、積層板a26に対するときと同様にして、第2層間接続孔32を加工し、デスミア処理、無電解銅めっき、表面の手研磨を行った後、電解銅めっきにて、第2層間接続孔32及び表面にフィルドビアめっき21bを形成し、その後、12μmの銅厚までソフトエッチングを行い、第3層導体層35を形成した。   As shown in FIG. 6, a conformal mask and a position recognition pattern at the time of laser processing were formed on the laminate b27 in the same manner as for the laminate a26. Next, as in the case of the laminated plate a26, the second interlayer connection hole 32 is processed, and after desmear treatment, electroless copper plating, and manual surface polishing, the second interlayer connection is performed by electrolytic copper plating. Filled via plating 21b was formed on the hole 32 and the surface, and then soft etching was performed to a copper thickness of 12 μm to form a third layer conductor layer 35.

図6、図7に示すように、第3層導体層35上に、第2層導体層33に対するときと同様にして、内層パターンとなる第3層配線パターン14を形成した。第3層配線パターンの14導体層残存率は、20%であった。その後、第2層配線パターン11のときと同様にして、粗化を行い、第3絶縁樹脂層15となる厚さ0.03mmのプリプレグ(日立化成工業株式会社製GEA−679FG)と、金属箔D24となる厚さ5μmの銅箔(三井金属株式会社製MT18SDH5)とを、順次重ねた構成体を作製し、これらを加熱加圧処理(185℃、3MPa、90分のプレス成形処理)により積層して、積層板c36を作製した。   As shown in FIGS. 6 and 7, the third-layer wiring pattern 14 serving as the inner layer pattern was formed on the third-layer conductor layer 35 in the same manner as for the second-layer conductor layer 33. The 14 conductor layer remaining rate of the third layer wiring pattern was 20%. Thereafter, roughening is performed in the same manner as in the case of the second layer wiring pattern 11, and a prepreg (GEA-679FG manufactured by Hitachi Chemical Co., Ltd.) having a thickness of 0.03 mm to be the third insulating resin layer 15, and a metal foil The structure which laminated | stacked the copper foil (Mitsui Metals Co., Ltd. MT18SDH5) of thickness 5micrometer used as D24 one by one was produced, and these were laminated | stacked by heat-pressing process (185 degreeC, 3 Mpa, 90 minutes press molding process). Thus, a laminated plate c36 was produced.

図7に示すように、積層板c36に対して、積層板a26及び積層板b27に対するときと同様にして、コンフォーマルマスク及びレーザー加工時の位置認識パターンを形成した。次に、積層板a26及び積層板b27に対するときと同様にして、第3層間接続孔34を加工し、デスミア処理、無電解銅めっき、表面の手研磨を行った後、電解銅めっきにて、第3層間接続孔34及び表面にフィルドビアめっき21cを形成し、その後、15μm、20μm、25μmの各銅厚までソフトエッチングを行い、第4層導体層37を形成した。本実施例では、第4層導体層37まで有する多層基板40を作製したが、積み上げる配線層の層数を変えることにより、3層構造、4層構造、・・・n層構造の基板形成が可能である。   As shown in FIG. 7, a conformal mask and a position recognition pattern at the time of laser processing were formed on the laminate c36 in the same manner as for the laminate a26 and the laminate b27. Next, in the same manner as for the laminated plate a26 and the laminated plate b27, the third interlayer connection hole 34 is processed, and after desmear treatment, electroless copper plating, and hand surface polishing, by electrolytic copper plating, Filled via plating 21c was formed on the third interlayer connection hole 34 and the surface, and then soft etching was performed to each copper thickness of 15 μm, 20 μm, and 25 μm to form a fourth layer conductor layer 37. In this example, the multilayer substrate 40 having up to the fourth layer conductor layer 37 was produced. However, by changing the number of wiring layers to be stacked, a substrate having a three-layer structure, a four-layer structure,. Is possible.

図8に示すように、第4層導体層37を形成した積層板c36を、金属箔A19を配置した範囲内において、ルータ加工機にて裁断する。これより、コア基板25から製品となる多層基板40を分離させる。   As shown in FIG. 8, the laminated board c36 on which the fourth layer conductor layer 37 is formed is cut by a router processing machine within the range where the metal foil A19 is disposed. Thereby, the multilayer substrate 40 as a product is separated from the core substrate 25.

分離した後の多層基板40の金属箔A19(第1層導体層30)及び第4層導体層37に対して、それぞれ第1層配線パターン8及び第4層配線パターン17を形成した。第1層配線パターン8及び第4層配線パターン17の導体層残存率は、何れも20%であった。次に、ソルダーレジスト18形成、保護めっき22であるニッケル・金めっき仕上げを行った。最後に、保護めっき22を施した多層配線基板1に対して、製品サイズへの外形加工を施すことにより、製品サイズの多層配線基板1を形成した。   The first layer wiring pattern 8 and the fourth layer wiring pattern 17 were formed on the metal foil A19 (first layer conductor layer 30) and the fourth layer conductor layer 37 of the multilayer substrate 40 after the separation, respectively. The conductor layer remaining rates of the first layer wiring pattern 8 and the fourth layer wiring pattern 17 were both 20%. Next, the solder resist 18 was formed, and the nickel / gold plating that was the protective plating 22 was performed. Finally, the multilayer wiring board 1 having the product size was formed by subjecting the multilayer wiring board 1 to which the protective plating 22 was applied to the outer shape to the product size.

(比較例)
実施例1と同様にして、第3層導体層35に第3層間接続孔34を加工し、デスミア処理、無電解銅めっき、表面の手研磨を行った後、電解銅めっきにて、第3層間接続孔34及び表面にフィルドビアめっき21cを形成した。その後、実施例1とは違い、第2層導体層〜第4層導体層について12μmの銅厚までソフトエッチングを行った。その後は、実施例1と同様にして、多層配線基板を作製した。つまり、第1層配線パターンの厚みと、最も高層側の全ての配線パターンの厚みとが、同等になるようにした点が、実施例1とは異なる。
(Comparative example)
In the same manner as in Example 1, the third interlayer connection hole 34 is processed in the third-layer conductor layer 35, desmear treatment, electroless copper plating, and surface manual polishing are performed. Filled via plating 21c was formed on the interlayer connection hole 34 and the surface. Then, unlike Example 1, soft etching was performed to the copper thickness of 12 micrometers about the 2nd layer conductor layer-the 4th layer conductor layer. Thereafter, a multilayer wiring board was produced in the same manner as in Example 1. That is, the first embodiment is different from the first embodiment in that the thickness of the first layer wiring pattern is equal to the thickness of all the wiring patterns on the highest layer side.

(実施例1と比較例のまとめ)
実施例1と比較例について、コア基板と分離した直後の多層配線基板、ソルダーレジスト形成後の多層配線基板(何れも基板サイズ500×500mm)、及び外形加工後の多層配線基板(製品サイズ100×100mm)のそれぞれの反り量の測定結果を、表1に示す。表1からどの工程においても、最も高層側の第4層配線パターンの厚みが厚い場合は、比較例1と比べて、反り量が小さくなり、第4層配線パターンの厚みが厚いほど、反り量が小さくなる効果が大きかった。また、高層側にいくにつれて、配線パターンの厚みが厚くなる場合は、さらに反り量が小さかった。
(Summary of Example 1 and Comparative Example)
For Example 1 and Comparative Example, the multilayer wiring board immediately after separation from the core substrate, the multilayer wiring board after solder resist formation (both board sizes 500 × 500 mm), and the multilayer wiring board after external processing (product size 100 × Table 1 shows the measurement results of the respective warpage amounts of 100 mm). In any step from Table 1, when the thickness of the fourth-layer wiring pattern on the highest layer side is thick, the warpage amount becomes smaller than that of Comparative Example 1, and the warpage amount increases as the thickness of the fourth-layer wiring pattern increases. The effect of decreasing was great. Further, when the thickness of the wiring pattern is increased as it goes to the higher layer side, the amount of warpage is further small.

Figure 2011129563
Figure 2011129563

(実施例2)
実施例1と同様にして多層配線基板を作製した。但し、実施例2は、第1層配線パターン〜第4層配線パターンまでの全ての厚みを12μmとし、第4層配線パターンの導体層残存率を30%、50%、70%、90%とした点が、実施例1と相違する。
(Example 2)
A multilayer wiring board was produced in the same manner as in Example 1. However, in Example 2, the total thickness from the first layer wiring pattern to the fourth layer wiring pattern is 12 μm, and the conductor layer remaining rate of the fourth layer wiring pattern is 30%, 50%, 70%, 90%. This is different from the first embodiment.

(実施例2と比較例のまとめ)
実施例2と比較例について、コア基板と分離した直後の多層配線基板、ソルダーレジスト形成後の多層配線基板(何れも基板サイズ500×500mm)、及び外形加工後の多層配線基板(製品サイズ100×100mm)のそれぞれの反り量の測定結果を、表2に示す。表2より、第4層配線パターンの導体層残存率を増加させたときの基板反り量は低減していた。また、高層側にいくにつれて、配線パターンの導体層残存率を増加させた場合は、さらに反り量が小さかった。
(Summary of Example 2 and Comparative Example)
For Example 2 and Comparative Example, the multilayer wiring board immediately after separation from the core substrate, the multilayer wiring board after forming the solder resist (both board sizes of 500 × 500 mm), and the multilayer wiring board after external processing (product size of 100 × Table 2 shows the measurement results of the respective warpage amounts of 100 mm). From Table 2, the amount of substrate warpage when the conductor layer residual ratio of the fourth-layer wiring pattern was increased was reduced. Moreover, when the conductor layer residual ratio of the wiring pattern was increased as it went to the higher layer side, the amount of warpage was even smaller.

Figure 2011129563
Figure 2011129563

(実施例3)
実施例1と同様にして多層配線基板を作製した。但し、実施例3は、配線パターン〜第4層配線パターンまでの全ての厚みを12μmとし、第1層絶縁樹脂層よりも、第4層絶縁樹脂層の厚みを薄くした点が、実施例1と相違する。
(Example 3)
A multilayer wiring board was produced in the same manner as in Example 1. However, in Example 3, all the thicknesses from the wiring pattern to the fourth layer wiring pattern were set to 12 μm, and the thickness of the fourth insulating resin layer was made thinner than that of the first insulating resin layer. Is different.

(実施例3と比較例のまとめ)
実施例3と比較例について、コア基板と分離した直後の多層配線基板、ソルダーレジスト形成後の多層配線基板(何れも基板サイズ500×500mm)、及び外形加工後の多層配線基板(製品サイズ100×100mm)のそれぞれの反り量の測定結果を、表3に示す。表3より、第1層絶縁樹脂層よりも第3層絶縁樹脂層に用いるプリプレグの厚みを薄くしたときの基板反り量は低減していた。また、第1層絶縁樹脂層から順に、厚いプリプレグから薄いプリプレグへと構成する方が反り量が低減した。
(Summary of Example 3 and Comparative Example)
For Example 3 and Comparative Example, the multilayer wiring board immediately after separation from the core substrate, the multilayer wiring board after forming the solder resist (both board sizes 500 × 500 mm), and the multilayer wiring board after external processing (product size 100 × Table 3 shows the measurement results of the respective warpage amounts of 100 mm). From Table 3, the amount of substrate warpage when the thickness of the prepreg used for the third insulating resin layer was made thinner than that of the first insulating resin layer was reduced. In addition, the amount of warpage was reduced when the thick prepreg was formed in order from the first insulating resin layer.

Figure 2011129563
Figure 2011129563

(実施例4)
第1層間接続孔29への無電解銅めっき後の手研磨、または第2層層間接続孔32への無電解銅めっき後の手研磨、または第3層間接続孔34への無電解銅めっき後の手研磨の代わりに、各層間接続孔への無電解銅めっき後の表面に対して、表4に示す組合せで、機械研磨(ジャブロ工業製V3#600)を行なった。また、第1層配線パターン〜第4層配線パターンまでの全ての厚みを12μmとした。それ以外は、実施例1と同様にして多層配線基板を作製した。
Example 4
After hand polishing after electroless copper plating to the first interlayer connection hole 29, or after hand polishing after electroless copper plating to the second layer interlayer connection hole 32, or after electroless copper plating to the third interlayer connection hole 34 Instead of the manual polishing, mechanical polishing (Vabro Industry V3 # 600) was performed with the combinations shown in Table 4 on the surface after electroless copper plating on each interlayer connection hole. The total thickness from the first layer wiring pattern to the fourth layer wiring pattern was 12 μm. Otherwise, a multilayer wiring board was produced in the same manner as in Example 1.

(実施例4と比較例のまとめ)
表4より、機械研磨をかけたときの基板反り量は、手研磨のときより低減していた。また、第2層以降の全てに機械研磨を行なったときの基板反り量は、さらに向上していた。
(Summary of Example 4 and Comparative Example)
From Table 4, the amount of substrate warpage when mechanical polishing was applied was lower than that during manual polishing. Further, the amount of warpage of the substrate when all the layers after the second layer were mechanically polished was further improved.

Figure 2011129563
Figure 2011129563

1…多層配線基板、2…通信モジュール、3…電子部品素子またはSAW圧電素子、4…(フリップチップ接続用)バンプ、5…(フリップチップ)接続端子、6…モールド用の樹脂、7… 裏面電極、8…第1層配線パターン、9…第1絶縁樹脂層、10…第1フィルドビア、11…第2層配線パターン、12…第2絶縁樹脂層、13…第2フィルドビア、14…第3層配線パターン、15…第3絶縁樹脂層、16…第3フィルドビア、17…第4層配線パターン、18…ソルダーレジスト、19…金属箔A、20…金属箔B、21a、21b、21c…フィルドビアめっき、22…保護めっき、23…金属箔C、24…金属箔D、25…銅張積層板またはコア基板、26…積層板a、27…積層板b、28…断裁部、29…第1層間接続孔、30…第1層導体層、31…層間接続の際に生じるめっき層、32…第2層間接続孔、33…第2層導体層、34…第3層間接続孔、35…第3層導体層、36…積層板c、37…第4層導体層、38…(コア基板の)金属箔、39…SAW圧電素子の活性面、40…多層基板 DESCRIPTION OF SYMBOLS 1 ... Multilayer wiring board, 2 ... Communication module, 3 ... Electronic component element or SAW piezoelectric element, 4 ... (For flip chip connection) Bump, 5 ... (Flip chip) connection terminal, 6 ... Resin for molding, 7 ... Back surface Electrode, 8 ... 1st layer wiring pattern, 9 ... 1st insulating resin layer, 10 ... 1st filled via, 11 ... 2nd layer wiring pattern, 12 ... 2nd insulating resin layer, 13 ... 2nd filled via, 14 ... 3rd Layer wiring pattern, 15 ... third insulating resin layer, 16 ... third filled via, 17 ... fourth layer wiring pattern, 18 ... solder resist, 19 ... metal foil A, 20 ... metal foil B, 21a, 21b, 21c ... filled via Plating, 22 ... Protective plating, 23 ... Metal foil C, 24 ... Metal foil D, 25 ... Copper-clad laminate or core substrate, 26 ... Laminated plate a, 27 ... Laminated plate b, 28 ... Cutting part, 29 ... First Interlayer connection , 30... First layer conductor layer, 31... Plating layer generated during interlayer connection, 32... Second interlayer connection hole, 33... Second layer conductor layer, 34. Layers 36 ... Laminated plate c 37 ... Fourth layer conductor layer 38 ... Metal foil (of core substrate) 39 ... Active surface of SAW piezoelectric element 40 ... Multilayer substrate

Claims (7)

金属箔Aを回路加工して形成された第1層配線パターンと、この第1層配線パターン上に配置された絶縁樹脂層及びこの絶縁樹脂層上に配置された配線パターンを有する少なくとも1層の高層側の配線層と、を有する多層配線基板であって、
前記高層側の配線パターンは、前記絶縁樹脂層上に金属箔とめっきにより形成された導体層を回路加工することにより形成され、
前記第1層配線パターンより最も高層側の配線パターンの厚みが厚く、または前記第1層配線パターンより最も高層側の配線パターンの導体層残存率が大きく、または前記第1層配線パターン上の絶縁樹脂層より最も高層側の絶縁樹脂層の厚みが薄くなるように形成される多層配線基板。
A first layer wiring pattern formed by circuit processing of the metal foil A, an insulating resin layer disposed on the first layer wiring pattern, and at least one layer having a wiring pattern disposed on the insulating resin layer A multilayer wiring board having a wiring layer on a higher layer side,
The high-layer wiring pattern is formed by circuit processing a conductor layer formed by plating a metal foil on the insulating resin layer,
The wiring pattern on the highest layer side is thicker than the first layer wiring pattern, or the conductor layer remaining rate of the wiring pattern on the highest layer side is larger than the first layer wiring pattern, or the insulation on the first layer wiring pattern A multilayer wiring board formed such that the insulating resin layer on the highest layer side is thinner than the resin layer.
請求項1において、
高層側にいくにつれて、配線パターンの厚みが厚く、または配線パターンの導体層残存率が大きく、または絶縁樹脂層の厚みが薄くなるように形成される多層配線基板。
In claim 1,
A multilayer wiring board formed so that the wiring pattern is thicker, the conductor layer remaining rate of the wiring pattern is larger, or the insulating resin layer is thinner as it goes to the higher layer side.
請求項1または2において、
最も高層側の導体層に、この導体層が平面方向に伸長するように機械的処理が施される多層配線板。
In claim 1 or 2,
A multilayer wiring board in which a mechanical treatment is applied to the highest conductive layer so that the conductive layer extends in a planar direction.
コア基板の金属箔上に、直接金属箔Aを重ね、この上に絶縁樹脂層及びこの絶縁樹脂層上に配置された配線パターンを有する少なくとも1層の高層側の配線層を形成し、この上にさらに高層側の配線層を形成するための絶縁樹脂層及び導体層を積層することによって、前記コア基板の金属箔上に直接接触した金属箔Aと、この金属箔A上の配線層と、この配線層上に形成された絶縁樹脂層及び導体層を有する多層基板を形成する工程と、
前記コア基板の金属箔と金属箔Aとの界面で、前記コア基板と多層基板とを分離する工程と、
この多層基板の前記金属箔A及び導体層を回路加工することにより、一方に前記金属箔Aを回路加工して形成された第1層配線パターンを、他方に前記導体層を回路加工して形成された高層側の配線パターンを有する多層配線基板を形成する工程と、
を有する多層配線基板の製造方法であって、
前記第1層配線パターンより最も高層側の配線パターンの厚みが厚く、または前記第1層配線パターンより最も高層側の配線パターンの導体層残存率が大きく、または前記第1層配線パターン上の絶縁樹脂層より最も高層側の絶縁樹脂層の厚みが薄くなるように形成する多層配線基板の製造方法。
On the metal foil of the core substrate, the metal foil A is directly stacked, and an insulating resin layer and at least one wiring layer on the upper layer side having a wiring pattern arranged on the insulating resin layer are formed thereon. Further, by laminating an insulating resin layer and a conductor layer for forming a wiring layer on the higher layer side, a metal foil A directly in contact with the metal foil of the core substrate, a wiring layer on the metal foil A, Forming a multilayer substrate having an insulating resin layer and a conductor layer formed on the wiring layer;
Separating the core substrate and the multilayer substrate at the interface between the metal foil of the core substrate and the metal foil A;
By processing the metal foil A and the conductor layer of the multilayer substrate, the first layer wiring pattern formed by circuit processing of the metal foil A is formed on one side, and the conductor layer is formed on the other side by circuit processing. Forming a multilayer wiring board having a wiring pattern on the higher layer side,
A method for manufacturing a multilayer wiring board having
The wiring pattern on the highest layer side is thicker than the first layer wiring pattern, or the conductor layer remaining rate of the wiring pattern on the highest layer side is larger than the first layer wiring pattern, or the insulation on the first layer wiring pattern A method for manufacturing a multilayer wiring board, wherein the insulating resin layer on the highest layer side is thinner than the resin layer.
コア基板の金属箔上に、直接金属箔Aを重ね、この上に絶縁樹脂層及びこの絶縁樹脂層上に配置された配線パターンを有する少なくとも1層の高層側の配線層を形成し、この上にさらに高層側の配線層を形成するための絶縁樹脂層及び導体層を重ねることによって、前記コア基板の金属箔上に直接接触した金属箔Aと、この金属箔A上の配線層と、この配線層上に形成された絶縁樹脂層及び導体層を有する多層基板を形成する工程と、
この多層基板の前記導体層を回路加工する工程と、
前記コア基板の金属箔と金属箔Aとの界面で、前記コア基板と多層基板とを分離する工程と、
この多層基板の前記金属箔Aを回路加工することにより、一方に前記金属箔Aを回路加工して形成された第1層配線パターンを、他方に前記導体層を回路加工して形成された高層側の配線パターンを有する多層配線基板を形成する工程と、
を有する多層配線基板の製造方法であって、
前記第1層配線パターンより最も高層側の配線パターンの厚みが厚く、または前記第1層配線パターンより最も高層側の配線パターンの導体層残存率が大きく、または前記第1層配線パターン上の絶縁樹脂層より最も高層側の絶縁樹脂層の厚みが薄くなるように形成する多層配線基板の製造方法。
On the metal foil of the core substrate, the metal foil A is directly stacked, and an insulating resin layer and at least one wiring layer on the upper layer side having a wiring pattern arranged on the insulating resin layer are formed thereon. A metal foil A that is in direct contact with the metal foil of the core substrate, a wiring layer on the metal foil A, and a metal layer A by overlapping an insulating resin layer and a conductor layer for forming a higher wiring layer on Forming a multilayer substrate having an insulating resin layer and a conductor layer formed on the wiring layer;
Circuit processing the conductor layer of the multilayer substrate;
Separating the core substrate and the multilayer substrate at the interface between the metal foil and the metal foil A of the core substrate;
By processing the metal foil A of the multilayer substrate, a first layer wiring pattern formed by processing the metal foil A on one side and a high layer formed by processing the conductor layer on the other side Forming a multilayer wiring board having a wiring pattern on the side;
A method for manufacturing a multilayer wiring board having
The wiring pattern on the highest layer side is thicker than the first layer wiring pattern, or the conductor layer remaining rate of the wiring pattern on the highest layer side is larger than that on the first layer wiring pattern, or the insulation on the first layer wiring pattern is A method for manufacturing a multilayer wiring board, wherein the insulating resin layer on the highest layer side is thinner than the resin layer.
請求項4または5において、
高層側にいくにつれて、配線パターンの厚みが厚く、または配線パターンの導体層残存率が大きく、または絶縁樹脂層の厚さが薄くなるよう形成される多層配線基板の製造方法。
In claim 4 or 5,
A method for manufacturing a multilayer wiring board, wherein the wiring pattern is formed such that the thickness of the wiring pattern increases, the conductor layer remaining rate of the wiring pattern increases, or the thickness of the insulating resin layer decreases as the height increases.
請求項4から6の何れかにおいて、
最も高層側の導体層に、この導体層が平面方向に伸長するように機械的処理が施される多層配線板の製造方法。
In any of claims 4 to 6,
A method of manufacturing a multilayer wiring board, wherein a mechanical treatment is applied to the highest conductor layer so that the conductor layer extends in a planar direction.
JP2009283914A 2009-12-15 2009-12-15 Multilayer wiring board and manufacturing method thereof Active JP5527585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009283914A JP5527585B2 (en) 2009-12-15 2009-12-15 Multilayer wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009283914A JP5527585B2 (en) 2009-12-15 2009-12-15 Multilayer wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011129563A true JP2011129563A (en) 2011-06-30
JP5527585B2 JP5527585B2 (en) 2014-06-18

Family

ID=44291877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009283914A Active JP5527585B2 (en) 2009-12-15 2009-12-15 Multilayer wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5527585B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013125820A (en) * 2011-12-14 2013-06-24 Chuan-Ling Hu Method for manufacturing plastic metalization three-dimensional wiring
JP2013135229A (en) * 2011-12-22 2013-07-08 Samsung Techwin Co Ltd Manufacturing method of multilayer circuit board and multilayer circuit board manufactured by the same
JP2013211387A (en) * 2012-03-30 2013-10-10 Hitachi Chemical Co Ltd Multilayer wiring board
WO2014050995A1 (en) * 2012-09-26 2014-04-03 日立化成株式会社 Multilayer wiring board, and method for manufacturing multilayer wiring board
WO2014104328A1 (en) * 2012-12-28 2014-07-03 日立化成株式会社 Layered body with support substrate, method for fabricating same, and method for fabricating multi-layer wiring substrate
KR101420088B1 (en) 2013-08-07 2014-07-17 대덕전자 주식회사 Method of mannufacturing a printed circuit board
JP2014150250A (en) * 2013-01-09 2014-08-21 Hitachi Chemical Co Ltd Wiring board manufacturing method and laminate with support material
JP2015144148A (en) * 2012-12-28 2015-08-06 日立化成株式会社 Laminate with support substrate, manufacturing method thereof, and manufacturing method of multilayer wiring board
JP2019161202A (en) * 2018-03-16 2019-09-19 サムソン エレクトロ−メカニックス カンパニーリミテッド. Carrier substrate and printed circuit board manufactured using the same
KR20210154720A (en) * 2020-06-12 2021-12-21 주하이 엑세스 세미컨덕터 컴퍼니., 리미티드 Interposer without feature layer structure and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6482926A (en) * 1987-09-25 1989-03-28 Mitsui Toatsu Chemicals Flexible laminated sheet of metal and plastic
JP2007073766A (en) * 2005-09-07 2007-03-22 Shinko Electric Ind Co Ltd Multilayer wiring board and its manufacturing method
JP2009152282A (en) * 2007-12-19 2009-07-09 Shinko Electric Ind Co Ltd Aggregate wiring board and semiconductor package
JP2009224739A (en) * 2008-03-19 2009-10-01 Shinko Electric Ind Co Ltd Multilayer wiring board and its manufacturing method
JP2009252827A (en) * 2008-04-02 2009-10-29 Hitachi Chem Co Ltd Support substrate for circuit formation, package substrate for mounting semiconductor element, and manufacturing method of substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6482926A (en) * 1987-09-25 1989-03-28 Mitsui Toatsu Chemicals Flexible laminated sheet of metal and plastic
JP2007073766A (en) * 2005-09-07 2007-03-22 Shinko Electric Ind Co Ltd Multilayer wiring board and its manufacturing method
JP2009152282A (en) * 2007-12-19 2009-07-09 Shinko Electric Ind Co Ltd Aggregate wiring board and semiconductor package
JP2009224739A (en) * 2008-03-19 2009-10-01 Shinko Electric Ind Co Ltd Multilayer wiring board and its manufacturing method
JP2009252827A (en) * 2008-04-02 2009-10-29 Hitachi Chem Co Ltd Support substrate for circuit formation, package substrate for mounting semiconductor element, and manufacturing method of substrate

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013125820A (en) * 2011-12-14 2013-06-24 Chuan-Ling Hu Method for manufacturing plastic metalization three-dimensional wiring
JP2013135229A (en) * 2011-12-22 2013-07-08 Samsung Techwin Co Ltd Manufacturing method of multilayer circuit board and multilayer circuit board manufactured by the same
US9532466B2 (en) 2011-12-22 2016-12-27 Haesung Ds Co., Ltd. Method of manufacturing multi-layer circuit board and multi-layer circuit board manufactured by using the method
JP2013211387A (en) * 2012-03-30 2013-10-10 Hitachi Chemical Co Ltd Multilayer wiring board
JPWO2014050995A1 (en) * 2012-09-26 2016-08-22 日立化成株式会社 Multilayer wiring board and method for manufacturing multilayer wiring board
WO2014050995A1 (en) * 2012-09-26 2014-04-03 日立化成株式会社 Multilayer wiring board, and method for manufacturing multilayer wiring board
US10194525B2 (en) 2012-09-26 2019-01-29 Hitachi Chemical Company, Ltd. Multilayer wiring board, and method for manufacturing multilayer wiring board
CN104685978A (en) * 2012-09-26 2015-06-03 日立化成株式会社 Multilayer wiring board, and method for manufacturing multilayer wiring board
WO2014104328A1 (en) * 2012-12-28 2014-07-03 日立化成株式会社 Layered body with support substrate, method for fabricating same, and method for fabricating multi-layer wiring substrate
JP2015144148A (en) * 2012-12-28 2015-08-06 日立化成株式会社 Laminate with support substrate, manufacturing method thereof, and manufacturing method of multilayer wiring board
US9554456B2 (en) 2012-12-28 2017-01-24 Hitachi Chemical Company, Ltd. Layered body with support substrate, method for fabricating same, and method for fabricating multi-layer wiring substrate
JP2014150250A (en) * 2013-01-09 2014-08-21 Hitachi Chemical Co Ltd Wiring board manufacturing method and laminate with support material
KR101420088B1 (en) 2013-08-07 2014-07-17 대덕전자 주식회사 Method of mannufacturing a printed circuit board
JP2019161202A (en) * 2018-03-16 2019-09-19 サムソン エレクトロ−メカニックス カンパニーリミテッド. Carrier substrate and printed circuit board manufactured using the same
KR20210154720A (en) * 2020-06-12 2021-12-21 주하이 엑세스 세미컨덕터 컴퍼니., 리미티드 Interposer without feature layer structure and method for manufacturing the same
JP2021197551A (en) * 2020-06-12 2021-12-27 ズハイ アクセス セミコンダクター シーオー., エルティーディーZhuhai Access Semiconductor Co., Ltd Relay board without feature layer structure and manufacturing method of the same
JP7176045B2 (en) 2020-06-12 2022-11-21 ズハイ アクセス セミコンダクター シーオー.,エルティーディー Relay substrate without characteristic layer structure and manufacturing method thereof
KR102576548B1 (en) 2020-06-12 2023-09-08 주하이 엑세스 세미컨덕터 컴퍼니., 리미티드 Interposer without feature layer structure and method for manufacturing the same

Also Published As

Publication number Publication date
JP5527585B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
JP5527585B2 (en) Multilayer wiring board and manufacturing method thereof
JP5700241B2 (en) Multilayer wiring board and manufacturing method thereof
US8959760B2 (en) Printed wiring board and method for manufacturing same
KR101475109B1 (en) Multilayer Wiring Substrate and Method of Manufacturing the Same
US7768116B2 (en) Semiconductor package substrate having different thicknesses between wire bonding pad and ball pad and method for fabricating the same
JP2013030603A (en) Method of manufacturing wiring board
JP2011199077A (en) Method of manufacturing multilayer wiring board
JPWO2009118925A1 (en) Electronic component built-in wiring board and manufacturing method thereof
WO2014104328A1 (en) Layered body with support substrate, method for fabricating same, and method for fabricating multi-layer wiring substrate
JP5555368B1 (en) Wiring board manufacturing method
TWI459879B (en) Method for manufacturing multilayer flexible printed wiring board
WO2004064150A1 (en) Method for manufacturing electronic component mount board and electronic mount board manufactured by this method
WO2014125567A1 (en) Substrate with built-in component, and manufacturing method for same
JP2010016338A (en) Multilayer flexible printed wiring board and display element module using the same, and method of manufacturing the same
JP2019121766A (en) Printed wiring board and manufacturing method thereof
JP2002252436A (en) Double-sided laminate and its manufacturing method
JP2013080823A (en) Printed wiring board and manufacturing method of the same
JP2014063881A (en) Coreless wiring board and manufacturing method therefor
JP5223973B1 (en) Printed wiring board and printed wiring board manufacturing method
JP5527586B2 (en) Multilayer wiring board
JP2020004930A (en) Printed-wiring board
JP2016025306A (en) Manufacturing method of wiring board
JP2021012956A (en) Printed wiring board
JP2021012957A (en) Printed wiring board
JP2023155032A (en) Method for manufacturing wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140402

R151 Written notification of patent or utility model registration

Ref document number: 5527585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250